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Relation between fluctuations and efficiency at maximum power for small heat engines
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We study the ratio between the variances of work output and heat input, η(2), for a class of four-stroke heat
engines, which covers various typical cycles. Recent studies on the upper and lower bounds of η(2) are based
on the quasistatic limit and the linear response regime, respectively. We extend these relations to the finite-time
regime within the endoreversible approximation. We consider the ratio η

(2)
MP at maximum power and find that

the square of the Curzon-Ahlborn efficiency, η2
CA, gives a good estimate of η

(2)
MP for the class of heat engines

considered, i.e., η
(2)
MP � η2

CA. This resembles the situation where the Curzon-Ahlborn efficiency gives a good
estimate of the efficiency at maximum power for various kinds of finite-time heat engines. Taking an overdamped
Brownian particle in a harmonic potential as an example, we can realize such endoreversible small heat engines
and give an expression of the cumulants of work output and heat input. The approximate relation η

(2)
MP � η2

CA is
verified by numerical simulations. This relation also suggests a trade-off between the efficiency and the stability
of finite-time heat engines at maximum power.

DOI: 10.1103/PhysRevResearch.4.043139

I. INTRODUCTION

Relation between the work output and heat input of heat
engines is an important issue in thermodynamics. If the heat
engine converts the heat input Qh from a hot heat bath to the
work output W and emits heat Qc to a cold heat bath, the
performance of the engine is characterized by the efficiency,

η ≡ 〈W 〉
〈Qh〉 . (1)

Here, 〈· · · 〉 is the ensemble average. Suppose the tempera-
tures of the hot and cold baths are Th and Tc, respectively,
η is upper bounded by the Carnot efficiency ηC given by
ηC ≡ 1 − (Tc/Th).

With the development of technology in recent decades,
small heat engines can be realized in the submicrometer scales
[1–10]. Among them, a typical example is the experimental
realization of the so-called Brownian heat engine [4–7] which
consists of a Brownian particle subject to a time-dependent
laser trap. For the small thermal devices, thermodynamic
quantities like work, heat, and entropy production are random
variables defined on individual trajectories in the phase space
of working substance [11–14]. Due to their small number of
degrees of freedom, such small thermal devices have large
fluctuations of thermodynamic quantities [15,16]. These fluc-
tuations can significantly affect the performance of small heat
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engines. Thus it is important to study the fluctuations of work
output and heat input, which reflect the stability of small heat
engines.

Concerning fluctuations of the thermodynamic quantities,
the performance of small heat engines has been studied
[17–30]. Several features of the fluctuations have been re-
vealed, such as the statistics of stochastic efficiency η̃ ≡
W/Qh [31–37] and the thermodynamics uncertainty relation
(TUR) [38–45] which is the relation between the uncertainty
(relative fluctuation) of thermodynamic quantities and the
entropy production. More precisely, the TUR gives a lower
bound of the uncertainty σX = (〈X 2〉 − 〈X 〉2)/〈X 〉2 for a ther-
modynamic quantity X . Recently, a universal bound has been
found for microscopic heat engines in the quasistatic limit
[22]:

η(2) ≡ 〈(�W )2〉
〈(�Qh)2〉 � η2

C (2)

with �X ≡ X − 〈X 〉 for X = W and Qh. The ratio η(2) is
the relative fluctuation between the work output and the heat
input. It is noted that the smaller η(2) gives more stable work
output converting from the fluctuating heat input. Thus η(2)

reflects the stability of small heat engines.
Furthermore, recent works on η(2) also suggested its lower

bound, η(2) � η2, in the linear response regime of small
change in parameters [24,46] or for a special model of the
finite-time quantum Otto engine [23]. However, the relation
between η(2) and η2 for general cycles is still unclear even
in the quasistatic limit. In addition, another way to interpret
this lower bound is σW � σQh which is complementary to
the TURs. Therefore the relation between η(2) and η2 is an
interesting issue for the statistics of the engine performance.
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TABLE I. Main contents of this paper.

section results Eqs. and Fig.

III A relation between η(2) and η2 (20) (21) (23)
reversible

III B lower bound of uncertainties (34)

IV A ηMP at maximum power (39)
endoreversible

IV B η
(2)
MP at maximum power (41)

V A cumulant of work and heat (66)
Brownian

V B endoreversibility (71)

VI A 1 ηMP (90)
Otto VI A 2 η

(2)
MP (94)

VI A 3 cumulant of work (95)

VI B 1 ηMP (101)
Curzon-Ahlborn

VI B 2 η
(2)
MP Fig. 7

Our goal in the present work is twofold. The first one is
to find a relation between η(2) and η2 in the quasistatic limit,
and the second one is to evaluate η(2) and η for the finite
cycle period. For practical heat engines with nonzero power
output, the discussion in the quasistatic limit is not enough.
In the nonquasistatic regime, endoreversible thermodynamics
made useful assumptions originally for the macroscopic irre-
versible heat engines (see, e.g., Refs. [47–50]). In this case,
the working substance is assumed to be reversible and the
irreversibility is caused solely by the irreversible heat flow
between the heat bath and the working substance. Recently,
the endoreversible assumptions are generalized for the micro-
scopic heat engines [28,51]. For example, authors of Ref. [28]
discussed the microscopic endoreversible Curzon-Ahlborn
(CA) heat engine whose working substance is a highly under-
damped Brownian particle. In this case, the irreversible heat
exchange is caused by the interaction between the working
substance and the heat bath with different temperatures.

In the framework of endoreversible thermodynamics,
finite-time heat engines are usually characterized by the per-
formance at maximum power. For example, the efficiency
at maximum power (EMP), ηMP, is an important quantity
which has been studied for various kinds of small heat en-
gines [52–58]. Besides, the Curzon-Ahlborn efficiency, ηCA,
gives a good estimate of ηMP. It is natural to ask what the
fluctuation of performance at maximum power is. To answer
this question, we study η

(2)
MP at maximum power.

This paper is organized as follows. In Sec. II, we give the
setup of four-stroke heat engines consisting of two adiabatic
strokes and two heat transfer strokes. This setup includes var-
ious types of cycles, e.g., the Otto, Brayton, and Diesel cycles
[59]. In Sec. III, we consider reversible small heat engines
and assume that the heat capacities are constant in the heat
transfer strokes. We discuss the relation between η(2) and η2,
and find a lower bound of the uncertainties of work and heat.
In Sec. IV, based on the endoreversible assumption, an ap-
proximate relation, η(2)

MP � η2
CA, is proposed for endoreversible

small heat engines. In Sec. V, we discuss the endoreversibility
of the Brownian heat engine which consists of an overdamped
Brownian particle in a harmonic potential. In Sec. VI, using

the setup introduced in Sec. V, we show two examples of the
endoreversible small heat engines, the Brownian Otto engine
and Brownian CA engine. Our main result, η

(2)
MP � η2

CA, is
examined numerically. The structure of this paper and where
each result is presented are summarized in Table I.

II. SETUP

In this paper, we consider a small heat engine operating
with two heat baths with the temperatures Th and Tc (Th > Tc),
and focus on a class of four-stroke cycles consisting of two
adiabatic strokes (1 → 2 and 3 → 4−) and two heat transfer
strokes (0 → 1 and 2 → 3). The cycle on the T -S plane is
shown in Fig. 1. Here, T and S are the temperature and the
entropy of the working substance, respectively. The final node
4− of the cycle is statistically equivalent to the initial node
0, i.e., the phase space probability density function (PDF) of
the working substance at these nodes are the same. During

FIG. 1. T -S diagram of the class of four-stroke cycles considered
in the present work. The cycles consist of two adiabatic strokes
(adiabatic expansion 1 → 2 and adiabatic compression 3 → 4−) and
two heat transfer strokes (0 → 1 and 2 → 3).
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the heat transfer stroke 0 → 1 (2 → 3), heat flows into (out
of) the engine from the hot heat bath (to the cold bath).
Throughout the paper, we take the sign convention where Qh

is positive when the heat is absorbed by the engine from the
hot bath and Qc is positive when the heat is emitted from the
engine to the cold bath, i.e., 〈Qi〉 > 0 (i = h and c).

Our goal is to derive the relation between the ratio η(2) ≡
〈(�W )2〉/〈(�Qh)2〉 and the efficiency η ≡ 〈W 〉/〈Qh〉 for var-
ious kinds of cycles not only in the quasistatic regime but also
in the finite-time regime.

III. REVERSIBLE SMALL HEAT ENGINE

In this section, we compare η(2) and η and study the uncer-
tainties of work and heat in the reversible case.1 We consider
the working substance following a reversible cycle. The pa-
rameter change of the working substance is much slower than
the relaxation, so that the working substance is always in the
(local) equilibrium state during the heat transfer strokes.

We make the following three assumptions on the four-
stroke small heat engines.

(i) We consider particular types of the heat transfer stroke
where the amount of the heat exchange between the engine
and the bath can be described by the heat capacity Ci and the
temperature change dT of the working substance in the form
of

〈d-Qi〉 = |CidT |. (3)

Here, i = h (c) for the heat transfer stroke 0 → 1 (2 → 3)
with the hot (cold) heat bath. Such heat transfer strokes in-
clude isochoric strokes and isobaric strokes. Thus various
typical cycles such as the Otto, Diesel, and Brayton cycles
are covered in the present discussion. For example, the Otto
engine absorbs (emits) the heat during the hot (cold) isochoric
stroke with the heat capacity Ch (Cc) at constant volume, and
the Diesel engine absorbs the heat during the isobaric stroke
with the heat capacity Ch at constant pressure and emits the
heat during the isochoric stroke with the heat capacity Cc at
constant volume.

(ii) We further assume that the heat capacity Ci of the
working substance is constant (and positive) during each
heat transfer stroke.2 In addition to Ci, we assume that the
heat capacity CV at constant volume, CV ≡ (∂〈E〉/∂T )V , is
also constant during each heat transfer stroke and does not
depend on the volume. Since the heat capacity Ci is posi-
tive, we always have T1 − T0 > 0 and T3 − T2 < 0. To avoid
the situation in which the two heat transfer strokes cross
on the T -S plane, we consider the cases with T1 � T2 and

1The term “reversible” in this work means that the working sub-
stance of the engine is reversible such that the working substance
is always in a canonical state for some temperature. Following the
assumption of endoreversible thermodynamics, we regard that the
working substance is reversible, but the heat flow between the work-
ing substance and the bath can be irreversible.

2There are many cases that the heat capacities of the heat transfer
strokes are constant. For example, isobaric and isochoric strokes for a
Brownian particle in a harmonic oscillator potential or a square-well
potential.

T0 � T3. If the two heat transfer strokes cross each other,
the whole cycle can be decomposed into two subcycles with
the clockwise and counterclockwise directions on the T -S
plane corresponding to a heat engine and a refrigerator,
respectively.

(iii) We consider reversible cycles which consist of re-
versible heat transfer strokes and quasistatic adiabatic strokes
without irreversibility at the connections between them. In
the present case, the quasistatic adiabatic strokes start from
a canonical state at the temperature Tinit because the working
substance is always in the equilibrium state during the pre-
ceding reversible heat transfer stroke. Since the number of
degrees of freedom in the working substance of microscopic
heat engines is small, the energy distribution of the working
substance is generally not a canonical distribution at the end
of the quasistatic adiabatic strokes. When the engine is cou-
pled to a heat bath at the temperature Tfin after an adiabatic
stroke, irreversible heat exchange occurs unless the working
substance is already in the canonical state at Tfin. A necessary
and sufficient condition for the initial state and the final state
of the quasistatic adiabatic stroke to be canonical states at the
temperature Tinit and Tfin, respectively, is

Einit

Tinit
= Efin

Tfin
, (4)

up to a constant [60]. Here, Einit (Efin) is the internal energy of
the initial (final) state of the quasistatic adiabatic stroke. Note
that Einit and Efin are random variables and Eq. (4) has to hold
for each realization.

A. Relation between η(2) and η

Based on the above mentioned assumptions, we can derive
the variances of work output and heat input. Work output
during the quasistatic adiabatic strokes 1 → 2 and 3 → 4−
is given by

W1→2 = E1 − E2 =
(

1 − T2

T1

)
E1 (5)

and

W3→4− = E3 − E4− =
(

T3

T0
− 1

)
E4− , (6)

respectively, with Ej and Tj being the internal energy and the
temperature of the working substance at node j, respectively.
Here, we have assumed the reversibility condition (4) for the
adiabatic strokes 1 → 2 and 3 → 4−:

E1

T1
= E2

T2
and

E3

T3
= E4−

T0
. (7)

In the quasistatic limit, fluctuations of work during the
heat transfer strokes 0 → 1 and 2 → 3 are negligible due
to the same reason for quasistatic isothermal processes
[11,22,42]:

�W0→1 ≡ W0→1 − 〈W0→1〉 � 0 (8)

and

�W2→3 ≡ W2→3 − 〈W2→3〉 � 0. (9)

In addition, since the quasistatic adiabatic strokes 1 → 2 and
3 → 4− are separated by a reversible heat transfer stroke, their
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work output W1→2 and W3→4− are not correlated. Therefore
the variance of work output in one cycle is given by the
sum of the variances in the uncorrelated quasistatic adiabatic
strokes:

〈(�W )2〉 = 〈(�W1→2)2〉 + 〈(�W3→4− )2〉

=
(

1 − T2

T1

)2

〈(�E1)2〉 +
(

1 − T3

T0

)2

〈(�E0)2〉

= kBCV [(T1 − T2)2 + (T0 − T3)2]. (10)

Here, we have used the property 〈(�Ej )2〉 = kBCV T 2
j [61].

Heat absorbed from the hot bath during the heat transfer
stroke 0 → 1 reads

Qh = E1 − E0 − W0→1, (11)

and its variance is given by

〈(�Qh)2〉 = 〈(�E0)2〉 + 〈(�E1)2〉 (12)

= kBCV
(
T 2

1 + T 2
0

)
(13)

because E0 and E1 are uncorrelated and �W0→1 � 0. Thus,
from Eqs. (10) and (13), the ratio η(2) can be written as

η(2) = 〈(�W )2〉
〈(�Qh)2〉 = (T1 − T2)2 + (T0 − T3)2

T 2
1 + T 2

0

. (14)

For the reversible cycle, the temperatures {Tj} of the work-
ing substance are not independent. The mean value of the
entropy change of the working substance during the heat
absorption or the heat emission stroke is given by

�Si = (−1) j/2
∫ j+1

j

〈d-Qi〉
T

= Ci ln
Tj+1

Tj
, (15)

where j = 0 for i = h and j = 2 for i = c. Since the cycle
is closed, the mean value of the net entropy change over the
cycle is zero:

�Sh + �Sc = Ch ln
T1

T0
+ Cc ln

T3

T2
= 0. (16)

Thus we obtain

t̃ θ = T3/T2, (17)

where t̃ ≡ T0/T1 is the temperature ratio with 0 < t̃ < 1 and
θ ≡ Ch/Cc is the heat capacity ratio with θ > 0.

The working substance is in local equilibrium with
temperature Tc < T < Th, as assumed in endoreversible ther-
modynamics. In the whole cycle, the maximum (minimum)
temperature of the working substance is T1 (T3). Since the
durations of the heat transfer strokes are sufficiently long, we
have T1 = Th and T3 = Tc. Then, the Carnot efficiency is given
by

ηC = 1 − T3

T1
. (18)

Now, we can express η(2) and η with three parameters: θ ,
t̃ , and ηC . The efficiency is given by

η = 1 − 〈Qc〉
〈Qh〉 = 1 − T2 − T3

θ (T1 − T0)
. (19)

FIG. 2. η(2) as a function of η for θ = 0.5, 1, and 2. Here, we set
t̃ = 0.4. The black line (η(2) for θ = 1) shows η(2) = η2.

Substituting Eqs. (17) and (18) into Eq. (19), we get

η = 1 − (1 − ηC )(1 − t̃ θ )

θ (1 − t̃ )t̃ θ
, (20)

and substituting Eqs. (17) and (18) into Eqs. (14), we get

η(2) =
(

1 − 1 − ηC

t̃ θ

)2 1

1 + t̃2
+

(
1 − 1 − ηC

t̃

)2 t̃2

1 + t̃2
.

(21)
Since 0 < t̃ < 1 and θ > 0, η(2) is upper bounded by η2

C :

η(2) < η2
C, (22)

which is consistent with the universal bound on η(2) proven
for general quasistatic cycles in our previous work [22]. It
is interesting to note that, although the present discussion
leading to Eq. (21) does not include the Carnot cycle, the
resulting Eq. (21) for t̃ = 1 and θ = 1 is consistent with η(2)

of the Carnot cycle, η(2) = η2
C , obtained in Ref. [22].

Next, we compare the values of η(2) and η2. For θ = 1,
which means that the two heat transfer strokes in the cycle are
the same type (e.g., the Otto cycle and the Brayton cycle), we
readily get

η(2) = η2 (23)

from Eqs. (20) and (21) with

η = 1 − T3

T0
= 1 − T2

T1
. (24)

For θ �= 1, as shown in Fig. 2, η(2) is a shifted quadratic
function of η. For 0 < θ < 1, we have

η(2) > η2, (25)

which is consistent with the lower bound in the linear response
regime of small change in parameters [24,46]. However, for
θ > 1, η2 does not give the lower bound of η(2) any more, and
η(2) could be larger or smaller than η2. This result can also be
interpreted as the relation between uncertainties σW and σQh

of the work output and the heat input from the hot heat bath,
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which are defined as σX = (〈X 2〉 − 〈X 〉2)/〈X 〉2 with X = W
and Qh. We have

σW = σQh (26)

when θ = 1, and

σW > σQh (27)

when 0 < θ < 1. σW could be larger or smaller than σQh when
θ > 1.

B. Uncertainties of work output and heat input

Now, we evaluate the uncertainties of work output and heat
input and give a lower bound of them. Before discussing the
four-stroke cycles with constant Ci, let us first consider the
Carnot cycle as a simple example which gives η(2) = η2

C and
σW = σQh [22]. In this case, we have 〈(�Qh)2〉 = 2kBCV T 2

h
and 〈Qh〉 = Th�S with �S ≡ �Sh = −�Sc > 0, and the un-
certainty σQh is given by

σQh = 〈(�Qh)2〉
〈Qh〉2

= 2kBCV

(�S)2
. (28)

The Carnot engine whose working substance is an over-
damped Brownian particle trapped in the potential U =
k x2n/2n (n is a natural number) discussed in Ref. [42] is a
special case of Eq. (28).3

Next, let us go back to the reversible four-stroke cycles
with constant Ci in the heat transfer strokes 0 → 1 and 2 → 3.
According to Eqs. (3) and (13), the mean value of the absorbed
heat from the hot heat bath is given by 〈Qh〉 = Ch(T1 − T0),
and its variance is given by 〈(�Qh)2〉 = kBCV (T 2

1 + T 2
0 ). Thus

we get

σQh = kBCV

C2
h

1 + t̃2

(1 − t̃ )2
, (29)

and see that σQh is a function of the temperature ratio t̃ =
T0/T1 which is related to the change �S of the entropy:

t̃ = exp(−�S/Ch). (30)

In the same way, we have

σQc = (
kBCV /C2

c

)(
T 2

2 + T 2
3

)
(T2 − T3)−2 (31)

which depends on the temperature ratio T2/T3 with

T2/T3 = exp(�S/Cc). (32)

From Eqs. (29)–(32), we obtain the uncertainty of the
absorbed/emitted heat σQi (i = h, c) and find its lower bound
given by

σQi = kBCV

2C2
i

cosh(�S/Ci )

sinh2[�S/(2Ci )]
� 2kBCV

(�S)2
. (33)

3The Hamiltonian in Ref. [42] is H = kx2n/2n, where x is the posi-
tion of the Brownian particle, k is the stiffness of the potential, and n
is a natural number. In this case, CV is constant, CV = kB/(2n), which
is in accordance with the assumption of our analysis. Therefore
Eq. (28) is applicable to this case, and gives

√
σW = kB/(

√
n �S),

which agrees with the result in Ref. [42].

For 0 < θ � 1, from Eq. (27), we have σW � σQh �
2kBCV /(�S)2, where the first equality is satisfied when θ =
1 and the second equality is satisfied when �S 	 Ch. For
θ > 1, σW could be larger or smaller than σQh but has the same
lower bound. In conclusion, we have

σQi �
2kBCV

(�S)2
and σW � 2kBCV

(�S)2
. (34)

This lower bound is given by the uncertainty of work output
and absorbed/emitted heat in the corresponding Carnot cycle
with the same value of �S.

IV. ENDOREVERSIBLE SMALL HEAT ENGINE

In this section, we consider the small heat engine operating
in a finite cycle period τ which saitisfies the endoreversible
assumptions. To show a subtle difference between the en-
doreversible assumptions in the microscopic and macroscopic
systems, we first introduce endoreversible thermodynamics
for macroscopic engines before giving our main result for the
endoreversible small heat engines. At the end of this section,
we derive ηMP = ηCA [Eq. (39)] for a particular class of small
heat engines, such that the two heat transfer strokes are the
same type, i.e., θ = 1, with the constant heat capacities and
heat conductivities.

A. Endoreversible thermodynamics for macroscopic engines

In endoreversible thermodynamics, we assume that the ir-
reversibility is caused solely by the irreversible heat transfer
between the engine and the bath, and the other processes are
reversible [49,50]. For macroscopic endoreversible engines,
we assume that the relaxation time of the working substance
is much shorter than the timescale of the parameter change.
Thus the working substance is in local equilibrium with an
internal temperature Tin. This internal temperature is generally
different from the temperature of the baths. In addition, the
adiabatic strokes are assumed to be reversible but operated
in a short time compared with the cycle period. The working
substance follows a reversible cycle, and the mean value of
the entropy production � should be zero:

� ≡ �S −
〈 ∫ τ

0

Q̇

Tin
dt

〉
= 0. (35)

Here, �S is the change of the entropy in the working sub-
stance through one cycle, which is zero for the engine running
periodically. For small heat engines, we consider the same as-
sumption of endoreversibility but from a different microscopic
mechanism.

For macroscopic engines, there is usually an intermediate
heat conducting medium between the working substance and
the bath during the heat transfer strokes. Due to the finite heat
flow and the finite duration of the heat transfer strokes, there
is a temperature difference between the bath and the working
substance. The mean value of the heat flow between the bath
and the working substance is assumed to be proportional to
the temperature difference between them (i.e., the Fourier
or the Newton law). Since we consider sufficiently large
timescale such that the heat flow has already reached a steady
state, the average heat flux from the bath to the heat conduct-
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ing medium and that from the heat conducting medium to
the working substance are in balance. Therefore, within this
formalism, we ignore the presence of nonzero mean value of
the energy stored in the heat conducting medium. Further-
more, in the standard setup of the small heat engines, there
is no intermediate heat conducting medium as we will discuss
later.

If the working substance follows the Carnot cycle and the
heat transfer follows the Newton law, the engine is referred to
as the Curzon-Ahlborn heat engine [48]. The internal temper-
atures Tih and Tic during the hot and cold isothermal strokes
give the efficiency of the Carnot engine as η = 1 − (Tic/Tih).
According to the Newton law, the mean value of heat absorbed
from the hot heat bath is given by

〈Qh〉 = αhτh(Th − Tih) (36)

with the conductivity αh and the duration τh of the hot isother-
mal stroke, and the mean value of heat emitted to the cold
heat bath with the duration τc and the conductivity αc is
given by 〈Qc〉 = αcτc(Tic − Tc). To maximize the power under
given conductivities (αh and αc) and bath temperatures (Th

and Tc), we optimize the internal temperatures (Tih and Tic)
and the durations (τh and τc). Then, we obtain the optimum
condition for Tih and Tic (see, e.g., Ref. [49] for detailed
derivation):

T ∗
ic

T ∗
ih

=
√

Tc

Th
, (37)

where T ∗
ih and T ∗

ic are the optimum values of Tih and Tic.
Therefore the efficiency at maximum power ηCA of the CA
engine is given by [49]

ηCA = 1 −
√

Tc

Th
. (38)

In the present paper, we consider not only the CA engines
but also the class of four-stroke heat engines introduced in the
previous section. In the latter case, during each heat transfer
stroke, the internal temperature changes while the bath tem-
peratures Th and Tc are constant, and the heat transfer follows
the Fourier law. Following the derivation in Ref. [55], we find
that, if the two heat transfer strokes in the cycle are the same
type (θ = 1, e.g., the Otto cycle and the Brayton cycle), the
efficiency ηMP at maximum power is given by

ηMP = ηCA. (39)

We also obtain this result for the endoreversible small heat
engines with constant conductivities αc and αh. The detailed
derivation is shown at the end of this section.

B. Endoreversible thermodynamics for small heat engines

Now, we consider endoreversible small heat engines. We
assume a special class of working substance such that its en-
ergy distribution is always given by the canonical distribution
function with the effective temperature T̃ even if the working
substance is far from equilibrium with the heat bath in the
irreversible heat transfer strokes. It is noted that the effective
temperature T̃ is generally different from the bath tempera-
ture. We also assume direct heat transfer between the working

substance and the heat bath, and there is no heat conducting
medium between them. This situation is possible when the
particles in the bath directly interact with the particles of the
working substance such as Brownian heat engines [4,5,7,52]
and the interaction between them is sufficiently weak. This sit-
uation can also be realized in an endoreversible quantum Otto
cycle [51]. Similarly to macroscopic endoreversible thermo-
dynamics, we assume that the adiabatic strokes are reversible
and the irreversibility is caused solely by the heat flow due
to the difference between T̃ and the bath temperature. If the
mean value of the heat transfer is linear with respect to the
temperature difference, one can reproduce the CA efficiency
for the engine operating in the Carnot cycle. One example
of microscopic CA engines has been discussed in Ref. [28]
which considers a highly underdamped Brownian particle as
the working substance.

In our work, we study the fluctuation ratio η
(2)
MP at maximum

power for endoreversible small heat engines. In the quasistatic
limit, as discussed in Sec. III, the fluctuations of work and heat
depend solely on the energy fluctuation at each node, and the
correlations of work and heat in each stroke are negligible.
If the cycle period at maximum power is sufficiently large,
the discussion in Sec. III is still applicable. In addition, since
there is no heat conducting medium between the working
substance and the bath, fluctuation of heat input to the working
substance is exactly equal to fluctuation of heat output from
the bath. Then, our result Eq. (23) holds and the ratio η

(2)
MP at

maximum power is given by η
(2)
MP = η2

MP. Substituting Eq. (39)
into Eq. (23), we have

η
(2)
MP = η2

CA =
(

1 −
√

Tc

Th

)2

. (40)

It is noted that Eq. (40) is obtained for large cycle period
and constant heat conductivities. For more general cases, our
result Eq. (40) may not be valid. However, as verified for a
microscopic model in the next section, the following approx-
imate relation still holds for various kinds of endoreversible
small heat engines:

η
(2)
MP � η2

CA, (41)

i.e., η2
CA gives a good estimate of η

(2)
MP. This resembles the

situation where the CA efficiency gives a good estimate of
the efficiency at maximum power. Although ηMP is not always
equal to ηCA, the approximate relation

ηMP � ηCA (42)

holds for various kinds of heat engines with reasonable
choices of optimization conditions. Similarly, we find that
η

(2)
MP � η2

CA holds for a wide class of finite-time heat engines
with large cycle period. In the next section, we will show
that the approximate relation η

(2)
MP � η2

CA is applicable to the
endoreversible small heat engines even when the cycle period
is very small compare to the correlation time of work and heat.

C. Derivation of Eq. (39)

Finally, we give a derivation of Eq. (39) for the four-stroke
heat engines with constant heat capacity C ≡ Ch = Cc. In this
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case, the mean value of work output in one cycle is given by

〈W 〉 = 〈Qh〉 − 〈Qc〉 = C(T̃1 − T̃0 − T̃2 + T̃3), (43)

where T̃j is the effective temperature at node j, and the cycle
period is defined by

τ = γ (τh + τc), (44)

where τh and τc are the duration of heat transfer strokes
and γ is the ratio of the cycle period to the duration of the
heat transfer strokes. (In the usual analysis of endoreversible
thermodynamics, where the duration of the adiabatic strokes
is assumed to be much shorter than that of the heat transfer
strokes, γ is set to unity as we shall do later.) Then the power
P = 〈W 〉/τ depends on {T̃j}, τh, and τc. We maximize the
power by optimizing {T̃j}, τh, and τc under given Th, Tc, αh,
and αc. According to the Fourier law, the mean value of the
heat flow Q̇i for i = h and c is given by

〈Q̇i〉 = αi(Ti − T̃ ). (45)

The time evolution of T̃ during each heat transfer stroke
follows the differential equation:

dT̃ (t )

dt
= αi(T̃ (t ) − Ti )/C. (46)

For the stroke 0 → 1, the solution is

T̃1 − Th = (T̃0 − Th) exp(−αhτh/C), (47)

and for the stroke 2 → 3, the solution is

T̃3 − Tc = (T̃2 − Tc) exp(−αcτc/C). (48)

Since the working substance follows the reversible cycle, as
Eq. (35), the relation between T̃j and η is the same as Eq. (24)
in the quasistatic limit discussed in Sec. III. For θ = 1, we
have

η = 1 − T̃3

T̃0
= 1 − T̃2

T̃1
. (49)

Then, from Eqs. (47)–(49), we have four equations for the four
variables {T̃j}. Thus T̃j is a function of the efficiency and the
durations τh and τc, i.e.,

T̃j = T̃j (η, τh, τc; Th, Tc, αh, αc). (50)

Therefore, optimizing {T̃j}, τh, and τc under the constraints of
Eqs. (47)–(49) is equivalent to optimizing η, τh, and τc with
the same constraints. The power is given by

P = 〈W 〉
τ

= 2Cη[(1 − η)Th − Tc]

γ (1 − η)(τh + τc)

sinh
(

αcτc
2C

)
sinh

(
αhτh
2C

)
sinh

(
αcτc
2C + αhτh

2C

) ,

(51)
which can be separated into a product of the following two
functions:

f1(η; Th, Tc) = 2Cη[(1 − η)Th − Tc]

γ (1 − η)
(52)

and

f2(τh, τc; Th, Tc, αh, αc) = sinh
(

αcτc
2C

)
sinh

(
αhτh
2C

)
(τh + τc) sinh

(
αcτc
2C + αhτh

2C

) . (53)

When the power is maximized, we have(
∂ f1

∂η

)
{Ti}

=
(

∂ f2

∂τh

)
{Ti},{αi}

=
(

∂ f2

∂τc

)
{Ti},{αi}

= 0. (54)

η only depends on (∂ f1/∂η){Ti} = 0, and the solution leads to

ηMP = 1 −
√

Tc

Th
. (55)

It is worth noting that, as shown in the next section, even if
the conductivities αc and αh depend on the driving protocols,
our results Eqs. (41) and (42) can still give a good estimate for
η

(2)
MP and ηMP.

V. BROWNIAN HEAT ENGINE

In this section, we discuss the endoreversible Brownian
heat engine which consists of an overdamped Brownian parti-
cle trapped in a time-dependent harmonic oscillator potential.
We first introduce the Brownian heat engine and give an
expression of the cumulants of work output and heat input.
Then, we show that the Brownian heat engine satisfies the en-
doreversible approximation and is compatible with the linear
heat transfer laws.

A. Statistics of work and heat

The Hamiltonian of the working substance in the Brownian
heat engine is given by

H (x, t ) = V (x, t ) = 1
2λ(t )x2, (56)

where x is the position of the Brownian particle and λ(t )
is the stiffness of the potential which can be controlled ex-
ternally. There are two external control parameters in our
system, λ(t ) and the water temperature T (t ), and they are
changed cyclically with the cycle period τ : λ(t + τ ) = λ(t )
and T (t + τ ) = T (t ).

The time evolution of the phase-space PDF p(x, t ) is given
by the following Fokker-Planck equation [12]:

∂t p(x, t ) = μ
{
∂x[(∂xV )p] + kBT ∂2

x p
}
, (57)

where μ is the mobility of the Brownian particle. When the
engine is stable, the PDF is also periodic in time with the
period τ : p(x, t ) = p(x, t + τ ). Such a periodic solution of
Eq. (57) is [52]

p(x, t ) = 1√
2πσx(t )

exp

(
− x2

2σx(t )

)
(58)

with 〈x(t )〉 = 0 and σx(t ) ≡ 〈(x − 〈x〉)2〉 = 〈x2(t )〉 whose
equation of motion is given by

σ̇x = −2μλσx + 2μkBT . (59)

Here, the dot represents the derivative with respect to time. In
this model, the correlation function φ(t1, t2) ≡ 〈x(t1)x(t2)〉 is
analytically solvable [62], and the solution is given by

φ(t1, t2) = e−[ f (t1 )+ f (t2 )]2μ

×
( ∫ min(t1,t2 )

0
e2 f (t )T (t )dt+

∫ τ

0 e2 f (t )T (t )dt

e2 f (τ ) − 1

)
(60)

with f (t ) ≡ μ
∫ t

0 dt ′λ(t ′).
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The work output through one cycle is given by

W
[
x(t )|τ0

] = −
∫ τ

0

∂V (x, t )

∂λ
λ̇(t )dt = −

∫ τ

0
x2(t )

λ̇(t )

2
dt .

(61)

The mean value of work in an infinitesimal time interval dt is
given by

〈d-W 〉 = −σx(t )λ̇(t )dt/2. (62)

During the heat transfer stroke 0 → 1 from t0 to t1, the amount
of heat flowing into the engine from the hot heat bath is given
by

Qh[x(t )|t1t0 ] = V (x, t1) − V (x, t0) + W
[
x(t )|t1t0

]
=

∫ t1

t0

dt x2(t )

(
δ(t − t1) − δ(t − t0) − 1

2
∂t

)
λ(t ).

(63)

From Eq. (62) and the first law of thermodynamics, 〈Ḣ〉 =
〈Q̇〉 − 〈Ẇ 〉, the mean value of the heat transfer rate is given
by

〈Q̇〉 = σ̇x(t )λ(t )/2. (64)

The work output W and the heat input Qh are the same
functional form as

ζν[x(t )|τ0] =
∫ τ

0
dt

Kν (t )

2
x2(t ) (65)

with ν = 1 for W and ν = 2 for Qh. We have K1(t ) =
−λ̇(t ) and K2(t ) = [δ(t − t1) − δ(t − t0) − u(t )∂t ]λ(t ), where
u(t ) = 1 when t0 < t < t1 and u(t ) = 0 otherwise. Since x(t )
is a Gaussian process, we can calculate the nth-order cumulant
〈ζ n

ν 〉c (n > 1) using Wick’s theorem, and obtain

〈
ζ n
ν

〉
c = (n − 1)!

2

∫
dt1Kν (t1)

∫
dt2Kν (t2) . . .

×
∫

dtnKν (tn)
n−1∏
i=1

φ(ti, ti+1)φ(tn, t1). (66)

For example, the variance (i.e., the second-order cumulant
with n = 2) of work output W (N )

t0 in N cycles from t0 to
t0 + Nτ is given by

〈(
�W (N )

t0

)2〉 = 1

2

∫ Nτ+t0

t0

dt1 λ̇(t1)
∫ Nτ+t0

t0

dt2 λ̇(t2)φ2(t1, t2).

(67)
Generally speaking, the cumulants of work and heat in finite
number of cycles depend on the starting point. The starting-
point dependence becomes negligible in the quasistatic case,
or when the number of cycles N of the operation is infinite.
Furthermore, for finite τ , since the correlations of work and
heat between two different cycles are non-negligible, work
and heat fluctuations in infinite cycles can be very different
from those in a single cycle [63]. In the present paper, we
consider the fluctuations for the latter case.

B. Endoreversiblility of the Brownian heat engines

Now, we discuss the endoreversibility of the Brownian heat
engines. We still consider the four-stroke cycles consisting of

two heat transfer strokes and two adiabatic strokes. During
each adiabatic stroke, the Shannon entropy S = −kB〈ln p〉
does not change. One way to realize such adiabatic strokes
without heat exchange (Q = 0) is quenching T and λ simul-
taneously [52]. Such adiabatic strokes can be implemented
in the current experiments. For example, in the experiment
of Ref. [5], the heat engine consists of a charged Brownian
particle whose λ is controlled by tuning the intensity of the
trapping laser and T is controlled by applying a noisy electric
force to the charged Brownian particle. Therefore λ and T can
be changed very fast compared to the timescale of the heat
exchange between the bath and the working substance.

Since the PDF of the overdamped Brownian particle in
our system is always in the canonical distribution given by
Eq. (58), we can define the effective temperature T̃ by the
width of the PDF as [52]

kBT̃ (t ) = λ(t )σx(t ). (68)

Thus the heat capacity defined by the effective temperature is
constant:

CV =
〈(

∂H

∂T̃

)
λ

〉
= kB

2
. (69)

From Eqs. (59), (64), and (68), we get the heat transfer rate as

〈Q̇〉 = 1
2λσ̇x(t ) = μλkB(T − T̃ ). (70)

Since the Shannon entropy S = −kB〈ln p〉 does not change
after a cycle, the entropy production � per cycle defined in
Eq. (35) becomes

� = −
〈 ∫ τ

0

Q̇

T̃
dt

〉
= −1

2

∮
d ln σx = 0. (71)

Therefore this model satisfies the endoreversible assumption.
According to Eq. (70), there are two ways to satisfy the

linear heat transfer law. In the first way, the control parameter
λ is fixed during the heat transfer strokes as in the Otto cycle,
which gives the Fourier law:

〈Q̇〉 = α(T − T̃ ), (72)

where α = kBμλ is the thermal conductivity. In the second
way, T̃ is fixed during the heat transfer strokes as in the
Curzon-Ahlborn heat engine [28], which gives the Newton
law:

〈Q〉 = ατ (T − T̃ ), (73)

where α = (kBμ/τ )
∫ τ

0 λ(t )dt is the time-averaged thermal
conductivity. Using the above two ways of the control protocol
in our model, we can construct the small Otto and Curzon-
Ahlborn engines under the endoreversible condition. In the
following, we shall discuss the two examples in detail.

VI. EXAMPLES

In this section, we discuss the Brownian Otto engine and
Brownian CA engine as examples and examine our main
results, the approximate relations (41) and (42). For the both
cases, we first derive the maximum power and the efficiency
ηMP under a specific constraint condition. Then, we calculate
η

(2)
MP and discuss the relation between ηMP, η

(2)
MP, and ηCA. In
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FIG. 3. Otto cycle in the σx-λ plane.

addition, for the Brownian Otto engine, we obtain analytical
expressions of the cumulant and PDF of work.

A. Brownian Otto engine

First, we introduce the Brownian Otto engine which con-
sists of two isochoric and two adiabatic strokes. During the
hot (cold) isochoric stroke, the temperature T of the bath and
the parameter λ are fixed at Th and λh (Tc and λc), respectively,
for the duration τh (τc) with λc < λh. In the adiabatic strokes,
T and λ are quenched simultaneously in a way such that the
Shannon entropy of the working substance is unchanged [52].
We define the time t j of node j as t0 = 0, t1 = t2 = τh, and
t3 = t4 = τ = τc + τh. As shown in Fig. 3, since the variance
σx of the position of the particle does not change during the
adiabatic jumps and λ is constant during the isochoric strokes,
the cycle is a rectangle in the σx-λ plane. From Eq. (68), we
have the effective temperature T̃j at node j as T̃0 = λhσx(0),
T̃1 = λhσx(τh), T̃2 = λcσx(τh), and T̃3 = λcσx(τ ) = λcσx(0).
For this microscopic endoreversible Otto engine, according to
Eq. (49), we have the efficiency:

η = 1 − T̃3

T̃0
= 1 − λc

λh
, (74)

which is determined solely by the ratio λc/λh.

1. Maximum power and efficiency

Now, we derive the maximum power Pmax and the effi-
ciency ηMP. It is noted that, for the Otto engine, if the thermal
conductivities αh and αc are constant, we have ηMP = ηCA

as discussed in Sec. IV. However, in the present micro-
scopic model, the conductivity α = kBμλ depends on λ. From
Eq. (51) with C = kB/2 and γ = 1, the power is given by

P = kBη[(1 − η)Th − Tc]

(1 − η)(τh + τc)

sinh(μ(1 − η)λhτc) sinh(μλhτh)

sinh(μ(1 − η)λhτc + μλhτh)
.

(75)
Here, the power is a function of the parameter λh, the effi-
ciency, and the durations for given Th, Tc, and μ, i.e., P =
P(λh, η, τh, τc; Th, Tc, μ). Since P depends on λh and λc with
the ratio λc/λh = 1 − η, we should optimize both λh and η for
the fully optimized case. However, as shown later, the power

increases with λh so that, if we optimize λh, the maximum
power diverges at infinite λh. Since λ is finite and can be easily
fixed in experiments, the case with optimized η for given λh is
more useful compared to the fully optimized case.

To get the efficiency at maximum power under given τ , λh,
Th, Tc, and μ, we optimize η, τh, and τc with the constraint,

τ = τh + τc, (76)

using the Lagrange multiplier method. With a Lagrange mul-
tiplier ξ , we define a function P′ as

P′(η, τh, τc) ≡ P(η, τh, τc) − ξ · (τh + τc). (77)

For the maximum power, we have(
∂P′

∂η

)
τh,τc

=
(

∂P′

∂τh

)
η,τc

=
(

∂P′

∂τc

)
η,τh

= 0. (78)

By eliminating ξ from the three equations of Eq. (78), we get

(1 − η) sinh2(τhμλh) = sinh2[τc(1 − η)μλh] (79)

and
Tc

Th
− (1 − η)2

+ η
[
(1 − η) − Tc

Th

]
(1 − η)μλhτc sinh(μλhτh)

sinh[(1 − η)μλhτc] sinh[(1 − η)μλhτc + μλhτh]
= 0.

(80)

The solution of the combined nonlinear equations (79) and
(80) together with the constraint condition (76) gives ηMP

and optimized durations τ ∗
h and τ ∗

c for given τ . Note that, in
these equations, μλh always appears in the form of μλhτi for
i = h and c. We thus define new variables τ̃i = μλhτi. Then
the solutions ηMP and τ̃ ∗

i depend only on the cycle period τ

and the temperature ratio Tc/Th = 1 − ηC . Figure 4 shows the
deviation of ηMP from ηCA for given values of τ .

Substituting ηMP, τ̃ ∗
h , and τ̃ ∗

c into Eq. (75), we get the
maximum power Pmax(τ ) as a function of the cycle period τ

which is in the form of

Pmax(τ ) = μλhkBTh f (τ ; Tc/Th) (81)

with given μλh, Th, and Tc. Here, f (τ ; Tc/Th) is a dimension-
less function. Figure 5 shows the numerical result of Pmax(τ ).
Note that Pmax(τ ) is maximized when the cycle period τ ap-
proaches zero. To get a physical understanding, let us consider
the mean value of work in the P-λ plane, where P is the
generalized pressure defined as P = 〈∂H/∂λ〉 = σx/2. Then,
as can be seen from Fig. 3, the mean value of the work output
through one cycle is given by 〈W 〉 = �λ�σx/2. Thus the
power is proportional to the changing rate of σx: P ∝ �σx/τ .
According to Eqs. (59) and (68), the changing rate σ̇x is
proportional to the temperature difference T − T̃ between the
working substance and the bath. Since the temperature dif-
ference is finite and takes a maximum value at the beginning
of each heat transfer stroke, σ̇x is finite and maximized when
τ → 0. Therefore the power is also finite and maximized at
τ → 0.

As can be seen from Fig. 4, the value of ηMP increases
as the cycle period and is between the black dashed line and
the black dashed-dotted line. Here, the black dashed (dashed-
dotted) line shows ηMP in the limit of large (small) cycle
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FIG. 4. ηMP as a function of ηC for various values of τ . In the
limit of the large cycle period τ/(μλh )−1 → ∞, we have ηMP = ηCA

shown by the black dashed line. In the limit of the small cycle period
τ/(μλh )−1 → 0, the resulting ηMP is shown by the black dashed-
dotted line. The solid lines with symbols show ηMP for τ/(μλh )−1 =
1 (yellow diamonds), 5 (purple circles), 9 (green triangles), and 13
(cyan squares).

period. For large durations τh � (μλh)−1 and τc � (μλc)−1,
the third term in the LHS of Eq. (80) is negligible. Thus we
get

ηMP = 1 −
√

Tc

Th
= ηCA (82)

from Eq. (80), and

Pmax = kBThη
2
CA/(2τ ) (83)

from Eq. (75).

FIG. 5. Pmax as a function of τ . We set Tc/Th = 0.1. Pmax is in
units of μλhkBThη

2
CA/2 and τ is in units of (μλh )−1. The dashed line

shows 1/τ .

For small cycle period τ 	 (μλh)−1, we have sinh τi � τi,
and Eqs. (79) and (80) become

ηMP = 1 − τ 2
h

τ 2
c

(84)

and

(2ηMP − ηC )τh = [
η2

MP − 2ηMP + ηC
]
τc, (85)

respectively. Substituting Eq. (84) into Eq. (85), we get

ηMP(1 +
√

1 − ηMP) = ηC . (86)

From Eqs. (84) and (86), the maximum power given by
Eq. (75) becomes

Pmax = μλhkBTh(ηC − ηMP)η3
MP/η

2
C . (87)

For Tc/Th � 1 so that ηC 	 1, from Eq. (86) we can expend
ηMP as

ηMP = 1
2ηC + 1

16η2
C + 3

128η3
C + O

(
η4

C

)
. (88)

On the other hand, expanding the CA efficiency ηCA = 1 −√
Tc/Th around Tc/Th = 1, we obtain

ηCA = 1
2ηC + 1

8η2
C + 3

16η3
C + O

(
η4

C

)
. (89)

In conclusion, we have

ηMP � ηCA (90)

for the endoreversible small Otto engine. Here, ηMP ap-
proaches ηCA as the cycle period increases or ηC decreases.

2. Ratio η
(2)
MP at maximum power

Since there is no work output during the heat transfer
strokes in the Otto cycle, work and heat are determined solely
by the energy change in each stroke:

W = 1
2 (λh − λc)[x(τh)2 − x(0)2] (91)

and

Qh = 1
2λh[x(τh)2 − x(0)2]. (92)

Therefore the stochastic efficiency η̃ ≡ W/Qh =
1 − λc/λh becomes deterministic and agrees with the
efficiency η = 〈W 〉/〈Qh〉 = 1 − λc/λh. In addition,
η(2) ≡ 〈(�W )2〉/〈(�Qh)2〉 becomes

η(2) =
(

1 − λc

λh

)2

= η2. (93)

It is noted that the relations η = 1 − (λc/λh) < ηC and η(2) =
η2 < η2

C hold for any cycle period within the Otto engine.
Thus, from Eqs. (90) and (93), we have

η
(2)
MP = η2

MP � η2
CA. (94)

In addition, since ηCA � ηC , η2
C is still the upper bound of η

(2)
MP

for the endoreversible small Otto engine.

3. Cumulant of work

The higher order cumulants 〈W n〉c of work output can be
calculated analytically from Eq. (66). Note that the higher
order cumulants generally depend on the starting point of the
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cycle [63]. For the Otto cycle, the nth-order cumulant of work
output is given by

〈W n〉c = (n − 1)!

2
[(1 − c)an + (1 − c)bn + c(a + b)n] (95)

with a = (λh − λc)σx(τh), b = (λc − λh)σx(0), and c =
φ(τh, τ )/[σx(0)σx(τh)] when starting just before the adiabatic
expansion; with a = (λc − λh)σx(0), b = (λh − λc)σx(τh),
and c = φ(0, τh)/[σx(0)σx(τh)] when starting just before the
adiabatic compression. For some special cases, we can get an
analytical expression of the PDF of work P(W ). For example,
when a + b = 0, we have

P(W ) = K0(|W/a|)
π |a| , (96)

where K0(x) is the zeroth-order modified Bessel function of
the second kind. In addition, for the heat input Qh = W/η,
all the cumulants are given by 〈Qn

h〉c = η−n〈W n〉c. The PDFs
of work and heat given by the modified Bessel function have
been obtained also in other similar systems [64–71].

B. Brownian Curzon-Ahlborn heat engine

For the small Curzon-Ahlborn heat engine, we assume
that the working substance follows the Carnot cycle which
consists of two adiabatic jumps and two isothermal strokes.
Suppose we have the adiabatic expantion (compression) at
t = τh (t = 0) and the cycle period τ = τc + τh. During the
hot (cold) isothermal strokes, both the water temperature Th

(Tc) and the effective temperature of the working substance
T̃h (T̃c) are constant. As a consequence, σ̇x = 2μkB(Ti − T̃i )
with i = h, c given by Eq. (59) is constant. Thus the effective
temperatures T̃h and T̃c are given by

T̃h = Th − σx(τh) − σx(0)

2μkBτh
, (97)

T̃c = Tc + σx(τh) − σx(0)

2μkBτc
. (98)

From the Newton law (73), the thermal conductivity is
given by αi = μT̃i[ln σx(τh) − ln σx(0)]/[σx(τh) − σx(0)]. If
the conductivity is constant, the efficiency at maximum power
is the CA efficiency. However, here αi(T̃i; σx, μ) is no longer
constant, but depends on the effective temperature of the
working substance.

1. Efficiency at maximum power

Now, we derive ηMP of the microscopic CA engine. The
power is given by

P ≡ 〈W 〉
τ

= − 1

2τ

∫
σxd λ = − 1

2τ

∫
σxd

(
kBT̃i

σx

)

= kB

2τ
(T̃h − T̃c) ln

σx(τh)

σx(0)

= kB

2
ln

σx(τh)

σx(0)

[
Th − Tc

τc + τh
− σx(τh) − σx(0)

2μkBτcτh

]
. (99)

By maximizing the power with respect to τc and τh under
given Th, Tc, μ, σx(0), and σx(τh), we get τc = τh = τMP/2

FIG. 6. ηMP for the microscopic CA engine as a function of ηC .
The dashed line shows ηCA.

with

τMP = 4[σx(τh) − σx(0)]

μkB(Th − Tc)
. (100)

Substituting τMP into Eqs. (97) and (98), we get the effective
temperatures: T̃h = (3/4)Th + (1/4)Tc and T̃c = (1/4)Th +
(3/4)Tc. Then ηMP is given by

ηMP = 1 − T̃c

T̃h
= 2(Th − Tc)

3Th + Tc
= ηC

2 − ηC/2
. (101)

This result agrees with that of Ref. [52] for the finite-
time Brownian heat engines at maximum power. As shown
in Fig. 6, the approximate relation ηMP � ηCA holds when
ηC 	 1.

2. Ratio η
(2)
MP at maximum power

Numerically, we find that η
(2)
MP for the CA engine depends

only on the ratio σx(0)/σx(τh) and ηC . As shown in Fig. 7, we
have η

(2)
MP � η2

MP for σx(0)/σx(τh) � 1. That is because when
σx(0) � σx(τh), λ = kBT̃ /σx is almost unchanged during the
isothermal strokes. Then, the isothermal strokes become iso-
choric and the CA engine becomes identical to the Otto
engine. In this case, work is extracted only in the reversible
adiabatic strokes and we have η

(2)
MP = η2

MP as discussed in the
example of the Otto engine. Since ηMP is close to ηCA for
the CA engine, we have η

(2)
MP � η2

CA when σx(0) is close
to σx(τh). The situation here is very different from that in
Sec. IV. In Sec. IV, we assume that the heat conductivities
are constant, and the cycle period is sufficiently large such
that the effect of the correlation of work is negligible. Here,
from Eq. (100), we find that the condition σx(0)/σx(τh) � 1
gives a very small cycle period. Therefore, in the case of the
CA engine, the approximate relation η

(2)
MP � η2

CA holds even
when the cycle period is small and the heat conductivities are
not constant.

In addition, the relation η
(2)
MP � η2

CA < η2
C also indicates

that the upper bound η2
C , is still applicable to the CA engine

with σx(0)/σx(τh) � 1. However, as shown in Fig. 7, η
(2)
MP

043139-11
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FIG. 7. η
(2)
MP as a function of ηC for various values of

σx (0)/σx (τh ). Solid lines with symbols show η
(2)
MP for σx (0)/σx (τh ) =

0.1 (orange asterisks), 0.3 (cyan squares), 0.5 (green triangles), 0.7
(purple circles), and 0.9 (yellow diamonds). The black dashed-dotted
line shows η2

C , the black dashed line shows η2
CA, and the black solid

line shows η2
MP with ηMP given by Eq. (101).

could exceed η2
C for the CA engine with small ηC and small

σx(0)/σx(τh).

VII. SUMMARY AND CONCLUSION

In summary, we have studied the ratio between the vari-
ances of work output and heat input, η(2), for endoreversible
small heat engines. We have found that the ratio η

(2)
MP at

maximum power is equal or close to the square of the Curzon-
Ahlborn (CA) efficiency, η(2)

MP � η2
CA, for endoreversible small

heat engines.
Endoreversible small heat engines have the working sub-

stance following a reversible cycle and the finite irreversible
heat flow causing the finite-time effect. Thus we separated
our discussion into two parts: (i) we first considered η(2) for
reversible small heat engines in the quasistatic limit in Sec. III,
and (ii) we discussed the ratio η

(2)
MP at maximum power for the

endoreversible small heat engines in Sec. IV. We considered
a class of four-stroke heat engines operating with two heat
baths with the temperatures Th and Tc consisting of two adia-
batic strokes and two heat transfer strokes with constant heat
capacities Ch and Cc. In part (i), the ratio θ = Ch/Cc is crucial
for the relation between η(2) and η2. (a) For θ < 1, η2 gives
a lower bound of η(2); (b) for θ > 1, η2 does not give the

lower bound of η(2) any more, and η(2) could be larger or
smaller than η2; (c) in the typical case of θ = 1 (e.g., the Otto
cycle, the Brayton cycle, and the Carnot cycle), we obtained
η(2) = η2. In part (ii), we considered the typical case of θ = 1.
We assumed the heat transfer following the Fourier law or the
Newton law. For the constant heat conductivities, when the
cycle period is much larger than the correlation time of work
and heat, we obtained η

(2)
MP = η2

MP = η2
CA = (1 − √

Tc/Th)2 in
Sec. IV. Then, in the last two sections (Secs. V and VI),
we have verified that η2

CA gives a good estimate of η
(2)
MP, i.e.,

η
(2)
MP � η2

CA, for the endoreversible Brownian heat engines.
In Sec. V, we introduced the endoreversible Brownian heat
engine and gave an expression of the cumulant of work and
heat. In Sec. VI, by taking the two type of the Brownian heat
engine cycle as examples, we have shown that the approxi-
mate relation η

(2)
MP � η2

CA holds even when the cycle period is
smaller than the correlation time of work and heat and the heat
conductivities are not constant. We discussed (a) the Brownian
Otto engine in Sec. VI A and (b) the Brownian CA engine in
Sec. VI B. (a) For the Otto engine, since η(2) = η2 (η � ηC )
always holds and ηMP is close to ηCA, we have η

(2)
MP � η2

CA.
(b) For the CA engine, we have found that η

(2)
MP � η2

CA holds
when the work in the isothermal strokes is small. In this case,
the CA engine is close to the Otto engine, and the work
is mostly done through the reversible adiabatic strokes. In
addition, since η2

CA � η2
C , the upper bound of η(2) in the qua-

sistatic limit, η2
C , is applicable to some endoreversible small

heat engines at maximum power when the relation η
(2)
MP � η2

CA
holds.

Our result, η
(2)
MP � η2

CA, resembles the relation ηMP � ηCA,
i.e., as the CA efficiency gives a good estimate of the effi-
ciency at maximum power for various kinds of finite-time
heat engines, η2

CA also gives a good estimate of η
(2)
MP for

various finite-time small heat engines. Since the smaller η(2)

means more stable work output converted from the fluctuat-
ing heat input, η

(2)
MP � η2

CA also suggests a trade-off between
the efficiency and the stability of finite-time heat engines at
maximum power. In the future, finding an upper and a lower
bounds of η

(2)
MP and minimizing the fluctuation of work output

for the finite-time heat engines are interesting open problems.
Also, thermodynamic geometry [25,26,58,72–75] is a good
method which leads to further studies on the properties of
η(2).
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