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Orbital liquid in the eg orbital Hubbard model in d = ∞ dimensions
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We demonstrate that the three-dimensional eg orbital Hubbard model can be generalized to arbitrary dimension
d , and that the form of the result is determined uniquely by the requirements that (i) the twofold degeneracy of
the eg orbital be retained, and (ii) the cubic lattice be turned into a hypercubic lattice. While the local Coulomb
interaction U is invariant for each basis of orthogonal orbitals, the form of the kinetic energy depends on the
orbital basis and takes the most symmetric form for the so-called complex-orbital basis. Characteristically, with
respect to this basis, the model has two hopping channels: one that is orbital-flavor conserving, and a second
one that is orbital-flavor nonconserving. We show that the noninteracting electronic structure consists of two
nondegenerate bands of plane-wave real-orbital single-particle states for which the orbital depends on the wave
vector. Due to the latter feature each band is unpolarized at any filling, and has a non-Gaussian density of states
at d = ∞. The orbital liquid state is obtained by filling these two bands up to the same Fermi energy. We
investigate the eg orbital Hubbard model in the limit d → ∞, treating the on-site Coulomb interaction U within
the Gutzwiller approximation, thus determining the correlation energy of the orbital liquid and the (disordered)
paraorbital states. In perfect analogy with the case of the spin Hubbard model, the Gutzwiller approximation is
demonstrated to be exact at d = ∞ for the orbital Hubbard model, because of the collapse of electron correlations
to a single site. At half-filling (one electron per site on average, n = 1) one finds a Brinkman-Rice type “metal-
insulator” transition in the orbital liquid, which is analogous to the transition for a paramagnetic state in the
spin model, but occurs at stronger Hubbard interaction U due to the enhanced kinetic energy provided by the
nonconserving hopping channel. We show that the orbital liquid is the ground state everywhere in the (n,U )
phase diagram except close to half-filling at sufficiently large U , where ferro-orbital order with real orbitals
occupied is favored. The latter feature is shown to be specific for d = ∞, being of mathematical nature due to
the exponential tails in the density of states.
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I. INTRODUCTION

Our understanding of electron correlations in solids stems
to a considerable extent from the Hubbard model [1]. This
describes electrons which propagate on a lattice and interact
by an on-site Coulomb interaction U when two electrons
with opposite spins occupy the same site. At half-filling (one
electron per site) it provides a picture of a metal-insulator tran-
sition due to electron localization and of magnetism caused by
superexchange according to ideas going back to Anderson [2].
Away from half-filling it represents the competition between
the kinetic energy of the electrons and the localizing effect of
the Coulomb interaction. An important development regard-
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ing the Hubbard model was the discovery by Metzner and
Vollhardt that in the limit of infinite dimension (d = ∞) only
the on-site correlations survive [3,4]. They thus proved that
in this limit the Gutzwiller approximation to the variational
ground state wave function [5–7] becomes exact [8], and that
a similar property applies [9] to the resonating valence-bond
(RVB) state [10]. It was then shown that the ground state
phase diagram of the doped Hubbard model at d = ∞ in-
cludes ferromagnetic (FM) and antiferromagnetic (AF) order
stabilized at large Coulomb interaction [11].

The eg orbital Hubbard model [12–16], discussed in the
present paper, describes spinless fermions which propagate
on a lattice of atoms with twofold degenerate orbitals and
which interact by an on-site Coulomb interaction U when
two electrons occupy both orbitals on a site. Importantly,
the hopping strength t is dependent on the orientation of the
orbitals with respect to the hopping direction. Obviously, with
twofold orbital degeneracy replacing twofold spin degeneracy,
the orbital model closely resembles the spin model, but there
is a crucial difference: in the spin model the local symmetry
is SU(2) but in the orbital model it is the threefold rotation
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group C3, and moreover this is linked to the hopping. As an
immediate consequence the model contains, in addition to
the familiar orbital-conserving hopping channel [analogous to
the spin-conserving hopping channel in the (spin) Hubbard
model], also an orbital-flipping hopping channel. This leads in
the three-dimensional (3D) case to the existence of an orbital
liquid (OL) state [12,13], in analogy to a spin liquid [17,18],
which is disordered in a way different from paramagnetism.
Our aim is to analyze the limit d → ∞ along the lines set
out by Metzner and Vollhardt and explore whether this gives
further insight into the properties of the eg orbital Hubbard
model and the OL state in particular.

The eg orbital Hubbard model comes from the field of
spin-orbital physics, which has developed over the last two
decades into a very active and challenging part of solid state
physics which unifies frustrated magnetism and the phenom-
ena in strongly correlated electron systems. It arose from the
pioneering ideas of Kugel and Khomskii [19] who recognized
that, in transition metal oxides with partly filled degenerate 3d
orbitals, both the spin and the orbital degrees of freedom are
quantum variables and have to be treated on equal footing. At
large local Coulomb interaction U most of these compounds
are Mott (or charge-transfer) insulators due to electron lo-
calization, and superexchange arises from coupled spins and
orbitals together [20–22]. More recently similar phenomena
have been found in ultracold fermion systems in optical lat-
tices [23].

In the degenerate-orbital case [24], quantum fluctuations
in the insulating state are enhanced with respect to the nonde-
generate case [25–27]. In some cases these joint fluctuations
could even trigger a new state of quantum matter: a spin-
orbital liquid in model [28] or real systems [29–31]. In most
cases, however, one finds spin-orbital order due to spin inter-
actions of a Heisenberg form with SU(2) symmetry, coupled
to anisotropic orbital superexchange [32–51], in agreement
with the Goodenough-Kanamori rules [52]. These interactions
give in general entangled ground states [53–58]. We remark
that the physical properties of such systems are very rich and
depend on whether the orbital degrees of freedom are of eg,
t2g, or p type. The main difference is the spatial character of
the orbitals which makes their interactions directional.

An issue of high interest is how such systems, character-
ized by the presence of orbital and spin degrees of freedom,
behave under doping, i.e., how their properties compare with
the more familiar behavior of doped spin systems, such as
the high-Tc cuprates [59–61]. In the latter systems remarkable
progress has been achieved by employing dynamical mean-
field theory (DMFT) [62], which gave very valuable insights
into the transport properties [63] and spectral functions [64].
This theory, which is currently used widely for electronic
structure calculations of strongly correlated materials where
the one-electron description breaks down [65], is in fact based
on the above-mentioned discovery by Metzner and Vollhardt
regarding the Hubbard model [3,4].

A realistic description of transition metal oxides with de-
generate 3d orbitals requires the treatment of spin-orbital
physics in at least a degenerate Hubbard model, involving both
orbital and spin degrees of freedom [22]. However, in par-
ticular situations the problem becomes somewhat simplified.
In spin-orbital systems with FM order and weak spin-orbit

coupling, the spins may be ignored because the spin flavor
is conserved in the hopping processes, and the spins disen-
tangle from the orbitals [66,67] and do not contribute to the
dynamics. The degenerate Hubbard model appropriate for the
spin-orbital system [68] then reduces to an orbital Hubbard
model with direction-dependent hopping.

When the active orbitals are of t2g type this orbital Hubbard
model is rather similar to the standard spin Hubbard model
because the orbital flavor is then conserved in the hopping
processes (like for spin) but the hopping is two-dimensional
(2D) [29,69]. This gives almost localized orbital polarons for
single holes [70,71] or orbital stripes due to self-organization
of the doped Mott insulator [72,73].

However, in doped FM systems with active eg orbitals
[74,75] the orbital flavor is not conserved, in contrast to the
t2g case above, and the kinetic energy consists of all possible
hopping processes including those which change the orbital
flavor. Obviously, this represents a qualitative difference with
the spin Hubbard model. Moreover, it suggests that disordered
phases are favored more in doped eg than in doped t2g systems.

In doped manganites the FM metallic phase occurs due to
the kinetic energy gain by the double exchange mechanism
[76], because antiferromagnetic (AF) bonds hinder electron
hopping while hopping is unrenormalized along FM bonds,
and the eg electrons reorient the t2g spins coupled to them
by Hund’s rule exchange. Double exchange for strongly cor-
related eg electrons is indeed responsible for the spectacular
properties of doped perovskite manganites [77–79], including
colossal magnetoresistance in the FM metallic phase [80].
At low doping the A-type AF order in La1−xSrxMnO3 favors
eg electron transport within 2D (a, b) planes, and gradually
changes the spin order to FM along the c axis. Increasing
doping generates orbital polarons [81]. Already a single po-
laron triggers [82] an insulator-to-metal transition that occurs
here to a FM metallic phase. Eventually, the orbitals decouple
from the spins and a disordered orbital liquid (OL) phase
arises in a 3D system [12–15]. This OL phase may explain
the cubic dispersion relation of magnons in the FM phase of
some manganites, which indicates that magnetic interactions
are isotropic [83,84] unless they couple strongly to orbital
excitations [57]. Specifically this compound, La1−xSrxMnO3,
provides a prime example of the physical situation represented
by the orbital model studied in this paper, with the spins inte-
grated out and the dynamics determined solely by the orbitals.

So the eg orbital Hubbard model, while still directly rel-
evant for a class of doped FM insulators, is the simplest
nontrivial multiorbital model representing interacting lattice
fermions, and as such presents an opportunity for studying
fundamental issues in orbital dynamics. Moreover, because
of their mathematical similarity one can readily compare its
behavior with that of the (spin) Hubbard model, at the same
time exploiting the wealth of results available for the latter
one.

As stated, our overall aim is to investigate whether the limit
of infinite dimension elucidates the characteristic features of
the eg orbital Hubbard model, like it does for the spin Hubbard
model [11]. In particular we want to establish which features
found in the 3D case [12–15] are characteristic for the model
as such, i.e., continue to hold for arbitrary dimension up to
d = ∞, and which are specific for d = 3 per se or are caused
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by the fact that at finite dimension the Gutzwiller approach is
an approximation.

The purpose of this paper is therefore
(i) to derive the orbital eg model at arbitrary dimension

d from the requirements that the twofold degeneracy of the
eg orbitals be retained and that the cubic lattice symmetry be
turned into a hypercubic symmetry;

(ii) to highlight the fundamental difference with the spin
Hubbard model, which is that the orbital flavor is not con-
served and the kinetic energy is therefore potentially larger,
which should hinder orbital order and favor states with disor-
dered orbitals;

(iii) to demonstrate that the Gutzwiller approximation is
again exact in the limit d → ∞ like it is for the (spin) Hub-
bard model;
and next to investigate

(iv) in what way the OL state avoids orbital polarization,
and the role played therein by symmetry;

(v) whether at half-filling electron localization induces a
metal-insulator transition in the OL state and, if so, at which
critical value of the on-site interaction U ;

(vi) what the nature is of the ground state (long-range
order of ferro type or alternating type, or rather disordered
of paraorbital type or orbital-liquid type), dependent on the
strength of the interaction U and the particle density n.

The paper is organized as follows. In Sec. II A we introduce
the orbital Hubbard model for spin-polarized eg electrons for
a cubic lattice (d = 3), and discuss its symmetry properties.
We show that the cubic symmetry of the hopping may be
better appreciated when a particular basis consisting of two
orbitals with complex coefficients is used. This serves to
introduce the orbital model at general dimension d and at
d = ∞ in Sec. II B. Next we use the translational invariance to
present the noninteracting Hamiltonian in momentum space in
Sec. II C. Band dispersion and densities of states for complex
and real single-particle states are presented in Secs. III A and
III B, respectively. In Sec. III C we address the single-particle
eigenstates and show that they exhibit a generic splitting into
a lower and an upper band. The orbital model is compared at
dimension d = ∞ with the spin model in Sec. III D and we
argue from the densities of states that its general feature is an
enhanced kinetic energy. In Sec. III E we analyze the kinetic
energy in dependence of filling and compare it for the simplest
symmetry-broken states, disordered (paraorbital) states, and
the OL state built from the single-particle eigenstates.

The electron correlations are described using the
Gutzwiller approximation within a generalization of the
Metzner approach [8,9], analyzed in Sec. IV A, and
we evaluate the renormalized propagator at d = ∞ using
the collapse of diagrams to a single site in Sec. IV B. The
general formalism for uniform and two-sublattice states is
introduced in Sec. IV C. In Sec. V we treat specific trial
variational states: (i) ordered states in Sec. V A and (ii) the
OL phase in Sec. V B, concluding the demonstration that
the Metzner approach remains valid in the orbital case. In
Sec. VI we compare the OL in the orbital Hubbard model
with the paramagnet in the spin Hubbard model, and show
that a Brinkman-Rice transition takes place in the OL just like
in the paramagnet but for a considerably larger value of U .
The results of the numerical analysis and the phase diagram

of the orbital Hubbard model at d = ∞ are presented in
Sec. VII. At the end we focus on some general aspects of the
orbital physics and suggest possible extensions of the present
study (Sec. VIII A). The paper is concluded in Sec. VIII B
by pointing out the differences between the spin and orbital
Hubbard model in infinite dimension. In the Appendix we
present a proof that the orbital liquid phase is unpolarized.

II. THE eg ORBITAL HUBBARD MODEL

A. The model at dimension d = 3

The usual choice of basis for eg orbitals in a 3D cubic
lattice is to take

|z〉 ≡ 1√
6

(2z2 − x2 − y2), |z̄〉 ≡ 1√
2

(x2 − y2), (2.1)

called real orbitals. However, because this basis is the natural
one only for the bonds parallel to the c axis but not for those in
the (a, b) plane, the kinetic energy takes then a rather nonsym-
metric form, having a very different appearance depending on
the bond direction. It is thus preferred to use instead the basis
of complex orbitals at each site [85],

|+〉 = 1√
2

(|z〉 + i|z̄〉), |−〉 = 1√
2

(|z〉 − i|z̄〉), (2.2)

corresponding to “up” and “down” pseudospin flavors, with
the local pseudospin operators defined as

T̂ +
i = ĉ†

i+ĉi−, T̂ −
i = ĉ†

i−ĉi+,

T̂ z
i = 1

2
(ĉ†

i+ĉi+ − ĉ†
i−ĉi−) = 1

2
(n̂i+ − n̂i−). (2.3)

For later reference it is convenient to introduce also electron
creation operators ĉ†

i (ψi, θi ) which create eg electrons in or-
bital coherent states |�i〉 ≡ |�i(ψi, θi )〉 at site i, defined as

|�i〉 ≡ e−iθi/2 cos

(
ψi

2

)
|i+〉 + e+iθi/2 sin

(
ψi

2

)
|i−〉, (2.4)

in analogy with the well-known spin coherent states [86]. The
local pseudospin operator in this state is

〈�i|T̂ i|�i〉 = 1
2 (sin ψi cos θi, sin ψi sin θi, cos ψi ), (2.5)

i.e., it behaves like a vector [87].
The parameter space of the coherent orbital (2.4) is a

sphere, with the “poles” (ψi = 0 and ψi = π ) corresponding
to the complex orbitals |i+〉 and |i−〉, and the “equator”
(ψi = π/2) corresponding to (linear combinations of) the real
orbitals,∣∣∣�i

(π

2
, θi

)〉
= cos

(
θi

2

)
|iz〉 + sin

(
θi

2

)
|iz̄〉. (2.6)

The three real bases, {|ix〉, |ix̄〉}, {|iy〉, |iȳ〉}, and {|iz〉, |iz̄〉},
associated with the cubic axes a, b, and c, respectively,
are obtained by setting the in-plane angle θi/2 equal to
χa/2 = +2π/3, χb/2 = −2π/3, and χc/2 = 0, for |ix〉, |iy〉,
and |iz〉, and to χα + π/2 (α = a, b, c) for |ix̄〉, |iȳ〉, |iz̄〉, as
illustrated in Fig. 1(a).
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FIG. 1. Schematic representation of the real orbital wave func-
tions in the “equatorial” plane at dimensions (a) d = 3, (c) d = 7,
and (b) of the pseudospin vector at any dimension. The solid lines in
(a) correspond to directional (3z2 − r2)-like orbitals [the azimuthal
angle θi/2 in Eq. (2.6) equals one of the χα/2], while the dashed
lines correspond to the (x2 − y2)-like orbitals orthogonal to them
(θi/2 equaling χα/2 + π/2). In (c) the solid lines correspond to the
|xn〉d orbitals (the azimuthal angle θi/2 equals one of the χn/2), while
only the dashed line corresponding to the central orthogonal orbital
|x̄0〉d is shown.

In the complex-orbital representation the orbital Hubbard
model for eg electrons in d = 3 takes the form [13]

H3 = −1

2
t

∑
〈i j〉‖α̂

{(ĉ†
i+ĉ j+ + ĉ†

i−ĉ j−)

+ γ (e−iχα ĉ†
i+ĉ j− + e+iχα ĉ†

i−ĉ j+)} + U
∑

i

n̂i+n̂i−,

(2.7)

where the parameter γ actually takes the value γ = 1. This
parameter is introduced here as a device by which one may
interpolate between the standard two-flavor Hubbard model
with hopping t/2 at γ = 0 and the orbital eg model at
γ = 1. The appearance of the phase factors e±iχα is charac-
teristic for the orbital problem; they occur because the orbitals
have an actual shape in real space so that each hopping process
depends on the bond direction and on the orbitals between
which hopping occurs. Moreover, Eq. (2.7) exhibits the crucial
feature that (except at γ = 0) orbital flavor is not conserved,
or, equivalently, that pseudospin is not conserved; compare
Eq. (2.3).

The model (2.7) consists of the kinetic energy Hkin ∝ t and
the interorbital Coulomb interaction Hint ∝ U . The interaction
is invariant under any local basis transformation to a pair of
orthogonal orbitals, i.e., it gives an energy U when a double

occupancy occurs in any representation, i.e., either when both
real orbitals are simultaneously occupied or when both com-
plex orbitals are occupied,

Hint = U
∑

i

n̂izn̂iz̄ = U
∑

i

n̂i+n̂i−. (2.8)

We emphasize that this simple Hubbard-like form of the
Coulomb interaction operator obtained here corresponds to
the high-spin (S = 1) charge excitations, d1

i d1
j → d2

i d0
j ; these

are the only excited states in a FM system. The parameter
U stands then for the on-site interorbital Coulomb repulsion,
and is in fact lower than the intraorbital Coulomb element
(Kanamori parameter) U0 by 3JH due to Hund’s exchange in
the triplet state, i.e., U = U0 − 3JH [16,33].

Importantly, as noted in [13], the equivalence of the cubic
axes shows up in the kinetic energy term in Eq. (2.7) in a
transparent way, viz., as a formal invariance under threefold
rotations of the phase angles χα 
→ χα − 4π/3 in conjunction
with a phase shift of the electron operators ĉ†

i± 
→ e∓2π/3ĉ†
i±.

So the relevant symmetry group is C3, with the eg dou-
blets {|iz〉, |iz̄〉} transforming as real E representations, or
equivalently the pairs {|i+〉, |i−〉} transforming as conjugate
complex A1 representations.

B. Generalization to large dimension d

This form, Eq. (2.7), therefore lends itself to a natural gen-
eralization of the eg orbital Hubbard model with two orbital
flavors {|+〉, |−〉} to large dimension d as follows:

Hd = − 1√
2d

t

2

∑
〈i j〉‖x̂n

{(ĉ†
i+ĉ j+ + ĉ†

i−ĉ j−)

+ γ (e−iχn ĉ†
i+ĉ j− + e+iχn ĉ†

i−ĉ j+)} + U
∑

i

n̂i+n̂i−,

(2.9)

with χn = 4πn/d , where n = −m,−m + 1, . . . , m − 1, m,
and d ≡ 2m + 1 (i.e., taken odd for convenience, but d could
also be even with only slightly different derivations below),
and we note here that

∑
n eiχn = 0. So instead of three cubic

axes we now have d hypercubic axes {x̂n}, labeled by the index
n. Importantly, the number of orbital flavors remains 2 (as for
spin S = 1/2).

The real basis {|xn〉d , |x̄n〉d} associated with axis x̂n is given
by Eq. (2.6) with θi/2 set equal to χn/2 and to χn/2 + π/2,
respectively. This is illustrated in Fig. 1(c) for d = 7 in com-
parison with the case for d = 3 shown in Fig. 1(a). Figure 1(b)
shows the associated behavior of the pseudospin vector, valid
both for d = 3 and for general d .

The hopping parameter t is scaled in the standard fashion
[3,8,11] by

√
2d in order that the average kinetic energy

remains finite as d becomes large. Below we will use the
abbreviation t̃ = t/

√
2d whenever convenient. Again, the pa-

rameter γ takes the value γ = 1 for the orbital problem,
in which the orbital flavor (pseudospin) is not conserved,
while γ = 0 for the corresponding spin problem with hopping
t/2, in which the (spin) flavor is conserved. The interorbital
Coulomb interaction ∝U is the same for any dimension d as
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it stands for the on-site Coulomb repulsion when both orbital
(or spin) flavors are occupied.

Obviously, the equivalence of the hypercubic axes man-
ifests itself in the Hamiltonian Hd as a d-fold rota-
tional symmetry, i.e., by being invariant under phase shifts
ĉ†

i± 
→ e±i2π/d ĉ†
i± of the electron operators in conjunction

with shifts of the angles χn 
→ χn − 4π/d , in perfect anal-
ogy with the threefold rotational symmetry of H3. So Hd is
invariant under Cd , with the eg doublets {|ixn〉d , |ix̄n〉d} still
transforming as real E representations. In the limit d → ∞
the symmetry group Cd turns into C∞ ≡ Z, which for practical
purposes approaches continuous rotational symmetry U(1).

The generalization to dimension d = 2m + 1 for the ex-
plicit form of the normalized real basis orbitals associated
with the central axis x̂0 in terms of the coordinates xn is
obtained straightforwardly,

|x0〉d ≡ 2√
2d

(
m∑

n=−m

cos(χn/2) x2
n

)
, (2.10)

|x̄0〉d ≡ 2√
2d

(
m∑

n=−m

sin(χn/2) x2
n

)
, (2.11)

of which Eq. (2.1) is seen to be the special case for d = 3. We
observe that for general dimension d , the “directional” orbital
|x0〉d has a less pronounced directional shape than |z〉 = |x0〉3

in the 3D case, because of the many finite contributions from
all the coordinates xn with n �= 0, although the square of
the central coordinate x0 still has the largest coefficient. The
orthogonal orbital |x̄0〉d is perpendicular to the x̂0 axis as in
the 3D case (the coefficient of x0

2 in |x̄0〉d is zero as χ0 = 0).
When d gets large the shape of |x̄0〉d resembles that of |x0〉d

but with permuted coordinates [because Eq. (2.11) is obtained
by replacing χn/2 in Eq. (2.10) by χn/2 − π/2]. Clearly, at
each site all real-orbital basis sets {|xn〉d , |x̄n〉d} are equivalent.
We have made the arbitrary choices to use the set {|x0〉d , |x̄0〉d}
as the reference basis for real orbitals, and for convenience to
drop the subscript d .

C. Momentum space representation

Using translational invariance, we introduce creation and
annihilation operators in momentum space,

ĉ†
kλ = 1√

N

∑
j

eikR j ĉ†
jλ, (2.12)

where λ labels the orbital flavors, e.g., {x0, x̄0} or {+,−},
and N is the number of sites. The free-electron part of Hd ,
Eq. (2.9), describing the kinetic energy Hkin, may be repre-
sented upon Fourier transformation in the form

Hkin = −t̃
∑

k

(ĉ†
k+ ĉ†

k−)

(
Ak γ G∗

k

γ Gk Ak

)(
ĉk+
ĉk−

)
, (2.13)

where the dispersion is given by orbital-conserving and
orbital-non-conserving terms,

Ak =
∑

n

cos kn, (2.14)

Gk =
∑

n

e+iχn cos kn ≡ |Gk| e+iφk . (2.15)

It will be convenient to introduce the following definitions,

Bk ≡ |Gk| =
(∑

n,n′
cos(χn − χn′ ) cos kn cos kn′

)1/2

, (2.16)

Ck ≡ Re(Gk ) = Bk cos φk =
∑

n

cos χn cos kn, (2.17)

Dk ≡ Im(Gk ) = Bk sin φk =
∑

n

sin χn cos kn. (2.18)

One may now absorb the phase factors from the off-
diagonal elements of the matrix in Eq. (2.13) into the
operators, by defining what we will call “phased” complex-
orbital single-particle operators,

ˆ̃c†
k± = e∓iφk/2 ĉ†

k±, (2.19)

and rewrite Hkin as

Hkin = −t̃
∑

k

( ˆ̃c
†
k+ ˆ̃c

†
k−)

(
Ak γ Bk

γ Bk Ak

)(
ˆ̃ck+
ˆ̃ck−

)
. (2.20)

If desired, the kinetic energy may also be rewritten from
Eq. (2.13) in terms of the real-orbital operators,

Hkin = −t̃
∑

k

[Ak Âk − γ (Ck Ĉk + Dk D̂k )]

= −t̃
∑

k

[Ak Âk − γ Bk(cos φk Ĉk + sin φk D̂k )],

(2.21)

where

Âk = (
ĉ†

kx0
ĉkx0

+ ĉ†
kx̄0

ĉkx̄0

)
, (2.22)

Ĉk = (
ĉ†

kx̄0
ĉkx̄0

− ĉ†
kx0

ĉkx0

)
, (2.23)

D̂k = (
ĉ†

kx0
ĉkx̄0

+ ĉ†
kx̄0

ĉkx0

)
. (2.24)

The invariance with respect to the symmetry group Cd of this
real-orbital representation of Hkin is warranted by Ak and Âk
both transforming as A1, and by {Ck, Dk} and {Ĉk, D̂k} both
transforming as real E representations.

We note that whereas the kinetic-energy Hamiltonian
(2.13), (2.20), or (2.21) is block-diagonal in k-space, the or-
bital flavors {+,−} or {x0, x̄0} are still coupled. The further
analysis of the kinetic energy depends on whether some form
of symmetry breaking takes place, or whether we deal with an
unpolarized orbital state.

III. NONINTERACTING ELECTRONS

Below, in Sec. V, we will calculate the electron correlations
due to the on-site Hubbard repulsion U using the type of wave
function introduced by Gutzwiller [6,7],

|�〉 = gD̂|�0〉 =
∏

i

(1 − (1 − g)D̂i )|�0〉, (3.1)

where |�0〉 is an arbitrary uncorrelated trial state,

D̂ =
∑

i

D̂i, D̂i = n̂i+n̂i−, (3.2)
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and g is a variational parameter, 0 � g � 1. Frequently |�0〉 is
chosen to be a Gutzwiller wave function proper, i.e., a Fermi-
sea state of noninteracting particles,

|�0〉 =
∏

k∈Kλ

ĉ†
kλ

∏
q∈Kλ̄

ĉ†
qλ̄

|0〉, (3.3)

where Kλ and Kλ̄ are the parts of the d-dimensional Brillouin
zone occupied by particles of opposite orbital flavors λ and
λ̄, determined from the condition that the respective single-
particle kinetic energies be smaller than Fermi energies EF,λ

and EF,λ̄.
For the orbital model, because it has only C∞ symmetry,

even for a Fermi-sea-like |�0〉 the free-particle kinetic energy
depends on the particular set of orbitals that are occupied, as
in the 3D case [13]. This is fundamentally different from the
situation for the spin Hubbard model, where because of the
SU(2) symmetry of the spins one has just two (spin) flavors
quantized along an arbitrary direction in spin space, and both
kinetic energy and renormalization depend only on the filling
of the spin subbands. Therefore, we analyze in the present
section the dispersions and the densities of states (DOSs) for
the single-particle states used later on in building variational
states |�0〉.

A. Complex-orbital single-particle states

Particularly simple is the dispersion for the single-particle
states with complex orbitals as defined by Eq. (2.12) for
λ = + or λ = −,

ε+(k) = ε−(k) ≡ εc(k) = −t̃ Ak. (3.4)

We also consider single-particle states adapted to G-type par-
titioning of the lattice into A and B sublattices. With the
sublattice operators given by

ĉ†
Akλ = 1√

2
(ĉ†

kλ + ĉ†
k+Qλ), (3.5)

ĉ†
Bkλ = 1√

2
(ĉ†

kλ − ĉ†
k+Qλ), (3.6)

where Q = (π, π, . . . , π ) and λ is equal to either + or −, we
introduce single-particle operators with alternating orbitals of
opposite flavor λ (on A sites) and λ̄ (on B sites) according to

ĉ†
kλλ̄,�

= 1√
2

(ĉ†
Akλ − ĉ†

Bkλ̄
), (3.7)

ĉ†
kλλ̄,u

= 1√
2

(ĉ†
Akλ + ĉ†

Bkλ̄
). (3.8)

From Eq. (2.13) and making use of the relations
Ak+Q = −Ak, Bk+Q = Bk, and φk+Q = φk + π , one readily
finds that they correspond to a lower (�) and an upper (u)
band in the (reduced) Brillouin zone, both doubly degenerate,
with dispersions given by

ε+−,�(k) = −ε+−,u(k) = ε−+,�(k) = −ε−+,u(k)

≡ εc,ao(k) = −γ t̃ Ck = −γ t̃ Bk cos φk, (3.9)

where the first (second) subscript in the first line gives the
occupation of the A (B) sublattice. Following the same pro-
cedure we also obtain operators for single-particle states with

phased complex orbitals and alternating flavor, and find their
dispersions,

ε̃+−,�(k) = −ε̃+−,u(k) = ε̃−+,�(k) = −ε̃−+,u(k)

≡ ε̃c,ao(k) = −γ t̃ Bk. (3.10)

It is noteworthy that the dispersions (3.9) and (3.10) of the
two alternating single-particle states are proportional to γ , i.e.,
they originate entirely from the orbital-flavor nonconserving
part of the kinetic energy.

We now proceed to the DOSs associated with the above
single-particle states. In the limit d → ∞ an exact analytical
expression can be derived for all single-particle states con-
sidered, also for those discussed below. This was well known
to be the case for the rather simple dispersion, identical to
Eq. (3.4), of the spin Hubbard model [3], but it holds generally
because, from a mathematical point of view [88], DOSs are
probability distributions and in the limit d → ∞ are governed
by the law of large numbers. It follows that every DOS is
either of Gaussian type,

ρ(E ) = 1√
2π

1

wt
e− 1

2 ( E
wt )2

, (3.11)

fully characterized by its (dimensionless) width w, or is deriv-
able fairly simply from Gaussians. For the above dispersions
(3.4) and (3.9) the DOSs are Gaussians with widths wc = 1/2
and wc,ao = γ /2

√
2, respectively, while for the dispersion

(3.10) one finds that the DOS is a symmetrized Rayleigh
distribution [88],

ρc̃,ao(E ) = 2

γ t

∣∣∣∣2E

γ t

∣∣∣∣ e−( 2E
γ t )2

. (3.12)

These three complex-orbital DOSs are shown for the full
orbital case, i.e., γ = 1, in Fig. 2(a) by the blue, green, and
purple line, respectively.

B. Real-orbital single-particle states

For the single-particle states with real orbitals as defined by
Eq. (2.12) with λ = x0 or λ = x̄0, and for the single-particle
states describing alternating real flavors x0 and x̄0 on the sub-
lattices defined in the same way as above by Eqs. (3.5)–(3.8),
one finds the dispersions

εx0 (k) = −t̃ (Ak + γCk ) ≡ εr (k), (3.13)

εx̄0 (k) = −t̃ (Ak − γCk ) ≡ εr (−k), (3.14)

εx0 x̄0,�(k) = −εx0 x̄0,u(k) = εx̄0x0,�(k) = −εx̄0x0,u(k)

≡ εr,ao(k) = γ t̃Dk = γ t̃ Bk sin φk. (3.15)

One observes that, as already indicated at the very end of
Sec. II B, the sets of real-orbital single-particle states {|kx0〉}
and {|kx̄0〉} are equivalent in the limit d → ∞, in the sense
that they have the same energies but at opposite k. As above
for the complex-orbital single-particle states the alternating
real-orbital single-particle states correspond to a lower (�)
and an upper (u) band in the (reduced) Brillouin zone, both
doubly degenerate, and their dispersions are proportional to γ ,
stemming entirely from the orbital-flavor nonconserving part
of the kinetic energy.
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FIG. 2. DOSs of the various single-particle states: (a) for the
complex-orbital single-particle states, ρc(E ), ρc,ao(E ), and ρc̃,ao(E );
(b) for the real-orbital single-particle states, ρr (E ), ρr,ao(E ), and
2ρr (E ), and for the single-particle eigenstates, ρ�(E ), ρu(E ), and
ρ�+u(E ).

The corresponding DOSs are again Gaussians, with
widths wr = σ/2 and wr,ao = γ /2

√
2, respectively, where

σ =
√

1 + γ 2/2). They are shown, for γ = 1, in Fig. 2(b)
by the blue and green lines respectively. One may note that
wr,ao = wc,ao, implying that the DOS of the alternating
real-orbital single-particle states is identical to that of its
complex-orbital counterpart shown in the upper panel.

C. Single-particle eigenstates

The creation operators for the single-particle eigen-states
of the kinetic energy are seen from Eq. (2.20) to be simply
proportional to the sum and difference of the phased single-
particle operators,

d̂†
k,� = 1√

2
( ˆ̃c

†
k+ + ˆ̃c

†
k−), (3.16)

d̂†
k,u = −i√

2
( ˆ̃c

†
k+ − ˆ̃c

†
k−), (3.17)

-3 -2 -1 0 1 2 3
E/t

0

0.25

0.5

0.75

1

ρ l(E
)t

, ρ
u(E

)t

FIG. 3. Evolution of the DOS for the single-particle eigenstates
� and u of the eg orbital model at U = 0 with increasing dimension:
d = 3 (blue), d = 5 (green), d = 11 (red), and d = ∞ (black). The
lines at finite d have been calculated by k-space sampling, those at
d = ∞ from Eq. (3.19).

and the corresponding energies of the lower (�) and upper (u)
subbands are

ε�,u(k) = −t (Ak ± γ Bk ), (3.18)

where the + (−) sign corresponds to the lower (upper)
subband. We calculate the DOSs for the two subbands by
evaluating the convolution of the DOSs corresponding to Ak
and to the two branches of Bk. Strictly this requires Ak and
Bk to be uncorrelated [88], which is obviously not the case
because both depend on k, but we assume that this condition
becomes irrelevant in the limit d → ∞, and check the validity
of this assumption afterwards (see below). We then obtain for
the subband DOSs

ρ�,u(E ) = 1√
2π

2

σ 2t
e− 1

2 ( 2E
t )2

×
{

1 + √
π

γ E

σ t
e( γ E

σ t )2[
erf

(γ E

σ t

)
∓ 1

]}
,

(3.19)

where the upper (lower) sign corresponds to the � (u) subband,
and for their sum, which we will need later,

ρ�+u(E ) = 2√
2π

2

σ 2t
e− 1

2 ( 2E
t )2

×
{

1 + √
π

γ E

σ t
e( γ E

σ t )2
erf

(γ E

σ t

)}
. (3.20)

These DOSs are also shown, for γ = 1, in Fig. 2(b) by the
dash-dotted red and orange lines and by the dotted red line,
respectively.

We emphasize that the subbands {ε�(k), εu(k)} are non-
degenerate except for the k points for which Bk = 0. This
feature found already at dimension d = 3 is generic and per-
sists at increasing dimension up to d = ∞, contrary to the
suggestion made in Ref. [89]. Figures 3 and 4 demonstrate
this explicitly. In Fig. 3 the DOSs of the two subbands are seen
to become smoother with increasing dimension but to remain
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FIG. 4. Densities of states ρ�,u(E ) for the single-particle eigen-
states of the eg orbital model at U = 0, for three values of the
parameter γ (γ = 0.25, 0.50, and 0.75, with increasing distance
between the maxima), as given by the analytical expression (3.19)
for d → ∞ (thin black lines), and as calculated numerically at di-
mension d = 21, where green lines are used for |k, �〉, orange lines
are used for |k, u〉).

distinct although they partly overlap. In Fig. 4 the evolution of
the subband DOSs with γ is illustrated: in the spin Hubbard
model, i.e., at γ = 0 (not shown), they necessarily coincide
[compare Eq. (3.18)], while they are seen to get separated with
their maxima moving away from each other with increasing
γ and their maxima finally reaching a maximum distance of
�0.84 at γ = 1 (not shown), i.e., in the full orbital model.
This figure also demonstrates the validity of our assumption
made in deriving Eq. (3.19): the colored lines, calculated by
k-space sampling of the dispersion Eq. (3.18) at 106 k values,
are indistinguishable from the black lines, calculated from the
analytical d = ∞ expression (3.19).

We point out that the single-particle eigenstates given by
Eqs. (3.16) and (3.17) are in fact real and could be considered
as the “phased” real-orbital single-particle operators which
are the counterpart to the phased complex-orbital single-
particle operators defined by Eq. (2.19) above,

d̂†
k,� = cos(φk/2) ĉ†

kx0
+ sin(φk/2) ĉ†

kx̄0
, (3.21)

d̂†
k,u = − sin(φk/2) ĉ†

kx0
+ cos(φk/2) ĉ†

kx̄0
, (3.22)

as one readily verifies from Eqs. (2.19) and (2.1), or alter-
natively by recognizing that Eqs. (3.16) and (3.17) have the
form of coherent orbital states like Eq. (2.4) with ψ = 0 and
thus are given by Eq. (2.6). So they are represented in the
“equatorial” plane [compare Fig. 1(c)] by an angle θ equal to
the phase angle φk, which is entirely determined by the wave
vector and therefore is in general not equal to any of the χn.
An important consequence is that each of these single-particle
states carries a finite orbital polarization, i.e., contributes at
each lattice site to the value of the pseudospin in the xy plane

-3 -2 -1 0 1 2 3
 E/t

0

0.25

0.5

0.75

1

ρ(
E

)t
 , 

n(
E

)

FIG. 5. Total DOS ρ�+u(E ) (3.20) (solid lines) and the electron
density per orbital/spin flavor n(E ) (dashed lines) in the unpolarized
state, as obtained for the orbital eg Hubbard model (γ = 1, red lines)
and the spin Hubbard model (γ = 0, blue lines) at d = ∞.

[see Fig. 1(b)]:

〈k, �|T̂ x
i |k, �〉 = −〈k, u|T̂ x

i

∣∣k, u〉 = 1

2N
cos φk, (3.23)

〈k, �|T̂ y
i |k, �〉 = −〈k, u|T̂ y

i |k, u〉 = 1

2N
sin φk, (3.24)

〈k, �|T̂ z
i |k, �〉 = 〈k, u|T̂ z

i |k, u〉 = 0. (3.25)

It is noteworthy that while � and u may properly be called
(sub)bands, the polarization direction of the states in each
band varies with k, in contrast to the familiar feature of bands
of particles carrying spin where the spin direction is the same
for all states in a band.

D. Comparison with the spin Hubbard model

The expression (3.20) derived for the combined DOS of the
two subbands ρ�+u(E ) gives us the opportunity to compare the
distribution of the single-particle eigenstates in the eg orbital
Hubbard with the one in the spin Hubbard model; see Fig. 5.
In the orbital model the total DOS is broader and the total
electron density n(E ) grows slower with increasing Fermi
energy E . The plot already indicates that the kinetic energy
in the orbital model at a particular density n, obtained by
filling the two subbands up to the same Fermi energy, is lower
than the kinetic energy obtained at the same density in the
spin model. This difference is a manifestation of the flavor
nonconserving hopping which opens an extra channel for the
kinetic energy and thus enhances it in the orbital model.

E. Kinetic energies

Before taking electron correlations into account, we exam-
ine the kinetic energy of the various trial states |�0〉 built
from the single-particle states discussed above, and identify
the most favorable states in the absence of Coulomb inter-
actions. We consider on the one hand uniformly polarized
ordered states, obtained by filling a single band (or, in the
cases of alternating order, subsequently the lower and upper
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band corresponding to the same sublattice occupation), and
on the other hand unpolarized “paraorbital” states, obtained
by filling two degenerate bands up to the same Fermi energy;
compare Eq. (3.3). For each such trial state the particle density
n and the kinetic energy Ekin as a function of the Fermi energy
EF are given by

n(EF) =
∫ EF

−∞
ρ(E ) dE , (3.26)

Ekin(EF) =
∫ EF

−∞
E ρ(E ) dE , (3.27)

where ρ(E ) is the DOS of the corresponding band(s) of
single-particle states. Only the density range 0 � n � 1 will
be considered since n and 2 − n are equivalent because of
particle-hole symmetry.

We begin with the ordered orbital phases built from
complex-orbital single-particle states. The simplest one is the
complex ferro-orbital state |�FOc

0 〉 obtained by filling the |k+〉
band (or the |k−〉 band). The complex alternating-orbital
state |�AOc

0 〉 is [compare Eqs. (3.7) and (3.8)] obtained by
filling consecutively the |k,+−, �〉 band and the |k′,+−, u〉
band, and the phased complex alternating-orbital state |�AOc̃

0 〉
is built similarly from the ˆ̃c†

k+−,� and ˆ̃c†
k′+−,u single-particle

states.
Moving on to the unpolarized states we have the com-

plex paraorbital state POc, obtained by filling simultaneously
the |k+〉 band and the |k−〉 band, the complex alternating
paraorbital state PAOc, obtained by filling simultaneously the
|k,+−, �〉 band and the |k′,−+, �〉 band [compare Eq. (3.7)],
i.e., from the lower band only, and finally the similarly
defined phased complex alternating paraorbital state PAOc̃.
Figure 6(a) shows the kinetic energies of these six states
plotted versus the particle density.

Next we consider the trial states built from real-orbital
single-particle states, again beginning with the ordered
phases. Analogous to the complex trial states above we have
the real ferro-orbital state |�FOr

0 〉 obtained by filling the |kx0〉
band (or alternatively the |kx̄0〉 band) and the real alternating-
orbital state |�AOr

0 〉 obtained by filling consecutively the
|k, x0x̄0, �〉 band and the |k′, x0x̄0, u〉 band; compare Eqs. (3.7)
and (3.8). Here the unpolarized states are the real paraorbital
state POr, with equally filled |kx0〉 band and |kx̄0〉 band, and
the real alternating paraorbital state PAOr, with the |k, x0x̄0, �〉
band and the |k′, x̄0xo, �〉 band filled equally. The kinetic en-
ergies of these four states plotted versus particle density are
shown in Fig. 6(b).

The n dependence of the various kinetic energies can be
understood as follows. For all ordered states for which the
single-particle DOS is Gaussian, which includes the FOc,
AOc, FOr, and AOr states, the particle density and kinetic
energy take the form

n(EF) = 1

2

[
1 + erf

(
EF

wt
√

2

)]
, (3.28)

Ekin(EF) = − wt√
2π

exp

[
−1

2

( EF

wt

)2]
, (3.29)
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FIG. 6. Kinetic energies Ekin in the limit d → ∞ of the orbital
ordered and the paraorbital states of the eg Hubbard model (2.9) (i.e.,
γ = 1) at U = 0 for increasing electron density n, compared with
that of the orbital liquid state. (a) Phases with complex orbitals: ferro-
orbital FOc (solid blue line), alternating-orbital AOc (solid green
line), phased alternating-orbital AOc̃ (solid cyan line), paraorbital
POc (dashed blue line), alternating paraorbital PAOc (dashed green
line), phased alternating paraorbital PAOc̃ (dashed cyan line), and
orbital liquid OL (dotted red line). (b) Phases with real orbitals:
ferro-orbital FOr (solid blue line), alternating-orbital AOr (solid
green line), paraorbital POr (dashed blue line), alternating paraorbital
PAOr (dashed green line), and orbital liquid OL [dotted red line, the
same as in (a)].

where erf is the error function. Formally, inversion of
Eq. (3.28) gives

EF(n) = wt
√

2 inverf (2n − 1), (3.30)

where inverf is the inverse error function, and, inserting this
into Eq. (3.29), one obtains

Ekin(n) = − wt√
2π

exp(−[inverf (2n − 1)]2). (3.31)
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This demonstrates that the shape of Ekin(n) is the same for
the states mentioned above, as is evident in Fig. 6, and that
the only difference is in the width prefactor w, which also
determines the value of the minimum, −wt/

√
2π , at n = 1/2.

The only exception is the AOc̃ state for which the Rayleigh
distribution type DOS Eq. (3.12) leads to

nAOc̃(EF) = 1

2

[
1 + sgn(EF)

(
1 − e−( 2EF

γ t )
2)]

, (3.32)

EAOc̃
kin (EF) = − t√

2π

γπ

4
√

2

[
1 − erf

(
2|EF|
γ t

)

+ 2√
π

2|EF|
γ t

e−( 2EF
γ t )

2
]
. (3.33)

As Fig. 6(a) shows, this makes the AOc̃ state have lower
kinetic energy than the FOc state close to quarter-filling,
i.e., in the interval 0.25 < n < 0.75. This can be understood
from the fact that the DOS of the phased complex-orbital
single-particle states has more weight at more negative en-
ergies; see Fig. 2(a). However, as seen in Fig. 6(b), it is
the FOr state that clearly has the lowest kinetic energy of
all ordered states due to its large width, with minimum en-
ergy −0.2443 t , whereas the minimum for the AOc̃ state
is only −0.2216 t ; see Eq. (3.33). The basic reason for
the difference is that the FOr state benefits fully from the
orbital-flavor conserving hopping channel and also partially
from the nonconserving channel [compare Eq. (3.13)], while
the AOc̃ state benefits fully from the orbital-flavor noncon-
serving channel but not at all from the conserving channel;
cf. Eq. (3.10).

As regards the unpolarized states one may observe that for
every paraorbital state PX its kinetic energy is related to that
of the associated ordered state X by

EPX
kin (n) = 2 EX

kin(n/2), (3.34)

which follows directly from the defining equations (3.26)
and (3.27). Equation (3.34) implies that the relative mag-
nitude of the kinetic energies of the unpolarized states is
the same as that of the ordered states, as indeed seen
in Fig. 6. In particular, the POr state has the lowest ki-
netic energy of all paraorbital disordered phases, for the
same reason as the FOr state is the lowest-energy ordered
state. Also, the paraorbital states have considerably lower
kinetic energy than their ordered counterparts, but they will
get renormalized at finite U whereas the ordered states
will not.

Finally we consider the trial state built from the single-
particle eigenstates by filling the lower and the upper
subbands up to the same Fermi energy, written down here

explicitly [compare Eqs. (3.16)–(3.18)]:

∣∣�OL
0

〉 =
∏

k;ε�(k)<EF

∏
k′;εu(k′ )<EF

d̂†
k,� d̂†

k′,u|0〉. (3.35)

This state we call the OL state because it is unpolarized in the
following remarkable way.

Whereas all single-particle states in |�OL
0 〉 are polarized

individually [compare Eqs. (3.23) and (3.24)], the variation
with k makes their contributions to the pseudospin add up
to zero at each lattice site, at any filling n(EF). and for each
subband � and u separately. This follows from the following
considerations (for a more detailed proof, see the Appendix):

(i) For every single-particle state |k, �〉 from the low-
est subband which is occupied in |�OL

0 〉 because it satisfies
ε�(k) < EF, all single-particle states |k′

n, �〉 with wave vectors
k′

n generated from k by successive cyclic permutations of
its components are also occupied. This holds because both
Ak and Bk are invariant under such permutations [compare
Eqs. (2.14) and (2.16)], implying that ε�(k′

n) = ε�(k), and it
follows that ε�(k′

n) < EF. The same reasoning applies for the
upper subband u.;

(ii) Under each such transformation k 
→ k′
n the corre-

sponding phase angle is transformed as φk 
→ φk + 4nπ/d ,
so summing exp(iφk′

n
) over all k′

n yields 0, and the compensa-
tion of the contributions to the pseudospin follows; compare
again Eqs. (3.23) and (3.24).

Therefore, even though the densities in the two partially
filled subbands are different, n�(EF) > nu(EF), as recognized
from the DOSs shown in Fig. 2(b), the OL state is unpolarized,
because each subband is unpolarized by itself at any filling.
This mechanism is entirely different from the compensation
of two oppositely polarized bands at equal filling as occurs
for paraorbital (or paramagnetic) states.

We emphasize that the reasoning above is not specific for
d = ∞ but holds in any dimension, and so the resulting ab-
sence of polarization in both bands is a characteristic feature
of the OL per se. It is associated with the fact that the OL
transforms as A1 under the symmetry group Cd [is invariant
under U(1) in the limit d → ∞] and implies that the OL phase
protects the (hyper)cubic symmetry. We further point out that
there is necessarily double occupancy in |�OL

0 〉. This is obvi-
ous from the fact that the single-particle states in |�OL

0 〉 do not
correspond to a single common direction in the “equatorial”
plane of Fig. 1(c) because of the variation of φk with the wave
vector k.

The relevant DOS from which to obtain the particle density
and the kinetic energy in the OL state is ρ�+u(E ), Eq. (3.20).
One finds

nOL(EF) = 1 + erf

(√
2EF

t

)
− γ

σ
√

2
e−2( EF

σ t )
2

erf
(γ EF

σ t

)
, (3.36)

Ekin;OL(EF) = − t√
2π

{
e−2( EF

t )
2

+ γ
√

π

[
EF

σ t
e−2( EF

σ t )
2

erf
(γ EF

σ t

)
+ F

(
γ ;

|EF|
σ t

)]}
, (3.37)

where

F(γ ; x) =
∫ ∞

x
e−2y2

erf (γ y) dy. (3.38)
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The function F(γ ; x) has to be calculated numerically. Since
F(1; 0) = 1√

2π
[π

2 − tan−1(
√

2)] = 0.245 541 [90], we have
rewritten Eq. (3.38) at γ = 1 as

F(1; x) = 0.245 541 −
∫ x

0
e−2y2

erf (y) dy. (3.39)

to perform the calculation for the full orbital case.
The kinetic energy of the OL state is included in both

Figs. 6(a) and 6(b), and is seen to be lower than that of any
other trial state, remarkably including the lowest-energy com-
plex paraorbital and real paraorbital states. The explanation is
similar to that above for the FOr and the POr states. The OL
state fully captures all kinetic energy available in the orbital
Hubbard model (2.9), both from the orbital-flavor conserving
hopping channel and from the nonconserving hopping chan-
nel; cf. Eq. (3.18). This is a strong hint that the OL phase
could be favored also in the presence of electron interactions.
To establish the phase with the lowest overall energy we need
to consider the energy renormalization of the paraorbital states
and the OL state in the presence of the Coulomb interaction,
i.e., at finite U .

IV. CORRELATIONS BY THE GUTZWILLER METHOD

The original analysis of the Gutzwiller approach in the
limit d → ∞, including the proof that the Gutzwiller ap-
proximation becomes exact in that limit, was carried out
specifically for the spin Hubbard model, implying the implicit
assumption of SU(2) symmetry [3,8,9]. We therefore need to
investigate which modifications are required in the orbital case
where we have only Cd symmetry, and check if the proof of
exactness still holds.

A. General derivation at dimension d

Electron correlations due to the on-site Hubbard repulsion
U will be implemented using the wave function introduced by
Gutzwiller,

|�(g)〉 = gD̂|�0〉 =
∏

i

(1 − (1 − g)D̂i )|�0〉, (4.1)

with

D̂ =
∑

i

D̂i, D̂i = n̂i+n̂i−, (4.2)

where the variational parameter g is determined by minimiz-
ing the energy [6–9],

E (g) = 〈�(g)|Hd |�(g)〉
〈�(g)|�(g)〉 . (4.3)

First, we consider here the general case and derive the propa-
gator and self-energy. In the present case the fermion (orbital)
flavor is not conserved and we introduce a propagator,

Pi j;αβ = 〈�|ĉ†
iα ĉ jβ |�〉

〈�(g)|�(g)〉 , (4.4)

which we allow to have, at least in principle, nonzero off-
diagonal matrix elements with respect to flavor (i.e., α �= β).
Following Metzner [9], one finds the following expression for

the matrix elements:

Pi j;αβ = {c†
iαc jβ [1 − (1 − g)(niᾱ + n jβ̄ )

+ (1 − g)2(niᾱn jβ̄ + δi jδαβniᾱ )X }c
0, (4.5)

where

X ≡ 1 +
∞∑

m=1

(g2 − 1)m

m!

∑
g1,...,gm

Dg1 , . . . , Dgm . (4.6)

Similarly, the bare propagator is defined by

P0
i j;αβ = 〈�0|ĉ†

iα ĉ jβ |�0〉 = {c†
iαc jβ}c

0. (4.7)

Here P0 is, like P , an N × N × 2 × 2 matrix with off-
diagonal elements with respect to orbital flavor generated by
the off-diagonal hopping in orbital space. We emphasize that
the curly brackets {· · · }c

0 in Eqs. (4.5) and (4.7) denote the sum
over all connected products of anticommuting contractions,
evaluated in the trial state |�0〉, and thus the ciα, . . . symbols
are Grassman variables and not the fermion operators ĉiα, . . . .

Next we define the self-energy S . Here Si j is a 2 × 2 matrix
with off-diagonal elements in orbital space. The elements of
the self-energy S are therefore different from those for the
RVB wave function [9], and include the specific last term in
the defining equation

Si j;αβ = {[(1 − g)2c†
iαniᾱc jβn jβ̄

− δi j (g
2 − 1)(δαβniᾱ − δαβ̄c†

iαc jβ )]X }c
0. (4.8)

The self-energy gives the double occupancy

di = 1

2

g2

1 − g2
Trα (SP0)ii. (4.9)

The further derivation, following closely the case of the RVB
state considered by Metzner [9], leads after some algebraic
manipulations to the propagator in real space between sites i
and j,

Pi j = P0
i j + δi j

[
1 − g

1 + g
(SP0)iiδαβ − Sii

(1 + g)2

]

+
[(

P0 − 1

1 + g

)
S

(
P0 − 1

1 + g

)]
i j

. (4.10)

Here in the first local term at site i only the diagonal elements
of the matrix SP0 contribute, as indicated by δαβ .

The first term in Eq. (4.5) is related to the self-energy S by

{c†
iαc jβX }c

0 ≡ (P0 + P0SP0)i j;αβ. (4.11)

Finally, we define a “proper self-energy” S∗ as the sum over
all one-particle irreducible diagrams contributing to S; the
two self-energies are then related by a Dyson equation,

S = S∗ + S∗ ◦ P0 ◦ S. (4.12)

After introducing a renormalized propagator

P = P0 + P0 ◦ S ◦ P0, (4.13)

one finds that, owing to Eq. (4.12), it satisfies

P = P0 + P0 ◦ S∗ ◦ P . (4.14)
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The site-diagonal matrix elements of S are related to those of
P as follows:

Sii;αα = (1 − g2)P ii;ᾱᾱ, (4.15)

Sii;αᾱ = −(1 − g2)P ii;αᾱ. (4.16)

B. Single-site collapse at d = ∞
Similarly to the spin Hubbard model at d → ∞, the di-

agrams describing the perturbation expansion of S∗ with
respect to the local interaction U collapse. Then the lattice
sums reduce to summations of terms in which all indices
coincide on the same lattice site, and the proper self-energy
becomes site diagonal, i.e., S∗

i j = δi jS∗
ii , The collapse permits

the matrix elements of S∗
ii (with respect to the orbital label) to

be expressed in terms of those of the on-site matrix elements
of P ii defined above. One finds, in matrix form,

S∗
ii = f

(−P ii;−− +P ii;+−
+P ii;−+ −P ii;++

)
. (4.17)

We emphasize that S∗
ii is not yet necessarily independent of i.

Here the factor f is

f = 1 − [1 + 4(1 − g2) det P ii]1/2

2 det{P ii}
, (4.18)

and upon inversion

P ii = 1

(1 − g2) − det S∗
ii

(+S∗
ii;−− −S∗

ii;+−
−S∗

ii;−+ +S∗
ii;++

)
. (4.19)

Equating this to the site-diagonal part of P as obtained from
Eq. (4.14) generates two equations which together determine
S∗, for any given P0 and g. Next, Eq. (4.12) gives the
self-energy S , which finally determines the propagator via
Eq. (4.10) and the double-occupancy using Eq. (4.9), and thus
the total energy at any given electron filling n.

C. Momentum space representation

As we shall be mainly interested in translation invariant
states, it is expedient to Fourier transform all variables of
interest upon which matrix products with respect to site in-
dices turn into ordinary products in k-space, e.g., Eq. (4.10)
becomes

P (k) = P0(k) +
∑

k′

[
1 − g

1 + g
(S (k′)P0(k′))αα δαβ − S (k′)

(1 + g)2

]

+
[(

P0(k) − 1

1 + g

)
S (k)

(
P0(k) − 1

1 + g

)]
. (4.20)

Consider now a homogeneous state where S∗
ii ≡ S∗ is site

independent, and we may use a shorthand notation for its
matrix elements,

S∗ =
(

S∗
+ R∗

(R∗)+ S∗
−

)
=

(
S∗

+ |R∗|eiφ

|R∗|e−iφ S∗
−

)
. (4.21)

Using the Dyson equation for P in Eq. (4.14), P (k) can be
expressed (in k-space) explicitly in terms of P0(k) and S∗(k),

P (k) = 1

Nk

[
P0(k) − det P0(k)

(
S∗

− −R∗
−(R∗)+ S∗

+

)]
,

(4.22)

where the normalizing prefactor Nk is

Nk = 1 − Trα{S∗P0(k)} + (det S∗) det P0(k). (4.23)

It depends on the occupancy of the single-particle states at
wave vector k in the many-particle trial state |�〉. Upon solv-
ing for S∗

+, S∗
−, R∗, and (R∗)+, one obtains the self-energy from

S (k) = 1

Nk

[
S∗ − det S∗

(
P0(k)−− −P0(k+−

−P0(k)−+ P0(k)++

)]
,

(4.24)

upon which it is straightforward to write down explicitly the
expression for the propagator P (k) and calculate all quantities
of physical interest.

V. GUTZWILLER RENORMALIZATION

A. Ordered states

As an example, we consider an ordered, i.e., polarized,
state with complex orbitals, Oc,∣∣�Oc

0

〉 =
∏

k∈K+

ĉ†
k+

∏
q∈K−

ĉ†
q− |0〉. (5.1)

It contains fixed numbers of electrons n0
+ and n0

− in |i+〉 and
|i−〉 states (n0

+ � n0
−), respectively,

n0
+ =

∑
k∈K+

n0
k,+, n0

− =
∑

q∈K−

n0
q,−, (5.2)

which determine the total electron number n0 and orbital
polarization m0,

n0 = n0
+ + n0

−, m0 = n0
+ − n0

−. (5.3)

The state (5.1) includes both full polarization, n0
− = 0 and

n0 = m0 = n0
+, i.e., the complex ferro-orbital state FOc,

and zero polarization, n0± = 1
2 n0, m0 = 0, i.e., the complex

paraorbital state POc.
The bare propagator is a diagonal 2 × 2 matrix in the

orbital {|+〉, |−〉} basis, i.e., P0
αβ (k) = δαβn0

kα , and thus
det{P0(k)} = n0

k+n0
k−. Consequently, the explicit form of the
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matrix elements of P (k) and P ii ≡ P simplify, and the equa-
tions following from Eqs. (4.22) and (4.19) reduce to

P++ = 1

N

∑
k

P (k)++

= 1

N

∑
k

[
n0

k+
(
1 − n0

k−
)

1 − S∗+
+ n0

k+n0
k−(1 − S∗

−)

(1 − S∗+)(1 − S∗−) − |R∗|2
]

= S∗
−

1 − g2 − (S∗+S∗− − |R∗|2)
, (5.4)

P+− = 1

N

∑
k

P (k)+−

= 1

N

∑
k

n0
k+n0

k−R∗

(1 − S∗+)(1 − S∗−) − |R∗|2

= − R∗
1 − g2 − (S∗+S∗− − |R∗|2)

, (5.5)

P−− = 1

N

∑
k

P (k)−−

= 1

N

∑
k

[
n0

k−
(
1 − n0

k+
)

1 − S∗−
+ n0

k+n0
k−(1 − S∗

+)

(1 − S∗+)(1 − S∗−) − |R∗|2
]

= S∗
+

1 − g2 − (S∗+S∗− − |R∗|2)
, (5.6)

From Eq. (5.5) it follows that R∗ = 0, and Eqs. (5.4) and (5.6)
are simplified to

n0s
+

1 − S∗+
+ d0

1 − S∗+
= S∗

−
1 − g2 − S∗+S∗−

, (5.7)

n0s
−

1 − S∗−
+ d0

1 − S∗−
= S∗

+
1 − g2 − S∗+S∗−

, (5.8)

where n0s
α is the number of singly occupied k points of flavor

α ∈ {+,−} and d0 is the number of doubly occupied k points,
hence

n0
α = n0s

α + d0. (5.9)

After some algebraic manipulation one finds

n0
+

S∗
+

1 − S∗+
= n0

−
S∗

−
1 − S∗−

, (5.10)

and the solution for S∗
+ and S∗

− can be found.
Using the simplified (because of R∗ = 0) expressions for

S (k) and P (k) one finds

P (k)αβ = δαβnkα = δαβ

[
qα (g)n0

kα + bα

]
, (5.11)

with

qα (g) ≡ 1 − S∗
α

1 + g2

(
1 − g2

1 − S∗
α

)
, (5.12)

bα ≡ [1 − qα (g)]n0
α. (5.13)

This is the Gutzwiller approximation for the ordered state
Eq. (5.1). Note that

nα = 1

N

∑
k

nkα = qαn0
α + bα = n0

α, (5.14)

i.e., the Luttinger theorem is satisfied. The average double
occupancy is given by

d = g2

1 − g2

S∗
+

1 − S∗+
n0+ = g2

1 − g2

S∗
−

1 − S∗−
n0−. (5.15)

One recognizes that the above results are identical to those
obtained in the spin case, i.e., for SU(2) symmetry.

For any other trial state built from a single pair of orthogo-
nal orbitals [cf. Eq. (2.4)],∣∣�ψθ

0

〉 =
∏
k∈K

ĉ†
k(ψ, θ )

∏
q∈Q

ĉ†
k(ψ + π, θ + π )|0〉, (5.16)

one obtains exactly analogous results when similarly writing
all expressions in terms of the corresponding orbital basis. So,
e.g., for the real Or states built from {|kx0〉} and {|qx̄0〉} single-
particle states [compare Eq. (5.1)], one has

nkx0 = qx0 (g)n0
kx0

+ bx0 ; (5.17)

compare Eq. (5.11). The renormalization qx0 (g) and the back-
ground constant density bx0 are straightforwardly obtained
from qα (g) and bα by the corresponding orbital transforma-
tion.

B. Orbital liquid state

Next we consider the OL state introduced above [see
Eq. (3.35)],∣∣�OL

0

〉 =
∏

k;ε�(k)<EF

∏
k′;εu(k′ )<EF

d̂†
k,� d̂†

k′,u|0〉, (5.18)

where k and k′ label the occupied states from the lower (�)
and upper (u) subband, and both subbands are occupied up to
the same Fermi energy EF.

The free propagator is, in the (+,−) basis,

P0
k = 1

2

(
n0

k,� + n0
k,u

(
n0

k,� − n0
k,u

)
eiφk(

n0
k,� − n0

k,u

)
e−iφk n0

k,� + n0
k,u

)
. (5.19)

This leads to the following expressions for the on-site matrix
of P in real space, P ii ≡ P:

P++ = 1

N

∑
k

[
n0

k,�

(
1 − n0

k,u

)
2Nks

+ n0
k,�n0

k,u(1 − S∗
−)

Nkd

]
,

(5.20)

P+− = 1

N

∑
k

[
n0

k,�

(
1 − n0

k,u

)
eiφk

2Nks
+ n0

k,�n0
k,u|R∗|eiφ

Nkd

]
,

(5.21)

P−− = 1

N

∑
k

[
n0

k,�

(
1 − n0

k,u

)
2Nks

+ n0
k,�n0

k,u(1 − S∗
+)

Nkd

]
,

(5.22)
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where the normalizing prefactor Nk depends on the occupancy
of the subbands at wave vector k: it equals Nks if only a single
(viz., the lower) subband is occupied and equals Nkd if both
|k, �〉 and |k, u〉 are occupied, with

Nks = 1 − 1
2 (S∗

+ + S∗
−) − |R∗| cos(φ − φk ), (5.23)

Nkd = 1 − S∗
+ − S∗

− + det S∗

= (1 − S∗
+)(1 − S∗

−) − |R∗|2. (5.24)

Setting the expressions above equal to those obtained in
Eq. (4.19) one obtains a set of four equations from which to
determine S∗

+, S∗
−, |R∗|, and φ.

Because of the occurrence of the phases φ − φk in
Eqs. (5.20) and (5.21) these equations cannot be solved in full
generality and a simplifying assumption is necessary. Thus
we make here the ansatz that the off-diagonal elements of S∗
vanish, i.e., R∗ = 0. Then the terms that involve summation
over the phase factors {φk} drop out and the structure of
the equations needed to determine S∗ simplifies. Because the
OL state is not polarized the two flavors are equivalent and
the diagonal elements of S∗

ii must be equal, S∗
+ = S∗

− ≡ S∗.
Defining single and double occupancy in k-space per k point,

S = 1

N

∑
k

(1 − nk,u) nk,�, (5.25)

D = 1

N

∑
k

nk,u nk,�, (5.26)

one obtains a single equation for S∗ in terms of S and D,

1

2

S

1 − S∗ + D

1 − S∗ = S∗

1 − (S∗)2 − g2
. (5.27)

Using the number of electrons per site n = S + 2D, one
finds finally for the orbital liquid state

S∗ = 1

2 − n
(1 −

√
1 − n(2 − n)(1 − g2)). (5.28)

Inserting this result into the expressions for the renormaliza-
tion factor and double occupancy in terms of S∗,

q = 1 − S∗

(1 + g)2

(
1 − g2

1 − S∗

)
, (5.29)

d = 1

2

g2n

1 − g2

S∗

1 − S∗ , (5.30)

one finally obtains

q(g) = 1 − 1

(1 + g)2

(
1 −

√
1 − n(2 − n)(1 − g2)

)2

n(2 − n)
,

(5.31)

d (g) =
√

1 − n(2 − n)(1 − g2) + n(1 − g2) − 1

2(1 − g2)
.

(5.32)

This expression for the kinetic energy renormalization (5.31)
is identical to that which follows from Eq. (5.12) when the
ordered state is unpolarized, i.e., for q+(g) = q−(g) ≡ q(g).

0 0.2 0.4 0.6 0.8 1
n

−1.2

−0.8

−0.4

0.0

E
to

t/t
’

U=10t’

6t’

4t’

2t’

U=0

FIG. 7. Total energy Etot (6.1) versus electron density n for the
OL phase in the orbital eg model with t ′ ≡ t/2. The different curves
stand for U = 0 (black dashed line), metallic regime with U = 2t ′,
4t ′, 6t ′ (blue solid lines), and insulating regime U = 10t ′ (red heavy
line).

At U = ∞ one finds g = 0 and

q(0) = 1 − n

1 − n/2
, (5.33)

which reproduces the kinetic energy renormalization in the
spin model.

VI. BRINKMAN-RICE TRANSITION

In the following we focus on the OL state, and in particular
compare its role in the orbital Hubbard model with that of
the paramagnetic phase in the spin Hubbard model. For the
latter purpose it is convenient to introduce t ′ ≡ t/2; then the
results obtained here at d = ∞ for orbital phases are directly
comparable with those for magnetic phases [11].

Altogether the energy of the OL is determined by

EOL
tot (n; g) = q(n; g)EOL

kin (n) + Ud (n; g), (6.1)

and one has to use Eqs. (5.31) and (5.32) with the optimal
value of the variational parameter g. The result for the density
dependence of Etot for the OL phase is shown in Fig. 7 for a
number of values of U . One observes that the renormalization
of the kinetic energy due to electron correlations induced by U
is largest at half-filling, i.e., at n = 1. Indeed, here one might
expect an insulating state to appear eventually at sufficiently
large U , with completely suppressed electron dynamics; see
below. Further, with increasing U the total energy (6.1) grad-
ually increases at any density n and its minimum moves
towards n = 0.5. The pattern seen in Fig. 7 is entirely similar
to that shown by the paramagnetic phase in the spin Hubbard
model when treated likewise by the Gutzwiller method, be-
cause it is dominated by the behavior of q(n; g) and d (n; g)
and hardly affected by the slight difference in the shape of
Ekin(n).
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FIG. 8. Dependence on U/t ′, at electron density n = 1, of (a) the
variational parameter g, (b) the double occupancy d , and (c) the total
energy Etot/t ′, for the spin Hubbard model (blue dashed lines) and for
the orbital eg Hubbard model (red full lines), at d = ∞. For easier
comparison with the spin case, we use here the hopping parameter
t ′ ≡ t/2 for both spin and orbital Hubbard model.

Figure 8 shows in some more detail what happens at n = 1,
demonstrating that for the OL in the orbital model the depen-
dence of the variational parameter g, the double occupancy
d , and the total energy Etot on U is qualitatively the same
as for the paramagnetic state in the spin model. In particular
double occupancy gets fully suppressed (d = 0) at and above
a critical value UBR, while simultaneously g = 0 implying
q = 0, i.e., the electrons are entirely localized and itinerancy
disappears. This has been recognized in the spin case by
Brinkman and Rice [91] as a qualitative criterion for the onset
of the transition from a metallic to an insulating state [92],
which in fact becomes exact at d = ∞ [93].

However, quantitatively there is a considerable difference:
for the OL in the orbital eg Hubbard model this transition
occurs at UBR = 9.161 t ′, enhanced from UBR = 6.383 t ′ for
the paramagnetic state in the spin Hubbard model [equivalent
to the (γ = 0) POc state in the orbital model], because UBR is

0.0

0.5

1.0

q

−1 0 1 2
log( U/t’ )

−1.2

−0.8

−0.4

0.0

E/t’
0.0

0.1

0.2

d

(a)

(b)

(c)

FIG. 9. Evolution of the OL phase from free electrons to a
strongly correlated metal at n = 0.9 for increasing U/t ′ as obtained
for the orbital eg Hubbard model (solid lines) at d = ∞: (a) the
Gutzwiller renormalization factor q, (b) the double occupancy d , and
(c) the total energy Etot . For easier comparison with the spin case,
we use here the hopping parameter t ′ ≡ t/2 for the orbital Hubbard
model (2.9).

generally given by

UBR = 8 |Ekin(EF = 0)|, (6.2)

which is larger by the factor 1 + √
πF(1; 0) = 1.435 for the

OL; compare Eqs. (3.37) and (3.29). Clearly this is en-
tirely due to the extra contribution to the kinetic energy
coming from the orbital-flavor nonconserving hopping at
γ = 1. We note in passing that the real para-orbital phase
POr shows a Brinkman-Rice transition at the interme-
diate value UBR = 7.818 t ′, enhanced only by a factor
wr/wc = σ (γ = 1) = √

3/2 = 1.225, because it profits only
partially from the additional kinetic energy available in the
orbital model.

At n < 1 the renormalization factor q(g), Eq. (5.31), re-
mains finite at large U , and thus the electrons remain itinerant,
but with reduced kinetic energy; see Fig. 9. Increasing U/t ′
defines here three distinct regimes:

(i) at very small U (U � t ′) correlations are virtually ab-
sent, q ≈ 1 and d ≈ (n/2)2,

(ii) at small U (U < UBR) the correlations gradually de-
velop, q(g) is reduced from 1.0 down to ≈0.2, double
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occupancy is strongly reduced (d → 0), and the total energy
increases, and

(iii) at large U (U > UBR) the correlations dominate,
double occupancy becomes excluded, and the electrons
move in the strongly correlated OL without creating double
occupancies.

VII. PHASE DIAGRAM

From the unrenormalized kinetic energies shown in Fig. 6
we concluded that the uniformly polarized FOr phase and
possibly the disordered POr phase are the only candidates
competing with the OL phase for being the ground state after
the energies of the POr and OL phase have been renormalized
by correlations, for the following reasons: First, as double
occupancies do not occur in the FOr phase or the other
uniform phases with broken symmetry, these phases are not
affected by renormalization and so the sequence of their
energies is fixed. Second, although the energies of the dis-
ordered phases are changed by accounting for correlations,
their sequential order also cannot change if all of them are
subjected to the same renormalization procedure (at least if
the procedure is only sensitive to energies as is the case for the
Gutzwiller method). This holds because for any phase its total
renormalized energy is given by an expression like Eq. (6.1)
with the variational parameter(s) optimized for the lowest
outcome; if the kinetic energy in this equation is replaced by a
lower value associated with a different phase, the total energy
is lowered even if the variational parameter g is kept fixed;
subsequently allowing g to optimize can only lead to a further
lowering of the total energy. This argument should not only
hold for the para-orbital phases but also be valid between the
POr and OL phases, implying that the only competition of
interest should be between the FOr phase and the OL phase.

Numerical results are shown in Fig. 10(a) for the depen-
dence upon density of the total energies of various phases at a
particular value of U , viz., U = 10t . The states other than the
FOr and the OL states are included here just to demonstrate
that they do not play a role, as argued above. Yet, indeed,
a competition between the FOr phase and the OL does take
place and the total energies of these phases are seen to be
quite close to one another. In fact they cross and, whereas the
energy of the OL is well below that of the FOr state over most
of the density range even for this rather large value of U , the
OL phase is unstable against the FOr phase close to n = 1,
as shown in more detail in Fig. 10(b). We point out that the
latter result is different from that obtained for the 3D orbital
Hubbard model (at d = 3), where the OL is stable in the entire
regime of n also at large U [13].

The transition between the OL phase and the FOr phase
can be determined more accurately by calculating at fixed n
the total energy of the OL as a function of U and comparing
this with the U independent total energy of the FOr state,
as shown in Fig. 11. One thus obtains Uc(n) where the two
phases have equal energy. This defines the OL-FOr phase
boundary because the transition is first order, since the states
|�OL〉 and |�FOr〉 cannot transform continuously into one
another because of the globally different structure of |�OL

0 〉
and |�FOr

0 〉. This stands in clear contrast to the paramagnetic-
ferromagnetic transition in the spin Hubbard model, which is
second order because the magnetization can evolve gradually
from the paramagnetic state.
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FIG. 10. Total energy Etot as a function of density n at U = 10t
for the OL state (red line), the real-orbital POr state (blue line),
the real-orbital FOr state (black line), the complex-orbital FOc state
(green line), and the phased complex-orbital AOc̃ state (cyan line):
(a) for OL, POr, FOr, FOc, and AOc̃ in the range 0 � n � 1;
(b) zoom-in on the range close to n = 1 for OL, POr, and FOr only.
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FIG. 11. Total energy Etot as a function of the Hubbard interac-
tion parameter U/t for the OL phase (red line), real-orbital FOr state
(black horizontal line, independent of U ), and real-orbital POr state
(blue line) for fixed n = 0.95.
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FIG. 12. Phase diagram of the OL state versus the FOr state
at d = ∞. The FOr phase is more stable than the OL phase for
U > Uc(n) if n > nc. The vertical red dashed line indicates the phase
boundary for U = ∞ at nc; Uc(1) = 4.5805 t is equal to the critical
value of the interaction for the Brinkman-Rice transition [91] in the
OL state.

The resulting phase diagram of the orbital eg Hubbard
model in the (n, U ) plane as obtained in the Gutzwiller ap-
proximation is shown in Fig. 12. The FOr phase is more stable
than the OL phase for U > Uc(n) if n > nc. Here nc = 0.8746
is the critical value of the particle density at which the energies
of the phases are equal at U = ∞, and below which the OL
is therefore always stable; see Fig. 12. It is obtained from a
numerical comparison using the analytical expressions for the
kinetic energies of the two phases, Eqs. (3.31) and (3.37), and
for the renormalization factor at U = ∞, Eq. (5.33).

Next we consider the intersection of the phase boundary
with the U/t axis at n = 1. With our simple represen-
tation of real ferro-orbital order by the state |�FOr〉 =
|�FOr

0 〉, which has fully saturated orbital order such that
EFOr

tot (1) = EFOr
kin (1) = 0 independent of U , this intersection

necessarily coincides with the Brinkman-Rice transition point
where the energy of the OL attains 0, so Uc(1) = UBR =
4.5805 t . However, as pointed out by Fazekas et al. for the
spin case [11], precisely close to n = 1 a small reduction of
the polarization must occur involving the exponential tails of
the DOSs of the x0 and x̄0 bands. If this would be taken into
account it would produce some lowering of the energy of the
FOr phase thus leading to a slight decrease of Uc(1).

Allowing some polarization of the FOr state at general den-
sity, at the price of creating double occupancy, would similarly
give some energy lowering. However, this is severely limited
by the restriction that upon transferring one particle from the
majority to the minority band the gain in kinetic energy must
exceed U . This condition is only met as long as the Fermi
energy of the minority band is in the exponential tail of the
DOS, i.e., only for a very small fraction of the particles, and
also U � 4t ; compare Fig. 2(b). Thus our use of the fully
ordered state |�FOr〉 neglects at most a minor expansion of
the FOr regime in the phase diagram.

We have not attempted to construct a more sophisticated
trial state for any of the AO phases, such as has been shown
to be important to obtain a good description of the AF phase
in the spin Hubbard model [8,11]. So, strictly we cannot

exclude that alternating orbital order would show up in the
orbital model at and/or close to half-filling by outcompeting
the ferro-orbital order, as occurs between antiferromagnetism
and ferromagnetism in the spin case. However, this seems
unlikely in the orbital case because of the large difference in
kinetic energy between the fully ordered states (see Fig. 6),
viz., by a factor wr/wr,ao = σ

√
2 = √

3 = 1.73 between the
FOr and AOr states, and (because the kinetic energy of the
AOc̃ state is very close to that of the FOc state) by a factor
�wr/wc = σ = √

3/2 = 1.22 between the FOr and AOc̃
states. As shown above, this difference is due to the more effi-
cient use of both pseudospin-conserving and -nonconserving
hopping channels by real ferro-orbital order than by alternat-
ing orbital order. What we have established is that the OL state
is the ground state over most of the (n,U ) phase diagram, as
illustrated by Fig. 12.

Finally, we point out that the phase diagram obtained here
at d = ∞ is qualitatively different from that found before at
d = 3 [13]. In the latter case the lowest-energy ordered FOx
phase was completely eliminated from the phase diagram by
the nonconserving hopping, and the OL phase was the only
phase present. We propose that this is caused by the different
energy ranges: [−3t, 3t] at d = 3 versus [−∞,∞] at d = ∞.
The argumentation is as follows:

Let us consider, at U = ∞, the derivatives with respect to
n of the total energy of the candidate phases (viz. FOr and OL
at d = ∞, FOx and OL at d = 3) at n = 1, as these determine
which phase has the lowest energy in the immediate vicinity
of half-filling; compare Fig. 10. Since d = 0 at U = ∞, we
have EFO

tot (n) = EFO
kin (n) and EOL

tot (n) = q(n)EOL
kin (n) [compare

Eq. (6.1)], and therefore

dEFO
tot

dn
(n) = dEFO

kin

dn
(n) = EFO

F (n), (7.1)

dEOL
tot

dn
(n) = dq

dn
(n)EOL

kin (n) + q(n)
dEOL

kin

dn
(n)

= dq

dn
(n)EOL

kin (n) + q(n)EOL
F (n). (7.2)

Both expressions can be evaluated,
(i) at d = 3: by consulting [13], for the FOx phase using

Eq. (3.23) therein (from which one obtains EFOx
kin (1 − x) �

3t (1 − x + · · · ) and thus EFOx
F (1) = 3t), for the OL phase

making use of the data plotted in Fig. 5 therein [from which
one obtains EOL

kin (1) � −1.52t and EOL
F (1) = 0];

(ii) at d = ∞: for the FOr phase using Eqs. (3.30) in the
present paper with wr = √

3/2/2, for the OL phase using
Eq. (3.37) and so obtaining EOL

kin (1) � −0.5726t ;
(iii) inserting q(1) = 0 and dq/dn(1) = −2.
The results are as follows:

d = 3 :
dEFOx

tot

dn
(1) = 3.00 t, (7.3)

d = 3 :
dEOL

tot

dn
(1) = 3.04 t, (7.4)

d = ∞ :
dEFOr

tot

dn
(1 − x) = 0.8660 inverf (1 − 2x) t,

(7.5)

d = ∞ :
dEOL

tot

dn
(1) = 1.1451 t . (7.6)
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So, for d = 3 the derivative is slightly larger for the OL,
implying that close to n = 1 this is the lowest state and then
will remain so in the entire phase diagram, as we found before
[13]. However, for d = ∞ the slope for the FOr phase initially
diverges [the function inverf (y) → ∞ at y → 1], so the FOr
state is the ground state close to n = 1, as we found in the
present paper. This divergence is not seen in the plots because
it is very steep. Thus already for x = 1 − n larger than 0.03 the
derivative is of order 1 and with further increasing x the FOr
phase begins to be overtaken by the OL. So the reason for the
FOr phase being stable at d = ∞ apparently lies in the expo-
nential tails in its DOS, particle density, and kinetic energy.
As this is a mathematical rather than a physical phenomenon,
the above result suggests that stability of ordered phases at
d = ∞ is mathematically correct but physically spurious, and
that the earlier theoretical result at d = 3 [13] describes the
generic physics.

We thus conclude that regarding the phase diagram the
d = ∞ case is not representative for all dimensions: the d = 3
case is qualitatively different. This actually demonstrates that
the effect of the nonconserving hopping terms themselves is
qualitatively different for different dimensions, which is not
the case for the conserving terms, since FM and AF phases
appear in the phase diagram of the spin Hubbard model in all
dimensions.

VIII. DISCUSSION AND CONCLUSIONS

A. General aspects of the d = ∞ orbital model

A few aspects of the eg orbital Hubbard model at d = ∞
deserve some further comments. They mainly concern the
limitations of the Gutzwiller approach in comparison with
more powerful recent methods, in particular self-consistent
DMFT. As mentioned briefly in Sec. I, the development of
the DMFT approach [62] was made possible by the discovery
by Metzner and Vollhardt that in the limit d = ∞ only on-site
correlations survive [8]. Nowadays DMFT is recognized as a
standard method to study electron correlation effects in the
electronic structure [94–97]. This method has been success-
fully applied, inter alia, to the Falicov-Kimball model [98]
and to nonequilibrium dynamics [99]. The ideas employed
using the Gutzwiller wave function helped to formulate the
DMFT method in spin systems [95].

First of all, one may wonder to what extent the descrip-
tion of the metal-insulator transition, as presented in Sec. VI,
i.e., as a Brinkman-Rice transition, is realistic. An additional
aspect for the orbital model is possible crystal-field split-
tings, but it has been established that orbital-selective Mott
phases occur then for large enough interaction U [100,101].
However, when the orbitals remain equivalent, as in the OL
state considered in the present paper, one may expect that the
transition occurs in a similar way as in the paramagnetic state
in the spin model. So our treatment of the metal-insulator
transition in the orbital model at d = ∞ by the Gutzwiller
approach, leading to the Brinkman-Rice transition, then has
the same status as the treatment of the metal-insulator transi-
tion in the spin model at d = ∞ by that same approach, and
gives valuable insight how correlations induce the system to
approach the localized state [95].

Second, past calculations using the Gutzwiller wave func-
tion have led to a better understanding of the strongly
correlated regime of the Hubbard model. In one dimension the
metal-insulator transition is absent but several quantities have
been calculated exactly [102]: the double occupation, the mo-
mentum distribution, as well as its discontinuity at the Fermi
surface. These quantities determine the expectation value of
the 1D Hubbard Hamiltonian for any symmetric and mono-
tonically increasing dispersion. The Gutzwiller wave function
has also been found to predict ferromagnetic behavior for
sufficiently large interaction U [103,104]. This agrees with
the present result that the orbital Hubbard model also has a
range of ferro-orbital states close to n = 1.

However, it has been known for some time that the
Brinkman-Rice picture of the metal-insulator transition, as
given by the Gutzwiller approach both at d = 3 and at
d = ∞, is oversimplified, in particular yielding a poor de-
scription of the dynamics on the insulating side [105]. Recent
studies of the metal-insulator transition in the spin Hubbard
model at d = ∞ by DMFT have demonstrated the existence
of two different transitions—a metal-to-insulator transition
at Uc2 where the quasiparticle weight becomes zero and an
insulator-to-metal transition at Uc1 where the gap closes, both
first-order—and the occurrence of hysteresis between the
two critical interaction strengths [106–108]. This holds from
T = 0 up to a critical temperature Tc, where Uc1 and Uc2 co-
alesce, while for T > Tc there is a smooth crossover between
metallic and insulating behavior. Notably, the thermodynam-
ics of the hysteresis region was recently explained at the
two-particle level [109]. Obviously, the above more-detailed
understanding of the Mott-Hubbard transition implies that this
transition is considerably more complex than the Brinkman-
Rice picture suggests.

These differences between the Mott-Hubbard transition
in the spin Hubbard model as calculated by DMFT and
the Brinkman-Rice picture are clearly due to the fact that
DMFT is coping more effectively with correlations than
the Gutzwiller approach. One would therefore expect that
a DMFT treatment of the eg orbital Hubbard model would
produce similar changes to the metal-insulator transition as
in the spin Hubbard model, because this transition is typically
a correlation-induced phenomenon. By contrast, one would
expect the more prominent role of the disordered OL in the
phase diagram (as compared to the paramagnetic phase in the
spin case) to remain largely unaffected, because it is not due
to correlations but to the additional kinetic energy provided by
the nonconserving hopping channel.

However, these are just speculations. We emphasize that
orbital models such as that in Eq. (2.9) [or Eq. (2.7)] have
as yet not been studied in the context of self-consistent
DMFT calculations. Therefore, even the corresponding effec-
tive impurity model for such calculations is not known, and
its construction appears not to be entirely trivial. A prime
candidate is a two-orbital Anderson impurity model with
on-site U and self-consistently generated orbital flipping
terms. In view of the overriding importance of the or-
bital nonconserving hopping channel and the associated Cd

symmetry demonstrated above, these features should ap-
parently be incorporated somehow. The only way seems
to be by imposing a specific structure on the bath modes
and their coupling to the impurity. It would be desirable
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if a DMFT treatment along these lines were performed,
both to see if the above speculations on the eg or-
bital Hubbard model are born out and to further explore
the application of the DMFT method to a wider range
of models.

The early ideas of Kugel and Khomskii [19] culminate
in systems where spins and orbitals become almost equiv-
alent. This idealization happens for face-sharing octahedra
and one finds indeed a highly symmetric SU(4) model [110].
So far, studies of such systems have only been performed
theoretically and these have identified an interesting evolution
of spin-orbital entanglement with increasing spin-orbit cou-
pling [66]. In spite of the absence of long-range spin-orbital
order such systems exhibit features typical of those manifest-
ing themselves at phase transitions [111]. The experimental
search for quantum spin-orbital liquids identified FeSc2S4

as a quantum material with long-range entanglement [112].
Such states are primarily realized in the Kitaev materials
where spins and orbitals lose their identity and are strongly
entangled by large spin-orbit coupling [113]. The challenge in
the theory is to find a quantum spin-orbital liquid at infinite
dimension.

B. Summary

Summarizing, we have presented a generalization of the
eg orbital model to infinite dimension d = ∞, preserv-
ing the twofold degeneracy of the orbitals and turning the
lattice symmetry from cubic into hypercubic. It is quite
remarkable that the two-flavor orbital model is manifestly
different from the corresponding spin model at d = ∞ by
the presence of orbital-flipping hopping terms. At the same
time it is somewhat surprising that the two orbital flavors
are equivalent in the limit of d = ∞ when they are so
different in the 3D model, including the physics of the man-
ganites [80]. We have further shown that the Gutzwiller
approximation becomes exact in the limit d → ∞ for the
orbital Hubbard model, in perfect analogy with the spin
Hubbard model.

We conclude that the peculiar features of the orbital Hub-
bard model (2.9) are due to the fact that the extra hopping
terms ∝γ t do not conserve the pseudospin as they mix the
two orbital flavors. They thus induce the following distinctive
features:

(i) There are two classes of single-particle plane-wave
states: those with complex orbitals and those with real or-
bitals, which behave differently. The same holds for the
Fermi-sea-like multiparticle states built from them.

(ii) The single-particle eigenstates of the kinetic energy
form two distinct bands with different dispersions.

(iii) Each such eigenstate carries a nonzero polarization,
i.e., contributes to the pseudospin at all sites. Yet, when
summed over all eigenstates in an energy shell, these contribu-
tions add up to zero. By this mechanism the orbital liquid state
(OL), which is obtained by filling the two bands of single-
particle eigenstates to the same Fermi energy, is unpolarized
at any filling.

The above qualitative features are generic for the eg orbital
Hubbard model, i.e., they hold at any dimension, from d = 3
up to d = ∞.

There are also a number of features induced by the noncon-
serving hopping channel that are to some extent quantitative
and are most pronounced at d = ∞.

(iv) The extra hopping channel lowers the kinetic energy
with respect to the spin case and thus makes the Brinkman-
Rice transition to an insulator occur at a larger value of U .

(v.a) Phases with alternating orbitals are much less favored
than antiferromagnetism for fermions on a bipartite lattice like
the hypercubic lattices considered here, because they ben-
efit relatively less from the pseudospin-conserving channel,
whereas

(v.b) unlike ferromagnetic states in the spin Hubbard
model, ferro-orbital states are not eigenstates of the orbital
Hubbard model (2.9) and benefit energetically more from the
orbital-mixing term.

(v.c) Together this makes the FOr state the main competi-
tor of the orbital liquid phase, and the d = ∞ phase diagram
confirms that FOr order indeed occurs at large U close to
half-filling [114], while the orbital liquid phase is the ground
state elsewhere.

(v.d) The stability of the FOr is apparently due to the ex-
ponential tails in the DOS, particle density and kinetic energy,
and so is specific for d = ∞, whereas at d = 3 the OL phase
is the lowest-energy state in the entire phase diagram.

Perhaps feature (v.a) is the most remarkable quantita-
tive consequence of orbital physics. Having richer hopping
processes both with and without the restriction that the or-
bital flavor is conserved, one has to accept that alternating
orbital order is more difficult to realize than in the spin
model [11]. Feature (v.b) makes it more difficult to re-
alize fully polarized ferro-orbital states, so it may sound
surprising that nevertheless the FOr phase is more sta-
ble than the orbital liquid in a range of electron densities
n � nc. Note that the theorem formulated by Nagaoka [115]
at U = ∞ for the spin case does not apply to the orbital
Hubbard model.

One of the attractive ideas in this field has been the possible
existence of polarized ferro-orbital states with partly filled
complex orbitals [116]. We have established that unfortunately
such states cannot be realized. We have shown that they are
unstable and one has to consider instead FOr states.
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APPENDIX: PROOF THAT THE ORBITAL LIQUID PHASE
IS UNPOLARIZED

Consider the cyclic permutation C defined by

Ck = C(k−m, k−m+1, . . . , k0, . . . , km)

≡ (km, k−m, . . . , k−1, . . . , km−1). (A1)
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Then we have [compare Eqs. (2.15) and (2.16)]

GCk = BCk exp(iφCk ) =
∑

n

cos(Ck)n eiχn

=
∑

n

cos kn−1 eiχn =
∑

n

cos kn eiχn+1

= ei4π/d Gk = Bk ei4π/d exp(iφk ), (A2)

and it follows that BCk = Bk and φCk = φk + 4π/d . The set
of k vectors generated from k by successive permutations is
�(k) = {Cnk | − m � n � m}, so∑

k′∈�(k)

eiφk′ =
∑

n

exp(iφCnk ) =
∑

n

exp[i(φk + 4nπ/d )]

= eiφk
∑

n

ei4nπ/d = eiφk
∑

n

eiχn = 0. (A3)
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[25] L. F. Feiner, A. M. Oleś, and J. Zaanen, Quantum Melting of
Magnetic Order due to Orbital Fluctuations, Phys. Rev. Lett.
78, 2799 (1997).
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spin physics in LiNiO2 and NaNiO2, New J. Phys. 7, 121
(2005).

043134-20

https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/RevModPhys.56.99
https://doi.org/10.1007/BF01313669
https://doi.org/10.1007/BF01324324
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1007/BF01317359
https://doi.org/10.1103/PhysRevB.56.686
https://doi.org/10.1103/PhysRevB.71.144422
https://doi.org/10.1103/PhysRevLett.95.267204
https://doi.org/10.1103/PhysRevLett.98.256402
https://doi.org/10.1103/PhysRevB.96.014420
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.3367/UFNr.0136.198204c.0621
https://doi.org/10.1070/PU1982v025n04ABEH004537
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1038/nphys1535
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevLett.78.2799
https://doi.org/10.1088/0953-8984/10/32/001
https://doi.org/10.1103/PhysRevB.56.R14243
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevLett.85.3950
https://doi.org/10.1143/PTPS.160.155
https://doi.org/10.1038/nature25482
https://doi.org/10.1103/PhysRevB.59.3295
https://doi.org/10.1103/PhysRevB.59.6795
https://doi.org/10.1103/PhysRevB.72.214431
https://doi.org/10.1088/1367-2630/7/1/121


ORBITAL LIQUID IN THE eg ORBITAL HUBBARD … PHYSICAL REVIEW RESEARCH 4, 043134 (2022)

[36] J. Chaloupka and G. Khaliullin, Orbital Order and Possible Su-
perconductivity in LaNiO3/LaMO3 Superlattices, Phys. Rev.
Lett. 100, 016404 (2008).

[37] V. I. Solovyev, Spin-orbital superexchange physics emerging
from interacting oxygen molecules in KO2, New J. Phys. 10,
013035 (2008).

[38] B. Normand and A. M. Oleś, Frustration and entanglement
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