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Information scrambling dynamics in a fully controllable quantum simulator
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Quantum information scrambling has received tremendous attention owing to its key concept in the fields
of quantum chaos and quantum gravity. Here, with exploiting a fully controllable superconducting quantum
processor, we study the verified scrambling in a 1D spin chain by an analog superconducting quantum simulator
with the signs and values of individual driving and coupling terms fully controllable. By engineering opposite
Hamiltonians on two subsystems, we measure the temporal and spatial patterns of out-of-time ordered correlators
(OTOC), with the Hamiltonian mismatch and the decoherence extracted quantitatively from the scrambling
dynamics, providing a benchmarking tool for probing not only the spatial but the temporal patterns of scrambling
dynamics in many-body systems. Our work demonstrates the superconducting system with strong controllability
as a powerful quantum simulator.
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I. INTRODUCTION

Quantum simulation elucidates properties of quantum
many-body systems by mapping its Hamiltonian to a better-
controlled system [1–6]. For complicated features like quan-
tum information scrambling [7,8], higher controllability will
be desired to simulate both the forward and the backward
time evolutions and to diagnose experimental errors [9,10],
which has only been achieved for discrete gates [11,12].
Quantum information scrambling describes the spreading of
information in a many-body quantum system [7,8]. Being
unseen to local observables, it is often probed by the OTOC
[13,14], namely, C(t ;W,V ) ≡ 〈W †(t )V †(0)W (t )V (0)〉 of two
initially commuting operators V (0) and W (0), where W (t ) ≡
eiHtW (0)e−iHt is the time-evolved operator under the Hamil-
tonian H of the system. As the information spreads, the OTOC
decays with the increased nonlocality of W (t ). This informa-
tion scrambling measured by the OTOC is also a key concept
in the fields of quantum chaos and quantum gravity [15,16].

Despite the significant theoretical importance, OTOC is
notoriously difficult to measure in experiments as it involves
the correlation of operators at different time points. For a
quantum simulator, this would require the capability to re-
verse each term in the Hamiltonian to obtain the forward and
the backward propagation in time [17], which is previously
mainly achieved for discrete gates at the cost of multiple
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layers [18,19], and for analog simulations of only restricted
classes of model Hamiltonians [20–23]. (An approximate
scheme has also been proposed [24] and demonstrated [25,26]
recently using randomized measurements without the need
of time reflection). Moreover, the measured decay of OTOC
can come from both the quantum information scrambling and
the experimental errors and noise such as the decoherence
and the mismatch in the engineered Hamiltonian, making it
a challenging task to verify the occurrence of scrambling.
Recently it is proposed that by preparing two copies of the
system in Einstein-Podolsky-Rosen (EPR) states and evolv-
ing them reversely in time under opposite Hamiltonians,
scrambling and noise effects can be quantified separately by
a teleportation-based scheme [9,10]. This scheme has been
tested by gate-based quantum scramblers [11,12], but its ap-
plication in analog quantum simulation and distinguishing
temporal scrambling dynamics are still lacking due to the
limited controllability of the simulated Hamiltonian.

In this work, we measure the OTOC evolution of a 1D
spin chain Hamiltonian on a superconducting quantum simu-
lator. Previously, superconducting qubits have been exploited
to simulate various phenomena such as equilibrium and dy-
namical properties of spin chains and cavity QED systems
[4,27,28]. With the help of tunable couplers [29,30], here
we can precisely adjust the sign and the value of the cou-
pling between each neighboring pair of qubits, thus directly
achieving opposite Hamiltonians on two subsystems. This
provides us with a direct approach to scrambling dynamics
of general spin models, whether integrable or nonintegrable,
which is impossible to be probed in quantum simulators
with less control over the interactions between qubits. By
initializing EPR states between the two subsystems and by
performing Bell measurements after the simulated evolution,
we measure the OTOC and the noise effects for various
evolution time and verify whether the quantum scrambling
occurs or not for different simulated Hamiltonians. Despite
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the challenges of verifying the occurrence of quantum scram-
bling, however, our teleportation-based OTOC measurement
quantitatively extracts the Hamiltonian mismatch and the de-
coherence from the scrambling dynamics and unambiguously
distinguishes the quantum scrambling from the decoherence
or mismatch. Our work demonstrates the strong controllability
of the superconducting quantum simulator, and can be ap-
plied to simulating diverse properties of complicated quantum
many-body systems.

II. TELEPORTATION-BASED SCHEME VIA ANALOG
QUANTUM SIMULATION

A. Hamiltonian model

Here, we implement the teleportation-based scheme to
measure the OTOCs [10]. As shown in Fig. 1(a), we have
a fully controllable superconducting quantum simulator con-
sisting of 2N + 1 = 7 Xmon qubits in 1D configuration, with
each pair of neighboring qubits mediated via a frequency-
tunable coupler (see Appendix B for details). Through the
competition between a positive direct coupling and a negative
indirect coupling, full control of the qubit interactions can
be achieved. The 2N + 1 qubits can be divided into three
parts: an N-qubit subsystem A (Q1-QN ) whose dynamics we
want to measure, a dual N-qubit subsystem B (QN+1-Q2N )
which evolves under the opposite Hamiltonian, and a refer-
ence qubit (Q2N+1). As shown in Fig. 1(b), initially we prepare
Q2-QN in maximal entanglement with QN+1-Q2N−1. [Specifi-
cally, Qi+1 and Q2N−i (i = 1, 2, . . . , N − 1) are prepared in an
EPR state.] Also, we entangle Q2N with the reference Q2N+1,
and initialize Q1 in an arbitrary quantum state |ψ〉 which is
to be teleported. According to Ref. [9], if the subsystem A
undergoes a perfect information scrambler U , and its coun-
terpart B reversely by U ∗, then the quantum information |ψ〉
initially encoded in Q1 can be teleported to the reference
qubit Q2N+1 conditioned on the two counterpart qubits in A
and B being projected to an EPR state. Now if instead of
a perfect scrambler, we consider an N-qubit Hamiltonian H
acting on the subsystem A, and the reverse evolution −H∗
on the subsystem B, then this scheme allows us to probe
the scrambling dynamics: the success rate of the projective
measurement reveals the average OTOC, and the teleportation
fidelity verifies true quantum information scrambling against
the decoherence effect. Combining these two results, we can
further extract a noise parameter to characterize the experi-
mental imperfections in the scheme [10].

In this experiment, we implement a seven-qubit scheme
[N = 3, Fig. 1(b)], and a five-qubit scheme (N = 2, see
Appendix A for the quantum circuit) on the superconducting
chip. After initializing the first qubit in |ψ〉 and the other
qubits in EPR states, we simulate the Hamiltonian H on
Q1-QN :

H =
N∑

i=1

(
�iσ

i
z + �iσ

i
x

) +
N−1∑
i=1

Ji,i+1σ
i
zσ

i+1
z , (1)

which is obtained in the driving frame, by applying microwave
drive on individual qubits with amplitudes �i and frequency
detuning −�i, and by coupling adjacent qubits with strength
Ji,i+1 via the tunable couplers (see Appendix A, where we also
show results for simulating σ i

+σ i+1
− + σ i

−σ i+1
+ interactions).

FIG. 1. (a) Measure quantum information scrambling dynamics
using the teleportation-based protocol with the decoding unitary
scheme via Hamiltonian time evolution, allowing us to detect not
only the spatial but also the temporal patterns of scrambling dynam-
ics in the quantum simulator. The left inset shows optical micrograph
of the superconducting quantum processor with seven transmon
qubits (Q1-Q7) and six couplers (C1-C6) used in this experiment.
Crucially, the superconducting circuit utilizes the tunable coupler
for realizing a unique competition between a positive direct and
negative indirect coupling to achieve a continuous tunability, thus
allowing a full control of qubit interactions. (b) The schematic circuit
using seven qubits (N = 3). [(c) and (d)] Typical experimental results
(dots) under a general nonintegrable Hamiltonian [Eq. (1)] for the
average OTOC (upper), teleportation fidelity (middle) and noise pa-
rameter (lower, the deviation from one indicates experimental noise).
(c) and (d) are for the five-qubit and seven-qubit cases, respectively.
The dashed lines are the ideal results and the solid lines are the
results in consideration of the imperfect EPR state preparation, Bell
measurement and decoherence. The extracted noise parameter N
(see [Eq. (2)] for its definition) shows a constant decline over the
course of the evolution, indicating the presence of decoherence error
during the scrambling dynamics.

Similarly, we achieve −H∗ on QN+1-Q2N . After a controllable
evolution time t , we finally perform Bell measurement on
QN and QN+1 by reversing the gate set of the EPR state
preparation. Ideally, the probability Pψ (t ) to project into the
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EPR state (|00〉 + |11〉)/
√

2 is related to the average OTOC
〈C(t )〉 by 〈C(t )〉 ≡ ∫∫

dO1dONC(t ; O1, ON ) = ∫
dψPψ (t ).

In this equation, O1 and ON are unitary operators acting
on Q1 and QN respectively, and are averaged over the Haar
measure; while the input state |ψ〉 can be averaged over a
complex projective 1-design, say, {|0〉, |1〉} [10]. Furthermore,
conditioned on the successful projective measurement, the
teleportation fidelity Fψ ≡ 〈ψ |ρ2N+1|ψ〉 gives an additional
characterization of the average OTOC. Here ρ2N+1 is the
final state of the reference qubit Q2N+1 conditioned on the
successful Bell measurement, and we have

∫
dψPψFψ =

[〈C(t )〉 + 1/d]/(d + 1), where d = 2 is the dimension of the
input state, and |ψ〉 is to be averaged over a complex projec-
tive 2-design, say, the six eigenstates of the Pauli operators σx,
σy, and σz [10]. Finally, in the presence of decoherence and
errors, 〈C(t )〉 = ∫

dψPψ (t ) will include the noise effects, and
we can introduce a noise parameter N , satisfying [10,11] :∫

dψPψFψ = [〈C(t )〉 + N /d]/(d + 1). (2)

N = 1 indicates the error-free case, while N < 1 reflects the
experimental noise.

B. OTOC under nonintegrable Hamiltonians

Typical experimental results under the general noninte-
grable Hamiltonian [Eq. (1)] are presented in Figs. 1(c) and
1(d) for the N = 2 and N = 3 cases. The average OTOC de-
cays with time, which comes both from information propaga-
tion and from the experimental noise and errors. On the other
hand, the teleportation fidelity, reflecting absence of quantum
scrambling at its minimal value 〈Fψ 〉 = 0.5, rises and reaches
a maximum but declines afterwards at a critical evolution time
where noise starts to break down the scrambling. Also note
that the fidelity increases slower for N = 3 than for N = 2,
since it takes longer time for the information to propagate.
Finally, the noise parameter has an initial deviation from one
because of the state-preparation-and-measurement (SPAM)
errors, and then decays further due to the decoherence and
the Hamiltonian mismatch. Note that the experimental results
(dots) agree well with the theoretical results (solid lines) con-
sidering the SPAM error and the coherence time of the qubits.
Therefore the mismatch in the engineered Hamiltonian only
contributes small effects to the deviation from the ideal evolu-
tion (dashed lines), demonstrating the accurate controllability
of our tunable quantum simulator.

C. OTOC under integrable Hamiltonians

By tuning the parameters of the Hamiltonian, we can also
simulate integrable models with distinct dynamics from the
nonintegrable Hamiltonians. In Fig. 2, we set the driving
pulses in resonance with each qubit. Then we have �i = 0 and
the Hamiltonian reduces to a 1D transverse-field Ising model
(red). In this situation the OTOC and the teleportation fidelity
oscillate, indicating the information bouncing back and forth
in the system. We can further turn off the driving pulse so
that �i = 0 (black). Then only the σ i

zσ
i+1
z terms remain in the

Hamiltonian which commute with each other. In this case, if
we consider the OTOC for operators Oj and Ok on two distant
sites j and k (| j − k| > 1), we have Oj (t ) = eiHt Oj (0)e−iHt =
eiHjt O j (0)e−iHjt , where Hj = Jj−1, jσ

j−1
z σ

j
z + Jj, j+1σ

j
z σ

j+1
z is

FIG. 2. Top and bottom panels are the average OTOC and the
teleportation fidelity under an integrable Hamiltonian (�i = 0) with
or without the σx term (red and black, respectively). (a) and (b) are for
the five-qubit and seven-qubit cases, respectively. The solid curves
are the theoretical results with the SPAM errors and decoherence
included. For a comparison between the two cases, the horizontal
axes are scaled by J (where |J| = 0.42(0.21)MHz for N = 3(2)), the
coupling in the Hamiltonian.

the local Hamiltonian acting on the site j and its two neigh-
bors. Observe that Oj (t ) commutes with Ok (0) because there
is no overlapping between their sites. Therefore theoretically
the average OTOC should stay at one and the information
should not propagate. As we can see from the black curves,
only two directly coupled qubits (N = 2) show the oscillation,
while for N = 3, the teleportation fidelity stays around 〈Fψ 〉 =
0.5 (the average OTOC still decays due to the experimental
decoherence).

D. The spatial and temporal patterns of scrambling dynamics

As mentioned before, this scheme of measuring OTOC
can diagnose not only the above incoherent errors but also the
coherent ones in the experiment.As illustrated in Fig. 3, we
deliberatly introduce a mismatch in the two Hamiltonians H
and −H∗ by applying different driving strength ��. Clearly,
the noise parameter N decays faster with increasing �� and
therefore reflects the coherent error in the time evolution.
While at relatively small mismatches, the noise parameter
N constantly decreases with elongating the evolution time,
revealing that the decoherence error plays an important role
over the course of scrambling dynamics. Also note that larger
�� leads to faster decay in the average OTOC from the ideal
case (left panels), thus the necessity of using N to bound this
effect [10].

Finally, we use the circuit in Fig. 4 to examine the spa-
tially resolved information propagation in an N = 3 model.
By preparing |ψ〉 in Q1 and performing Bell measurement on
Q3 and Q4, we obtain average OTOC between sites 1 and 3.
Now if we perform Bell measurement instead on Q2 and Q5,
we will get average OTOC between sites 1 and 2. For this
measurement, in principle we can first swap the qubit states of
Q2 and Q5 into Q3 and Q4, and then make the projective mea-
surement as before. However, this would introduce additional
experimental errors due to the imperfect swapping operations.
Therefore here we directly perform quantum state tomography
[31] to reconstruct the desired two-qubit states, and then com-
pute the success probability to project into an EPR state. In
Figs. 4(b) and 4(c), we plot the results for an integrable model
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FIG. 3. (a) and (b) demonstrate the effects of mismatch for the five-qubit and seven-qubit cases, respectively. Left panels are the evolution
of average OTOC under various mismatch strength �� in the driving term, and the middle panels are those for the noise parameter. Insets are
the theoretical results with the decoherence and SPAM errors included. As the mismatch increases, the noise parameter N decays faster from
one, correctly indicating the error accumulation during the time evolution, while the starting point of the curves remains unchanged which is
caused by the SPAM error. Right panels are the decay rates of N (t ) vs ��. We extract the decay rate by linear fitting to the initial part of the
curves before N (t ) decreases to 0.4, showing a near-linear growth with the mismatch.

FIG. 4. Average OTOC for qubits at different distances. (a) The
schematic circuit. (b) The average OTOC between sites 1 and 2 (red)
and between sites 1 and 3 (blue) under a simulated Hamiltonian with
�i = 0. The solid curves are the theoretical results with the SPAM
errors and decoherence included. (c) Similar plot for a Hamiltonian
with �i �= 0.

(�i = 0) and a nonintegrable model (�i �= 0), respectively. In
both cases, we see that the OTOC between the adjacent sites
1 and 2 decays faster than that between the distant sites 1 and
3, accordant with the finite information propagation speed on
the 1D chain. We also observe that the initial OTOCs for the
two pairs are different. This can be explained by the lower
state preparation fidelity between Q2 and Q5 since they are
swapped from Q3 and Q4 by additional two-qubit gates.

III. CONCLUSIONS

Our demonstration of teleportation-based OTOC mea-
surement for unitary time evolution, instead of the gate-
implemented digital scramblers [11,12], provides a bench-
marking tool for detecting not only the spatial but also
the temporal patterns of scrambling dynamics in many-body
systems, and allows efficient noise diagnosis for future large-
scale quantum processors. More complicated many-body
models can be simulated by constructing larger system sizes
and suppressing experimental errors with more sophisticated
control techniques. Furthermore, by exploring different forms
of system Hamiltonians and decoherence, the crossover from
classical to quantum chaos can be examined [10]. Therefore
our work shows the powerful controllability of the coupler-
mediated superconducting system and opens the door toward
more advanced applications of analog quantum simulation in
the future.
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FIG. 5. OTOC dynamics in ZZ-type and (XX + YY )-type coupling scheme. (a) Hayden-Preskill variant of the black-hole decoding
problem. (b) The schematic circuit using five qubits (N = 2) in the ZZ-type coupling scheme. (c) The schematic circuit using five qubits
(N = 2, top) and seven qubits (N = 3, bottom) in the (XX + YY )-type coupling scheme. [(d) and (e)] Typical experimental results (dots)
under the integrable Hamiltonian [Eq. (A2)] for the average OTOC (top) and teleportation fidelity (bottom). (d) and (e) are for the five-qubit
and seven-qubit cases, respectively. The dashed lines are the ideal results and the solid lines are the results in consideration of the imperfect
EPR state preparation, Bell measurement and decoherence. [(f) and (g)] The left panel shows the evolution of average OTOC under various
mismatch strength �J in the σ i

+σ i+1
− + σ i

−σ i+1
+ interaction term, and the right panel represents the simulated OTOC dynamics (decoherence

included) with the change of the mismatch. (f) and (g) are for the five-qubit and seven-qubit cases, respectively.
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APPENDIX A: EXTENDED EXPERIMENTAL DATA

As shown in Fig. 5(a), our scheme to measure the OTOC
utilizes the Hayden-Preskill variant of the black-hole informa-
tion problem [7,9,10]. Suppose Alice drops a secret quantum
state |ψ〉 (Q1) into a black hole (Q2-QN ), which is in maxi-
mal entanglement with another system (QN+1-Q2N−1) in the
possession of Bob. Assuming full scrambling dynamics U of
the black hole, Bob can decode this secret state by collecting
the Hawking radiation (QN ) from the black hole, together
with an auxiliary EPR state (Q2N and Q2N+1). Specifically,
a probabilistic decoder can be used [9], which evolves Bob’s
system (QN+1-Q2N ) reversely by U ∗. Then upon projecting
the Hawking radiation from the black hole (QN ) and the coun-
terpart of Bob’s system (QN+1) into an EPR state, Bob can
recover |ψ〉 and teleport it into a reference qubit (Q2N+1).

In our experiment, we mainly study the dynamics of the
Hamiltonian in two scenarios: ZZ-type coupling scheme (in-
tegrable and nonintegrable) and (XX + YY )-type coupling
scheme (integrable) which can be both naturally generated
in our superconducting quantum processor. ZZ-type coupling
represents the interaction of σ i

zσ
i+1
z in the Hamiltonian while

(XX + YY )-type coupling defines the interaction as σ i
+σ i+1

− +
σ i

−σ i+1
+ [32–34]. In our main text, we present the main work

with the ZZ-type coupling scheme. In this section, we provide
some extended data to further elaborate our results, including
the experimental parameters for the ZZ-type coupling scheme,
the OTOC dynamics and the effect of Hamiltonian mismatch
in (XX + YY )-type coupling scheme.

1. OTOC dynamics in ZZ-type coupling scheme

For convenience we list the experimental parameters men-
tioned in the main text. In Fig. 1 we set �/2π = 1 MHz,
J/2π = 0.42 MHz, �/2π = 0.5 MHz for the five-qubit
case, and �/2π = 0.2 MHz, J/2π = 0.21 MHz, �/2π =
0.6 MHz for the seven-qubit case. In Fig. 2, we set
�/2π = 0 MHz, J/2π = 0.42 MHz, �/2π = 0 MHz, or
�/2π = 0.8 MHz for the five-qubit case, and �/2π =
0 MHz, J/2π = 0.21 MHz, �/2π = 0 MHz, or �/2π =
0.4 MHz for the seven-qubit case. In Fig. 3, we set �/2π =
1 MHz, J/2π = 0.42 MHz, �/2π = 0.5 MHz with an extra
�� between H and −H∗ for the five-qubit case, and �/2π =
0.2 MHz, J/2π = 0.21 MHz, �/2π = 0.6 MHz, again with
an extra ��, for the seven-qubit case. In Fig. 4, we set
�/2π = 0.2 MHz, J/2π = 0.21 MHz and �/2π = 0 MHz
or �/2π = 0.6 MHz. Also we present a set of parameters in
Table I which is used in the experiment based on the non-
integrable Hamiltonian containing σ i

z , σ i
zσ

i+1
z and σ i

x terms.
The corresponding experimental results are depicted in Fig. 1
in the main text and the device parameters can be found
in Tables III and IV. The resonant Hamiltonian containing
σ i

zσ
i+1
z and σ i

x terms can be realized with �i = 0.

2. OTOC dynamics in (XX + YY )-type coupling scheme

Apart from the realization of the ZZ-type coupling, the
(XX + YY )-type coupling can also be generated in our sys-
tem. We also simulate the integrable Hamiltonian based on
the σ i

+σ i+1
− + σ i

−σ i+1
+ interaction to study the scrambling dy-

namics. Our quantum processor is a coupler-coupled qubits

TABLE I. Hamiltonian parameters in ZZ-type coupling scheme.
�i is the frequency detuning between the drive frequency and the
frequency of each qubit. �i is the drive pulse amplitude applied
on each qubit while Ji,i+1 represents the ZZ interaction between the
nearest neighbor qubits in the subsystem in the OTOC dynamics.

Five-qubit OTOC experiment

Q1 Q2 Q3 Q4 Q5 Q6 Q7

�i/2π (MHz) 1 1 −1 −1 0 ∼ ∼
�i/2π (MHz) 0.5 0.5 −0.5 −0.5 0 ∼ ∼

Q1−2 Q2−3 Q3−4 Q4−5 Q5−6 Q6−7

Ji,i+1/2π (MHz) 0.42 ≈0 −0.42 ≈0 ∼ ∼
Seven-qubit OTOC experiment

Q1 Q2 Q3 Q4 Q5 Q6 Q7

�i/2π (MHz) 0,2 0.2 0.2 −0.2 −0.2 −0.2 0
�i/2π (MHz) 0,6 0.6 0.6 −0.6 −0.6 −0.6 0

Q1−2 Q2−3 Q3−4 Q4−5 Q5−6 Q6−7

Ji,i+1/2π (MHz) 0.21 0.21 ≈0 −0.21 −0.21 ≈0

system, of which the effective Hamiltonian can be written as
[29]

H = −
N∑

i=1

ωi

2
σ i

z +
N−1∑
i=1

Ji,i+1(σ i
+σ i+1

− + σ i
−σ i+1

+ ), (A1)

where ωi is the bare frequency of the qubits and Ji,i+1 is the
effective coupling strength between each neighboring qubit
pair. By tuning the qubit system into resonance and simulta-
neously opening the coupler [30] to turn on the coupling, in
the interaction picture of the qubit frequency, the Hamiltonian
can be further expressed as

H =
N−1∑
n=1

Ji,i+1

2
(σ i

xσ
i+1
x + σ i

yσ
i+1
y ), (A2)

which is a special case of the XXZ model with Jz = 0. In
our experiment, to realize this interaction, we tune the qubit
system into the resonant frequencies and simultaneously open
the coupler to turn on the coupling. Taking seven-qubit case
as an example, the qubits in the subsystem Q1 − Q3 are tuned
into resonance during the OTOC dynamics with a positive
coupling strength, while inversely, the subsystem Q4 − Q6 is
in resonance with a negative coupling strength. The corre-
sponding pulse sequence is depicted in Fig. 5(c). Then we

TABLE II. Hamiltonian parameters in (XX + YY )-type cou-
plings scheme. Ji,i+1 is the σ i

+σ i+1
− + σ i

−σ i+1
+ interaction between the

nearest neighbor qubits in the subsystem in OTOC dynamics.

Five-qubit OTOC experiment

Q1−2 Q2−3 Q3−4 Q4−5 Q5−6 Q6−7

Ji,i+1/2π (MHz) 3.73 0 −3.73 0 ∼ ∼
Seven-qubit OTOC experiment

Q1−2 Q2−3 Q3−4 Q4−5 Q5−6 Q6−7

Ji,i+1/2π (MHz) 3.7 3.7 0 −3.7 −3.7 0
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TABLE III. Coupler parameters for quantum processor.
ωc,opt (c = 1 ∼ 6) are the resonant frequencies at the sweet spot.
gjk (k = 1, 2) represent the direct coupling strength between the
coupler and its neighboring qubit. gjd represents the direct coupling
between the neighboring qubits (“ j” denotes the order number of
the couplers and “k” denotes the left or right neighboring qubit to
the coupler with k = 1 or k = 2).

C1 C2 C3 C4 C5 C6

ωc,opt/2π (GHz) 7.752 7.808 7.838 7.798 7.822 7.785
gj1/2π (MHz) 63 63 63 63 63 63
gj2/2π (MHz) 63 63 63 63 63 63
gjd/2π (MHz) 5.17 5.55 5.36 4.92 5.07 ∼

can take advantage of the OTOC measurement to explore the
dynamics during the evolution.

a. Experimental parameters

Similarly, we here first present the experimental parame-
ters used in (XX + YY )-type coupling scheme as shown in
Table II.

b. OTOC dynamics and parameter mismatch

We first verify our control ability via characterizing the
average OTOC and the teleportation fidelity with the same
measurement method clarified in the main text. The exper-
imental results are shown in Figs. 5(d) and 5(e) with the
simulation. We can find that the average OTOC and the tele-
portation fidelity oscillate during the evolution time under
the integrable (XX + YY )-type Hamiltonian. Besides, we also
measure the effect of Hamiltonian mismatch with the change
of the effective coupling strength Ji,i+1. The corresponding
measurement results are plotted in Figs. 5(f) and 5(g). Again,
with the increase of the mismatch, the average OTOC shows a
trend of decline, indicating a deliberate error-induced decay.

APPENDIX B: EXPERIMENTAL SETUP

1. Measurement setup

The quantum processor is mounted in an aluminium sam-
ple holder at a base temperature of 10 mK in a dilution
refrigerator, protected with a magnetic shielding and an in-
frared shielding. The experimental setup and the measurement
circuit are depicted in Fig. 6 with the simplified circuit han-
dling to emphasize the major part. The detailed measurement
circuitry can be found in Ref. [35].

FIG. 6. Measurement setup. The schematic measurement circuit for OTOC experiment.
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TABLE IV. Qubit parameters for seven-qubit OTOC experiment. ωi,idle (i = 1 ∼ 7) are the idle frequencies used for preparing EPR pairs
and performing Bell measurement. ωi,ZZ,OTOC (i = 1 ∼ 7) are the frequencies used for OTOC evolution in the ZZ-type coupling regime
while ωi,X X+YY,OTOC (i = 1–7) are the frequencies used for OTOC evolution in the (XX + YY )-type coupling regime. αi (i = 1–7) are the
anharmonicities of each qubit. T1,ZZ,OTOC, T2,ZZ,OTOC, and T2E ,ZZ,OTOC are the corresponding energy relaxation time, Ramsey dephasing time and
echoed dephasing time of the qubits measured at the frequencies used for OTOC evolution in the ZZ-type coupling scheme, which are used
as the corresponding parameters in the numerical simulations. Fgg,idle and Fee,idle are fidelities which are detected by measuring the qubits in |g〉
(|e〉).

Five-qubit OTOC experiment

Q1 Q2 Q3 Q4 Q5 Q6 Q7

ωi,idle/2π (GHz) 4.220 4.425 4.365 4.488 4.547 ∼ ∼
ωi,ZZ,OTOC/2π (GHz) 4.220 4.425 4.365 4.488 4.547 ∼ ∼
ωi,X X+YY,OTOC/2π (GHz) 4.228 4.228 4.370 4.370 4.547 ∼ ∼
αi/2π (MHz) −220 −218 −218 −213 −222 ∼ ∼
T1,ZZ,OTOC (μs) 22.9 22.5 22.0 16.4 19.9 ∼ ∼
T2,ZZ,OTOC (μs) 3.0 6.7 6.8 4.2 7.9 ∼ ∼
T2E ,ZZ,OTOC (μs) 8.5 12.5 11.5 10.2 17.0 ∼ ∼
Fgg,idle (%) 92.7 93.5 94.0 93.5 93.2 ∼ ∼
Fee,idle (%) 89.3 87.5 89.0 86.1 85.0 ∼ ∼

Seven-qubit OTOC experiment

Q1 Q2 Q3 Q4 Q5 Q6 Q7

ωi,idle/2π (GHz) 4.219 4.424 4.238 4.490 4.544 4.362 4.519
ωi,ZZ,OTOC/2π (GHz) 4.219 4.424 4.238 4.490 4.544 4.362 4.519
ωi,X X+YY,OTOC/2π (GHz) 4.228 4.228 4.228 4.350 4.350 4.350 4.519
T1,ZZ,OTOC (μs) 22.9 22.5 23.9 16.4 19.9 23.3 24.8
T2,ZZ,OTOC (μs) 2.6 6.4 2.4 3.6 7.7 5.0 11.7
T2E ,ZZ,OTOC (μs) 7.9 12.1 8.6 9.9 16.4 17.4 21.9
Fgg,idle (%) 94.0 93.4 94.1 93.4 92.1 91.5 91.7
Fee,idle (%) 86.2 87.1 90.2 85.2 86.3 87.6 87.5

Each of the qubits (except for Q7) and the couplers have
an individual Z lines to tune the frequency, while the XY
lines are combined with cryogenic splitters between the pairs
of Q1 and Q6, Q2 and Q5, Q3 and Q4. Q7 is controlled via
the microwave crosstalk from the XY drive line of Q6. To
fully control the qubits and the couplers, we use six arbitrary
waveform generators (AWGs) (Tek5014C), two signal gener-
ators and two Alazard digitizer cards (ATS9870) to generate
control pulse, adjust flux and perform readout, with delicate
synchronization to guarantee a stable phase in quantum circuit
implementation. In addition, a Josephson junction parametric
amplifier (JPA), pumped and biased by another signal gener-
ator and a voltage source, is used with a gain of more than
20 dB and a bandwidth of about 300 MHz [36–38], followed
by a high-electron mobility transistor amplifier at 4 K and
two room-temperature amplifiers for each of the two readout
channels, allowing for a high-fidelity simultaneous single-shot
readout for all the qubits.

2. Device parameters

Our quantum processor consists of thirteen Xmon qubits,
with seven qubits acting as computational qubits and the other
six used as tunable couplers, as shown in Fig. 1(b) in the
main text. The coupler qubits are sandwiched between two
adjacent computational qubits to provide adjustable coupling
between them. Each computational qubit has an independent
readout cavity for measurement. The first four qubits (Q1–Q4)

share one transmission line and the others (Q5-Q7) couple to
another transmission line for readout. Fabrication procedure
of the device is similar to that presented in Ref. [30].

The parameters of our superconducting quantum processor
are listed in Tables III and IV. Table III mainly presents the
frequency and the coupling strength for the couplers. Here
the qubit-coupler coupling g jk (k = 1, 2) is measured via the
qubit-coupler resonant oscillation [30]. We can extract the
exact coupling strength by probing the effective coupling
at the resonance position. In addtion, the qubit-qubit cou-
pling gjd can be extracted with the formula J = g j1g j2

2 ( 1
� j1

+
1

� j2
− 1


 j1
− 1


 j2
) + g jd where � jk (k = 1, 2) is the frequency

detuning between the jth coupler and the two neighboring
qubits, 
 jk (k = 1, 2) denotes the frequency summation be-
tween each coupler and its neighboring qubit [29]. Given the
extracted g jk (k = 1, 2) and the effective coupling strength J
at the resonance position, together with the frequencies of the
qubits and the couplers, we can calculate the qubit-qubit direct
coupling strength as gjd = J − g j1g j2

2 ( 1
� j1

+ 1
� j2

− 1

 j1

− 1

 j2

).
Table IV shows the detailed parameters for each qubit

in five-qubit and seven-qubit cases. According to the differ-
ent coupling schemes [ZZ-type and (XX + YY )-type], the
corresponding frequencies of qubits in OTOC dynamics are
different. We also characterize the energy relaxtion time,
Ramsey dephasing time and echoed dephasing time during
the OTOC evolution which are used to further simulate the
scrambling dynamics in the main text.
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FIG. 7. Z-line crosstalk. The Z-line crosstalk via measuring the
qubit frequency response in order from the qubits Q1–Q6 and the
couplers C1–C6. The Z-crosstalk correction matrix can be acquired
through the inverse of the crosstalk matrix.

APPENDIX C: EXPERIMENTAL TECHNIQUES FOR
CALIBRATION

The basic system calibration includes detection and
suppression of XY Z-line crosstalk, calibration of measure-
ment crosstalk, calibration for single-qubit and two-qubit
gates and preparation of Bell state.

1. Detection and suppression of XY Z-line crosstalk

To fully control the Hamiltonian in our tunable super-
conducting qubit system, we need to consider the inevitable
XY -line crosstalk and Z-line crosstalk. Z-line crosstalk at-
tributes to the uncontrollable return path of the dc current
on each flux line, leading to the presence of the Z-line to
Z-line crosstalk [39]. In our quantum simulation procedure,
this crosstalk may result in an inaccurate control of the qubit
and the coupler frequency. The corresponding measurement
of the Z-line crosstalk is shown in Fig. 7. Clearly, the crosstalk
seems to be small except for some flux-line pairs; however,
this crosstalk still cannot be ignored in a real experimental
process. We perform the corretion of the Z-line crosstalk
via the orthogonalization of the flux lines as shown in our
previous work in Ref. [35].

XY -line crosstalk is troublesome in a quantum system es-
pecially in a large-scale quantum chip [12,40,41]. In fact, each
qubit could suffer from the microwave control pulse applied
on other arbitraty transmon qubits owing to the always-on
capacitive coupling. When the frequency detuning of any
two qubits in the quantum chip is close to some special
regions, such as |01〉 and |10〉 resonant position, |11〉 and
|02〉 (|20〉) resonant position, two-photon excitation position
and two-level systems (TLSs) resonant position, an unde-
sired excitation will occur which ruin the prepared states or
operations. In addition, in our experimental setup, the qubit
pairs, Q1 and Q6, Q2 and Q5, Q3, and Q4 share one XY -line,

FIG. 8. XY -line crosstalk. (a) The pulse sequence for detecting
XY -line crosstalk. The microwave pulse amplitude � is changed to
acquire the Rabi oscillation pattern. (b) Detection of the XY -line
crosstalk. (Top) The measured qubit (detector) can be driven with its
own frequency but through other XY lines. (Middle) The measured
qubit remains in the ground state if the drive frequency is away from
the qubit frequency. (Bottom) The measured qubit is indeliberately
excited once the frequency detuning between the measured qubit and
the driven qubit is placed in certain resonance regions.

respectively, and this will enhance the crosstalk. Therefore
the detection and suppresion of XY -line crosstalk is essential.
Of course, the ideal way to eliminate this XY -line crosstalk
can be realized through chip design and circuit line optimiza-
tion. Nevertheless, suppression of the crosstalk can also be
achieved according to the experimental situation. For instance,
we can use two commonly used suppression methods: Fre-
quency arrangement and XY -line correction matrix [12].

We first clarify the detection of the XY -line crosstalk in our
experiment which borrows the basic idea of the power Rabi
calibration for qubit, that is, the measurement of Rabi oscilla-
tion. The detection pulse sequence can be found in Fig. 8(a).
Here, we use the commonly adopted power Rabi sequence
with a variation of the microwave amplitude. The only dif-
ference is the measured qubit can be different from the driven
qubit. For example, if we want to detect the crosstalk from the
Q2 XY line, then we can choose Q1 as the measured qubit and
the drive is applied on the Q2 XY line. The reason for choosing
Rabi oscillation to detect the potential XY -line crosstalk is to
accurately observe the crosstalk especially some subtle ones.
These subtle crosstalks may be indistinguishable in a single
power detection but can show oscillation changes in a Rabi
oscillation measurement, see Fig. 8(b). Considering our real
experimental requirements and conditions, we suppress the
potential XY -line crosstalk via delicate arrangement of the
qubit frequencies. In our experiment and the simulation in the
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FIG. 9. Measurement crosstalk. [(a) and (b)] The measurement crosstalk matrix in the five qubit and seven-qubit cases. The y axis represents
the initial prepared states, arranged in the order from |ggggg〉 to |eeeee〉 (marked as 1–32) for five-qubit case and |ggggggg〉 to |eeeeeee〉 (marked
as 1–128) for a seven-qubit case, while the x axis represents the actual measured states in the same order.

ZZ-type coupling scheme, both the idle frequencies and the
evolution frequencies of the qubits are carefully chosen to be
in a dispersive regime. Hence, we carefully calculate the fre-
quency detuning between the qubits to make sure that none of
the qubit pairs are placed in the specific resonance regions, We
verify the crosstalk using the detection pulse sequence with
the pulse frequency according to each measured qubit, since
the microwave pulses with other driven qubits’ frequencies
only have a negligible effect of ac stark shift with �2/� on
the measured qubit.

2. Calibration of measurement crosstalk

In this tunable superconducting quantum processor, the
measurement crosstalk is nonnegligible which will make an
impact on single-shot measurement. We can simply estimate
the impact of measurement crosstalk with the method simi-
lar to the one used for measuring XY -line crosstalk shown
in Fig. 8(a). Note that here, we calibrate the measurement
crosstalk by preparing the driven qubit in a ground and an
excited state respectively while measuring the response from
the readout cavity for the neighboring measured qubit. If
no crosstalk happens, then the measurement result from the
neighboring readout cavity should be the same regardless
of whether the driven qubit is in the ground or the excited
state. Otherwise, the Rabi oscillation pattern will occur if
the crosstalk exists, revealing that the neighboring readout
caivty has a coupling channel to the driven qubit. We carefully
characterize all the potential crosstalk and find that the mea-
surement crosstalk generally exists only between the adjacent
readout cavity and qubit.

Generally, measurement crosstalk can be effectively sup-
pressed via careful chip design or measurement calibration
[42]. Here, we follow our previous work in Ref. [30] to ac-
quire a correction matrix for the measured crosstalk. Based on
the Bayes’ rule, we could further distillate our measurement
results via the calibration matrix. This correction matrix can
not only calibrate the potential measurement crosstalk but also

suppress the unwanted thermal population from the thermal
excitation states for each qubit. The measurement results of
the crosstalk for the five-qubit and seven-qubit cases are de-
picted in Figs. 9(a) and 9(b), respectively. The corresponding
correction matrix can be further achieved with the inverse of
the crosstalk matrix.

3. Calibration of single-qubit and two-qubit gate

To conduct the OTOC measurement, Bell state preparation
and Bell measurement are required. Here, we will first clarify
our gate set calibration in detail and later describe the Bell
state preparation.

a. Single-qubit gate

To reduce phase error and leakage to the higher energy
levels for the typical transmon qubit with a limited anhar-
monicity, we implement single-qubit gate using the derivative
removal adiabatic gate (DRAG) pulse [43] for all seven qubits.
Owing to the limited microwave lines in our dilution refriger-
ator, Q7 is driven via the XY line of Q1 and Q6. Therefore
we maintain the single-qubit operation time at 60 ns with the
Z-only Motzoi pulse for convenience. To ensure the accurate
gate operation for single-qubit Clifford group and further
calibrate the gate set, we perform interleaved Randomized
Benchmarking (RB) to verify the gate fidelity [44], as de-
picted in Fig. 10. We randomly generate 24 rotations in
the single-qubit clifford group using microwave pulses only,
which can be decomposed into rotations around the X and
Y axes. The average single-qubit gate fidelity for each qubit
is further calculated via averaging the gate fidelity for six
single-qubit rotations shown in the inset of the Fig. 10. Note
that, during the implementation of the quantum circuit for Bell
state preparation and Bell measurement, single qubit rotations
in idle position are performed with the neighboring ZZ inter-
action off to ensure the isolated single-qubit operations. The
measured ZZ interaction is only approximated to be several
kHz to tens of kHz. In addition, simultaneous RB is further
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FIG. 10. Single-qubit randomized benchmarking. Single qubit
interleaved randomized benchmarking is implemented with the ref-
erence RB and the interleaved RB. We extract the gate infidelity
rgate from the reference fidelity pref and the gate fidelity pgate with
the relation rgate = 1 − F = 1−pgate/pref

2 . The correponding gate fi-
delities of six single-qubit rotations for each qubit are depicted
in the inset where X, Y, x, y, u, v represent the single-qubit ro-
tations Rx (π ), Ry(π ), Rx ( π

2 ), Ry( π

2 ), R−x ( π

2 ), R−y( π

2 ) respectively.
Further, the average gate fidelity is calculated by averaging the six
gate fidelities.

implemented to ensure the least impact of spectator qubits
on the gate operation even if spectators are not in the ground
state.

b. Two-qubit gate

To generate Bell state for different qubit pairs, two-qubit
entangling gates combined with single-qubit rotations are re-
quired. In our experiment, we use three types of entangling
gates based on the tunable coupler according to the imple-
mentation conditions: CZ gate [30], iSWAP gate [30], and
parametric iSWAP gate [45].

The coupler-based CZ gate and iSWAP gate is im-
plemented with simplified pulse shaping. Considering the
complexity of the full circuit, the potential crosstalk between
qubits and the residual ZZ interaction during the gate oper-
ation, we use a simple Gaussian envelop for both the qubit
flux pulse and the coupler flux pulse during ascending and
descending stage of the gate operation, keeping a balance
between gate operation time and gate fidelity, as shown in
Fig. 11(a). Here, a faster gate speed takes less gate time but
sacrifices gate fidelity due to the required operation regime
where the coupler frequency may approach closely to the
qubit frequency. Instead, longer gate time may affect the state
fidelity with the consideration of the qubit coherence time.
In the five-qubit case, CZ gate time is fixed to be 86 ns.
In the seven-qubit case, CZ gate is implemented in 68 ns
while iSWAP gate is implemented in 67 ns. As an example,
we measure the two-qubit CZ gate fidelity via the two-qubit

FIG. 11. Two-qubit gates. (a) The pulse envelope for the
two-qubit entangling gates. (b) Two-qubit interleaved randomized
benchmarking. We extract the gate infidelity rgate from the reference
fidelity pref and the gate fidelity pgate.

Randomized Benchmarking, as shown in Fig. 11(b). The cor-
responding gate fidelity is around 98%.

In the seven-qubit case, for convenience we adopt the
parametric iSWAP gate to generate the entanglement between
Q6 and Q7 due to the limited RF cables in our refrigerator
available for the Q7. Here, we implement parametric iSWAP
gate using the parametric modulation pulse applied on the
coupler C6. The corresponding pulse shape is depicted in
Fig. 11(a). With the modulation pulse to the coupler, the
generated Hamiltonian in the interaction picture can be stated
as [46]

H =
∑

n

J6,7,nei(nωφ−�� )t |10〉 〈01|

+
∑

n

√
2J6,7,nei(nωφ−(��+α7 ))t |20〉 〈11| + · · ·, (C1)

where J6,7 is the effective coupling strength between Q6 and
Q7, �� = ω6 − ω7 is the modified frequency detuning due to
the modulation drive, αi (i = 6, 7) are the qubit anharmonic-
ities and ωφ is the drive frequency of the modulation pulse.
Considering its faster gate speed, here we choose the para-
metric iSWAP gate to realize the two-qubit entangling gate.
Apparently, the parametric iSWAP gate can be implemented
via the modulation frequency nωφ = �� with a gate time
fixed as 90 ns.

4. Preparation of Bell state

In our experiment, we prepare two types of Bell state
for the OTOC dynamics: neighboring Bell state and distant
Bell state. We experimentally generate EPR states (|00〉 +
|11〉)/

√
2 to prepare entangled pairs EPR3,4, EPR2,5, and

EPR6,7 ((|01〉 + |10〉)/
√

2) for the seven-qubit scheme, and
EPR2,3 and EPR4,5 for the five-qubit scheme.

In this part, we take the seven-qubit case as an example
since in the five-qubit case preparation of Bell state is similar.
Based on the theoretical protocol, three pairs of Bell state
are needed to be generated between Q3 and Q4, Q2 and Q5,
Q6 and Q7. The target Bell state for our OTOC dynamics is

1√
2
(|00〉 + |11〉) for each EPR pair. However, as mentioned in

the main text, we switch the definition of |0〉 and |1〉 for Q6

for the purpose of changing J5,6σ
5
z σ 6

z to −J5,6σ
5
z σ 6

z , thus the
Bell state for Q6 and Q7 should be correspondingly modified
to 1√

2
(|01〉 + |10〉). Among these three EPR pairs, only the

EPR2,5 has to be distantly generated between Q2 and Q5 while
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FIG. 12. Preparation of Bell state. (a) The pulse sequence for generating two pairs of Bell states in the five-qubit case. [(b) and (c)] The
expectation of Pauli set and the density matrix extracted from the QST measurement for the five-qubit case. (d) The pulse sequence for
generating three pairs of Bell states in the seven-qubit case. [(e) and (f)] The expectation of Pauli set and the density matrix extracted from the
QST measurement for the seven-qubit case.

the other two EPR pairs can be prepared between the two
neighboring qubits.

Figure 12(d) gives the pulse sequence for generating Bell
state for these three EPR pairs. Starting with EPR state of

1√
2
(|00〉 − |11〉) between Q3 and Q4, followed by two simul-

taneous iSWAP gates to transfer state from Q3 to Q2, and Q4

to Q5, we implement a final state of 1√
2
(|00〉 + |11〉) between

Q2 and Q5 with additional virtual Z gate to each single qubit
if necessary. Then, we again generate the Bell state for Q3

and Q4 using the CZ gate, followed by a preparation of Bell
state between Q6 and Q7 with the parametric iSWAP gate.
Notice that we sequentially prepare the Bell state for the pairs
of EPR6,7 and EPR3,4, to prevent the residual impact on the
CZ gate between Q3 and Q4 from the parametric modulation
drive. The total gate length for the initial Bell state prepara-
tion is around 621 ns containing 4 ns waiting time between
each XY drive pulse and each flux pulse. We further perform

quantum state tomography (QST) to measure the experimental
density matrix for the three EPR pairs, showing state fidelities
of (80.1 ± 1.6)% (Q2 and Q5), (89.5 ± 0.9)% (Q3 and Q4)
and (91.5 ± 0.7)% (Q6 and Q7), as shown in Figs. 12(e) and
12(f). Similar to the seven-qubit case, the pulse sequence for
generating intial Bell state for the five-qubit case is depicted
in Fig. 12(a) with a total gate length around 214 ns. The
measurement results by QST are shown in Figs. 12(b) and
12(c) with state fidelities of (93.4 ± 0.7)% (Q2 and Q3) and
(91.5 ± 1.3)% (Q4 and Q5).

APPENDIX D: CALIBRATION FLOW FOR OTOC
DYNAMICS

In this section, we introduce the calibration procedure on
the scrambling dynamics parameters with both the ZZ-type
scheme and the (XX + YY )-type scheme.
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1. ZZ-type coupling scheme

We implement the Hamiltonian H = ∑N
i=1(�iσ

i
z +

�iσ
i
x ) + ∑N−1

i=1 Ji,i+1σ
i
zσ

i+1
z on the qubits Q1 − Q3 for the

seven-qubit case while Q1 − Q2 for the five-qubit case, and
an opposite Hamiltonian Hopp = ∑N

i=1(−�iσ
i
z − �iσ

i
x ) −∑N−1

i=1 Ji,i+1σ
i
zσ

i+1
z on the counterpart (Q4 − Q6 for the

seven-qubit case and Q3 − Q4 for the five-qubit case)

a. ZZ control

We first demonstrate our control of ZZ interaction. The
ZZ coupling between each qubit pair is measured via a
cross-Ramsey-type experiment, which involves probing the
frequency shift of the target qubit with initializing the adjacent
qubit either in |0〉 and |1〉 state. We still take the seven-
qubit case as an example.In the original scheme, the coupling
strength between each neighboring qubit pair should satisfy
J1,2 = J2,3 = −J4,5 = −J5,6. However, considering the fre-
quency crowding and the XY -line crosstalk, we finally choose
the interaction condition as J1,2 = J2,3 = −J4,5 = J5,6. Once
we switch the definition of |0〉 and |1〉 for Q6, the equivalent
interaction condition is automatically satisfied.

Tunable coupler offers us a convinent way to continu-
ously adjust neighboring qubit-qubit interaction from positive
interaction to negative interaction with varying the coupler
frequency. We choose the qubit frequency during the scram-
bling dynamics according to implementation requirement
of interaction strength and frequency detuning between the
qubits. For example, to generate a relatively large positive
ZZ interaction, the frequency detuning between neighboring
qubits should be tuned to be close to the anharmonicity [47].
Figure 13(b) shows the simulated results for ZZ interaction
based on the real experimental parameters listed in Table I as
we change the effective coupling strength (coupler frequency)
between each neighboring qubit pair. We can observe that
positive ZZ interaction is easier to be achieved with a larger
qubit-qubit frequency detuning. Our experimental ZZ inter-
action is chosen to be around 0.21 MHz for the seven-qubit
case, marked by stars in Fig. 13(b). Similarly, the simulated
ZZ interaction for the five-qubit case is illustrated in Fig. 13(a)
with the chosen experimental ZZ interaction about 0.42 MHz,
marked by stars in the figure.

b. X control

In the ZZ-type coupling scheme, since the qubit frequency
remains the same on the idle positions and during the scram-
bling evolution, thus the driven axis can be fixed according to
each qubit frequency. To calibrate the exact pulse amplitude
to achieve the requirement �1 = �2 = �3 = −�4 = −�5 =
−�6 for the seven-qubit case (similar calibration for the five-
qubit case), we implement the Rabi oscillation experiment
with varying the microwave pulse amplitude. We use the
standard rectangular drive pulse with a gate length of 250 ns
and measure Rabi oscillation to extract the required pulse
amplitude.

We verify the dedicate control of the σ i
x term in the whole

qubit system by comparing the OTOC measurement with the
simulation result. The verification circuit is similar to the
formal OTOC experiment circuit shown in Fig. 1 in the main

FIG. 13. ZZ control. [(a) and (b)] The simluated ZZ interaction
vs. the effective coupling strength (coupler frequency) between each
neighboring qubit pair in the five-qubit and seven-qubit cases. The
star symbol in the figure marks the ZZ interaction chosen in the
experiment.

text. The only difference in this case is that the ZZ coupling is
off during the OTOC dynamics. We find that the measurement
of OTOC is actually a fine detector, which can be used to
accurately diagnose whether the microwave pulse amplitude
and the rotation axis of qubits are correctly calibrated, since
the measurement result will show a dramatic change once the
pulse amplitude or the rotation axis has a slight deviation from
the optimum. Figure 14 shows an example of calibrating the
σx term in the five-qubit measurement. It is easy to see that
the experimental results of OTOC can be fitted well to the
simulation results by optimizing the pulse amplitude and the
rotation axis.

c. Z control

To investigate the OTOC dynamics with the nonintergrable
Hamiltonian, we should generate σ i

z term with the help of
the nonresonant drive. In the interaction picture of the drive
frequency, the σ i

z term in the Hamiltonian has the coeffi-
cient �i = ωi − ωdi (i = 1, 2, . . . ), where ωdi is the drive
frequency on each qubit. In the seven-qubit case, to fulfull
the requirement of the inverse Hamiltonian, the coefficient
should satisfy �1 = �2 = �3 = −�4 = −�5 = −�6, and
similarly in the five-qubit case. Nevertheless, we should no-
tice that ωi in the definition represents the bare frequency of
each qubit which is not the measured qubit frequency in the
experiment owing to the existence of the ZZ coupling during
the OTOC dynamics [48]. Here, we take advantage of the ZZ
coupling strength to recovery and calibrate the bare frequency
from the measured qubit frequency.
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FIG. 14. X control. Verifying the X control by comparing the
OTOC measurement with the simulation result. The pulse sequence
is similar to that shown in Fig. 1 in the main text but with the ZZ
coupling off.

The fundamental experimental sequence is the Ramsey
pulse sequence [39,49] which can extract both the qubit
dressed frequency and the ZZ interaction. Taking Q1 − Q3

qubit system as an example, the Hamiltonian in the OTOC
dynamics without drive could be written as

H = −ω1

2
σ 1

z − ω2

2
σ 2

z − ω3

2
σ 3

z + J1,2σ
1
z σ 2

z + J2,3σ
2
z σ 3

z ,

(D1)

where J1,2, J2,3 are the ZZ coupling strength between Q1 and
Q2, Q2, and Q3. To calculate the bare frequency of Q2, Q1 and
Q3 are first prepared in the ground state, then the Hamiltonian
in the Q2 subspace can be expressed as

H00 = 〈00| H |00〉
= −ω1

2
− ω2

2
σ 2

z − ω3

2
+ J1,2σ

2
z + J2,3σ

2
z

= −ω2 − 2J1,2 − 2J2,3

2
σ 2

z − ω1

2
− ω3

2
.

(D2)

The measured dressed qubit frequency of Q2 will be ω00
2 =

ω2 − 2J1,2 − 2J2,3. Then Q1 is initialized to the excited state
while Q3 is still in the ground state. The Hamiltonian in the
Q2 subspace can be further expressed as

H10 = 〈10| H |10〉
= ω1

2
− ω2

2
σ 2

z − ω3

2
− J1,2σ

2
z + J2,3σ

2
z

= −ω2 + 2J1,2 − 2J2,3

2
σ 2

z + ω1

2
− ω3

2
.

(D3)

FIG. 15. Phase calibration. (a) The pulse sequence for measuring
phase accumulation. (b) The phase accumulation vs OTOC evolution
time. The linear fitting function is implemented to acquire the phase
calibration function.

The measured dressed qubit frequency of Q2 in this case
will be ω10

2 = ω2 + 2J1,2 − 2J2,3. Combining the measured
dressed frequency for Q2 in these two cases, J1,2 can be easily
extracted. Similarly, J2,3 can also be acquired with Q1 pre-
pared in the ground state while Q3 prepared in excited state.
After that, the bare frequency of Q2 can be calculated as

ω2 = ω00
2 + 2J1,2 + 2J2,3. (D4)

In our real experiment, each qubit bare frequency in the OTOC
dynamics is set to be the same as the idle frequency so as to
simplify the circuit complexity and calibration flow.

d. Phase calibration

Although in our previous experimental setup, we have
claimed that the bare qubit frequencies in OTOC dynamics
remain the same to that on the idle position for simplicity.
However, owing to the frequency adjustment of the coupler
frequencies during the OTOC dynamics, qubit frequencies
will still be affected. Therefore the rotation axes for all qubits
should be carefully checked and calibrated to ensure the
right axes for implementing the following gate oprations. For
the seven-qubit case, the major phase calibration should be
accomplished for Q3, Q4, and Q7 prior to the following op-
erations. Similarly, phase calibration should be performed on
Q2, Q3, and Q5 in the five-qubit case.

The basic idea for measuring phase accumulation due to
the frequency adjustment is the Ramsey experiment. The
pulse sequence for phase calibration is depicted in Fig. 15(a),
with the last π/2 pulse rotating around the axis. We nu-
merically extract the phase accumulation from the Ramsey
experiment and calculate the phase-dependent calibration
function with the change of the time, as shown in Fig. 15(b)
as an example. Notice that the linear fitting function is im-
plemented for phase accumulation as φ = kt + b. Then in the
formal OTOC experiment, the rotation axes for gate opera-
tions after OTOC dynamics should be modified according to
the fitting function of phase calibration.

2. (XX + YY )-type coupling scheme

a. XX + YY control

In this part, we explain the calibration flow for (XX +
YY )-type coupling scheme in the OTOC experiment, namely
the Hamiltonian H = ∑N−1

i=1 Ji,i+1(σ i
+σ i+1

− + σ i
−σ i+1

+ ), which
can be generated by tuning the qubits into resonance in the
interaction picture. In the seven-qubit case, to satisfy the
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FIG. 16. XX + YY control. (a) The pulse sequence for calibrat-
ing qubit-qubit resonant coupling. (b) The pulse sequence for three
qubit resonant oscillations. (c) The experimental (dot) and simu-
lation (solid line) results for two qubit resonant coupling. (d) The
experimental (dot) and simulation (solid line) results for three qubit
resonant oscillation which is used to verify the XX + YY calibration.

time-inverse Hamiltonian and demonstrate the fully control
of the system Hamiltonian, we set the coupling strength to
fulfull J1,2 = J2,3 = −J4,5 = −J5,6. Similarly, the coupling
strength satisfies J1,2 = −J3,4 in the five-qubit case. Therefore
XX + YY calibration contains two aspects: qubit-qubit reso-
nant position and coupling strength.

The exact resonant position is calibrated via the qubit-qubit
resonant oscillation. The Ramsey measurement is first imple-
mented to make sure all the qubits have been tuned to the
positions for the OTOC dynamics. Then, each neighboring
qubit pairs are seprately adjusted to the resonant position with
the initial state |01〉 (or |10〉). After dedicate adjustment to the
qubit flux, we can finally observe the maximum qubit-qubit
oscillation pattern at the resonant position for every qubit
pair. Notice that, the coupler frequency is simultaneously
adjusted with the qubit frequency to ensure the generation
of the expected coupling strength. The positive and nega-
tive XX + YY interaction could be easily acquired with fine
tuning the coupler to different frequencies according to the
relation J = g j1g j2

2 ( 1
� j1

+ 1
� j2

− 1

 j1

− 1

 j2

) + g jd . The experi-
mental calibration results for the seven-qubit case have been
plotted in Fig. 16(a) and we can find that the effective coupling
strength for all the qubit pairs is set to be the same.

We finally verify the calibration in the seven-qubit case
with the simulated three-qubit resonant oscillation. Through
simulations, we find that once we bring Q1, Q2, and Q3 into
resonance at the same time, the oscillation will feature a
finger-print pattern and any deviation from the perfect con-
dition, such as of a slight nonresonance or a mismatched
coupling, will modify the regular oscillation pattern. The

corresponding experimental results are drawn in Fig. 16(c)
combined with the simulation curves, with the pulse sequence
shown in Fig. 16(b). It can be seen that the calibrations of
resonant oscillations are well performed among Q1 − Q3 and
Q4 − Q6.

b. Phase calibration

In the (XX + YY )-type coupling regime, since all the
qubits should be accurately tuned for the OTOC dynamics
with precisely adjusting the qubit frequencies and the coupler
frequencies, the phase calibration is necessary and essential.
As we mentioned above, the phase calibration can be real-
ized for every qubit with Ramsey measurements. Notice that,
owing to the large frequency tunability of the qubits in the ex-
periment, a range of 0 − 2π of the phase accumulation should
be considered, and the phase needs to be carefully calibrated
by fitting the phase calibration function. The corresponding
results are similar to that shown in Fig. 15 with a same pulse
sequence for the measurement.

APPENDIX E: HAMILTONIAN MODEL
AND NUMERICAL SIMULATION

We verify our accurate control of the superconducting
quantum processor by comparing the experimental results
with the simulation results based on the Hamiltonian model in
the OTOC dynamics. The numerical simulation is performed
with QUTIP in PYTHON [50]. Here, we introduce our simulation
metheds and clarify the Hamiltonian models implemented in
OTOC dynamics in our experiments.

1. Hamiltonian models

According to the experiments demonstrated in our main
text and in the extended data, we list all the simulated Hamil-
tonians for clarity:

(1) H = ∑N
i=1 �iσ

i
z + ∑N−1

i=1 Ji,i+1σ
i
zσ

i+1
z + ∑N

i=1 �iσ
i
x;

(2) H = ∑N−1
i=1 Ji,i+1σ

i
zσ

i+1
z + ∑N

i=1 �iσ
i
x;

(3) H = ∑N−1
i=1 Ji,i+1σ

i
zσ

i+1
z ;

(4) H = ∑N−1
i=1

Ji,i+1

2 (σ i
xσ

i+1
x + σ i

yσ
i+1
y ).

As we mentioned previously, the first three Hamilto-
nian models represent the ZZ-type coupling scheme and the
last one represents the (XX + YY )-type coupling scheme.
These Hamiltonian models have revealed the interesting but
different evolution dynamics, as shown in the experiment
and simulation results in the main text and the previous
sections.

2. Methods of numerical simulation

In order to realistically simulate the dynamic process of
the OTOC evolution based on the experimental conditions, the
combined effects of qubits’ coherence time, initial Bell state
preparation error and Bell measurement error are all taken into
account. We use standard quantum state tomography to extract
the imperfect bell state(s) we prepared experimentally which
is(are) applied as the initial state(s) in the simulations. In the
same way, the imperfect experimental Bell measurement(s)
described by operator-sum representation can be rebuilded by
quantum process tomography, and we can easily replace the

043141-15



J.-H. WANG et al. PHYSICAL REVIEW RESEARCH 4, 043141 (2022)

ideal Bell measurement process in simulation with that. By
including these errors into numerical simulation, we can focus
on the difference between the desired Hamiltonian evolution
and the one achieved in the experiment.

First, the coherence time is considered by implementing
Lindblad master equation based on the experimental co-
herence time measured in the OTOC dynamics, shown in
Table IV. The energy relaxation time T1 of all the qubits is
included with the Lindblad operator chosen as ai (i = 1–7)
while the dephasing time T2 of all the qubits is considered with
the Lindblad operator chosen as a†

i ai (i = 1–7). The simulated
OTOC evolution time and steps are in consistent with the
experimental condition. Through our simulation, we find that
the presence of the decoherence weakens the average OTOC
and influences the noise parameter, thus degrading the signal
for quantum scrambling.

Moreover, the initial Bell state preparation is also carefully
considered according to the experimental measurement. We
use the same pulse sequence as in the actual experiments to
accurately characterize the QST of all EPR pairs before the
OTOC dynamics. The corresponding measured density matrix
is extracted to replace the ideal Bell state in the simulation. We
observe that the initial Bell state preparation error will lower

down the profile of the average OTOC and the noise param-
eter, but does not change the overall trend of the evolution.
Therefore the error from the Bell state preparation actually
has little impact on the OTOC dynamics.

Finally, the complicated Bell measurement circuit in the
experiment also brings additional error which may further
decline the average OTOC. We separately characterize the
gate fidelity of Bell measurement via the QPT in both the
five-qubit and the seven-qubit case. Then the simulated results
after the Hamiltonian evolution are further modified by the
imperfect gates before the ideal Bell measurement, whose χ

matrix is given by [51]

ρfin =
∑
m,n

χmnEmρinE†
n , (E1)

where ρin and ρfin represent the input and output states, re-
spectively; the matrices {En} construct a complete Pauli basis
and here we adopt the definition of {En} = {I, X, Y, Z}⊗2.
Note that after dealing with the imperfect channel, the sim-
ulation results fit well with our experiments as shown in the
main text and the previous sections.
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