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Hybrid discrete-continuous truncated Wigner approximation for driven, dissipative spin systems
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We present a systematic approach for the semiclassical treatment of many-body dynamics of interacting, open
spin systems. Our approach overcomes some of the shortcomings of the recently developed discrete truncated
Wigner approximation (DTWA) based on Monte Carlo sampling in a discrete phase space that improves the
classical treatment by accounting for lowest-order quantum fluctuations. We provide a rigorous derivation of the
DTWA by embedding it in a continuous phase space, thereby introducing a hybrid discrete-continuous truncated
Wigner approximation . We derive a set of operator-differential mappings that yield an exact equation of motion
(EOM) for the continuous SU(2) Wigner function of spins. The standard DTWA is then recovered by a systematic
neglection of specific terms in this exact EOM. The hybrid approach permits us to determine the validity
conditions and to gain a detailed understanding of the quality of the approximation, paving the way for systematic
improvements. Furthermore, we show that the continuous embedding allows for a straightforward extension of
the method to open spin systems subject to dephasing, losses, and incoherent drive, while preserving the key
advantages of the discrete approach, such as a positive definite Wigner distribution of typical initial states. We
derive exact stochastic differential equations for processes which cannot be described by the standard DTWA
due to the presence of nonclassical noise. We illustrate our approach by applying it to the dissipative dynamics
of Rydberg excitation of one-dimensional arrays of laser-driven atoms and compare it to exact results for small
systems.
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I. INTRODUCTION

The many-body dynamics of dissipative quantum spin sys-
tems is of key importance in many areas of physics and
technology. Its exact numerical treatment is, however, ex-
tremely challenging, being restricted either to small systems
where the time evolution of the full many-body density matrix
can be simulated or to the classical limit of strong dephasing,
which can be tackled by Monte Carlo methods [1,2]. Various
approximation techniques have been developed in the past,
ranging from mean-field, cluster-mean-field [3], and varia-
tional approaches [4], as well as field-theoretical descriptions
within the Keldysh formalism [5] to those based on matrix-
product state (MPS) expansions of the density matrix [6,7] or
variational MPS techniques [8]. More recently, a semiclassical
approach based on Monte Carlo sampling of spin- 1

2 density
matrices in a discrete phase space [9]–the discrete truncated
Wigner approximation (DTWA) [10]–has been developed. In
the DTWA, the many-body dynamics of spin- 1

2 systems is
described by a set of classical equations of motion of the
Cartesian spin components, while interactions are accounted
for at the mean-field level. Similar to the truncated Wigner
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approach to Bose fields [11–14], quantum fluctuations are par-
tially incorporated by sampling the spin components from an
initial quasiprobability distribution of a discrete phase space
[9].

It was shown in Ref. [10] that the DTWA can reproduce
rather accurately collective observables and correlations of
interacting spin- 1

2 particles on short time scales and thus can
be successfully applied to problems of spin squeezing [15,16]
and quantum quenches [17–20]. The agreement with exact
solutions is particularly good for long-range interactions, i.e.,
when each spin interacts with a large number of other spins
with comparable strength. While qualitatively such a behavior
does not come unexpected, since increasing the coordination
number of interactions for each spin improves the accuracy
of the mean-field approximation, detailed quantitative under-
standing of the applicability and limitations of the DTWA
is still missing. Yet, such an understanding is important in
order to estimate the quality of the DTWA when applied to
larger systems, where exact benchmarks can no longer be per-
formed, or for the development of systematic improvements
[21].

Furthermore, while phase space methods for bosonic fields
[11–13] can easily incorporate dephasing or losses, so far
there has been no first-principles derivation of the DTWA for
general open systems. Only very recently a first attempt has
been made to include dephasing and incoherent decay using
a phenomenological approach. In Ref. [22] dephasing was
incorporated by Markovian classical noise fields coupled to
the x, y components of the spins, turning the deterministic
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equations of motion into stochastic ones with multiplica-
tive white noise. In contrast, decay and incoherent drive
are associated with non-classical noise in standard DTWA,
which prevents numerical simulations by stochastic differen-
tial equations. Further approximations were therefore made
[22,23]. In an alternative approach of treating pure decay, the
authors of Ref. [24] proposed to first unravel the quantum
master equation and then apply a semiclassical approach. This
open-system version of the DTWA requires an ad hoc intro-
duction of the spin norm as an additional degree of freedom.
For a single spin, very good agreement with exact results was
found, but the range of validity of the approach as discussed in
Appendix D and its applicability to systems with simultaneous
dephasing and loss or to more general reservoir couplings
remains unclear.

Here we present an alternative, rigorous derivation of the
DTWA based on an embedding of the discrete Wigner repre-
sentation in the continuous SU(2) phase space. This hybrid
discrete-continuous approach, which we term as DCTWA
(discrete-continuous truncated Wigner approximation), alle-
viates the shortcomings of the standard DTWA, namely, it
permits us to assess and systematically improve the quality
of the truncation approximation and allows to extend the
approach to treat both dephasing and decay. To this end, we
derive a set of operator-differential mappings which yield an
exact equation of motion (EOM) for the continuous SU(2)
Wigner function. The truncation approximation, which forms
the basis of the DTWA, can then be associated with a sys-
tematic neglection of higher order derivatives in this EOM.
A scaling analysis of the higher-order terms provides clear
insight into the range of validity of the approximation and
paves the way for systematic improvements. Furthermore, the
continuous approach provides a straightforward extension to
open-system dynamics. In sharp contrast to the DTWA, the
diffusion matrix associated with spin decay is always positive
definite for the continuous Wigner distribution. Yet, typical
initial states have continuous Wigner distributions which are
not positive definite and thus cannot be treated as probability
distributions, preventing a Monte Carlo sampling. We here
show that exploiting the connection between discrete and
continuous representations, together with the gauge degree of
freedom of the continuous Wigner function of spins, allows
for both a Monte Carlo sampling of initial states as well
as a simulation of time evolution by stochastic differential
equations. Moreover, just like the approach of Ref. [24] the
dynamics of a single driven-dissipative spin is treated exactly
(see Appendix D).

The paper is organized as follows. In Sec. II we briefly
review Wootters’ discrete Wigner function formalism for
spins [9] and the standard DTWA based on that formalism
[10]. In Sec. III we summarize the continuous SU(2) Wigner
representation of spins [25,26]. In Sec. IV we derive a map-
ping between the discrete and continuous representations and
develop a hybrid discrete-continuous version, where the sam-
pling of the initial distribution encoding quantum fluctuations
to lowest order is performed on a discrete space, while the
time evolution is performed in the continuous representation.
In Sec. V we illustrate the performance of the DCTWA by
applying it to the dissipative dynamics of Rydberg excitation
of one-dimensional arrays of laser-driven atoms [27,28] and

compare it to exact results for small atomic systems. Our
findings are summarized in Sec. VI.

II. DISCRETE WIGNER FUNCTION FOR SPINS AND
TRUNCATION APPROXIMATION

A. Quantum systems with continuous degrees of freedom

The density operator ρ̂ of a quantum system with contin-
uous degrees of freedom can equivalently be represented by
the Wigner function. For example, a quantum particle with
position q̂ and momentum p̂ has a corresponding quasiprob-
ability distribution W (q, p) of continuous scalars q, p. The
connection between the Hilbert space and Wigner phase space
is given by

ρ̂ =
∫∫

dq d p W (q, p) Â(q, p), (1)

where

Â(q, p) =
∫

dy

∣∣∣∣q − y

2

〉〈
q + y

2

∣∣∣∣ e−i py
h̄

are continuous phase-point operators [29–31]. Expectation
values of any observable Ô can then be calculated by taking
the statistical average of the corresponding Weyl symbol O
with respect to the Wigner function

〈Ô(q̂, p̂)〉 =
∫∫

dq d p W (q, p) O(p, q), (2)

over the whole phase space, where the Weyl symbol O is
defined via

O(p, q) = Tr{Â(q, p)Ô(q̂, p̂)}

=
∫

dy

〈
q + y

2

∣∣∣∣Ô(q̂, p̂)

∣∣∣∣q − y

2

〉
e−i py

h̄ . (3)

B. Wigner function for a two-state quantum system

The concept of phase space representations can be ex-
tended to quantum systems with a finite-dimensional Hilbert
space [9] such as spin- 1

2 systems. To this end, Wootters [9]
introduced four discrete phase-point operators

Âα = 1
2 (1̂2 + rασ̂), (4)

where σ̂ = (σ̂ x, σ̂ y, σ̂ z )T is the vector of Pauli matrices, α =
(α1, α2) with elements αi ∈ {0, 1} and the vector rα is given
by the discrete set of points

rα =((−1)α2 , (−1)α1+α2 , (−1)α1 ) (5)

on the sphere with radius r = √
3. The phase-point opera-

tors have unit trace Tr(Âα) = 1, are orthogonal 1
2 Tr(ÂαÂβ ) =

δαβ, and form a basis. The density operator ρ̂ can then be
expanded as

ρ̂ =
∑

α

WαÂα, (6)

where the weights Wα = 1
2 Tr[Âαρ̂] are called the discrete

Wigner function and are real by construction.
Note that since r = √

3 > 1, the phase-point operators Âα

are not positive definite and therefore are not density matrices
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themselves. As a consequence, the discrete Wigner func-
tion Wα is in general not positive, but is normalized Tr ρ̂ =∑

α Wα = 1. Just as in the continuous case, the Wigner func-
tion represents only a quasi-probability distribution, therefore
preventing a stochastic (Monte Carlo) sampling of arbitrary
states. But for certain relevant quantum states, all Wigner
coefficients are positive and can therefore be interpreted as
proper probabilities. For example, the fully polarized spin
states

|↑〉〈↑| = 1
2 (Â00 + Â01)

⇐⇒ W00 = W01 = 1
2 ,W10 = W11 = 0, (7a)

|↓〉〈↓| = 1
2 (Â10 + Â11)

⇐⇒ W00 = W01 = 0,W10 = W11 = 1
2 , (7b)

can be represented as equally weighted classical mixtures of
Â00 and Â01 (for |↑〉〈↑|), and Â10 and Â11 (for |↓〉〈↓|).

C. Equations of motion

It follows from the von Neumann equation d
dt ρ̂(t ) =

−i[Ĥ0, ρ̂(t )] (h̄ = 1) for the unitary time evolution under
some single-particle Hamiltonian Ĥ0 that the evolution equa-
tions for the phase-point operators are

d

dt
Âα(t ) = −i[Ĥ0, Âα(t )]. (8)

Note that these equations describe the time evolution in the
Schrödinger picture, as the phase point operators correspond
to the quantum state. Since each of the four phase-point op-
erators Âα is a linear combination of the Pauli spin matrices
σ̂ x, σ̂ y, σ̂ z, their time evolution can be expressed in terms of a

time-dependent vector sα(t ) = (sx
α(t ), sy

α(t ), sz
α(t )),

Âα(t ) = 1
2 (1̂2 + sα(t )σ̂). (9)

Here sμ(t ) (μ = x, y, z) obey the equations of motion for a
classical spin (see Appendix A),

ṡμ(t ) = {sμ,H0}P = 2
∑
ν,λ

εμνλ sλ ∂H0

∂sν
, (10)

where the classical Hamiltonian H0(s) is the Weyl symbol
corresponding to Ĥ0 and we have dropped the index α for
notational simplicity. The initial conditions of the vector sα

are sα(t = 0) = rα. Evaluating the expectation value of any
observable 〈Ô(σ̂(t ))〉 then amounts to calculating the time
evolution of the Weyl symbol O(s(t )) = Tr{ÔÂα(t )} averaged
over the initial discrete Wigner distribution

〈Ô(σ̂(t ))〉 =
∑

α

Wα(0)O(s(t )). (11)

If the initial state ρ̂(0) has positive Wigner coefficients Wα,
as for the state |↑〉 or |↓〉 in Eqs. (7), Eq. (11) can be evaluated
as a classical average of the Weyl symbols weighted by the
initial probabilities Wα(0). The “quantumness” of the spin is
then captured by the averaging over the initial conditions. This
is possible without further approximation since we consider a
single spin- 1

2 particle without interactions and decay, in which
case the Heisenberg equations of motion are also linear.

D. Interacting spin systems and DTWA

The utility of the discrete phase-space approach stems from
its application to many interacting spins, which in general
have complicated and intractable many-body dynamics. The
phase space representation is the basis of the DTWA [10],
allowing it to take lowest-order quantum fluctuations into
account and thus going beyond the mean-field level. Below,
we outline the essence of the DTWA.

The density matrix for N interacting spins can be faithfully
represented by 4N discrete Wigner coefficients and the corre-
sponding phase point operators

ρ̂ =
∑

α1,...,αN

Wα1,...,αN Âα1,...,αN . (12)

As for a single spin, the dynamics of ρ̂ can then be mapped
onto the dynamics of the 4N phase point operators Âα1,...,αN (t ),
whose general evaluation in time requires exponentially in-
creasing effort in N . The key approximation in the DTWA that
makes the many-body problem tractable is the factorization of
the phase point operators at all times:

Âα1,...,αN (t ) ≈ Â1,α1 (t ) ⊗ Â2,α2 (t ) ⊗ . . . ⊗ ÂN,αN (t ). (13)

The many-body density operator at time t is then explicitly
given by

ρ̂(t ) =
∑

α1,...αN

Â1,α1 (t ) ⊗ . . . ⊗ ÂN,αN (t )Wα1,...,αN (0), (14)

which, for a factorized initial state, is further simplified to
Wα1,...,αN (0) = ∏

n Wαn (0).
Substituting the factorization ansatz of Eq. (13) into the

equation of motion with a many-body Hamiltonian Ĥ ,

d

dt
Âα1,...αN (t ) = −i[Ĥ , Âα1,...αN (t )], (15)

and using the orthogonality of the phase point operators, one
finds that the time evolution of the single-spin operators is
governed by

d

dt
Â j,α j (t ) = −i

[
ĤMF

j , Â j,α j

]
. (16)

Here the mean-field Hamiltonian ĤMF
j for jth spin is obtained

by replacing all the other spin operators σ̂ l by the correspond-
ing c numbers sα

l (t ). Using the decomposition of the phase
point operators in Eq. (9), we thus find that sμ

j (t ) (μ = x, y, z)
obey the classical equations of motion with the classical
many-body Hamiltonian,

ṡμ
j (t ) = {

sμ
j ,H

}
P = 2

λ∑
ν

εμνλ sλ
j

∂H
∂sν

j

, (17)

with initial conditions s j,α j (t = 0) = r j,α j . As in the case of a
single spin, all quantum mechanical observables are obtained
from the solutions of the classical (mean-field) equations (17)
and averaging over the initial Wigner distribution

〈Ô(σ̂1, . . . , σ̂N ; t )〉
=

∑
α1,...,αN

Wα1,...,αN (0)O(s1(t ), . . . , sN (t )). (18)
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It is worth noting that, despite the mean-field character of
the DTWA, the quantum nature of the problem is taken into
account to some extent in two ways. Firstly, as in the case of a
single spin, the averaging over the initial conditions for every
spin captures lowest-order quantum fluctuations on the single-
particle level. Secondly, information about initial (quantum)
correlations between the spins is, in principle, contained in
Wα1,...,αN (0). Hence, the DTWA goes beyond a mean-field
description of the many-spin problem, as we will illustrate
below with a specific example of an optically driven lattice
of Rydberg atoms. This and the fact that it is computationally
not much more expensive than a mean-field calculation makes
the DTWA an appealing semiclassical approach. However, the
derivation of the DTWA is based on the heuristic approxi-
mation of factorizing the many-body phase point operators.
The quantitative characterization and range of validity of this
approximation are not well defined, and the level of improve-
ment over a simple mean-field approach is not clear.

E. Open spin systems and DTWA

It is tempting to extend the above procedure to open spin
systems coupled to Markovian reservoirs. This is described by
the Lindblad master equation

d

dt
ρ̂ = −i[Ĥ, ρ̂] + 1

2

∑
μ

(2L̂μρ̂L̂†
μ − L̂†

μL̂μρ̂ − ρ̂L̂†
μL̂μ),

(19)

where the L̂μ are the Lindblad generators. Substituting the
representation of ρ̂(t ) in terms of the discrete phase-point
operators Âα(t ), one recognizes, however, that, in general,
they do not remain orthogonal under nonunitary time evolu-
tion. This prevents a straightforward extension of the DTWA
to open systems and one has to resort to approaches where
the Lindblad master equation is effectively generated, e.g.,
by coupling to classical noise fields [22] or by an unraveling
procedure [24].

III. CONTINUOUS WIGNER FUNCTION FOR SPINS

One of the key advantages of continuous phase-space rep-
resentations of quantum states is the connection to stochastic
processes via equations of motion which are partial differ-
ential equations and—with additional approximations—are
of Fokker-Planck type [32]. This permits efficient numerical
simulation of the system dynamics in terms of stochastic
differential equations. Despite its successful application in
quantum optics, continuous Wigner functions had not been
widely applied to finite dimensional quantum systems, such
as spins. Following the approach of Ref. [25], Tilma et al.
[26] defined a Wigner distribution Wρ̂ (
) for a quantum state
ρ̂ over a continuous phase space characterized by parameters

, provided there exists a kernel Â(
) that generates Wρ̂ (
)
according to the generalized Weyl rule Wρ̂ (
) = Tr[ρ̂Â(
)]
and that satisfies the Stratonovich-Weyl correspondence [33].

The kernel operator Â(
) and the set of coordinates 
 are
not unique. For a spin- 1

2 system, there exists, in particular, a
representation of the state ρ̂ through

Â(θ, φ) = U (θ, φ,ψ )Â0U
†(θ, φ,ψ ), (20)

where Â0 = 1
2 (1̂2 − √

3σ̂ z ), and U (θ, φ,ψ ) =
eiσ̂ zφ/2eiσ̂ yθ/2eiσ̂ zψ/2, are the SU(2) rotation operators with
the Euler angles (θ, φ,ψ ) that span the continuous phase
space of the surface of a sphere, θ ∈ [0, π ] and φ ∈ [0, 2π ).
Note that in Eq. (20) the dependence on the angle ψ drops
out and one finds

Â(θ, φ) = 1

2
[1̂2 + s(θ, φ)σ̂]

= 1

2

(
1 − √

3 cos θ
√

3eiφ sin θ√
3e−iφ sin θ 1 + √

3 cos θ

)

=
√

4π

2

(
Y00(θ, φ) 1̂2 − Y10(θ, φ) σ̂ z

)

+
√

2π
Y1,−1(θ, φ) − Y11(θ, φ)

2
σ̂ x

− i
√

2π
Y1,−1(θ, φ) + Y11(θ, φ)

2
σ̂ y. (21)

Here the c-number vector

s(θ, φ) =
√

3(sin θ cos φ,− sin θ sin φ,− cos θ )T (22)

is a representation of the surface of the sphere with radius
√

3
and the Ylm(θ, φ) are the spherical harmonics.

The relation between any observable Ô(σ̂) for a spin- 1
2

system and the corresponding Weyl symbol follows from the
simple algebra of the Pauli matrices. Since any function Ô of
spin operators can be written as a linear superposition of the
unity matrix and the Pauli matrices σ̂ μ (μ = (x, y, z)),

Ô(σ̂) = a01̂2 + ayσ̂
x + ayσ̂

y + azσ̂
z, (23)

its Weyl symbol is obtained by replacing the spin operators
by the corresponding components of the classical spin vector
s(θ, φ),

O(s(θ, φ)) = Tr{Â(θ, φ)Ô(σ̂)} = O(s). (24)

An arbitrary spin state ρ̂ can now be expressed via the contin-
uous Wigner function W (θ, φ) ∈ R and vice versa as

ρ̂ =
∫

d
 Â(θ, φ)W (θ, φ), (25a)

W (θ, φ) = Tr[Â(θ, φ)ρ̂], (25b)

where
∫

d
 = ∫ π

0 dθ sin θ
∫ 2π

0 dφ/2π and Â = Â†. The
Wigner function is normalized

∫
d
W (θ, φ) = Tr ρ̂ = 1, but

is in general not positive, i.e., is a quasiprobability distribu-
tion. Note that

∫
d
 Â(θ, φ) = 1̂2.

The continuous Wigner representations for fully polarized
spin states are

W↑(θ, φ) = Tr[Â(θ, φ)|↑〉〈↑|] = 1
2 (1 −

√
3 cos θ ),

(26a)

W↓(θ, φ) = Tr[Â(θ, φ)|↓〉〈↓|] = 1
2 (1 +

√
3 cos θ ).

(26b)

These Wigner functions are not positive semidefinite and
therefore cannot be approximated faithfully by a Monte
Carlo sampling. In fact all pure spin states have non-positive
continuous Wigner functions and cannot be sampled. Note,
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moreover, that the surface element d
 = sin θdθdφ/2π is
nonlinear in θ , which prevents straightforward derivation of
a Fokker-Planck type equation of motion for W (θ, φ). Both
problems can be resolved, however, by a hybrid discrete-
continuous approach as outlined in the following section.

IV. HYBRID DISCRETE-CONTINUOUS TRUNCATED
WIGNER APPROXIMATION

The shortcomings of the standard DTWA can be overcome
by the hybrid DCTWA approach in which the sampling over
initial conditions is performed for the Cartesian spin com-
ponents as in the standard DTWA, while the time evolution
is performed in an angular representation using a “flattened”
continuous Wigner distribution that leads to a Fokker-Planck
type EOM.

A. Time evolution of continuous Wigner function
for a single spin

We first derive a mapping from the Lindblad master equa-
tion (19) of the density operator ρ̂ for a single spin to
an equation of motion of the continuous Wigner function
W (θ, φ). To this end, we employ the decomposition (25)
of ρ̂ into continuous phase point operators and note that
Â(θ, φ), ∂

∂θ
Â(θ, φ), ∂

∂φ
Â(θ, φ) and ∂2

∂φ2 Â(θ, φ) are linearly in-
dependent and thus form a basis for all 2 × 2 matrices. We
can, therefore, express any operator acting on ρ̂ by its action
on a phase-point operator using an operator-differential iden-
tity, such as

σ̂ zÂ(θ, φ) =
[

−
√

3 cos θ + 3 sin θ − 2 csc θ√
3

∂

∂θ

− i
∂

∂φ
− 2 cot θ csc θ√

3

∂2

∂φ2

]
Â(θ, φ), (27)

which can be proven by a straightforward evaluation of both
sides.

Following the standard procedure of phase-space ap-
proaches, we insert these mappings into the master equa-
tion (19), which, after partial integration, leads to a dynamical
equation for W (θ, φ). In contrast to typical quantum optical
problems of interacting bosonic fields, however, the EOM is
not of (generalized) Fokker-Planck type, due to the nonlinear
integration measure on the sphere d
 = sin θ dθdφ/2π . To
circumvent this problem, we introduce the “flattened” Wigner
function (FWF)

χ (θ, φ) = sin θ

2π
W (θ, φ), (28)

defined on a stripe θ ∈ [0, π ], φ ∈ [0, 2π ), which is periodic
in φ with period 2π . The distinction between the Wigner
function and the FWF is critical for the time evolution, since
the EOM of W (θ, φ) contains in general terms that can-
not be expressed through partial derivatives. In contrast, the
time evolution of the FWF can be expressed as a Fokker-
Planck equation (FPE) (provided higher than second-order

derivatives can be neglected), which in turn allows for an
efficient numerical evaluation of the system dynamics by
stochastic differential equations.

More formally, this reinterpretation can be avoided
by introducing the contravariant coordinate vector
(x1, x2) = (θ, φ) and metric tensor gμν of the curved,
i.e., spherical, phase space which is given by

g = 1

2π

(
1 0
0 sin2 θ

)
. (29)

The infinitesimal volume element is generated by√
det(g) = sin θ/2π . If we were to use covariant derivatives

∇μ = 1√
det(g)

∂

∂xμ

√
det(g), (30)

instead of plain derivatives, the introduction of the FWF
would not be necessary and instead diffusion processes on the
spherical surface would be obtained. Since both approaches
yield the same differential equations and therefore identical
results, we choose the one based on plain derivatives and the
FWF.

As opposed to the derivation in Sec. II, we now include
the time dependence in the Wigner function, or the flattened
Wigner function, while keeping the phase-point operators
constant,

ρ̂(t ) =
∫∫

dθ dφ χ (θ, φ; t ) Â(θ, φ). (31)

We substitute this expression into the Lindblad equation, eval-
uate the action of spin operators on the kernel operators as
in Eqs. (27) and (B1), and integrate by parts in order to let
the derivatives act on the FWF instead of on the kernel. Since
the (θ, φ) space is compact, the surface terms vanish and we
obtain

σ̂ zρ̂ =
∫

dθdφ Â(θ, φ)

[
−

√
3 cos θ − ∂

∂θ

3 sin θ − 2 csc θ√
3

+ ∂

∂φ
i − ∂2

∂φ2

2 cot θ csc θ√
3

]
χ (θ, φ). (32)

This can be understood as a mapping between Hilbert space
and phase space. We abbreviate this relation to

σ̂ zρ̂ ↔
[

−
√

3 cos θ − ∂

∂θ

3 sin θ − 2 csc θ√
3

+ ∂

∂φ
i − ∂2

∂φ2

2 cot θ csc θ√
3

]
χ (θ, φ). (33)

Note that if we let the derivatives act on the Wigner function
instead of on the FWF, the contributions from the factor sin θ

would produce different and far more involved mappings. A
complete list of mappings for all spin operators is given in
Appendix B.

The mappings allow us to investigate the dynamics of a
given system in terms of the Wigner phase space. As an ex-
ample, the unitary dynamics of a single spin is fully governed
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FIG. 1. The phase space of a single spin- 1
2 , or a qubit, is defined

via the parametrization of the phase-point operator Â(θ, φ) in terms
of angles (θ, φ) on a sphere with radius

√
3. The time evolution of

a state ρ̂ in Hilbert space is equivalently expressed by an ensemble
average of stochastic trajectories {θi(t ), φi(t )}. Here, two exemplary
stochastic paths (blue and orange lines), starting from the same
discrete initial condition, are shown for the decay process of Eqs.
(48).

by the differential contributions

−i[σ̂ x, ρ̂] ↔ 2

(
∂

∂θ
sin φ + ∂

∂φ
cot θ cos φ

)
χ, (34a)

−i[σ̂ y, ρ̂] ↔ 2

(
∂

∂θ
cos φ − ∂

∂φ
cot θ sin φ

)
χ, (34b)

−i[σ̂ z, ρ̂] ↔ 2
∂

∂φ
χ. (34c)

If we additionally consider the Lindblad master
equation with a set of Lindblad generators L̂μ that describe
couplings to Markovian reservoirs, we obtain an equation of
the general form∫

dθdφ Â(θ, φ)
∂

∂t
χ =

∫
dθdφ Â(θ, φ)Lχ, (35)

where L is a differential operator. We thus see that a flattened
Wigner function χ (θ, φ, t ) satisfying the partial differential
equation (PDE)

∂

∂t
χ (θ, φ, t ) =Lχ (θ, φ, t ) (36)

faithfully represents the density matrix of Eq. (31).
Up to this point, no approximation has been made and the

PDE describes the full quantum problem. One type of PDE
that commonly occurs in the context of single-spin dynamics
is the Fokker-Planck equation given by

∂

∂t
χ (x, t ) = −

∑
n

∂

∂xn
[An(x, t )χ (x, t )]

+
∑
mn

∂2

∂xm∂xn
[Dmn(x, t )χ (x, t )], (37)

where x = (θ, φ)T . We call A(x, t ) the drift vector and
D(x, t ) = 1

2 B(x, t )T B(x, t ) the (positive-semidefinite) diffu-
sion matrix. Instead of solving the Fokker-Planck equation,
one can then solve the corresponding Itô stochastic differential
equation (SDE)

dx(t ) =A(t )dt + B(t )dW , (38)

where dW = (dWθ , dWφ )T is a multivariate differential
Wiener process [34].

This is useful for a numerical integration as one can
sample a sufficient number of initial states x(t = 0) from
a given positive semidefinite Wigner function, determine
their time evolution according to Eq. (38) and calculate av-
erages with respect to all trajectories to obtain a desired
observable:

〈Ô(t )〉 =
∫

dθdφ χ (θ, φ, t )Tr[ÔÂ(θ, φ)]

= Tr[ÔÂ(θ (t ), φ(t ))] (39)

≈ 1

M

M∑
m=1

Tr[ÔÂ(θm(t ), φm(t ))],

where θm(t ), φm(t ) are the time-evolved trajectories and
M < ∞ is the number of evolved trajectories and the overline
denotes averaging over trajectories. As an example, in Fig. 1
we show two stochastic trajectories for the evaluation of the
the dynamics of a single spin- 1

2 .

B. Many spins and truncated Wigner approximation

The above results for a single spin can be generalized
to a system of N > 1 spins by constructing the phase-space
representation of the many-body density operator

ρ̂(t ) =
[

N∏
n=1

∫
d
nÂ(θn, φn)

]
W (t, θ,φ), (40)

where θ = (θ1, . . . , θN )T , φ = (φ1, . . . , φN )T and
d
n = dθn sin θndφn/2π pertains to the nth spin. A
Pauli matrix σ̂ ξ

n (ξ = x, y, z) in the subspace of the nth
spin acting on Â(θ,φ) = ∏

n Â(θn, φn) generates the same
operator-differential identities as in Eqs. (B1). The FWF then
becomes χ (θ,φ) = (

∏N
n=1

sin θn
2π

)W (θ,φ).
Let us now consider interactions between the spins, e.g., of

Ising type:

Ĥ = −1

2

∑
m<n

Jmnσ̂
z
mσ̂ z

n . (41)

In analogy to the single spin approach, we derive equations for
the time evolution of the phase-point operators first.
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The interactions then generate mixed-spin derivatives,

d

dt
Â(θ,φ) = − i

2

∑
m<n

Jmn
[
σ̂ z

mσ̂ z
n , Â(θ,φ)

]

=
∑

n

∑
m �=n

Jmn

(√
3 cos θm

∂

∂φn
+ 2 csc θm − 3 sin θm√

3

∂2

∂θm∂φn
+ 2 cot θm csc θm√

3

∂3

∂φ2
m∂φn

)
Â(θ,φ). (42)

If only terms with derivatives in the same spin were present,
the time evolution of an initially factorized operator Â(t =
0) = ∏

n Ân(t = 0) would preserve the factorization. But the
terms with mixed-spin derivatives, such as the second and
third term of Eq. (42) entangle the spins. Hence, in order
to reproduce the DTWA, we have to discard all terms with
mixed spin derivatives, n �= m. We note that, in general, there
is no a priori small parameter that justifies such a truncation
and the validity of the truncation must be considered on a
case-by-case basis. We will return to this issue in Sec. IV E.

By repeating these steps for the von Neumann equation,
we obtain a Fokker-Planck equation for the FWF χ (θ,φ, t ),
resulting for the case of the Ising Hamiltonian in the set of
ordinary differential equations for the spin angles

d

dt
θn(t ) = 0, (43a)

d

dt
φn(t ) =

√
3

∑
m �=n

Jmn cos θm(t ). (43b)

Transforming to Cartesian coordinates yields

d

dt

⎛
⎝sx

n

sy
n

sz
n

⎞
⎠ =

∑
m �=n

Jmnsz
m

⎛
⎝−sy

n

+sx
n

0

⎞
⎠, (44a)

which are precisely the mean-field EOMs for the Ising
Hamiltonian in DTWA.

C. Dephasing, decay, and incoherent pump

The coupling of spins to Markovian reservoirs can be
straightforwardly included in our hybrid approach. Applying
the mappings between the Hilbert space and phase space,
Eq. (33), we have for the dephasing Lindbladian

σ̂ zρ̂σ̂ z − ρ̂ ←→ 2
∂2

∂φ2
χ. (45)

Using a change of variables, we can transform the Fokker-
Planck equation resulting from Eq. (45) to Cartesian coordi-
nates, obtaining the set of SDEs

dsx = −2sxdt − 2sydWφ, (46a)

dsy = −2sydt + 2sxdWφ, (46b)

dsz = 0. (46c)

These equations reproduce Eqs. (13)–(15) of Ref. [22] if
we make the substitution t → 2t/�φ .

In a similar way, we can derive the mappings for incoherent
gains and losses,

σ̂±ρ̂σ̂∓ − 1

2
{σ̂∓σ̂±, ρ̂} ←→ − ∂

∂θ

(
cot θ ± csc θ√

3

)
χ

+ 1

2

∂2

∂φ2

(
1 + 2 cot2 θ ± 2 cot θ csc θ√

3

)
χ. (47)

Changing to Cartesian coordinates similarly reproduces the
deterministic parts given by Eqs. (24) of Ref. [22]. One finds,
however, that the diffusion matrix in Cartesian coordinates is
not positive semidefinite and no corresponding SDE exists. In
stark contrast to this, the parametrization with respect to θ, φ

does have a corresponding set of SDEs that can immediately
be deduced from Eq. (47) as

dθ =
(

cot θ ± csc θ√
3

)
dt, (48a)

dφ =
√

1 + 2 cot2 θ ± 2 cot θ csc θ√
3

dW. (48b)

Thus the hybrid discrete-continuous approach can incorporate
incoherent processes which lead to classical noise terms in the
EOMs.

D. Gauge freedom of SU(2) Wigner functions and
sampling of initial states

We have seen in Sec. III that all pure spin states have a
continuous SU(2) Wigner function W (θ, φ) which is nonpos-
itive and thus cannot be sampled by Monte Carlo methods.
This complicates explicit averaging over the initial Wigner
distribution. This problem can be overcome by relating the
continuous and discrete Wigner representations of spins using
a gauge freedom [35].

The SU(2) phase-point operators of Eq. (21) are orthogonal
to all functions that only contain spherical harmonics Yl,m

with l � 2,

f (θ, φ) =
∞∑

l=2

l∑
m=−l

Cl,mYl,m(θ, φ), (49)

which means that∫
d
 Â(θ, φ) f (θ, φ) = 0. (50)

The function f can be chosen real by setting
Cl,−m = (−1)mCl,m. Thus the representation of a spin state ρ̂

in terms of a SU(2) Wigner function is not unique but has a
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gauge freedom

W (θ, φ) ≡ W (θ, φ) + f (θ, φ). (51)

The initial discrete Wigner coefficients Wα0 are positive
in many important cases. We now argue that the initial FWF
χ0(θ, φ) can be expressed in terms of Wα0 as

χ0(θ, φ) =
∑

α

δ(θ − θα)δ(φ − φα)Wα0, (52)

where the initial phase point operators Âα = Â(θα, φα) corre-
spond to angles

θ00 = θ01 = π − arccos
1√
3
,

θ10 = θ11 = arccos
1√
3
,

φ00 = 7π

4
, φ01 = 3π

4
, φ10 = π

4
, φ11 = 5π

4
. (53)

Substituting this into Eq. (25a) reproduces the initial density
operator. As an example, the spin down state is sampled from
two points as

χ (2p)(θ, φ) = δ

(
θ − arccos

1√
3

)

· 1

2

[
δ
(
φ − π

4

)
+ δ

(
φ − 5π

4

)]
. (54)

Next, it follows from the completeness relation of spherical
harmonics,

∞∑
l=0

l∑
m=−l

Y∗
lm(θα, φα)Ylm(θ, φ)

= δ(φ − φα) δ(cos θ − cos θα),

that the difference between χ0(θ, φ) of Eq. (52) and a directly
evaluated FWF pertaining to the initial state contains only
components of type sin(θ ) f (θ, φ)/2π .

Using Eq. (52) and the fact that all eigenstates of the Pauli
matrices have positive discrete Wigner coefficients Wα0, we
can sample the initial phase space distribution from a discrete
set of points. Using the discrete set of points decreases fur-
thermore the statistical error when a finite number of samples
is taken. Since all pure states (spin coherent states) are con-
nected by unitary operations, we can generate positive discrete
distributions for them as well. Finally, every mixed state can
be represented as a mixture of pure states and therefore every
single particle state is accessible by a classical Monte Carlo
sampling.

E. Validity of the interaction truncation in DTWA

The original formulation of the DTWA [10] does not con-
tain information on the range of validity of the interaction
truncation. Instead, the quality of this approximation has only
been characterized empirically, by comparing the predictions
of the DTWA with exact (numerical) solutions for a given
Hamiltonian. It was found in Ref. [10] that the DTWA re-
sults reproduce the short time dynamics of macroscopic spin
observables well if the interaction couples many spins in a

similar way. We now provide an explanation for this empirical
observation by deriving conditions under which the truncation
approximation is justified.

Our aim is to show that the second and third derivatives in
Eq. (42) generated by the two-body interactions of Eq. (41)
can indeed be neglected in the case of macroscopic collective
spin dynamics or for short interaction times. For simplicity,
we assume the extreme limit of Jmn = J , i.e., consider all-to-
all interactions. We then find that the FWF satisfies a PDE of
the form

∂

∂t
χ = −

∑
n

∂

∂φn
(Anχ ) +

∑
n

∑
m �=n

∂2

∂θm∂φn
(Dmnχ )

−
∑

n

∑
m �=n

∂3

∂φ2
m∂φn

(Gmnχ ), (55)

where the coefficients are given by

An =
√

3J
∑
m �=n

cos θm, (56a)

Dmn = J
2 csc θm − 3 sin θm√

3
, (56b)

Gmn = 2J
cot θm csc θm√

3
. (56c)

If all spins are aligned, θi ≈ θ j ∀ i, j, then all terms in the
sum of Eq. (56a) interfere constructively. The drift coefficients
are therefore of order An ∼ O(N ), while the other coefficients
are of order Dmn, Gmn ∼ O(1). By introducing scaled φ vari-
ables φ̃n = φn/N , we obtain new coefficients

Ãn =
√

3J

N

∑
m �=n

cos θm = O(1),

D̃mn = J

N

2 csc θm − 3 sin θm√
3

= O(N−1),

G̃mn = J

N3

2 cot θm csc θm√
3

= O(N−3). (57)

The sums over all first derivatives and second derivatives each
scale as O(N ), but the sum over the third derivatives scales
as O(N−1). Hence, for large values of N � 1 we can neglect
the third derivatives and obtain a generalized Fokker-Planck
equation. Note, however, that the diffusion matrix associated
with mixed derivatives is not positive definite. To arrive at the
deterministic equations of the DTWA, all derivatives higher
than first-order must be disregarded. To deduce the conditions
under which this is justified, we perform a change of variables
using the mean θ = 1

N

∑
i θi and difference δn = θn − θn+1

angles which yields a new generalized FPE

∂

∂t
χ̃ = −

∑
n

∂

∂φ̃n
(Ãnχ̃ ) +

∑
n

∂2

∂φ̃n∂θ

(
1

N
D̃mnχ̃

)

+
∑
mn

∂2

∂φ̃m∂δn
((D̃mn+1 − D̃mn)χ̃ ). (58)

The second term on the r.h.s. is O(1) and can, therefore, be
neglected in comparison to the first term which is O(N ). The
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third term is, however, also of order O(N ), but contains only
differences of polar angles

D̃mn+1 − D̃mn

= J

N

3(sin θn+1 − sin θn) − 2(csc θn+1 − csc θn)√
3

. (59)

If, as assumed, there is an all-to-all spin coupling and initially
all the spins are aligned with high probability, θn+1(0) ≈
θn(0), then the difference of the diffusion coefficients is small
and the corresponding term in Eq. (58) can be neglected.

This explains the findings in Ref. [10], where collective
observables are well reproduced by the DTWA if the interac-
tion Hamiltonian has a high effective coordination number.
One can similarly explain why the DTWA generally gives
good predictions for short-time dynamics: At small times, the
dynamical variables θ (t ) and φ(t ) have values of Eq. (53) with
probabilities given by the discrete Wigner coefficients Wα of
the initial state. For these values the diffusion coefficients Dmn

vanish identically.

V. DYNAMICS OF A LASER-DRIVEN ARRAY OF
RYDBERG ATOMS

We illustrate the performance of the DCTWA by applying
it to an experimentally relevant system of driven, dissipative,
interacting spins. Specifically, we consider an array of atoms
driven by a resonant laser to the strongly interacting Rydberg
state [36]. Denoting the atomic ground state by |↓〉 and the
excited Rydberg state by |↑〉, the Hamiltonian of the system
is given by

Ĥ = 

∑

n

σ̂ x
n + 1

2

∑
m �=n

J

|m − n|α σ̂ rr
m σ̂ rr

n , (60)

where 
 is the Rabi frequency of the resonant laser, σ̂ rr
n =

(1̂ + σ̂ z
n )/2 is the projector onto the Rydberg state, J is the

interaction strength and α determines the interaction range
(e.g., α = 6 for van der Waals interactions). We include a local
dephasing with rate κ and incoherent decay (deexcitation) of
the Rydberg state with rate γ via

L̂κ
n = √

κσ̂ z
n , L̂γ

n = √
γ σ̂−

n , (61)

where σ̂±
n = i(σ̂ x

n ± σ̂
y
n )/2.

Without interactions (J = 0), the laser field induces
damped Rabi oscillations of all the atoms, resulting in a sta-
tionary state with

〈Ŝz〉 = 1

N

∑
n

〈σ̂ z
n 〉 → 〈σ̂ z〉 = − γ κ + (γ /2)2

2
2 + γ κ + (γ /2)2
.

In the presence of interactions, J �= 0, an atom in the Rydberg
state shifts the Rydberg transition of all the surrounding atoms
out of resonance. Within the blockade distance, this shift is
sufficiently large to suppress the excitation of the other atoms

[36]. As a consequence, the steady-state value of the effective
spin polarization 〈Ŝz〉 is reduced.

Mapping the Lindbladian to the spin phase space and trun-
cating interaction contributions leads to the set of SDEs

dθn =
[
−2
 sin φn + γ

(
cot θn − csc θn√

3

)]
dt, (62a)

dφn = −
(

2
 cot θn cos φn + J

2

∑
m �=n

1 − √
3 cos θm

|m − n|α
)

dt

+
√

γ

(
1 + 2 cot2 θn − 2 cot θn csc θn√

3

)
+ 4κ dWφn .

(62b)

We evaluated these equations for atoms in a one-
dimensional lattice with periodic boundary conditions using
the DifferentialEquations package [37] of the Julia program-
ming language [38]. The observables were calculated by
averaging 92 × 103 trajectories, and we have verified the con-
vergence of the calculations by further increasing the number
of trajectories and observing no significant variation of the
results. We note that the first moments only require ∼103

trajectories to convergence properly. Due to the dissipative
fluctuations, correlations and other higher moments in the
steady state require many more trajectories.

In Fig. 2 we show the time dependence of the average
spin polarizations 〈Ŝμ(t )〉 = 1

N

∑N
n=1〈σ̂ μ

n (t )〉 along the x, y, z
directions for N = 10 atoms subject to relatively large Rabi
frequency 
 = 0.3J and weak damping and dephasing rates
κ = γ = 0.01J , as obtained via our hybrid DCTWA (blue
solid lines). For comparison, we also show the results obtained
from exact solutions of the density matrix equations under
the same conditions (black dashed-dotted lines). We observe
that the results of DCTWA are in good agreement with the
exact simulations, especially for the final stationary values
of the spin polarizations. In the insets of Fig. 2 we also show
the results of the mean-field calculations (orange solid lines).
The mean-field equations do not contain the stochastic terms
resulting from decay and dephasing, and no averaging over
an initial distribution is performed. As a consequence, the
persistence of Rabi oscillations is substantially overestimated
and also the stationary values of the collective spin deviate
from the exact results.

In Eqs. (7) we have introduced a discrete representation of
the spin down state which uses two of the four discrete phase
space points (2p sampling). According to Eq. (5) this means
that the signs of the Cartesian x and y component are strictly
anti-correlated. While this correctly reproduces the initial den-
sity operator, time evolving these anticorrelations according
to the approximate dynamics of the DTWA can affect the dy-
namics of interacting spins [17,39]. Let us, therefore, employ
a sampling scheme of initial states that uses more discrete
phase points as this reduces the relevance of such correlations,
while still faithfully representing the initial state. Specifically,
consider the set of four discrete phase points that is generated
by applying a π/2 rotation around the z axis. By combining
both sets of four points each, we can express any given state
using eight points. The spin down state, e.g., is described by
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FIG. 2. First collective moments Ŝμ = 1
N

∑N
n=1 σ̂ μ

n for N = 10
atoms in a one-dimensional lattice (periodic boundary conditions)
excited to the Rydberg state by a resonant laser, as obtained from
DCTWA (solid blue lines), exact solution of the master equa-
tion (dashed-dotted black line), and the mean-field calculations (solid
orange lines in the insets). The parameters are 
 = 0.3J , α = 6 and
γ = κ = 10−2J .

four points with nonvanishing Wigner coefficients

χ (4p)(θ, φ) = δ

(
θ − arccos

1√
3

)

· 1

4

4∑
n=1

δ

(
φ − (2n − 1)π

4

)
, (63)

which corresponds to setting the Cartesian component sz =
−1 and independently drawing ±1 with equal probability for
the x and y component. Similarly we can consider a sampling
from an even larger number of discrete phase points arriving
eventually at a continuous distribution arising from rotations
around the z axis. This results in

χ (∞p)(θ, φ) = 1

2π
δ

(
θ − arccos

1√
3

)
. (64)

The dynamics produced from these sampling schemes are
compared in Fig. 3. The 2p sampling corresponds to the blue
lines of Fig. 2 and differs from the 4p and ∞p samplings
which produce identical dynamics that resemble the exact

FIG. 3. First collective moments Ŝμ = 1
N

∑N
n=1 σ̂ μ

n with param-
eters as given in Fig. 2, but with initial state sampling according to
Eqs. (54), (63), and (64) (solid lines) and exact results (dashed-dotted
black line). The results obtained from the 4p-sampling (orange solid
line) and ∞p-sampling (green solid line) coincide.

results much more closely. The drastic initial overshooting in
〈Ŝx〉 of the 2p method is corrected. Furthermore, the extremal
points of all components are slightly shifted in time which
significantly increases the quantitative agreement with the
exact data at short times as well as the qualitative agreement
at short-to-intermediate time scales. The improved agreement
with exact results can be understood as follows: The DTWA
amounts to neglecting the cross diffusion terms in the second
line of Eq. (58), which do have the same scaling O(N ) with
the number N of spins as the first term in Eq. (58) and thus
are not a priori small. In the ∞p-sampling scheme discussed
above the initial Wigner distribution is however homogeneous
in all φ̃n and thus the derivative (∂2/∂φ̃n∂δn)χ̃ (t = 0) van-
ishes.

In Fig. 4 we finally show the steady-state correlations of
Rydberg excitations of the atoms in the lattice. The com-
petition between the resonant laser excitation and Rydberg
blockade of nearest-neighbor atoms leads to a density-wave
of Rydberg excitations. In one dimension, the resulting
steady-state correlations always decay exponentially, while
the correlation length is very small for the two-level driving
scheme considered here [40]. We note that the correlations
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FIG. 4. Stationary Rydberg-Rydberg correlations of atoms, as
obtained from the DCTWA and exact solution of the density matrix
equations, for the same parameters as in Fig. 2. The correlations are
evaluated at Jt = 200 when the steady state has long been reached.

are well captured by our DCTWA method, while they cannot
be calculated by using a simple mean-field approach.

VI. SUMMARY

We have presented a practical approach for a semiclassical
description of interacting spins which is a hybrid discrete-
continuous generalization of the discrete truncated Wigner
approximation. In our DCTWA, the quantum state of individ-
ual spins is represented by a Wigner function in a continuous
rather than a discrete phase space, and, as in standard DTWA,
interactions are treated via mean-field factorization. Quantum
fluctuations are taken into account in lowest order by averag-
ing over the quasiprobability-distribution of initial states. The
advantage of a Wigner representation in a continuous phase
space is that the corresponding equation of motion is a partial
differential equation. Under specific, quantifiable conditions,
this equation can be approximated by a Fokker-Planck equa-
tion with positive definite diffusion and mean-field interaction
contributions, which can then efficiently be simulated by
solving ordinary SDE for the spins using an angular represen-
tation. An important property of the continuous representation
of spin states is the overcompleteness of the corresponding
phase-point operators which leads to a gauge freedom in the
continuous Wigner function. This gauge freedom can be used
to overcome the main drawback of a continuous Wigner func-
tion, namely its nonpositivity for pure spin states. Exploiting
this freedom and mapping the continuous Wigner function
of typical initial states to their discrete counterpart allows an
averaging over the initial state by Monte Carlo sampling.

The DCTWA allows for a rigorous derivation of the trunca-
tion approximation and yields conditions for its applicability.
Hence, we were able to explain the empirically observed
range of validity of the DTWA. Furthermore, the DCTWA
allows us to include Markovian reservoir couplings leading
to dephasing, decay or incoherent pumping in a straightfor-
ward way. Disregarding the noise terms in the SDEs, resulting
from reservoir couplings and transforming to Cartesian spin
coordinates, we reproduce the standard DTWA equations [10].
Considering dephasing reproduces the stochastic equations of
Ref. [22]. Decay and incoherent pumping, on the other hand,

lead to nonclassical noise terms in the equations of motion
of Cartesian spin components used in the standard DTWA.
These processes can only be treated by stochastic simulations
in an angular representation in which the diffusion terms are
positive definite.

We have illustrated the performance of the DCTWA by
considering a small one-dimensional array of atoms, reso-
nantly driven into a Rydberg state in the weak damping regime
under conditions of a nearest-neighbor Rydberg blockade.
Comparison of the time dependence of collective spin ob-
servables and steady-state spin-spin correlations showed very
good agreement with exact simulations, in contrast to the
mean-field calculations.

Our approach paves the way for systematic improvements
of the standard DTWA, which will be the subject of future
work.
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APPENDIX A: CLASSICAL SPIN EQUATIONS OF MOTION

The proof of Eq. (10) follows from projecting d
dt Â(t ) of

Eq. (8) onto a single element s j (t )

ṡ j = Tr

{
σ̂ j

d

dt
Â

}

= − i

2

∑
kl

slhkTr{σ̂ j[σ̂k, σ̂l ]}

= 2
∑

kl

εklmslhkTr{σ̂ j σ̂m}

= 2
∑

kl

ε jkl sl
∂H
∂sk

. (A1)

In the last line we have used the fact that the classical Hamil-
ton function H = ∑

k hksk is always linear in the spin s and
therefore hk = ∂H

∂sk
.

APPENDIX B: PHASE SPACE MAPPINGS

As demonstrated in Sec. IV A, an operator acting on a state
ρ̂ can be translated into a differential operator acting on the
flattened Wigner function χ (θ, φ, t ) = sin(θ )W (θ, φ)/2π .
Repeating the steps performed for σ̂ zρ̂ for all Pauli matrices
acting from the left and right yields
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σ̂ xρ̂ ↔
[√

3 sin θ cos φ − ∂

∂θ
(
√

3 cos θ cos φ − i sin φ) + ∂

∂φ

(
csc θ sin φ√

3
+ i cot θ cos φ

)
+ ∂2

∂φ2

2 csc θ cos φ√
3

]
χ,

(B1a)

ρ̂σ̂ x ↔
[√

3 sin θ cos φ − ∂

∂θ
(
√

3 cos θ cos φ + i sin φ) + ∂

∂φ

(
csc θ sin φ√

3
− i cot θ cos φ

)
+ ∂2

∂φ2

2 csc θ cos φ√
3

]
χ,

(B1b)

σ̂ yρ̂ ↔
[
−

√
3 sin θ sin φ + ∂

∂θ
(
√

3 cos θ sin φ + i cos φ) + ∂

∂φ

(
csc θ cos φ√

3
− i cot θ sin φ

)
− ∂2

∂φ2

2 csc θ sin φ√
3

]
χ,

(B1c)

ρ̂σ̂ y ↔
[
−

√
3 sin θ sin φ + ∂

∂θ
(
√

3 cos θ sin φ − i cos φ) + ∂

∂φ

(
csc θ cos φ√

3
+ i cot θ sin φ

)
− ∂2

∂φ2

2 csc θ sin φ√
3

]
χ,

(B1d)

σ̂ zρ̂ ↔
[
−

√
3 cos θ − ∂

∂θ

3 sin θ − 2 csc θ√
3

+ ∂

∂φ
i − ∂2

∂φ2

2 cot θ csc θ√
3

]
χ, (B1e)

ρ̂σ̂ z ↔
[
−

√
3 cos θ − ∂

∂θ

3 sin θ − 2 csc θ√
3

− ∂

∂φ
i − ∂2

∂φ2

2 cot θ csc θ√
3

]
χ. (B1f)

Any differential equation with respect to ρ̂ in Hilbert space
can thus be translated into a PDE in the phase space.

APPENDIX C: COMPLEX STEREOGRAPHIC
PROJECTION MAPPINGS

The parametrization of the phase-point operator Â(
) is
not uniquely given by a pair of angles θ, φ. Instead, one can
introduce a steoreographic projection onto a complex plane
with coordinates β ∈ C. In this case, Eq. (22) can be equiva-
lently expressed as

s(β ) =
√

3

1 + |β|2 (β + β∗,−i(β − β∗),−1 + |β|2)T . (C1)

The formulation with respect to the angles θ, φ is recovered
by substituting β = tan(θ/2)e−iφ . The new integral measure

is given by ∫
d
 =

∫
d2β

2

π (1 + |β|2)2
, (C2)

such that 1 = ∫
d2β 2

π (1+|β|2 )2 W (β∗, β ). The matrices

Â, ∂Â
∂β

, ∂Â
∂β∗ ,

∂2Â
∂β∗∂β

span the Hilbert space, where β and β∗

are treated as independent variables. The discrete phase-point
operators Âα = Â(β∗

α, βα) are given at points

βα = (−1)α1+α2 (−1)
1+2α1

4
(−1)α1 + √

3√
2

. (C3)

We can similarly derive a set of mappings for the new FWF
χ (β∗, β ) = 2

π (1+|β|2 )2 W (β∗, β )

σ̂ xρ̂ ↔
[√

3
β + β∗

1 + |β|2 − ∂

∂β

c+
6

(1 − β2) − ∂

∂β∗
c−
6

(1 − β∗2) + ∂2

∂β∗∂β

(β + β∗)(1 + |β|2)√
3

]
χ (β∗, β ), (C4a)

ρ̂σ̂ x ↔
[√

3
β + β∗

1 + |β|2 − ∂

∂β

c−
6

(1 − β2) − ∂

∂β∗
c+
6

(1 − β∗2) + ∂2

∂β∗∂β

(β + β∗)(1 + |β|2)√
3

]
χ (β∗, β ), (C4b)

σ̂ yρ̂ ↔
[
−i

√
3

β − β∗

1 + |β|2 − ∂

∂β

ic+
6

(1 + β2) + ∂

∂β∗
ic−
6

(1 + β∗2) − ∂2

∂β∗∂β
i
(β − β∗)(1 + |β|2)√

3

]
χ (β∗, β ), (C4c)

ρ̂σ̂ y ↔
[
−i

√
3

β − β∗

1 + |β|2 − ∂

∂β

ic−
6

(1 + β2) + ∂

∂β∗
ic+
6

(1 + β∗2) − ∂2

∂β∗∂β
i
(β − β∗)(1 + |β|2)√

3

]
χ (β∗, β ), (C4d)

σ̂ zρ̂ ↔
[√

3
1 − |β|2
1 + |β|2 + ∂

∂β

c+
3

β + ∂

∂β∗
c−
3

β∗ + ∂2

∂β∗∂β

1 − |β|4√
3

]
χ (β∗, β ), (C4e)

ρ̂σ̂ z ↔
[√

3
1 − |β|2
1 + |β|2 + ∂

∂β

c−
3

β + ∂

∂β∗
c+
3

β∗ + ∂2

∂β∗∂β

1 − |β|4√
3

]
χ (β∗, β ), (C4f)

where c± = √
3 ± 3.
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FIG. 5. Time evolution of 〈σ̂ z〉 with initial states being polarized
along the negative Z/Y axis obtained from numerical integration of
the DCTWA (blue/orange solid lines, respectively) and exact results
(black lines). The inset shows the long-time limit (orange crosses)
for varying g/γ and exact steady state results (black line).

APPENDIX D: BENCHMARKING OF THE DCTWA

We show that the DCTWA precisely reproduces the exact
dynamics of a single spin, driven by an external field and
subject to spontaneous decay. In Fig. 5 we plot the results
of the DCTWA simulation of 〈σ̂ z(t )〉 and compare them to
exact results for a spin initially in the eigenstate of σ̂ y, σ̂ z with
eigenvalue −1 and evolving according to the Hamiltonian
Ĥ = g

2 σ̂ x and Lindblad generator L̂ = √
γ σ̂−. We choose

parameters identical to that in Ref. [24] and find perfect agree-
ment with the exact results, both dynamically as well as in the
long time limit γ t = 15.

A similar excellent agreement was obtained using
the OSDTWA (open system discrete truncated Wigner

approximation) introduced in Ref. [24], which leads to a sim-
pler, but larger set of four dynamical equations for every spin,
describing its Cartesian components and one additional degree
of freedom S0 describing the norm:

Ṡx = − γ

2
Sx, (D1)

Ṡy = − γ

2
Sy − gSz, (D2)

Ṡz = − γ

2
(S0 + Sz ) + gSy, (D3)

Ṡ0 = − γ

2
(S0 + Sz ). (D4)

In the OSDTWA the spin dynamics are obtained by evolving
these equations from initial values corresponding to the dis-
crete Wigner distribution of the initial state as well as S0(0) =
1 and probabilistically performing quantum jumps. Whether
or not a jump occurs at a given time step is determined by the
jump probability δp = γ

2 (S0 + Sz ). We note that although this
approach leads to a perfect agreement with exact simulations
for a single spin initially prepared in the state | ↓〉, it may
lead to some artifacts in other cases that must be corrected by
hand. Lets consider, e.g., as an initial condition the eigenstate
of σ̂ y with eigenvalue −1, which corresponds to realizations
starting with Sy(0) = −1, S0(0) = 1 and Sx(0), Sz(0) having
an equal probability of being ±1. More specifically we choose
the trajectory with Sz(0) = −1. Initially, the quantum jump
probability is δp(0) = 0, i.e., no jump can occur. After inte-
grating the system of equations by a small step �t we obtain

Sz(�t ) = − 1 − g�t + O(�t2), (D5)

S0(�t ) =1 + O(�t2) (D6)

with corresponding jump probability δp(�t ) = −gγ�t/2 +
O(�t2), which is negative. For consistency, one then has to
set δp(�t ) to zero.
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