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Deep-circuit quantum computation, like Shor’s algorithm, is undermined by error accumulation, and near-
future quantum techniques are far from adequate for full-fledged quantum error correction. Instead of resorting to
shallow-circuit quantum algorithms, recent theoretical research suggests that digital quantum simulation (DQS)
of closed quantum systems are robust against the accumulation of Trotter errors, as long as local observables are
concerned. In this paper, we investigate the error-mitigation problem of open systems via DQS. First, we prove
that the deviation in the steady state obtained from digital quantum simulation depends only on the error in a
single Trotter step, which indicates that error accumulation may not be disastrous. By numerical simulation of
the quantum circuits for the DQS of the dissipative XYZ model, we then show that the correct results can be
recovered by quantum error mitigation as long as the error rate in the DQS is below a sharp threshold. We explain
this threshold behavior by the existence of a dissipation-driven quantum phase transition. Finally, we propose a
error-mitigation technique based on the scaling behavior in the vicinity of the critical point of a quantum phase
transition. Our results expand the territory of near-future available quantum algorithms and stimulate further
theoretical and experimental efforts in practical quantum applications.
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I. INTRODUCTION

Quantum computation [1] can solve physical problems,
e.g., analyzing equilibrium and dynamical properties, of
strongly-correlated quantum many-body systems more effi-
ciently than its classical counterpart. One of the prominent
computational frameworks is the so-called digital quantum
simulation [2], where the unitary time evolution of local
Hamiltonians is first discretized into small time steps, termed
as Trotter steps, and then decomposed into a number of native
gates, based on the Trotter-Suzuki formulas [3–5]. The quan-
tum computational complexity, in terms of the gate count, is
estimated to be polynomial in the number of constituents par-
ticles, while the classical simulation in general consumes an
exponential amount of resources. With programmable quan-
tum devices, this algorithm can be applied to a wide range of
research fields, from condensed matter physics [6] to quantum
chemistry [7,8]. As the quantum technologies improve, the
number of qubits involved in digital quantum simulation has
just increased to more than 16 in recent experiments [9,10].

Although powerful and flexible, digital quantum simula-
tion always uses deep circuits, with the number of quantum
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gates increases proportionally to the number of qubits, the
evolution time, and the desired simulation accuracy. It was
thus largely maintained that this algorithm would eventually
be corrupted by accumulated errors, coming from both the
Trotter-Suzuki expansion and imperfect quantum devices. A
recent theoretical paper [11], however, suggests that digital
quantum simulation is robust against Trotterization errors, in a
sense that the deviations of local observables are under control
for relatively large Trotter steps. Moreover, it has been shown
[11,12] that there is a sharp threshold behavior for the Trotter
errors, which can be explained by the transition from quantum
localization to many-body quantum chaos. These theoretical
findings have strengthened our confidence in the prospect that
digital quantum simulation will beat errors and show advan-
tages over classical simulation with noisy intermediate-scale
quantum devices [13].

Alternatively, we find that there are physical problems of
open quantum systems [14] that are robust against noises.
In other words, although using deep quantum circuits, the
deviations in the final results of these deep-circuit quantum
simulations still remain under control, and the corresponding
ideal results can be extracted with certain error-mitigation
techniques [15–17]. The classical simulation of open quantum
systems is harder than that of closed quantum systems, since
the storage and manipulation of density matrices generally
require more computational resources [18], compared with
those of state vectors. As a result, the universal quantum sim-
ulation of open quantum systems [19] covers diverse quantum
algorithms that are appropriate for demonstrating the potential
powerfulness of quantum computers. Here in this paper, we
first prove, via perturbation theory, that the deviation in the
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steady state obtained via digital quantum simulation depends
only on the error in a single Trotter step. Using the dissipative
XYZ model as an example, we then show that there is a sharp
threshold for the error rate below which the ideal steady-state
properties and relaxation rates can be recovered by a specific
error-mitigation technique [15], i.e., the so-called zero-noise
extrapolation [16]. We explain this threshold behavior by the
existence of a dissipation-driven quantum phase transition,
which is supported by the mean-field theory. Finally, we pro-
pose a new error-mitigation technique based on the scaling
behavior [20,21] in the vicinity of the critical point of a quan-
tum phase transition, and provide numerical evidence with the
mean-field calculation of the dissipative XYZ model.

II. OPEN QUANTUM SYSTEM

Here we briefly recall the basic description of the dynamics
of open quantum systems. Consider a quantum system weakly
coupled to a Markovian environment. The quantum dynamics
is described by the quantum master equation of Lindblad form

d

dt
ρ̂(t ) = L0ρ̂(t ), (1)

where ρ̂ is the reduced density matrix of the system, and L0

is the Lindbladian. The general form of the Lindbladian is

L0ρ̂ = −i[Ĥ, ρ̂] +
K∑

k=1

Dk ρ̂, (2)

where Ĥ ≡ ∑L
l=1 ĥl is the system Hamiltonian and Dk• ≡

γk (Âk • Â†
k − 1

2 Â†
kÂk • − 1

2 • Â†
kÂk ) is the dissipator of the sys-

tem, operator Âk with non-negative coefficients γi quantifying
the dissipation strength. Given an initial state ρ̂(t = 0) ≡ ρ̂in,
the reduced density matrix at time t can be formally obtained
as

ρ̂(t ) = eL0t ρ̂in. (3)

III. STEADY-STATE PROBLEM

In the theory of open quantum systems, the steady-state
problem, i.e., obtaining properties of steady states of given
physical models, is of particular relevance. The quantum mas-
ter equation in Eq. (1) can be formally solved to obtain the
reduced density matrix of the system at time t as ρ̂(t ) =
eL0t ρ̂in, with ρ̂in being the initial density matrix. Intuitively,
ρ̂(t ) eventually converges to the steady state ρ̂0, which is by
definition annihilated by the Lindbladian, i.e., L0ρ̂0 = 0. In
this paper, we consider only open system with single steady
state, therefore the steady state ρ̂0 = limt→∞ eL0t ρ̂in do not
depend on the initial density matrix ρin. To investigate the
speed of the convergence, it is convenient to use the Hilbert-
Schmidt space, where an arbitrary operator Â, which is a
d × d matrix in the Hilbert space, is mapped to d2-entry
column vectors |A〉〉, with d being the dimension of the Hilbert
space and the inner product 〈〈A|B〉〉 defined as Tr(A†B). In
this representation, the Lindbladian L0 in Eq. (2) becomes a
d2 × d2 matrix L0, and the steady state |ρ0〉〉 is the right eigen-
vector of L0 with the eigenvalue λ0 = 0. Formally solving the

Eq. (1) in the Hilbert-Schmidt space, we can prove that∥∥eL0t ρ̂in − ρ̂0

∥∥ = O(e−�t poly(t )), (4)

with an arbitrary norm. The lowest relaxation rate � =
min{−Re(λα )|α �= 0} determines the speed of the conver-
gence, where λα’s are the eigenvalues of L0 (see Appendix B).

Obtaining the steady state by a classical computer needs
to manipulate L0 and storing |ρ〉〉. The classical computation
costs exponential computational resources both in space and
time with respect to the number of qubits N in the system,
since L0 and |ρ〉〉 are respectively a 22N × 22N complex matrix
and a 22N complex vector. Here we propose that the expo-
nential cost can be alleviated by a near-term noisy quantum
processor.

IV. QUANTUM ALGORITHMS

A universal quantum computer can prepare the steady state
by directly evolving the quantum master equation for a long
enough time T , such that the norm ‖ρ̂(T ) − ρ̂0‖ < δ, with
δ > 0 is the predetermined accuracy goal. In contrast to the
evolution of closed quantum systems, the basic operation
block eL0τ , with τ being a small time interval to be determined
by the error tolerance, cannot be represented as a unitary
operator. Theoretically, a universal quantum computer can re-
alize arbitrary quantum operations on N qubits with either 2N
ancilla qubits [22] or a single ancilla qubit with 2N feed-back
control cycles [23]. Together with Eq. (4), it is evident that to
prepare the steady state, a universal quantum computer would
require O(N ) qubits and O(log δ−1) runtime.

One of the most promising ways that universal quantum
computers simulate the time evolution of quantum systems is
using the Trotter-Suzuki decomposition. Here we generalize
the framework proposed in Ref. [2] to simulate the dynamics
of open quantum systems. Specifically, we realize the follow-
ing quantum operation, also called a Trotter step,

eL0τ 	 eL
id
eff τ ≡

K∏
k=1

eDkτ

L∏
l=1

Ul (τ )

≡ eG
id
Mτ . . . eG

id
2 τ eG

id
1 τ (5)

on the universal quantum processer, with Ul (τ ) ≡ Ûl (τ ) •
Û †

l (τ ) ≡ e−iĥl τ • eiĥl τ , where G id
m ’s (m = 1, . . . , M with M =

K + L) are defined as the ideal native interactions being driven
to implement eDkτ and Ul (τ ).

For near-term noisy quantum processors, the real oper-
ations can be represented as the ideal operation slightly
corrupted some noise process. Mathematically, we can ex-
press the real operation as eGmτ with Gm = G id

m + rmEm, where
rm > 0 is a small positive value that quantifies the strength of
the noise for the mth quantum operation, whose generator is
formally denoted as Em (see Appendix F for the treatment of
the depolarizing error channel). Using the Magnus expansion,
the real effective Lindbladian on the near-term noisy quantum
processor is

Leff = L0 + r
M∑

m=1

Em + τ

2

∑
m>m′

[Gm,Gm′ ]

+O(r2, rτ, τ 2), (6)
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where by definition L0 = ∑M
m=1 G id

m . Note that here we treat
both r and τ as small quantities of the same scale. Intuitively,
the deviation of Leff from L0 is determined by both the noise
strength r and the length of the Trotter step τ . Note that the
high-order terms can be found in Appendix A. The effect of
Trotter step τ has been widely studied and it has been shown
that there is a sharp threshold for τ for closed system [11].
There is also such a threshold for τ in open systems, however,
we choose a fixed τ = 0.01 below the threshold and focus on
the unexploited field on the effect of noise strength r.

When the total evolution time T is sufficiently long, the
state of the system converges to the steady state of the
real effective Lindbladian, which satisfies Leff ρ̂eff = 0. Using
Eq. (4) and the triangle inequality, we find the difference
between the final state on the noisy quantum processor and
the ideal steady state satisfies the following inequality:∥∥eLeff T ρ̂in − ρ̂0

∥∥ � ‖ρ̂eff − ρ̂0‖
+O(e−�eff T poly(T )), (7)

where �eff is the lowest relaxation rate of the real effective
Lindbladian Leff . The second term in the above equation can
be arbitrarily suppressed by increasing the evolution time T ,
thus the error in the prepared steady state is dominated by the
difference between ρ̂eff and ρ̂0. Next, we will show that the
steady state ρ̂eff and the relaxation rates λeff,α of the noisy
effective Lindbladian Leff can be obtained from the corre-
sponding ideal ones by perturbation theory, thus the deviations
of the prepared steady state and the measured relaxation rates
from the ideal ones are bounded by the error of a single
Trotter step, even though the quantum algorithms consist deep
quantum circuits.

V. ZERO-NOISE EXTRAPOLATION

To use the perturbation theory, we first write Leff = L0 +
L′ and treat L′ as the perturbation. The steady state of ρ̂eff can
be expressed as a power series of superoperators working on
the ideal steady state ρ̂0,

ρ̂eff =
∞∑

n=0

(−1)n
(
L0

−1L′)n
ρ̂0, (8)

where L−1
0 is the superoperator corresponding to the gener-

alized inverse of L0 in the Hilbert-Schmidt space. Therefore,
the expectation of any observable Ô can be written as

〈Ô〉 = Tr[Ôρ̂eff ] =
∞∑

n=0

(−1)n[Ô(L0
−1L′)nρ̂0]. (9)

Similarly, the relaxation rates, i.e., the real parts of the eigen-
values of the Lindbladian, can also be expressed as λeff,α =∑∞

n=0 λ(n)
α (see Appendix C for the expressions of λ(n)

α ).
The power series of ρ̂eff will converge within a few orders

under the condition ‖L−1
0 L′‖ � 1, with ‖L−1

0 ‖ ∼ 1/� and
‖L′‖ ∼ r. Thus it is anticipated that if the noise strength r
is smaller than the lowest relaxation rate �, the steady state ρ̂0

of the ideal target Lindbladian L0 can be inferred by extrap-
olation with linear or low-order polynomial functions, given
noisy data obtained with the intrinsic error rate r0 and boosted
error rates cr0 with c > 1. (See Appendix G for details.) In

the following, we will give a concrete example of using the
error mitigation technique to obtain the physical properties of
the ideal steady state, with a programmable universal quantum
processor.

VI. DISSIPATIVE XYZ MODEL

We consider the dissipative version of the anisotropic spin-
1
2 Heisenberg model [24], also called the XYZ model, on
a two-dimensional square lattice as an example. The ideal
Lindbladian L0 takes the general form in Eq. (2), with the
Hamiltonian for the spin lattice being

ĤdXYZ = Ĥc + Ĥr (10)

with the row and column parts defined as

Ĥc =
∑
i, j,α

Jασ̂ α
i, j σ̂

α
i+1, j, Ĥr =

∑
i, j,α

Jασ̂ α
i, j σ̂

α
i, j+1, (11)

with σ̂ α
i, j (α = x, y, z) being Pauli matrices on the qubit at the

ith row and the jth column. Here the anisotropic Heisenberg
interaction strength on the nearest-neighbor sites are quanti-
fied by Jα (α = x, y, z). Besides the above Hamiltonian, each
spin is also subject to a dissipation process governed by the
following dissipator:

Di, j = γ
(
σ̂−

i, j • σ̂+
i, j − 1

2 {σ̂+
i, j σ̂

−
i, j, •}), (12)

where γ is the intrinsic single-site dissipation rate. The steady
state ρ̂0 can be obtained from an arbitrary initial state ρin after
the following Trotterized evolution:

ρ0 = lim
T →∞

[∏
m

eGmτ

]T/τ

ρ̂in, (13)

where quantum gate Gm is either generator of local column
(row) Hamiltonian −i[Jασ̂ α

i, j σ̂
α
i+1, j, •] (−i[Jασ̂ α

i, j σ̂
α
i, j+1, •]), or

generator of dissipator Di, j .
This model plays an important role in the field of un-

conventional magnetism and nonequilibrium phase transition
[24]. In contrast to the equilibrium case, each spin in the
system keeps precessing around the effective magnetic field
stemming from its surrounding spins. Thus the phase tran-
sition can be understood from the aspect of the competition
between the precession and the dissipation, which is quanti-
fied by the dimensionless transversal aspect ratio

g ≡ |Jx − Jy|/(2γ ). (14)

Specifically, in the thermodynamic limit, the critical point
is gcri = 0.062 for the dissipative XYZ model with Jz = γ

[25,26], and the steady state lies in the paramagnetic (ferro-
magnetic) phase when g < gcri (g > gcri).

VII. EXPERIMENT PROTOCOL

There are many theoretical efforts [27–30] been made
to simulate Moarkovian open quantum systems with unitary
operations. Recently, experimental simulation of a two-level
open quantum system is demonstrated in a superconducting
circuit [31]. It is not hard to generalize these ideas to the dis-
sipative XYZ model. The steady state of the dissipative XYZ
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FIG. 1. Schematic diagram of the quantum circuit preparing the
steady state. (a) Trotterized quantum circuit for the dissipative XYZ
model on a 2D square lattice and evolution governed by the col-
umn Hamiltonian. (b) Qubit-ancilla layout of a 2 × 2 square lattice.
There is a column of ancillas besides each column of qubits. In
this layout, the column Hamiltonian Ĥc can be directly implemented
by a universal gate set among qubits. (c) Evolution governed by
the row Hamiltonian. Since neighboring qubits are interleaved by
ancillas in this layout, the terms in the row Hamiltonian Ĥr need
to be implemented by using the ancillas as mediators. This can be
achieved either by swap-like gates on the ancilla-qubit pairs or using
the ancillas as tunable couplers [32]. (d) Evolution governed by
on-site dissipators. A recent experiment [33] shows that with a single
ancilla, it is possible to implement arbitrary quantum operations on a
qubit.

model on a L × L square lattice can be prepared with a pro-
grammable quantum processor consisting of L × 2L qubits.
The quantum circuit for the preparation of the steady state
on a 2 × 2 spin lattice is shown in Fig. 1 as an example,
where the construction only requires local interactions and can
be straightforwardly generalized to L > 2. In the Trotterized
evolution (13), the order of quantum gate Gm can be cho-
sen arbitrarily. In numerical calculation, we choose to group
gates corresponding to column (row) Hamiltonian together
as eGc(r)τ s and gates corresponding to dissipators together as
eGd τ s as shown in Fig. 1.

VIII. SMALL-ANGLE GATES AND STANDARDIZED
CIRCUITS

Having designed the circuit architecture, we can imple-
ment each module in the circuit by small-angle gates or a
standard universal gate set. Mainstream physical platforms
for quantum information processing, like the superconduct-
ing circuit system and the trapped ion system, have their
own native gates with continuously tunable parameters. Here
we take the controlled-phase (CP) gate, defined as CP(θ ) =

exp(−iθ |11〉〈11|), in the superconducting circuit system as a
representative example. With simple algebra, it is clear that
CP(θ ) is equivalent to exp(− iθ

4 σ̂ z
1 σ̂ z

2 ) and single-qubit rota-
tions. With single-qubit π/2-rotations on the transverse axis
and the CP gate, we can realize Ising-type interaction alone
all three axis. (See Appendix D for details and realization of
other gates.)

IX. NOISE MODEL

We consider the depolarizing error model for the noisy
quantum processor. Specifically, in the numerical simulation
of the quantum circuit for the preparation of the steady states
of the dissipative XYZ model, every quantum gate is followed
by a quantum operation representing the depolarizing error,
eGmτ = erEmτ eG

id
m τ , with the following error generator:

Em =
[
1Am

2|Am| TrAm (•) − •
]
, (15)

where 1Am is the identity operator on the Hilbert space of
the qubit set Am, which are involved in the mth quantum
operation. Note that the number of qubits in the set |Am| = 1
(2) if the mth quantum operation involves one (two) qubit(s).
For simplicity, we assume a homogeneous strength for all
quantum operations, i.e., rm = r. We believe that introducing
different noise strengths for each quantum operation would
not cause quantitative changes in our conclusion.

Before presenting the numerical results, we would like
to make some more comments on the choice of choosing
depolarizing as the representative noise model. Although be-
ing idealized, the depolarizing error model is widely used
in the quantitative analysis of the performance of quantum
algorithms. The reason for this choice is twofold. First, the
depolarizing error model introduces all possible Pauli errors,
thus provides an unbiased criterion for the algorithmic ro-
bustness. Second, by Pauli twirling [34], it is possible to
convert generic noise into the Pauli channel, of which the
depolarizing model is a special case. Finally, we mention that
though we choose depolarizing error as the representative,
our conclusions, which will be shown below hold for various
noise models. In Appendices F and G, we present other noise
models and corresponding numerical results, from which we
see that the details of error mitigation for different noise
models depend on their symmetries.

X. NUMERICAL RESULTS

We numerically simulate the process of preparing the
steady state and obtaining the values of observables of
the dissipative XYZ model by a noisy quantum proces-
sor. In Fig. (2), we show the performance of the zero-
noise extrapolation technique with the measured steady-state
magnetization,

M ≡ 〈σ z〉 = 1

L2

L2∑
i=1

Tr
[
σ z

i ρ̂
]
, (16)

on a 3 × 3 qubit lattice. Due to the finite-size effect, the
magnetization curve smoothly increases, instead of abruptly
jumping, from −1 towards 0, as the aspect ratio g changes.
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FIG. 2. Magnetization of a 3 × 3 qubit lattice. (a) Curves of mag-
netization M vs transversal aspect ratio g. The exact values M0, noisy
values Meff at r0 = 0.01, and values obtained by zero-noise extrapo-
lation Mex are expressed by the black-solid line, blue-dot-dashed line,
and red-dashed line. (b) Discrepancies of noisy (blue-dot-dashed
line) and the extrapolated (red-dashed line) values of magnetization
in (a). Three representative values of g = 0.025, 0.1, and 0.25 are
marked by the black, red, and blue asterisks. [(c)–(e)] Curves of
magnetization M vs noise rate r at g = 0.025, 0.1, and 0.25.

Specifically, we show in the Fig. 2(a) the steady-state
magnetization for the exact and the noisy prepared steady
states ρ̂0 and ρ̂eff , and the steady-state magnetization obtained
by zero-noise extrapolation at r0 = 0.01. To make a closer
investigation, we show the discrepancies of the noisy and
the extrapolated data from the true values in Fig. 2(b). We
find that the discrepancy between M0 and Meff can be greatly
decreased by the zero-noise extrapolation results Mex. The
zero-noise extrapolation technique works quite well in the
regimes far from the critical point, where the discrepancies are
substantially suppressed. While in the vicinity of the critical
point, the discrepancies become larger after extrapolation. To
find the reason for the failure of the extrapolation, we choose
three parameters, specified by stars in Fig. 2(b), and plot the
magnetization as a function of the modular error rate r in
Figs. 2(c)–2(e), respectively. For parameters that lie deep in
the paramagnetic and ferromagnetic regime, the steady-state
magnetization exhibits monotonic behavior as the modular
error rate r increases. However, in the vicinity of the phase
transition, the curve first goes down and then bends upward,
which results in the failure of the extrapolation when the raw
modular error rate is close to or larger than the inflection
point. The inflection point occurs at r = 0.03 in Fig. 2(d),
therefore in order for the zero-noise extrapolation technique
to work, we need to choose an intrinsic error rate r0 such that
2r0 < 0.03. The threshold below which the correct result of
observables can be recovered by the quantum error mitigation
is determined the minimum r at which the inflection point
occurs as g varies. We find that an acceptable threshold is
r0 = 0.01.

Then we use the mean-field method [24] to reveal the
physical insights behind the distinct behavior in different pa-
rameter regimes. Based on the effective Lindblad quantum
master equation, the equations of motion for the expecta-

FIG. 3. Phase transition driven by the noise at g = 0.1 (mean-
field results). As the modular error rate r increases, the system runs
from paramagnetic (PM) phase to ferromagnetic (FM) phase, with
order parameter 〈σ x〉 and 〈σ y〉 going from finite values to zeros. 〈σ z〉
also goes through an abrupt change.

tion values of the local spin components can be written as
follows:

d

dt

〈
σ̂ α

i

〉 = Tr
[
σ̂ α

i Leff ρ̂
]
, (17)

where 〈σ̂ x
i 〉 and 〈σ̂ y

i 〉 serve as order parameters characterizing
the transition between the paramagnetic and ferromagnetic
phases. We then introduce the lowest-order of the mean-field
approximation to express the correlation function 〈σ̂ α

i σ̂
β
j 〉 as

product of expectations 〈σ̂ α
i 〉〈σ̂ β

j 〉, in which way we obtain a
set of closed nonlinear differential equations for 〈σ̂ α

i 〉. With
the assumption all spins are the same, i.e., 〈σ̂ α

i 〉 = 〈σ̂ α〉, we
solving the mean-field equations of motion for 〈σ̂ α〉 for dif-
ferent values of the modular error rate r, and present the
numerical results in Fig. 3. Starting from the vicinity of the
critical regime, with g = 0.1 as marked by the red asterisk in
Fig. 2(b), it is clear that there is a noise-driven phase transition
as r increases. Moreover, the critical point rcri predicted by
the mean-field calculation is quantitatively consistent with the
inflection point in Fig. 2(d).

Thus we believe the noise-driven phase transition well
accounts for the failure of the zero-noise extrapolation. Also
inspired by this finding, we propose to use the scaling behav-
ior to mitigate errors. The order parameter of the dissipative
XYZ model is

m ≡ 〈σ x〉 = 1

L2

L2∑
i=1

Tr
[
σ x

i ρ̂
]
. (18)

In the vicinity of the critical point gcri, the order parameter
m(g) can be described by a power-law function, m(g) ∝ |g −
gcri|β , with β being the critical exponent. Consider the case
that the noises introduced by the realistic quantum processor
possess the same symmetry as the model being simulated,
for example, the dissipative XYZ model and the depolariz-
ing error channel, which both have the Z2 symmetry. (See
Appendix F for other noise examples.) Then the error-
perturbed order parameter will still retain the power-law
dependency on not only the system parameter g but also the
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FIG. 4. Zero-noise extrapolation and scaling extrapolation
(mean-field results)). Exact and noisy values at r = r0 = 0.01 and
r = 2r0 = 0.02 are shown by the black, blue, and green lines. The
vertical-dashed line is the critical point g = 0.062 between the para-
magnetic (PM) phase and ferromagnetic (FM) phase. The values
obtained by zero-noise extrapolation are shown by the red line, which
works well in regime away from the critical point. The circles mark
the values from which we evaluate the coefficients in the power-law
function of phase transition. The cyan line is the analytical curve
with coefficients given by scaling extrapolation, which works well
near the critical point. Data of 〈σ x〉 are given by the solid line and
〈σ z〉 are given by the dashed line. We omit the noisy curves for 〈σ z〉.

error rate r, i.e.,

m(g, r) ∝ |g − gcri(r)|β(r), (19)

where the r dependency comes from the perturbation to the
critical point and the critical exponent. To mitigate the effect
of the errors, we can repeat the measurement of the order
parameter under several different values of the noise strength
r, e.g., the intrinsic noise strength r = r0 and boosted ones
r = r′ ≡ cr0 with c > 1, and fit the data with power-law func-
tions to obtain gcri(r) and β(r), based on which we can infer
the true values gcri and β by extrapolation to the zero-noise
limit (r = 0).

After establishing the error-mitigation technique based on
the scaling behavior, we continue to investigate its perfor-
mance in predicting true values of physical quantities in the
whole parameter regime. We first accumulate data for the
order parameters, i.e., the expectation values of the local spin
components 〈σ̂ x〉 and 〈σ̂ z〉, for the intrinsic noise strength r0

and a boosted noise strength r′ = 2r0 using the above men-
tioned mean-field method. By utilizing both error-mitigation
techniques, i.e., the direct extrapolation and the extrapolation
based on the scaling behavior, we obtain the zero-noise results
as shown in Fig. 4, and find the scaling-behavior-based extrap-
olation correctly recovers the true position of the critical point,
while the direct extrapolation performs well on predicting the
exact values of the order parameter when the parameter g
goes deeply into the ferromagnetic phase. (It also predicts
values correctly in paramagnetic phase where the order pa-
rameter vanishes.) For comparison, we also put the true values
of the order parameters. We can clearly see that the effect
of the symmetry-preserving noise on the order parameter is
that it moves the critical point towards the ferromagnetic
phase. The failure of the scaling-behavior-based extrapolation

FIG. 5. Critical points estimated via error mitigation (mean-field
results). The black-solid-horizontal line, blue-dashed line, red-dotted
line, cyan-dash-dotted line, and cross symbols denote the results of
values without error, with depolarizing error and linear extrapolation,
with depolarizing error and quadratic extrapolation, with transverse
damping error and with random Pauli error.

outside the critical regime is straightforwardly connected with
the invalidation of the scaling behavior outside the critical
regime.

The scaling-behavior-based extrapolation is helpful as it
can be used to estimate the critical point, which is of vital
importance in many physical problems. We show in Fig. 5
the critical points gcri of the dissipative XYZ model under
the influence of various noises and evaluated via different
extrapolations. (See Appendix G for details of noises and
extrapolations.) The estimation of the critical point predicted
by the linear extrapolation is quite accurate when r0 is below
the threshold 0.01. Note the deviation of the estimated critical
point can be made smaller above the threshold if we use
quadratic extrapolation. It seems that the scaling-behavior-
based extrapolation performs well on estimating the critical
point even though the value of the order parameter itself is not
so well predicted when the intrinsic error rate r0 exceeds the
threshold.

XI. SPECTROSCOPY

Finally, we show by numerical simulation that we can ob-
tain spectroscopic information about the ideal Lindbladian L0

with a noisy quantum processor. Starting from a random initial
density operator, we first calculate the nonequilibrium dynam-
ics of expectation values of local physical observables, e.g.,
the local spin component 〈σ̂ z〉, evolving towards the steady
state ρ̂eff (r) on a noisy quantum process with the intrinsic and
boosted noise rates r0 and cr0. These noisy nonequilibrium
dynamics can be fitted with a multimodal decaying exponen-
tial function, i.e.,

s(t ) =
p∑

α=1

Aαeiθα eλαt , (20)

where Aα ∈ R, θα ∈ [0, 2π ] and λα ∈ C are the parameters
of the model, and we use the positive integer p to control the
complexity of the model. Note that Re(λα ) � 0 for a physical
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FIG. 6. The left panel shows an example of curve fitting by the
matrix pencil method. The red circles mark the data of 〈σ z〉 vs the
evolution time t extracted from the evolution of a randomly chosen
initial density operator towards the steady state and the blue line is
the analytical curve whose coefficients are extracted from the data
by matrix pencil method. The right panel shows some eigenvalues
of the Lindbladian. Blue cross and green squares are noisy values
with r = r0 = 0.01 and r = 2r0 = 0.02. Red asterisks are obtained
from noisy values by zero-noise extrapolation, which matches the
exact values denoted as black circles, which are obtained by directly
diagonalizing the Lindbladian. The data are calculated at g = 0.1 on
a 3 × 3 qubit lattice.

Lindbladian. We use the matrix pencil method [35] to extract
λα (r) from the nonequilibrium dynamics governed by Leff (r)
with r = r0 and cr0. The error-mitigated estimation of the true
eigenvalues of the target Lindbladian L0 can be obtained by
linear extrapolation to the zero-noise point with r = 0. By
choosing different initial density operators and physical quan-
tities in the nonequilibrium dynamics, we can extract most of
eigenvalues of the target Lindbladian with small-magnitude
real parts, while eigenvalues with large-magnitude real parts
are difficult to extract due to their fast decay. As shown in
Fig. 6(b), the extrapolated eigenvalues is well consistent with
those of the true Lindbladian, i.e. limr→0 λα,eff (r) 	 λα .

XII. CONCLUSIONS

Starting with an initial state, we can simulate its time evo-
lution via DQS in principle and extract any relevant physical
quantity we want. The availability of only quantum comput-
ers constituting of noisy intermediate-scale quantum devices
seems to prevent us from achieving this ambition. Due to the
accumulation of errors, the simulation of long-time evolution
is unreliable. The question is if we can find cases where
physical quantities are not suffered from the breakdown of
long-time evolution. In this paper we show that the steady-
state problem of open systems meet our demand. It is robust
against error accumulation and we can extracted accurate
values of observables via error mitigation. Our paper consists
of two main parts. In the first part, we propose a perturbation
theory, by which we prove that the deviation of the steady state
depends only on the error in a single Troter step, regardless of
the evolution time of DQS. This result has a simple physical
interpretation. Error accumulation may corrupt the simulation
of long-time evolution, but the steady state, as the goal of
evolution, is not affected by it. The deviation of the noisy
steady state from the exact one depends only on the difference

between the noisy Lindbladian Leff and the exact one L0,
which has nothing to do with the evolution time. Further,
we can express the noisy steady state as a power series of
the single-step error. Therefore, the exact steady state and
any relevant observables can be obtained by error mitigation.
In the second part, we take the dissipative XYZ model as
an example to convince us of the theoretical results. When
the strength of error is below a threshold, the perturbation
theory works. By error mitigation and a technique based on
scaling behavior, we can recover the exact values of magneti-
zation, relaxation rate, and the location of the phase transition
point.
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APPENDIX A: MAGNUS EXPANSION

According to Magnus expansion, the evolution operator
can be expressed as

eLeff τ = exp(1 + 2 + 3 + 4 + · · · ), (A1)

where

1 = τ

N∑
j=1

G j,

2 = τ 2

2

∑
j1� j2

M( j1, j2)−1[G j1 ,G j2 ],

3 = τ 3

6

∑
j1� j2� j3

M( j1, j2, j3)−1

× ([G j1 , [G j2 ,G j3 ]] + [G j3 , [G j2 ,G j1 ]]),

4 = τ 4

12

∑
j1� j2� j3� j4

M( j1, j2, j3, j4)−1

× ([[[G j1 ,G j2 ],G j3 ],G j4 ] + [G j1 , [[G j2 ,G j3 ],G j4 ]]

+ [G j1 , [G j2 , [G j3 ,G j4 ]]]

+ [G j2 , [G j3 , [G j4 ,G j1 ]]]). (A2)

Here, M( j1, j2, . . .) = ∏N
l=1 ml !, and ml is the occupation

number of l , i.e., the number of j’s taking j = l . Then, the
effective the effective Lindbladian reads Leff = (1 + 2 +
3 + 4 + · · · )/τ . Expressing Leff as a polynomial of τ and
r, we have

Leff = L(0)
eff + L(1)

eff + L(2)
eff + L(3)

eff + · · · (A3)
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where

L(0)
eff = L0 =

N∑
j=1

G id
j ,

L(1)
eff = r

N∑
j=1

E j + τ

2

∑
j1� j2

M( j1, j2)−1
[
G id

j1 ,G
id
j2

]
,

L(2)
eff = τ r

2

∑
j1� j2

M( j1, j2)−1
([
E j1 ,G id

j2

] + [
G id

j1 , E j2

])

+ τ 2

6

∑
j1� j2� j3

M( j1, j2, j3)−1

× ([
G id

j1 ,
[
G id

j2 ,G
id
j3

]] + [
G id

j3 ,
[
G id

j2 ,G
id
j1

]])
,

L(3)
eff = τ r2

2

∑
j1� j2

M( j1, j2)−1
[
E j1 , E j2

]

+ τ 2r

6

∑
j1� j2� j3

M( j1, j2, j3)−1

× ([
E j1 ,

[
G id

j2 ,G
id
j3

]] + [
G id

j3 ,
[
G id

j2 , E j1

]]
+ [

G id
j1 ,

[
E j2 ,G id

j3

]] + [
G id

j3 ,
[
E j2 ,G id

j1

]]
+ [

G id
j1 ,

[
G id

j2 , E j3

]] + [
E j3 ,

[
G id

j2 ,G
id
j1

]])
+ τ 3

12

∑
j1� j2� j3� j4

M( j1, j2, j3, j4)−1

× ([[[
G id

j1 ,G
id
j2

]
,G id

j3

]
,G id

j4

] + [
G id

j1 ,
[[
G id

j2 ,G
id
j3

]
,G id

j4

]]
+ [

G id
j1 ,

[
G id

j2 ,
[
G id

j3 ,G
id
j4

]]]
+ [

G id
j2 ,

[
G id

j3 ,
[
G id

j4 ,G
id
j1

]]])
. (A4)

APPENDIX B: JORDAN NORMAL FORM
OF LINDBLADIAN AND TIME EVOLUTION

SUPEROPERATOR

For convenience, we express the Lindbladian in the
Hilbert-Schmidt space [36–39]. We use |A〉〉 to denote the
d2-dimensional column vector corresponding to each d ×
d matrix A, such that for two square matrices A and B
the inner product 〈〈A|B〉〉 = Tr(A†B), where 〈〈A| = |A〉〉†. For
any orthonormal basis of the Hilbert space {|en〉}, the set
{|em〉〈en|} is the orthonormal basis of the Hilbert-Schmidt
space. With this basis, |A〉〉 = ∑

m,n am,n|em, en〉〉 if A =∑
m,n am,n|em〉〈en|, where {|em, en〉〉} is orthonormal. Then, the

Lindbladian L0 = −i[H0, •] + ∑
i(Ai • A†

i − 1
2 {A†

i Ai, •}) can
be expressed as a d2 × d2 matrix L0 = −i(H0 ⊗ 1d − 1d ⊗
HT

0 ) + ∑
i[Ai ⊗ A∗

i − 1
2 (A†

i Ai ⊗ 1d + 1d ⊗ AT
i A∗

i ). Here, 1d is
the d-dimensional identity matrix. Using the Jordan normal
form, we can write L0 in the block diagonal form

L0 =
∑

α

λα

(
dα∑

m=1

|Rα,m〉〉〈〈Lα,m|

+
dα−1∑
m=1

|Rα,m〉〉〈〈Lα,m+1|
)

, (B1)

where each α denotes a Jordan block, λα is the corresponding
eigenvalue, dα is the dimension of the block, and

∑
α dα = d2.

Here, {|Rα,m〉〉} and {〈〈Lα,m|} are dimensionless vectors satisfy-
ing 〈〈Lα,m|Rα′,m′ 〉〉 = δα,α′δm,m′ and

∑
α,m |Rα,m〉〉〈〈Lα,m| = 1d2 .

For each Jordan block, the two vectors |Rα,1〉〉 and
〈〈Lα,dα

| are right and left eigenvectors of L0, i.e., L0|Rα,1〉〉 =
λα|Rα,1〉〉 and 〈〈Lα,dα

|L0 = 〈〈Lα,dα
|λα . All other vectors,

i.e., generalized eigenvectors, can be derived from the
two using L0|Rα,m〉〉 = λα (|Rα,m〉〉 + |Rα,m−1〉〉) (where m =
2, . . . , dα) and 〈〈Lα,m|L0 = (〈〈Lα,m| + 〈〈Lα,m+1|)λα (where
m = 1, . . . , dα − 1).

In the standard Jordan normal form, off-diagonal elements
are 1. In Eq. (B1), off-diagonal elements are λα . We choose
this modified Jordan normal form such that eigenvectors
{|Rα,m〉〉} and {〈〈Lα,m|} are dimensionless. The modified Jordan
normal form is possible because we always have dα = 1 when
λα = 0.

Eigenvalues of a Lindbladian satisfy Re(λα ) � 0. A Jordan
block must be one-dimensional, i.e., dα = 1, if Re(λα ) = 0.
Without loss the generality, we suppose that the first Jordan
block corresponds to the unique steady state, i.e., λ1 = 0 and
|R1,1〉〉 = |ρ0〉〉. Then, Re(λα ) < 0 for all other Jordan blocks
(α �= 1). Because Tr(1dL0(•)) = 0, i.e., 〈〈1d |L0 = 0, we have
〈〈1d |Rα,m〉〉 = 0 for all α �= 1. We note that 〈〈L1,1| = 〈〈1d |.

The evolution superoperator of L0 is V0(t ) = eL0t . Using
the Jordan normal form, the corresponding matrix representa-
tion is

V 0(t ) =
∑

α

eλαt
dα−1∑
m=0

(λαt )m

m!

×
dα−m∑
l=1

|Rα,l〉〉〈〈Lα,l+m|. (B2)

Therefore, the state evolves to the steady state as ‖eL0t (ρ̂in ) −
ρ̂0‖ = O(e−�t poly(t )), where � = min{−Re(λα )|α �= 0} de-
termines the speed of the convergence, where λα’s are the
eigenvalues of L0.

APPENDIX C: PERTURBATION THEORY

In this section, we derive the perturbation theory of Lind-
bladian based on the modified Jordan normal form.

1. Steady-state perturbation theory

We express the steady state as ρ̂eff = ∑∞
k=0 ρ̂ (k), where

ρ̂ (k) is the kth-order correction to the steady state. Substi-
tuting this expression of ρ̂eff into Leff ρ̂eff = 0 gives (L0 +
L′)(

∑∞
k=0 ρ̂ (k) ) = 0. Retain terms of the kth order, we have

L0(ρ̂ (k) ) + L′(ρ̂ (k−1)) = 0. Here, ρ̂ (−1) = 0 and ρ̂ (0) = ρ̂0.
Now, we switch to the Hilbert-Schmidt space, and the

equation of each order becomes

L0|ρ (k)〉〉 = −L′|ρ (k−1)〉〉, (C1)

where L0 is not invertible because of the zero eigenvalue λ1.
We need that ρ̂eff is normalized for each order of the correc-
tion, i.e. Tr(ρ̂ (k) ) = 〈〈1d |ρ (k)〉〉 = 〈〈L1,1|ρ (k)〉〉 = 0 if k > 0. A
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generalized inverse of L0 is

L−1
0 =

∑
α>1

λ−1
α

dα−1∑
m=0

(−1)m

×
dα∑

l=m+1

|Rα,l−m〉〉〈〈Lα,l |. (C2)

Then

L0L−1
0 = L−1

0 L0 =
∑
α>1

dα∑
m=1

|Rα,m〉〉〈〈Lα,m|

= 12
d − |R1,1〉〉〈〈L1,1|. (C3)

Therefore

|ρ (k)〉〉 = (
12

d − |R1,1〉〉〈〈L1,1|
)|ρ (k)〉〉

= L−1
0 L0|ρ (k)〉〉

= −L−1
0 L′|ρ (k−1)〉〉. (C4)

We remark that this generalized inverse makes sure that ρ̂ (k)

is traceless, i.e., the steady state with a truncation at any order
is normalized.

2. Nondegenerate perturbation theory

We consider a nondegenerate eigenvalue λα , i.e., dα = 1.
Let λ(k)

α and |R(k)
α,1〉〉 be the kth-order corrections to the eigen-

value and right eigenvector, respectively. Then,

(L0 + L′)
(∣∣R(0)

α,1

〉〉 + ∣∣R(1)
α,1

〉〉 + ∣∣R(2)
α,1

〉〉 + · · · )
= (

λ(0)
α + λ(1)

α + λ(2)
α + · · · )

×(∣∣R(0)
α,1

〉〉 + ∣∣R(1)
α,1

〉〉 + ∣∣R(2)
α,1

〉〉 + · · · ), (C5)

where λ(0)
α = λα and |R(0)

α,1〉〉 = |R(k)
α,1〉〉.

Retain terms of the first order, we have

L0

∣∣R(1)
α,1

〉〉 + L′∣∣Rα,1
〉〉 = λα

∣∣R(1)
α,1

〉〉 + λ(1)
α

∣∣Rα,1
〉〉
. (C6)

Multiply this equation by 〈〈Lα,1| from the left, we obtain the
first-order correction to the eigenvalue

λ(1)
α = 〈〈Lα,1|L′|Rα,1〉〉. (C7)

Multiple by 〈〈Lβ,m| with β �= α, we have

〈〈
Lβ,m

∣∣R(1)
α,1

〉〉 = 〈〈Lβ,m|L′|Rα,1〉〉 + λβ

〈〈
Lβ,m+1

∣∣R(1)
α,1

〉〉
λα − λβ

, (C8)

where 〈〈Lβ,dβ+1| = 0. Then

〈〈
Lβ,m

∣∣R(1)
α,1

〉〉 =
dβ∑

m′=m

λm′−m
β 〈〈Lβ,m′ |L′|Rα,1〉〉
(λα − λβ )m′−m+1

. (C9)

Similar to the perturbation theory of Hamiltonian, we have
〈〈Lα,1|R(1)

α,1〉〉 = 0, such that the eigenvector after correction is
still normalized, i.e., 〈〈Leff,α,1|Reff,α,1〉〉 = 1, where |Reff,α,1〉〉
and |Leff,α,1〉〉 are right and left eigenvectors with the correc-
tions. Then, we obtain the first order correction to the right

FIG. 7. Circuits for implementing e−i[Hk,l ,•]τ and eDl τ . (a) The
circuit of e−i[Hk,l ,•]τ using small-angle gates. (b) The circuit of
e−i[Hk,l ,•]τ using controlled-NOT gate. (c) The circuit of eDl τ using
small-angle gates. The operation eDl τ is on the top qubit, and the
ancillary qubit is initialized in the state |0〉. (d) The circuit of eDl τ

using controlled-NOT gate. The dashed box represents the same
circuit as in (b).

eigenvector

∣∣R(1)
α,1

〉〉 =
∑

β �=α,m

dβ∑
m′=m

λm′−m
β 〈〈Lβ,m′ |L′|Rα,1〉〉
(λα − λβ )m′−m+1

|Rβ,m〉〉. (C10)

We can obtain the correction to the left eigenvector in a similar
way.

Retain terms of the second order, we have

L0

∣∣R(2)
α,1

〉〉 + L′∣∣R(1)
α,1

〉〉
= λα

∣∣R(2)
α,1

〉〉 + λ(1)
α

∣∣R(1)
α,1

〉〉 + λ(2)
α |Rα,1〉〉. (C11)

Multiple this equation by 〈〈Lα,1| from the left, we obtain the
second-order correction to the eigenvalue

λ(2)
α =

∑
β �=α,m

dβ∑
m′=m

λm′−m
β

(λα − λβ )m′−m+1

×〈〈Lα,1|L′|Rβ,m〉〉〈〈Lβ,m′ |L′|Rα,1〉〉. (C12)

APPENDIX D: CIRCUITS

In this Appendix we show the circuits for implementing
the quantum gates for the dissipative XYZ model in Fig. 7.
Here and below, we omit the details of the qubit-ancilla per-
mutation in L × 2L lattice, which has been discussed in the
main part and consider only the realization of two-qubit gate
acting on qubit k and l and single-qubit acting on qubit k.
We consider two setups. In the first setup, operations are
realized using small-angle gates Rαα (θ ) = exp(−i θ

2 σα ⊗ σα ).
We remark that θα = 2Jατ and cos φ = e−γ τ/2, and θα, φ � 1
in the Trotterization algorithm. In the second setup, oper-
ations are realized using controlled-NOT gate and single-
qubit gates. The single-qubit rotation gate reads Rz(θ ) =
exp(−i θ

2 σ z ).

APPENDIX E: ERROR TWIRLING AND BOOSTING

The Pauli twirling of controlled-NOT gate uses four Pauli
gates σt,q = σ I , σ x, σ y, σ z, where q = a, b, c, d , as shown
in Fig. 8(a). We randomly choose Pauli gates σt,a and σt,c

according to the uniform distribution, and then we take
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FIG. 8. Pauli twirling and error boosting circuits. (a) Twirling
and error boosting circuit for controlled-NOT gate. (b) Twirling
circuit for e−i[Hk,l ,•]τ . (c) Twirling circuit for eDl τ .

σt,c ⊗ σt,d = �xσt,a ⊗ σt,b�x, where �x is the unitary oper-
ator of controlled-NOT gate. By applying the Pauli twirling,
we can convert a general error model into the Pauli error
model in the form N [�x], where [�x] denotes the completely-
positive map of the ideal controlled-NOT gate, and N =∑

α,β=I,x,y,z pα,β [σα ⊗ σβ] denotes Pauli errors. Here, pI,I is
the fidelity of the gate, and pα,β [(α, β ) �= (I, I )] is the prob-
ability of the Pauli error σα ⊗ σβ . To implement the error
extrapolation, we need to measure error probabilities pα,β

using methods such as quantum process tomography.
Suppose we want to effectively realize the error model

N ′ = ∑
α,β=I,x,y,z p′

α,β [σα ⊗ σβ], we can compute Ne =
N−1N ′. Note that the map N is always invertible for high-
fidelity gate. Ne is always a Pauli-error map in the form Ne =∑

α,β=I,x,y,z qα,β [σα ⊗ σβ]. We remark that qα,β is not always
positive. To effectively realize the depolarizing map, we take
p′

I,I = 1 − ε and pα,β = ε/15 for (α, β ) �= (I, I ). We can al-
ways find a finite ε such that all qα,β are positive. Intuitively,
we can take ε = 15 max{pα,β | (α, β ) �= (I, I )}. Similarly, by
taking N ′ as the error model with increased error (e.g. cor-
responding to 2rraw), we can boost the error. Given Ne, we
can realize N ′ by applying Pauli gates σe,1 ⊗ σe,2 = σα ⊗ σβ

with the probability qα,β , as shown in Fig. 8(a).
Pauli twirling circuit of the operation e−i[Hk,l ,•]τ is shown

in Fig. 8(b). This operation can be realized using either
small-angle gates or controlled-NOT gate, and the twirling
circuit works for both cases. To implement the twirling, we
apply Pauli gates σ s = σ I , σ x, σ y, σ z on both qubits before
and after the operation, according to the uniform distribution.
Suppose MH = eLH τ is the operation e−i[Hk,l ,•]τ with error
after the twirling, we always have [[σ s ⊗ σ s],MH ] = [[σ s ⊗
σ s],LH ] = 0 for all s.

It is similar for the operation eDl τ . Pauli twirling circuit of
the operation eDl τ is shown in Fig. 8(c). This operation can
be realized using either small-angle gates or controlled-NOT
gate, and the twirling circuit works for both cases. To imple-
ment the twirling, we apply Pauli gates σ s = σ I , σ z before
and after the operation, according to the uniform distribution.
Suppose MD = eLDτ is the operation eDl τ with error after the
twirling, we always have [[σ z],MD] = [[σ z],LD] = 0.

By using twirling circuits in Figs. 8(b) and 8(c), we have
either [[σ z ⊗ σ z], E j] = 0 or [[σ z], E j] = 0. Then [Z, E j] =
0 for all j, i.e., gate error after the twirling preserves the
symmetry.

For depolarizing error on controlled-NOT gate, because the
map of two-qubit depolarizing error commute with single-
qubit gates and two-qubit gates on the same two qubits, the
error model of whole circuits in Figs. 7(b) and 7(d) is depo-
larizing. In this case, further twirling operations using circuits
in Figs. 8(b) and 8(c) are unnecessary.

APPENDIX F: NOISE MODELS

In this section, we show how we deal with the errors rE in
the quantum operation. Besides a description of depolarizing
error, which is an equal superposition of Pauli errors, we also
include a general case of random Pauli error and transverse
damping error, which has no Z2 symmetry. At last, we make
some comments on the non-Markovian noise.

1. Depolarizing error

As described in the main part, the real operation used in the
universal quantum processer is eGmτ , with Gm = G id

m + rmEm

and the generator of depolarizing error is

Ed
m =

[
1Am

2|Am| TrAm (•) − •
]
, (F1)

where we use a superscript below “d” to denote the depolar-
izing error, and “r” for random Pauli error, “t” for transverse
damping error in the next subsection. In each Trotter step of
quantum algorithm, we apply the real operation

eG
d
mτ = e(Gid

m +rmEd
m )τ = ermEd

mτ eG
id
m τ (F2)

on the system. We choose rm = r for both single-qubit gates
and two-qubits gates without loss of generality.

In the mean-field calculation, the effective Lindbladian Leff

in the equations of motion

d

dt

〈
σ̂ α

i

〉 = Tr
[
σ̂ α

i Leff ρ̂
]
, (F3)

is evaluated using the Magnus expansion. The methods are the
same for the next two cases of errors.

2. Random Pauli error

In the Pauli twirling of controlled-NOT gate, we randomly
choose Pauli gate. However, Ul (τ ) and eDkτ are in general
not Clifford, thus not all the Pauli gates can be used in error
twirling. As the dissipative XYZ model has the Z2 symmetry,
i.e., [Z,L0] = 0, where Z = ∏

l [σ
z
l ], we can choose E j such

that either [[σ z ⊗ σ z], E j] = 0 or [[σ z], E j] = 0. If E j satisfies
[[σ z

l ], Ek] = 0, it must have the property that [Dl , E j] = 0.
And if E j commutes with σ z

a ⊗ σ z
b , it also commutes with

the corresponding Ul (τ ). This constraints can be made looser
by allowing the errors to commute with either σ x

a ⊗ σ x
b and

σ
y
a ⊗ σ

y
b . These facts motivate us consider the random Pauli

error E r
j to be sum of all these ±E j satisfying theses constraints

with probabilities p j . The probabilities p j is supposed to be a
uniform distribution.

3. Transverse damping error

In the above two error models, there is always a phase
transition from paramagnetic phase to ferromagnetic phase.
This is not the case when the noise breaks the Z2 symmetry.
Besides the amplitude damping in z direction, which is crucial
for the Dissipative XYZ model, we suppose there may be
small-amplitude damping in x and y direction,

Dx
l = (

σ x−
l • σ x+

l − 1
2

{
σ x+

l σ x−
l , •})

, (F4)

Dy
l = (

σ
y−
l • σ

y+
l − 1

2

{
σ

y+
l σ

y−
l , •})

, (F5)
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where

σ x± = 1
2 (σ z ∓ iσ y), (F6)

σ y± = 1
2 (σ z ± iσ y). (F7)

We define transverse damping error E t
j as equal superposition

of Dx
l and Dy

l .
To compare the effects of different noises, We choose the

norm of the noise to be ‖E j‖ =
√

Tr(M†M ), where M is the
matrix of the noise under the Pauli basis. In the numerical re-
sults of our calculation, the strength of noise for depolarizing
error is choose to be the coefficient r in rEd

j . When consider-

ing the other two cases of error, an extra factor ‖E r/t
j ‖/‖Ed

j ‖ is
absorbed in r.

4. Non-Markovian noise

A way to generalize the formalism to non-Markovian noise
is introducing the environment, i.e., the initial state ρSE

i is a
state of the composite system formed by the system (qubits)
and the environment. We assume that the time evolution of the
composite system is Markovian. Then, the completely positive
map of each step is

eG
SE
N τ · · · eG

SE
2 τ eG

SE
1 τ ≡ eL

SE
eff τ , (F8)

where GSE
j and LSE

eff are superoperators acting on the composite
system. Similar to the case of Markovian noise, the generator
of each gate can be expressed as GSE

j = G i
j ⊗ [1E] + rESE

j ,
where [1E] is the identity map on the environment, and ESE

j
is the erroneous superoperators on both the system and envi-
ronment.

APPENDIX G: SUPPLEMENTARY NUMERICAL RESULTS

The zero-noise extrapolation we do in the main part is of
the first order. In concrete, we assume an observable of the
noisy system depend linearly on the error strength r, i.e.,

M(r) = M0 + br, (G1)

where M0 is the exact value of the observable, which we want.
Then we choose two values of noise strength r0 and 2r0, and

FIG. 9. Zero-noise extrapolation and scaling extrapolation with
quadratic ansatz. The strength is r0 = 0.01 and c = 1, 1.5, and 2
denoted by the blue, yellow, and green line.

FIG. 10. Zero-noise extrapolation of other noises (a) Random
Pauli error. (b) Transverse damping error. In both plots, r0 = 0.01
and c = 1, 2.

by the numerical calculation, we can the values of M(r0) and
M(2r0). It is easily shown that we get evaluate M0 as

M0 = 2M(r0) − M(2r0). (G2)

According to the perturbation theory, the steady state can be
expressed as

ρ̂eff =
∞∑

n=0

(−1)n
(
L0

−1L′)n
ρ̂0. (G3)

Therefore, M(r) is also a power series of the noise strength r,
and the linear ansatz is the simplest approximation. In Fig. 9,
we show the zero extrapolation and scaling extrapolation with
the quadratic ansatz

M(r) = M0 + br + ar2. (G4)

In Fig. 10, we show the zero-noise extrapolation and
scaling extrapolation of random Pauli error and transverse
damping error. It can be seen that the error without Z2 sym-
metry will destroy the phase transition. Therefore we modify
Eq. (19) as

m(g, r) ∝ |g − gcri(r)|β(r) + a(r) + b(r)r, (G5)

where a(r) accounts for the deviation of “order parameter”
from zero. There is a slight positive slope b(r), which may not
be directly seen from the plot.

In Fig. 11, we show some lowest eigenvalues obtained by
the mean-field method. Some of the eigenvalues differ much
from that obtained on the 3 × 3 qubit lattice.

FIG. 11. Eigenvalues obtained by the mean-field method.

043140-11



ANBANG WANG, JINGNING ZHANG, AND YING LI PHYSICAL REVIEW RESEARCH 4, 043140 (2022)

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[3] H. F. Trotter, On the product of semi-groups of operators, Proc.
Amer. Math. Soc. 10, 545 (1959).

[4] M. Suzuki, Relationship between d-dimensional quantal spin
systems and (d+1)-dimensional Ising systems: Equivalence,
critical exponents and systematic approximants of the partition
function and spin correlations, Prog. Theor. Phys. 56, 1454
(1976).

[5] M. Suzuki, Generalized Trotter’s formula and systematic ap-
proximants of exponential operators and inner derivations with
applications to many-body problems, Commun. Math. Phys. 51,
183 (1976).

[6] K. Head-Marsden, J. Flick, C. J. Ciccarino, and P.
Narang, Quantum information and algorithms for
correlated quantum matter, Chem. Rev. 121, 3061
(2021).

[7] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M.
Troyer, Gate-count estimates for performing quantum chem-
istry on small quantum computers, Phys. Rev. A 90, 022305
(2014).

[8] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92,
015003 (2020).

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, A. Bengtsson, S. Boixo, M. Broughton, B. B. Buckley
et al., Observation of separated dynamics of charge and spin in
the Fermi-Hubbard model, arXiv:2010.07965v1.

[10] C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu, W.
Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Atalaya et al.,
Accurately computing the electronic properties of a quantum
ring, Nature (London) 594, 508 (2021).

[11] M. Heyl, P. Hauke, and P. Zoller, Quantum localization bounds
Trotter errors in digital quantum simulation, Sci. Adv. 5,
eaau8342 (2019).

[12] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F.
Haake, and P. Zoller, Digital quantum simulation, Trotter errors,
and quantum chaos of the kicked top, npj Quantum Inf. 5, 78
(2019).

[13] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[14] H. Breuer et al., The Theory of Open Quantum Systems (Oxford
University Press on Demand, New York, 2002).

[15] Y. Li and S. C. Benjamin, Efficient Variational Quantum Simu-
lator Incorporating Active Error Minimization, Phys. Rev. X 7,
021050 (2017).

[16] K. Temme, S. Bravyi, and J. M. Gambetta, Error Mitigation for
Short-Depth Quantum Circuits, Phys. Rev. Lett. 119, 180509
(2017).

[17] S. Endo, S. C. Benjamin, and Y. Li, Practical Quantum Er-
ror Mitigation for Near-Future Applications, Phys. Rev. X 8,
031027 (2018).

[18] K. Noh, L. Jiang, and B. Fefferman, Efficient classical sim-
ulation of noisy random quantum circuits in one dimension,
Quantum 4, 318 (2020).

[19] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J.
Eisert, Dissipative Quantum Church-Turing Theorem, Phys.
Rev. Lett. 107, 120501 (2011).

[20] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2011).

[21] M. Continentino, Quantum Scaling in Many-Body Systems: An
Approach to Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2017).

[22] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[23] C. Shen, K. Noh, V. V. Albert, S. Krastanov, M. H. Devoret,
R. J. Schoelkopf, S. M. Girvin, and L. Jiang, Quantum channel
construction with circuit quantum electrodynamics, Phys. Rev.
B 95, 134501 (2017).

[24] T. E. Lee, S. Gopalakrishnan, and M. D. Lukin, Unconventional
Magnetism via Optical Pumping of Interacting Spin Systems,
Phys. Rev. Lett. 110, 257204 (2013).

[25] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, and
D. Rossini, Cluster Mean-Field Approach to the Steady-State
Phase Diagram of Dissipative Spin Systems, Phys. Rev. X 6,
031011 (2016).

[26] R. Rota, F. Minganti, A. Biella, and C. Ciuti, Dynamical prop-
erties of dissipative XYZ Heisenberg lattices, New J. Phys. 20,
045003 (2018).

[27] D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe,
D. W. Leung, and X. Zhou, Universal simulation of
Markovian quantum dynamics, Phys. Rev. A 64, 062302
(2001).

[28] R. Sweke, I. Sinayskiy, and F. Petruccione, Simulation of
single-qubit open quantum systems, Phys. Rev. A 90, 022331
(2014).

[29] R. Sweke, I. Sinayskiy, D. Bernard, and F. Petruccione, Univer-
sal simulation of Markovian open quantum systems, Phys. Rev.
A 91, 062308 (2015).

[30] R. Sweke, M. Sanz, I. Sinayskiy, F. Petruccione, and
E. Solano, Digital quantum simulation of many-body
non-Markovian dynamics, Phys. Rev. A 94, 022317
(2016).

[31] J. Han, W. Cai, L. Hu, X. Mu, Y. Ma, Y. Xu, W. Wang, H. Wang,
Y. P. Song, C.-L. Zou, and L. Sun, Experimental Simulation of
Open Quantum System Dynamics via Trotterization, Phys. Rev.
Lett. 127, 020504 (2021).

[32] T.-Q. Cai, X.-Y. Han, Y.-K. Wu, Y.-L. Ma, J.-H. Wang, Z.-L.
Wang, H.-Y. Zhang, H.-Y. Wang, Y.-P. Song, and L.-M. Duan,
Impact of Spectators on a Two-Qubit Gate in a Tunable Cou-
pling Superconducting Circuit, Phys. Rev. Lett. 127, 060505
(2021).

[33] W. Cai, J. Han, L. Hu, Y. Ma, X. Mu, W. Wang, Y. Xu, Z.
Hua, H. Wang, Y. P. Song, J. N. Zhang, C. L. Zou, and L.
Sun, High-Efficiency Arbitrary Quantum Operation on a High-
Dimensional Quantum System, Phys. Rev. Lett. 127, 090504
(2021).

[34] W. Dür, M. Hein, J. I. Cirac, and H.-J. Briegel, Standard forms
of noisy quantum operations via depolarization, Phys. Rev. A
72, 052326 (2005).

[35] T. K. Sarkar and O. Pereira, Using the matrix pencil
method to estimate the parameters of a sum of com-
plex exponentials, IEEE Antennas Propag. Mag. 37, 48
(1995).

[36] A. Braggio, J. König, and R. Fazio, Full Counting Statistics
in Strongly Interacting Systems: Non-Markovian Effects, Phys.
Rev. Lett. 96, 026805 (2006).

043140-12

https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1007/BF01609348
https://doi.org/10.1021/acs.chemrev.0c00620
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/RevModPhys.92.015003
http://arxiv.org/abs/arXiv:2010.07965v1
https://doi.org/10.1038/s41586-021-03576-2
https://doi.org/10.1126/sciadv.aau8342
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1103/PhysRevLett.107.120501
https://doi.org/10.1103/PhysRevB.95.134501
https://doi.org/10.1103/PhysRevLett.110.257204
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1088/1367-2630/aab703
https://doi.org/10.1103/PhysRevA.64.062302
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1103/PhysRevA.91.062308
https://doi.org/10.1103/PhysRevA.94.022317
https://doi.org/10.1103/PhysRevLett.127.020504
https://doi.org/10.1103/PhysRevLett.127.060505
https://doi.org/10.1103/PhysRevLett.127.090504
https://doi.org/10.1103/PhysRevA.72.052326
https://doi.org/10.1109/74.370583
https://doi.org/10.1103/PhysRevLett.96.026805


ERROR-MITIGATED DEEP-CIRCUIT QUANTUM … PHYSICAL REVIEW RESEARCH 4, 043140 (2022)

[37] C. Flindt, T. Novotný, A. Braggio, M. Sassetti, and A.-P.
Jauho, Counting Statistics of Non-Markovian Quantum
Stochastic Processes, Phys. Rev. Lett. 100, 150601
(2008).

[38] C. Emary, Counting statistics of cotunneling electrons, Phys.
Rev. B 80, 235306 (2009).

[39] J. Watrous, The Theory of Quantum Information (Cambridge
University Press, Cambridge, 2018).

043140-13

https://doi.org/10.1103/PhysRevLett.100.150601
https://doi.org/10.1103/PhysRevB.80.235306

