
PHYSICAL REVIEW RESEARCH 4, 043133 (2022)

Discrete chiral symmetry and mass shift in the lattice Hamiltonian approach to the Schwinger model
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We revisit the lattice formulation of the Schwinger model using the Kogut-Susskind Hamiltonian approach
with staggered fermions. This model, introduced by Banks et al. Phys. Rev. D 13, 1043 (1976), contains the
mass term mlat

∑
n(−1)nχ †

n χn, and setting it to zero is often assumed to provide the lattice regularization of
the massless Schwinger model. We instead argue that the relation between the lattice and continuum mass
parameters should be taken as mlat = m − 1

8 e2a. The model with m = 0 is shown to possess a discrete chiral
symmetry that is generated by the unit lattice translation accompanied by the shift of the θ angle by π . While the
mass shift vanishes as the lattice spacing a approaches zero, we find that including this shift greatly improves
the rate of convergence to the continuum limit. We demonstrate the faster convergence using both numerical
diagonalizations of finite lattice systems, as well as extrapolations of the lattice strong coupling expansions.
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I. INTRODUCTION

The 1 + 1 dimensional model of quantum electrodynamics
coupled to a fermion of charge e and mass m, also known
as the Schwinger model [1], is a classic example of quantum
field theory. It is exactly solvable in some limits, and it is a
very useful theoretical laboratory for various important phe-
nomena including the confinement of charge. For m = 0 the
theory is exactly solvable [2–4], reducing to the noninteract-
ing Schwinger boson of mass MS ≡ e/

√
π . The U (1) chiral

symmetry of the massless action is broken by the Schwinger
anomaly. While the massive Schwinger model is not solvable
exactly, a lot is known about it from the small mass and
large mass expansions. In addition to containing the obvious
dimensionless parameter m/e, the massive model may be
generalized to include the θ angle related to introduction of
the background electric field [4]. This parameter, which has
periodicity 2π , is somewhat analogous to the θ angle of the
3 + 1-dimensional gauge theory.

Since the massive Schwinger model is not exactly solv-
able, it is useful to introduce its nonperturbative lattice
regularization. In this paper we will use the Kogut-Susskind
Hamiltonian approach with staggered fermions [5], which
in general resembles models relevant to condensed matter
physics. The lattice Hamiltonian approach was originally ap-
plied to the Schwinger model by Banks, Susskind, and Kogut
[6], who initiated its strong coupling expansion. A major
simplification in 1 + 1 dimensions is that all the local gauge
field degrees of freedom are eliminated through the Gauss
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law constraints. This approach was further developed in many
papers including [7–10].

During the more recent period, the lattice Hamiltonian
approach to the Schwinger model has been attracting renewed
attention. On the theoretical side, it is an excellent testing
ground for advanced numerical techniques using matrix prod-
uct states (MPS) and density matrix renormalization group
(DMRG). Using such approaches, various observables were
computed with high accuracy [11–20]. Furthermore, there
are exciting efforts to implement quantum simulations of the
Schwinger model using various experimental setups [21–28]
(for a review, see [29]).

In this paper we revisit the lattice Hamiltonian for the
Schwinger model,

H = e2a

2

N−1∑
n=0

(
Ln + θ

2π

)2

+ mlat

N−1∑
n=0

(−1)nχ†
n χn

− i

2a

N−1∑
n=0

[χ†
nUnχn+1 − χ

†
n+1U

†
n χn], (1)

with N even. Here, χn and χ†
n are fermion annihilation and

creation operators at site n, while Un = exp(iφn) and U †
n =

U −1
n are unitary operators living on links between site n and

n + 1. The electric field variables, also living on links, are
Ln = −i ∂

∂φn
; in the Hamiltonian (1) they take integer values.

The parameters e, a, θ , and mlat are the electric charge, lattice
spacing, θ angle, and lattice mass parameter, respectively.
The Hamiltonian (1) must be supplemented by the Gauss law
constraints coming from gauge invariance, which are usually
taken to be [9]

Ln − Ln−1 = Qn, Qn ≡ χ†
n χn − 1 − (−1)n

2
. (2)

For more details, see Sec. III and Appendix B.
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Our main new result is that the lattice mass parameter
mlat , which originally [6,9] was not distinguished from the
continuum mass m, should instead be identified as

mlat = m − 1

8
e2a, (3)

where a is the lattice spacing. While this mass shift vanishes
in the continuum limit a → 0, we will show that it greatly
improves the rate of convergence to the continuum limit. The
underlying reason is that the improved lattice definition of the
m = 0 theory respects a discrete remnant of the chiral symme-
try. In the staggered formulation, where each two-component
fermion is defined on a pair of adjacent sides, this discrete chi-
ral symmetry is generated by the lattice translation by a single
site [6,30], and we find that it maps θ → θ + π . This is dis-
tinct from the spatial translation symmetry whose generator
is translation by two sites; it leaves all parameters unchanged.
We will work on a lattice of N sites (N is an even integer) with
periodic boundary conditions, so that these lattice translations
are not broken by the boundary conditions. Let us note that
the lattice definition of the massless Schwinger model that
is symmetric under the translation by one site has already
appeared in a somewhat different guise [10,31]. The modifica-
tion used there involved a different definition of the fermionic
charges Qn than that in (2). In fact, as we demonstrate in
Appendix B, the modification in [10,31] is equivalent to the
original formulation of the model given in (1) and (2), but
with the shifted mass. This allows us to make contact with
the subsequent work on the lattice Schwinger model, which
mostly used the original definition of [6,9] rather than the
modified definition of [10,31].

In Sec. III we show that the strong coupling expansions,
which can be carried out directly in the infinite volume limit
[6,7,9], exhibit excellent convergence to the known continuum
results after the mass shift (3) is taken into account. In Sec. IV
we also show that this improved identification of parameters
leads to a good convergence to the known continuum results
after carrying out exact diagonalizations with moderate values
of N . Besides using the chirally symmetric lattice definition of
the massless theory, we deform the Hamiltonian via turning on
the mass and study the dependence of various quantities on m
and θ .

In the model described above, the fermions have unit
charge and the parameter θ , with periodicity 2π , labels dis-
tinct “theories,” so the translation by one site is not strictly
speaking a symmetry. However, for any positive integer q,
writing Un = (U ′

n)q, Ln = L′
n/q, e = e′q, θ = θ ′/q, mlat =

m′
lat, χn = χ ′

n gives a model written in terms of the primed
variables in which the fermions have charge q. In the charge-q
model, θ ′ has periodicity 2π , which means that, in the original
unit charge theory, the values of θ that differ by 2π/q are
now considered to be different “universes” that are part of the
same theory. As we will explain (see Appendix B), the charge
q model possesses a Zq lattice one-form symmetry. When q
is even, the lattice translation by one site is a true symmetry
of the charge-q massless theory because it changes θ ′ by a
multiple of 2π .

While the papers using the MPS, DMRG, and the experi-
mental realizations of the Schwinger model usually consider
lattices with open boundary conditions (OBC), we will mostly

work with periodic boundary conditions (PBC). The latter
have the advantage of realizing the discrete translation sym-
metries, which play an important role in our paper, but they
also require inclusion of the global U (1) degree of freedom.
We will diagonalize our finite-size lattice Hamiltonian, and
then extrapolate the results to the continuum limit. We will
show that accounting for the mass shift (3) in the lattice
Hamiltonian greatly improves the numerical results both for
PBC and OBC, and we believe that the MPS, DMRG, and
experimental approaches would benefit from including this
shift as well.

The rest of this paper is organized as follows. In Sec. II,
we begin with a brief review of the Schwinger model in the
continuum limit, highlighting various results that will later be
compared with our numerical studies. Additional details on
the continuum Schwinger model are presented in Appendix A.
In Sec. III, we discuss the lattice gauge theory (1), explain
our mass identification (3), and provide a few results in the
strong coupling expansion. Additional details on the lattice
model can be found in Appendix B. In Sec. IV, we present
numerical results for various properties of the lattice model (1)
and compare to the continuum limit. We end with a discussion
of our results in Sec. V.

II. REVIEW OF THE SCHWINGER MODEL ON A CIRCLE

Before studying the lattice Hamiltonian (1), let us mention
briefly a few results that can be obtained in the continuum
limit a → 0 with Na = L kept fixed, without making refer-
ence to the lattice description. The continuum theory is the
Schwinger model, with Lagrangian density (for conventions
and Hamiltonian formulation, see Appendix A)

L = − 1

4e2
FμνFμν − θ

2π
εμνFμν + 	̄(i/∂ − /A − m)	 (4)

defined on a circle of circumference L. For a proper definition,
one should impose boundary conditions. While the gauge
field should obey periodic boundary conditions (up to gauge
transformations), for the fermions one may impose a boundary
condition of the form 	(x + L) = eiφ	(x) for some phase
φ. It turns out that all physical quantities are independent
of the phase φ [32]. The Schwinger model (4) on a circle is
analytically solvable when m = 0 [2–4], when m/e � 1 [33],
or when eL � 1 [34].

When m = 0, as can be seen from bosonization, (4) de-
scribes a free Schwinger boson of mass MS ≡ e/

√
π , obeying

periodic boundary conditions. The single particle dispersion
relation is given by the relativistic energy formula

Ek =
√

M2
S + p2

k, pk = 2πk

L
, (5)

with quantized momentum pk and energy Ek . Due to the
Schwinger anomaly, the theory is independent of θ , as we
review in Appendix A. As eL → 0, all nonzero momentum
states have very large energies, and the remaining spectrum
consists of equally spaced energy levels nMS , corresponding
to n Schwinger bosons at rest. The same spectrum can be
interpreted as arising from a harmonic oscillator effective
potential for the holonomy variable, where this potential is
obtained by integrating out the fermions.
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For m �= 0, the gap MS (m, L) (lowest particle mass) and the
effective number of particles depend nontrivially on m and
θ [33]. For fixed m and θ , MS varies from MS (m, 0) = MS

at L = 0 to an asymptotic value MS (m,∞) attained in the
L → ∞ limit. In [35], this asymptotic value is given in mass
perturbation theory as

M2
S (m,∞) = M2

S + 2eγ mMS cos θ

+ e2γ m2(A + B cos 2θ ) + O(m3), (6)

where A ≈ 1.7277 and B ≈ −0.6599.
Interestingly, in the infinite volume limit, the (m, θ ) phase

diagram contains a line of first order phase transitions at
θ = π and m > mc, where mc is the critical coupling cor-
responding to a second order point [33]. The theory goes
from one vacuum with no symmetry breaking at small m/e
to two vacua with spontaneous symmetry breaking at large
m/e. For m/e � 1, one can understand the two vacua as the
configurations where the effective electric field [defined as
in (A7)] is +1/2 and −1/2, and the electrons of mass m
are the domain walls between the two vacua. The critical
coupling mc can be determined, for instance, from the require-
ment that MS (mc,∞) = 0. The critical exponents ν and β

were computed using various methods, the most precise being
the DMRG studies of [11,12], which gave ν = 0.99(1) and
β/ν = 0.125(5). These values suggest that the critical point
is in the 2d Ising universality class with ν = 1 and β = 1/8.
References [11,12] found mcr/e = 0.3335(2).

Another quantity of interest is the chiral condensate 〈	̄	〉.
At m = 0, it was computed in [32] as a function of L,

〈	̄	〉L = −eγ cos θ

2π3/2
exp

(
2

∫ ∞

0

dx

1 − eμL cosh x

)
. (7)

The same result can be interpreted as the chiral condensate at
temperature T = 1/L for the theory on an infinite line [16].
For small circles we have 〈	̄	〉0 = 0, while for large circles,
the condensate approaches

〈	̄	〉∞ = − eγ

2π3/2
e cos θ ≈ −0.160 e cos θ. (8)

When m �= 0, the condensate 〈	̄	〉L can no longer be
computed analytically, but the expectation is that it is ap-
proximated by the formula (7) at small L, while at large L
it approaches an asymptotic value that depends on m and θ .

III. LATTICE FORMULATION

A. Gauss’s law and states

Let us now turn to the study of the lattice Hamiltonian
(1). The (anti-)commutation relations obeyed by the operators
appearing in (1) are

[Ln,Um] = δnmUn, [Ln,U †
m] = −δnmU †

n , {χn, χ
†
m} = δnm,

(9)
with all other (anti-)commutators not explicitly written van-
ishing. It is understood that the Hamiltonian acts on a Hilbert
space with a vacuum state |vac〉 that is annihilated by all Ln

and χn.
In explicit computations, it is useful to consider a basis of

simultaneous eigenstates of the Ln operators and the occupa-
tion number operators Nn = χ†

n χn. One starts with the Fock

vacuum |vac〉, which by assumption has Ln = Nn = 0 for all
n. On it, we can act with χ†

n , Un (or U †
n = U −1

n ) to construct
basis states

|n0, n1, . . . nN−1〉 |
0, 
1, . . . , 
N−1〉 =
N−1∏
m=0

(χ†
m)nmU 
m

n |vac〉
(10)

with Lm = 
m and Nm = nm ∈ {0, 1}. As mentioned in the
Introduction, gauge invariance requires the Gauss law (2)
and that Ln ∈ Z (see Appendix B for a detailed explanation),
which means that out of all the states of the form (10), only
those with


m − 
m−1 = nm − 1 − (−1)m

2
and 
m ∈ Z (11)

are physical. In particular, note that with periodic boundary
conditions 
N = 
0, so adding up all the constraints in (11)
one obtains the half-filling condition

∑N−1
m=0 nm = N

2 .

B. Enhanced Z2 chiral symmetry

Let us now justify the proposed identification (3) between
the lattice mass mlat and the continuum parameter m. As ex-
plained in detail in Appendix A, in the continuum Schwinger
model at m = 0, the Schwinger anomaly implies that the
Hamiltonians Hθ and Hθ ′ are unitarily equivalent for any θ

and θ ′. In particular, one can show that there exists a family
of unitary operators Vα such that VαHθV−1

α = Hθ−2α . We now
show that at the special value mlat = − e2a

8 the transformation
that translates the lattice by one site maps Hθ to Hθ+π in an
analogous way.

Indeed, let us consider the unitary operator V that imple-
ments this translation by one site, namely

VχnV−1 = χn+1, VUnV−1 = Un+1. (12)

It follows that the charges Qn on each link defined in (2)
transform to

VQnV−1 = Qn+1 + (−1)n. (13)

In order for the Gauss law (2) to be obeyed, the flux operators
Ln should transform as

VLnV−1 = Ln+1 + 1 + (−1)n

2
+ 
 (14)

where 
 is a constant. We need to take 
 ∈ Z so that the
eigenvalues of the Ln operators are still integers after the
one-site translation, and we can choose 
 = 0 without loss of
generality. An explicit computation using (12), (14), and the
Hamiltonian (1) shows that

VHθV−1 = Hθ+π − 2mlat

N−1∑
n=0

(−1)nχ†
n χn

+ e2a

2

N−1∑
n=0

(
(−1)nLn+1 + 1

4

)
. (15)

Using the Gauss law (2), we see that the last two terms pre-
cisely cancel provided that mlat is taken to be

mlat = −e2a

8
. (16)
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Thus, we have shown that at this special value of mlat,
VHθV−1 = Hθ+π on the gauge-invariant states, so the Hamil-
tonians Hθ and Hθ+π are unitarily equivalent. This should
be interpreted as the discretized analog of the fact that in
the continuum limit, the Hamiltonians with any two values
of θ are unitarily equivalent, as shown in Appendix A. In
particular, the operator V here is the discretized analog of
V−π/2 defined in (A15).

Since the value (16) should be interpreted as the massless
point of the lattice model, the identification in (3) between
the continuum mass m and the lattice mass mlat follows. This
choice yields the same continuum limit at m = mlat, but, as
we show in Sec. IV, the choice (3) leads to a far faster conver-
gence towards the continuum as a function of N .

C. Strong coupling expansions

One of the first uses of the lattice Hamiltonian approach
to the Schwinger model [6] was for the strong coupling ex-
pansions in powers of y = 1/(ea)4, which can be developed
directly in the N → ∞ limit. In [6], the expansions were
performed to order y2 with coefficients that are functions of
μ = 2mlat/(e2a), but the most extensive such results to date
may be found in [9]. For example, the mass gap E1 − E0 =
e2a
2 (ω1 − ω0), is derived from

ω1 − ω0 = δω

= 1 + 2μ + 2y

1 + 2μ
− 2(5 + 2μ)y2

(1 + 2μ)3

+ 4(59 + 68μ + 24μ2 + 4μ3)y3

(1 + 2μ)5(3 + 2μ)
+ O(y4). (17)

In order to describe the theory with discrete chiral symmetry,
we set μ = −1/4 to obtain

δω = 1

2
+ 4y − 72y2 + 2224y3 + O(y4). (18)

To order y2 this agrees with [10]. We extrapolate (18) to large
y assuming the asymptotic behavior ∼y1/4 required by the
existence of the continuum limit. This is accomplished by
applying the (2,1) Padé approximant to (δω)4, which produces
a smooth function δω(y),

δω(y) ≈
(

1
16 + 95y

24 + 152y2

3

1 + 94y
3

) 1
4

. (19)

This method of extrapolation leads to the estimate

E1 − E0 ≈
(

19

188

)1/4

e ≈ 0.56383e , (20)

which is very close to the exact continuum result MS =
e/

√
π ≈ 0.56419e. The 0.06% agreement of our extrapola-

tion with the continuum limit is much better than what was
obtained in [9] for μ = 0. This illustrates the importance
of using the Hamiltonian with discrete chiral symmetry to
describe the massless Schwinger model. Closely related re-
sults may be found in [10], although the agreement with the
continuum limit found there was not as good.

To obtain the strong coupling expansion of the ground state
expectation value of 	̄	, we may differentiate with respect to

m the expression for the ground state energy,

〈	̄	〉 = 1

Na

∂E0

∂m
= 1

Na

∂ω0

∂μ
. (21)

Evaluating this at the chirally symmetric point μ = −1/4, we
obtain from [9]

−a〈	̄	〉 = 1

2
− 8y + 288y2 − 306688

25
y3 + O(y4). (22)

The coefficient of y2 does not agree with [10] (we have
checked some of the strong coupling results in [9]). Using
the results up to O(y5) [9] we extrapolate to large y assuming
the asymptotic behavior ∼y−1/4 required by the existence of
the continuum limit. The (2, 3) Padé approximant of (22)
raised to the fourth power gives the continuum estimate
〈	̄	〉 ≈ −0.164e, which is close to the exact result (8) in the
massless Schwinger model.

IV. NUMERICAL RESULTS

We now discuss the results we obtain by numerical diag-
onalization of (1). In particular, we exhibit the improvement
in the convergence of the results to the continuum limit as a
result of the mass shift discussed in Sec. III B.

In order to make (1) into a finite problem, we first have to
truncate the infinite basis of states (B13). For a lattice of N
sites, there are

( N
N/2

)
ways to assign the occupation numbers

nm. For each of these, the average electric field

E ≡ 1

N

N−1∑
n=0

Ln (23)

is E ∈ E0 + Z, where E0 is determined by the occupation
numbers as

E0 ≡ − 1

N

N−1∑
n=0

nQn (mod 1). (24)

[See also the discussion that leads to (B15) in Appendix B.]
Since the Hamiltonian contains a term proportional to E2 [see
(B12)], we can get a very good approximation to the low-lying
spectrum by keeping only the few lowest-magnitude values of
E . In fact, as we increase the truncation of possible E values
the low-lying spectrum converges exponentially fast, and we
are able to take a fixed truncation without any meaningful
loss in accuracy of the results [36]. For all the plots in this
paper, we truncate the possible values to E ∈ [−5.5, 5.5]. We
consider lattices of up to N = 16 sites, which corresponds to a
basis of 11

(16
8

) ≈ 1.4 × 105 states. We use SLEPc to diagonal-
ize these large matrices [37–40], and a single diagonalization
for 16 sites typically takes a few CPU minutes. The majority
of our results are already well converged at N = 10, with
a basis of 2772 states, for which it is perfectly feasible to
perform the diagonalizations on a laptop computer.

To compare with known exact and perturbative results, we
will study three observables: the mass gap, the chiral conden-
sate 〈	̄	〉, and the electric field density 〈E〉.

043133-4



DISCRETE CHIRAL SYMMETRY AND MASS SHIFT IN … PHYSICAL REVIEW RESEARCH 4, 043133 (2022)

FIG. 1. The spectrum of excitations above the ground state for
the massless Schwinger model as a function of L. We reproduce the
Schwinger mass MS = e√

π
and observe the beginning of a tower of

multiparticle states, along with a single-particle state with nonzero
momentum obeying (5) (orange dashed). For each point, we compute
the mass at N = 10, 12, 14, 16 and then extrapolate to N → ∞ and
plot 1σ confidence intervals.

A. Mass gap

Figure 1 shows the spectrum of excitations above the
ground state in the model with m = 0 as a function of L. For
each point, we compute the mass at N = 10 through N = 16
and then extrapolate to N → ∞ and plot 1σ confidence in-
tervals. We can clearly see a tower of n-particle states of
zero momentum and a one-particle state of minimal nonzero
momentum.

In Fig. 2, we show the close agreement between our nu-
merical results for the mass gap MS and the L = ∞ value (6)
at θ = 0 and small m. We work at fixed Le = 8, for which the
mass gap has nearly converged to its L → ∞ limit. Even with
only ten sites, we find remarkably good agreement between
our numerical results and perturbation theory. We also show
the results we would obtain without using the mass shift

FIG. 2. The mass gap as a function of m/e at θ = 0 and Le = 8.
We show numerical results using N = 4 and N = 10 lattice sites,
both with and without the mass shift. We compare with the perturba-
tive expression (6) given in [35], showing that the numerics with the
mass shift converge much more quickly.

FIG. 3. The chiral condensate as a function of L with m = θ = 0.
We show numerical results using N = 4 and N = 10 lattice sites, and
both with and without the mass shift. We compare with the exact
result (7), showing that the numerics with the mass shift converge
much more quickly.

introduced in this paper, which converge much more slowly
to the continuum limit.

B. Chiral condensate

We can compute the chiral condensate 〈	̄	〉 numerically
as the expectation value of the mass operator in the ground
state. In Fig. 3, we plot the exact value of the condensate
as a function of L along with our numerical results. For the
numerics, we give examples with N = 4 and N = 10 lattice
sites, and both with and without the mass shift. Again, we
find that the mass shift dramatically improves convergence
towards the exact result.

In Fig. 4, we fix Le = 8 and plot 〈	̄	〉 as a function of θ .
We see that our numerics, extrapolated to large N as in Fig. 1,
reproduce the exact cos θ dependence in (7) extremely well.
In particular, even on a finite lattice we have 〈	̄	〉(θ + π ) =
−〈	̄	〉(θ ), as a consequence of the discrete chiral symmetry
that maps θ �→ θ + π . This property would not hold on a
finite lattice without the shifted definition of mlat.

FIG. 4. The chiral condensate as a function of θ with m = 0 and
Le = 8. The 1σ confidence intervals plotted come from extrapolating
the values at N = 10, 12, 14, 16 to the continuum limit N → ∞. The
numerical results exhibit the cos θ dependence in (7).
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FIG. 5. The electric field condensate as a function of θ for
m/e = 0.1 and Le = 8. We show numerical results using N = 4 and
N = 10 lattice sites, and both with and without the mass shift. We
compare with the perturbative expansion given in [35], showing that
the numerics with the mass shift converge much more quickly.

C. Average electric field

Another quantity of interest is the average electric field
condensate 〈E〉. At m = 0 and θ = 0, the ground state has zero
electric field on every link, and so 〈E〉 = 0. Since the massless
Schwinger model is independent of θ (see Appendix A), we
have 〈E〉 = 0 for m = 0 and any θ . The value of 〈E〉 is given
in mass perturbation theory in [35] as

〈E〉/e = eγ

√
π

m

e
sin(θ ) + e2γ

4π
E+

(m

e

)2
sin(2θ ) + O(m3),

(25)
where E+ ≈ −8.9139.

In Fig. 5, we plot the electric field condensate as a function
of θ at m/e = 0.1 and Le = 8 (large enough that the results are
nearly converged to their L → ∞ limit). Again we see that the
numerics with the mass shift converge much more quickly.

D. Phase transition

The critical mass mc for the phase transition discussed
in the introduction has been computed before via finite-size
scaling on the lattice, without the mass shift introduced in this
paper [8]. Their approach is to first fix the lattice spacing a,
and calculate the scaled mass gap ratio as a function of the
mass,

α(N, m; a) ≡ NM(N, m; a)

(N + 2)M(N + 2, m; a)
. (26)

They then determine the masses m∗(N, a) for which
α(N, m∗(N, a); a) = 1, and extrapolate to m∗(∞, a). Finally,
by taking a → 0, they recover an estimate of the critical mass
in the continuum limit. This method is discussed in more
detail in [41].

We repeat their analysis using our shifted lattice mass.
Figure 6 shows the significantly improved convergence as a
function of the lattice spacing a. By extrapolating our results
to the a → 0 continuum limit, we find

mc/e = 0.333 ± 0.005, (27)

consistent with the value mc/e = 0.3335 ± 0.0002 obtained
from DMRG studies [11,12].

FIG. 6. (Top) The finite-size scaling estimation of the critical
mass mc, shown both with and without the mass shift introduced
in this paper. Without the mass shift, we recover from a linear
extrapolation the result of [8], mc/e = 0.325 ± 0.02. With the mass
shift, the linear term in a appears to go to zero, and by fitting a model
of the form c0 + c2(ea)2 + c4(ea)4 we find mc/e = 0.333 ± 0.005.
(Bottom) We compute the lowest two translationally invariant states
in the model at the critical mass in units of the inverse circle radius,
and compare with the lowest two operators in the 2D Ising CFT.
Extrapolating the lattice results to L → ∞ gives �σ = 0.14(4) and
�ε = 1.09(11), consistent with the 2D Ising values �σ = 1/8 and
�ε = 1.

We can also estimate the scaling dimensions of opera-
tors in the 2D Ising CFT at the critical point by calculating
the translationally-invariant spectrum for m = mc in units of
the inverse radius of the circle. This statement is true in the
L → ∞ limit, where the theory reaches the true IR limit.
At finite L, we see good agreement with the dimension of
the lowest operator in the 2D Ising model, �σ = 1/8, and
consistency with the second-lowest operator at �ε = 1. The
critical exponents are derived from these scaling dimensions
as

β = �σ

2 − �ε

= 1

8
, ν = 1

2 − �ε

= 1. (28)

E. Open boundary conditions

We have shown that the mass shift (3) greatly improves
the rate of convergence to the continuum limit in the lattice
Hamiltonian approach [6,9] to the Schwinger model. This
is true both for the numerical results with periodic bound-
ary conditions on finite lattices and for the strong coupling
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FIG. 7. (Top) The lowest energy excitation as a function of L
at θ = 0 and m = 0, on a lattice with open boundary conditions
with N = 10 and N = 16 lattice sites both with and without the
mass shift (3). Including the mass shift significantly improves the
convergence to (29) as a function of N also in the case of open
boundary conditions. (Bottom) A more detailed look at the im-
proved convergence in N to the continuum result from (29) at
fixed Le = 10.

expansions on the infinite lattice. One may also wonder to
what extent the mass shift improves the results for the open
boundary conditions (OBC) with the numerically accessible
values of lattice size N . A simplification for the OBC is that
there is no longer a bosonic U (1) rotator variable, and the
model simply reduces to a fermionic chain with long-range
interaction. On the one hand, the OBC certainly violate the
lattice translation symmetry that realize the discrete chiral
symmetry of the massless theory; on the other, for sufficiently
large N , the theory should be close to the infinite lattice limit
where the discrete chiral symmetry singles out the massless
Schwinger model.

In Fig. 7 we present numerical results for the mass gap with
OBC. We show estimates for the mass gap obtained both with
and without the mass shift, for N = 10 and N = 16 lattice
sites and at various system sizes L = Na. For a fixed system
size with open boundary conditions, the wavefunction of the
Schwinger boson in the continuum model should vanish at
x = 0 and x = L, so the energy of the lowest state is

E (L) =
√

M2
S +

(π

L

)2
. (29)

With the mass shift (3) we observe a significant improve-
ment in the convergence of the lattice results towards (29) as a
function of N . This encourages us to believe that the mass shift
with be valuable in the further work on models with OBC,
both numerical and experimental.

V. DISCUSSION

Our results show that the Kogut-Susskind Hamiltonian
lattice gauge theory can be a precision numerical tool for
studying models in 1 + 1 dimensions even before the more
advanced methods involving matrix product states and DMRG
are applied. In view of these encouraging results, it would be
interesting to explore other models using the lattice Hamil-
tonian approach. For example, in the multiflavor Schwinger
model there is a mass shift analogous to (3): mlat = m −
Nf e2a/8. When the number of flavors Nf is odd, then the
m = 0 theory is invariant under the translation by one lat-
tice unit accompanied by the shift of θ by π . When Nf is
even, then θ remains unchanged so that the translation by one
lattice unit is a true symmetry. In particular, the two-flavor
model [33] should be quite accessible numerically (for recent
results using Euclidean lattice theory, see [42]). We also plan
to use the Hamiltonian lattice theory to study SU (N ) gauge
theory coupled to an adjoint Majorana fermion. In this case,
already in the 1990s there was a multitude of numerical results
available from the light-cone Hamiltonian approach [43–45].
In recent years there has been renewed interest in adjoint
QCD2 [46–48], and we plan to apply the lattice Hamiltonian
approach to models of this type on a spatial circle.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation under Grants No. PHY-1914860, No.
PHY-2111977, No. PHY-2209997, and No. PHY-1748958,
and by the Simons Foundation Grants No. 488653 and No.
917464. I.R.K. thanks the Kavli Institute of Theoretical
Physics for its hospitality during the workshop “Confinement,
Flux Tubes, and Large N ,” where some of this work was
carried out.

APPENDIX A: MORE DETAILS ON THE CONTINUUM
SCHWINGER MODEL

1. Conventions and Hamiltonian formulation

When writing the Lagrangian density (4), we used
the convention where (x0, x1) = (t, x), {γ μ, γ ν} = 2ημν =
2diag{1,−1}, and 	̄ = 	†γ 0. We also took ε01 = −ε10 = 1
and Fμν = ∂μAν − ∂νAμ. It is useful to also define the chirality
matrix γ 5 = γ 0γ 1.

In the gauge A0 = 0, the Hamiltonian that follows from the
Lagrangian density (4) is

H =
∫ L

0
dx

[
e2

2

(
E (x) + θ

2π

)2

− i	†(x)γ 5(∂1 + iA1(x))	(x) + m	†γ 0	

]
, (A1)
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where E (x) ≡ ∂L
∂Ȧ1

is the electric field. The canonical (anti-
)commutation relations are

{	α (x), 	†
β (y)} = δαβδ(x − y),

[E (x), A1(y)] = −iδ(x − y), (A2)

with all other (anti-)commutators vanishing.
The Hamiltonian (4) is invariant classically under gauge

transformations that act as 	(x) → ei�(x)	(x) and A1(x) →
A1(x) − ∂x�(x) for any �(x) such that the U (1) group
element ei�(x) is well defined on the circle. Quantum mechan-
ically, this transformation is implemented by conjugation by a
unitary operator

U� = exp[−i
∫

dx (E (x)∂x�(x) + ρ(x)�(x))], (A3)

where ρ(x) is the charge density operator

ρ(x) ≡ 	†(x)	(x). (A4)

Indeed, the commutation relations (A2) imply that
U�	(x)U−1

� = ei�(x)	(x) and U�A1(x)U−1
� = A1(x) −

∂x�(x).
As in any gauge theory, the physical (gauge-invariant)

states are those for which U� = 1 for any �. When �(x) is
infinitesimal, this condition implies the Gauss law

∂xE (x) = ρ(x), (A5)

which should be imposed as a constraint on all physical states.
The Gauss law (A5) is not equivalent to U� = 1 for all �;
one should also impose invariance under “large” gauge trans-
formations, for which �(x) is not a well-defined function on
the circle, but ei�(x) is. An example is �large(x) = 2πx/L. The
transformation corresponding to �large is implemented by the
unitary operator

U�large = e− 2π i
L

∫ L
0 dx (E (x)+xρ(x)) = e−2π iE (0), (A6)

where the second equality follows from (A5) and integration
by parts. Thus, invariance under large gauge transformations,
U�large = 1, is equivalent to the requirement E (0) ∈ Z. This,
in turn, is equivalent to the condition that E (x) ∈ Z for any
given x.

Note that while the electric field E (x) is always an inte-
ger, the parameter θ/2π can be interpreted as a fractional
background electric field, as can be seen from the fact that
the electric field density in the Hamiltonian (A1) involves the
“effective” electric field

Eeff(x) = E (x) + θ

2π
. (A7)

2. Chiral symmetry at m = 0

In the rest of this section, let us set m = 0. When m = 0,
the Hamiltonian (A1) is invariant classically under an axial
transformation under which 	(x) → eiαγ 5

	(x), with α being
a transformation parameter. Using Noether’s theorem, we can
construct the axial current

jμ5(x) ≡ 	̄(x)γ μγ 5	(x) = 	†(x)γ 0γ μγ 5	(x) (A8)

and the associated axial charge

Q5 ≡
∫ L

0
dx j05(x). (A9)

Quantum mechanically, the charge Q5 is not conserved (it
does not commute with the Hamiltonian) due to the Schwinger
anomaly. The most basic statement of this anomaly is that,
while the axial charge density j05(x) = 	†(x)γ 5	(x) com-
mutes with A1(y) and has the appropriate commutation
relations with the fermions,

[ j05(x), A1(y)] = 0, [ j05(x), 	(y)] = −δ(x − y)γ 5	(x),

[ j05(x), 	†(y)] = δ(x − y)	†(x)γ 5, (A10)

it does not actually commute with the electric field E (y).
This can be seen as a regularization effect: if we point split
the product of operators in (A8) while preserving gauge
invariance

j05
reg(x) = 	†(x + ε)γ 5	(x)e−i

∫ x+ε

x dx′ A1(x′ ), (A11)

then, because A1(x′) does not commute with E (y), we would
find that[

j05
reg(x), E (y)

] = j05
reg(x) ×

{
1 if y ∈ (x, x + ε),
0 otherwise. (A12)

But j05
reg(x) itself is a divergent quantity in the ε → 0 limit,

where the divergence comes from adding up the axial charge
densities of the fermions in the Dirac sea: j05

reg(x) = i
πε

+
O(ε0) [34]. Combining this result with (A12) and taking
ε → 0, one obtains the commutator

[ j05(x), E (y)] = i

π
δ(x − y). (A13)

This equation can also be derived from the bosonized descrip-
tion of the model [49].

From (A13), various other facts related to the anomaly
can be derived. For instance, taking the commutator with the
Hamiltonian, one obtains

i[H, j05(x)] = −∂x j15 + e2

π

(
E (x) + θ

2π

)
, (A14)

where j15(x) = 	†(x)	(x). This equation is nothing but the
equation ∂μ jμ5 = e2

π
(E (x) + θ

2π
) describing the nonconserva-

tion of the axial current.
To prove independence of the spectrum on θ , let us define

the unitary operator implementing a finite axial transforma-
tion with parameter α,

Vα ≡ eiαQ5 . (A15)

From the definition (A9) and the commutation relations (A10)
and (A13), we can then find

[Q5, H] = ie2

π

∫
dx

(
E (x) + θ

2π

)
,

[Q5, [Q5, H]] = − e2

π2
L. (A16)

Writing Hθ instead of H in order to emphasize the value of the
θ parameter, the commutation relations (A16) as well as the
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fact that additional commutators with Q5 vanish, implies

VαHθV−1
α = Hθ + iα[Q5, Hθ ] − α2

2
[Q5, [Q5, Hθ ]]

= Hθ−2α. (A17)

Thus, the Hamiltonians with different values of θ are equiva-
lent up to the unitary transformation by Vα , and therefore the
energy spectrum is independent of θ . The Schwinger anomaly
can therefore be used to set θ = 0.

APPENDIX B: MORE DETAILS ON THE LATTICE MODEL

1. Gauge symmetry and Gauss law

Classically, the Hamiltonian (1) is invariant under gauge
transformations that act as

χn → Vnχn, Un → VnUnV
†

n+1,

χ†
n → V †

n χ†
n , U †

n → Vn+1U
†
n Vn, (B1)

where the Vn = eivn are phases denoted collectively by V .
Quantum mechanically, such an action is represented by con-
jugation by a unitary operator

UV = exp[i
N−1∑
n=0

( − vnQn + (vn − vn+1)Ln)], (B2)

where Qn are the charge operators introduced in (2). In-
deed, the fermion anticommutation relations in (9) imply
[Qn, χm] = −δnmχn and [Qn, χ

†
m] = δnmχ†

n , which, together
with the commutators between Ln and Um and U †

m imply
that

UV χnU−1
V = Vnχn, UV UnU−1

V = VnUnV
†

n+1,

UV χ†
nU−1

V = V †
n χ†

n , UV U †
n U−1

V = Vn+1U
†
n V †

n , (B3)

reproducing (B1).
Physical states must obey UV = 1 for any V . If the vn are

all infinitesimal, this means that the exponent in (B2) must
vanish identically on gauge invariant states. This is equivalent
to

N−1∑
n=0

vn(Ln − Ln−1 − Qn) = 0 (B4)

for any vn, which in turn implies the Gauss law (2). As in
the continuum case, the Gauss law constraint does not imply
UV = 1, and we also need to impose invariance under large
gauge transformations. In this case, we can take, for instance,
Vn,large = eivn,large with vn,large = 2πn/N . We have

UVlarge = exp

[
−2π i

1

N

N−1∑
n=0

(nQn + Ln)

]
. (B5)

Using (2), we find

UVlarge = e−2π iLN−1 . (B6)

Thus, invariance under large gauge transformations also im-
plies that LN−1 ∈ Z when acting on any physical state. Here,
the (N − 1)st site was chosen arbitrarily, so we must have that

e2π iLn = 1 (B7)

when acting on gauge invariant states, for any given n. In other
words, the operators Ln should have integer eigenvalues.

A related property of the model (1) is that the theo-
ries in which θ differs by a multiple of 2π are equivalent.
Physically, this is because θ/2π should be interpreted
as the fractional part of the effective electric field [see
also (A7)]

Ln,eff = Ln + θ

2π
. (B8)

As in the continuum model the fact that this is the effec-
tive electric field can be seen from the first term in the
Hamiltonian (1). A more mathematical derivation of the fact
that θ has period 2π is as follows. Consider the holonomy
H ≡ U0U1 · · ·UN−1, which is a unitary operator. Conjugation
by it shifts all Ln by −1, which implies that

HHθH−1 = Hθ−2π . (B9)

Thus, the Hamiltonians with θ parameters that differ by mul-
tiples of 2π are unitarily equivalent.

2. Eliminating the gauge field

If we were working with OBC, Eq. (2) would allow us to
completely integrate out the gauge field. With PBC, however,
the best we can do is to eliminate all gauge degrees of free-
dom except for the holonomy variable and its conjugate, the
average electric field.

Indeed, we can solve (2) by introducing the average electric
field

E ≡ 1

N

N−1∑
n=0

Ln, (B10)

and expressing all the link variables in terms of E and the site
charges Q,

Ln = E + 1

N

N∑
m=1

(m − Nθm>n)Qm,

where θm>n ≡
{

1 if m > n
0 otherwise. (B11)

At the same time, we can perform a unitary transforma-
tion on the Hilbert space, using an appropriate UV that sets
Un = U for all n. The variable U N is canonically conjugate to
E ; the two obey the commutation relation [E,U N ] = U N . The
Hamiltonian then becomes

H = e2Na

2

(
E + θ

2π

)2

+ mlat

∑
n

(−1)nχ†
n χn

− i

2a

N−1∑
n=0

[χ†
nUχn+1 − χ

†
n+1U

†χn]

− e2a

4N

∑
k

∑
k′

|k − k′|(N − |k − k′|)QkQk′ . (B12)

This is a simplified model that is equivalent to the original
Hamiltonian (1).

Instead of (10), one can now consider a basis of states la-
beled by the site occupation numbers nm ∈ {0, 1} and average
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electric field E ∈ 1
N Z,

|E ; n0n1 · · · nN−1〉 ≡
(

N−1∏
m=0

(χ†
m)nm

)
U NE |vac〉 . (B13)

All that remains of (2) is the global constraint, implied by
consistency of PBC,

N−1∑
m=0

nm = N

2
. (B14)

In addition, one should also impose invariance under the large
gauge transformations as in (B7). For n = 0, this implies

E + 1

N

N−1∑
m=0

mQm ∈ Z. (B15)

Thus, for gauge-invariant states, E cannot be any multiple of
1/N , but instead only those multiples of 1/N that obey (B15).

3. Comments on the charge q model

As mentioned in the Introduction, if we made the redefini-
tions

Un = (U ′
n)q, Ln = L′

n/q, e = e′q, θ = θ ′/q,

mlat = m′
lat, χn = χ ′

n, (B16)

then, in terms of the primed variables, we obtain a model in
which the fermions have charge q. The Hamiltonian of the
charge-q model is

H ′ = e′2a

2

N−1∑
n=0

(
L′

n + θ ′

2π

)2

+ m′
lat

N−1∑
n=0

(−1)nχ ′†
n χ ′

n

− i

2a

N−1∑
n=0

[
χ ′†

n U ′q
n χn+1 − χ

′†
n+1(U ′†

n )qχ ′
n

]
, (B17)

and the Gauss law is

L′
n − L′

n−1 = Q′
n, Q′

n ≡ q

[
χ ′†

n χ ′
n − 1 − (−1)n

2

]
. (B18)

Classically, the gauge transformations that leave H ′
invariant are

χ ′
n → (V ′

n )qχ ′
n, U ′

n → V ′
nU ′

nV
′†

n+1,

χ ′†
n → (V ′†

n )qχ ′†
n , U ′†

n → V ′
n+1U

′†
n V ′

n, (B19)

and, just as in the unit charge case, they are implemented by
the unitary operator

U ′
V ′ = exp

[
i

N−1∑
n=0

(−v′
nQ′

n + (v′
n − v′

n+1)L′
n)

]
, (B20)

where V ′
n = eiv′

n . The requirement that U ′
V ′ = 1 on the gauge-

invariant states implies the Gauss law (B18), as well as the
fact that e2π iL′

n = 1 for any given n. Thus, the electric fields L′
n

must be integer.
An interesting feature of the charge-q model is that it has

a lattice Zq one-form symmetry generated by the family of

unitary topological operators

W ′
n ≡ e2π iL′

n/q. (B21)

The symmetry is Zq because (W ′
n)q = e2π iL′

n = 1 on gauge-
invariant states. The operators W ′

n essentially measure the
electric field mod q. They are “topological” (i.e., independent
of n) because the fermions have charge q, and so the electric
field mod q is the same on all sites. Thus W ′

n = W ′
m for any

n, m, when acting on physical states. It is also not hard to see
that for any given n, we have

W ′
nH ′(W ′

n)−1 = H ′ ⇐⇒ [W ′
n, H ′] = 0, (B22)

implying that W ′
n generate a symmetry. The last equation fol-

lows from the conjugation relations

W ′
nχ

′
m(W ′

n)−1 = χ ′
m, W ′

nL′
m(W ′

n)−1 = L′
m,

W ′
nU

′
m(W ′

n)−1 = e2π iδnm/qU ′
m, (B23)

as well as the hermitian conjugates of these expressions, and
the expression for H ′ in (B17).

Because W ′
n commute with the Hamiltonian, they are

simultaneously diagonalizable, so the spectrum of the Hamil-
tonian splits into sectors where W ′

n = e2π ir/q, with r =
0, 1, . . . , q − 1. The sector of a given r has been referred to
as a “universe” in the context of continuum theories [47–50]
(see also [51,52]). In terms of the original model before the
rescaling (B16), the rth universe corresponds to the theory
with θ = (2πr + θ ′)/q. While in the unit charge model, the
values of θ = (2πr + θ ′)/q, with r = 0, 1, . . . , q − 1 corre-
spond to different theories with distinct Hamiltonians, in the
charge q model all these Hamiltonians are combined into a
block-diagonal Hamiltonian of a single theory.

The discussion so far applies to the charge-q model with
any m′

lat. When m′
lat = −q2e2a/8, we can again define unitary

operators V ′ that implement the translation by one site. As in
the unit charge case, one can show that

V ′H ′
θ ′V ′−1 = H ′

θ ′+qπ . (B24)

Note that as in the unit charge model, conjugation by the
holonomy H′ = U ′

0U
′
1 · · ·U ′

N−1 shifts all L′
n by −1. From the

definition of the Hamiltonian (B17) it follows that

H′H ′
θ ′H′−1 = H ′

θ ′−2π . (B25)

Thus, when q is even, the shift in θ ′ in (B24) can be un-
done by conjugation with (H′)q/2, so in this case the unitary
transformation implemented by V ′(H′)q/2, namely translation
by one site combined with a shift of the electric fields by −q/2
is a Z2 symmetry of the Hamiltonian. This is a Z2 subgroup
of the Zq chiral symmetry of the charge-q Schwinger model
[47,51,53].

4. Comparison with [10]

Let us now go back to the q = 1 model and explore the
connection between this model and that presented by Berruto
et al. in [10]. Reference [10] considered the lattice Hamil-
tonian (written after redefining eL → e, x → n, ψn → χ̃n,
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eiAn → Ũ †, En → −L̃n, and t = −2aw),

HB = e2a

2

∑
n

L̃2
n − iw

∑
n

(χ̃†
nŨnχ̃n+1 − χ̃

†
n+1Ũ

†
n χ̃n), (B26)

which is the same as our Hamiltonian (1) with mlat = θ = 0
and all operators replaced by their tilded counterparts.
However, Ref. [10] considered a nonstaggered Gauss law
constraint, which after the redefinitions written above is

L̃n − L̃n−1 = χ̃†
n χ̃n − 1

2
. (B27)

The commutation relations of the various operators are the
same as those in (9) after placing tildes over all operators.
With this nonstaggered constraint, Ref. [10] noticed that the
Hamiltonian is invariant under a discrete one-site translation
symmetry

Ũn → Un+1, L̃n → Ln+1, χ̃n → χn+1, χ̃†
n → χ̃

†
n+1.

(B28)

To see why this model is the same as (1) with our Gauss
law constraint (2) and mlat = −e2a/8, we can define

Ln = L̃n + (−1)n

4
− θ

2π
,

Un = Ũn, χn = χ̃n.

(B29)

Then, the Hamiltonian (B26) becomes

HB = e2a

2

∑
n

(
Ln + θ

2π

)2

− e2a

2

∑
n

Ln
(−1)n

2

+ e2aN

32
− iw

∑
n

(χ†
nUnχn+1 − χ

†
n+1U

†
n χn),

(B30)

and the Gauss law becomes identical to (2). Using the Gauss
law (2), the second term in (B30) can be written in terms of
χ†

n χn, giving the final result

HB = e2a

2

∑
n

(
Ln + θ

2π

)2

− e2a

8

∑
n

(−1)nχ†
n χn

− iw
∑

n

(χ†
nUnχn+1 − χ

†
n+1U

†
n χn) − e2aN

32
. (B31)

Up to the constant shift by −e2aN/32, this is precisely our
Hamiltonian (1) at the special point mlat = −e2a/8.

So far, we left the parameter θ arbitrary, but the value of θ

is determined by requiring that the states we are interested in
have e2π iLn = 1.

Reference [10] considered two states written in Eqs. (2.4)
and (2.5) of that paper, which in our notation are

|ψ〉 =
( ∏

n even

χ†
n

)(∏
n

U
(−1)n

4
n

)
|vac〉B ,

|χ〉 =
(∏

n odd

χ†
n

)(∏
n

U
−(−1)n

4
n

)
|vac〉B , (B32)

where |vac〉B is the vacuum considered in [10]. A subtlety
is that this vacuum is different from the vacuum |vac〉 we
consider, because the former is annihilated by all L̃n, while
the latter is annihilated by all Ln. (Both are annihilated by all
χ̃n = χn.) Given (B29), it follows that

|vac〉B =
(∏

n

U
(−1)n

4 − θ
2π

n

)
|vac〉 . (B33)

Combining (B32) with (B33), we obtain

|ψ〉 =
( ∏

n even

χ†
n

)(∏
n

U
(−1)n

2 − θ
2π

n

)
|vac〉 ,

|χ〉 =
(∏

n odd

χ†
n

)(∏
n

U
− θ

2π
n

)
|vac〉 . (B34)

For these states to be gauge invariant, we should choose θ = π

for |ψ〉 and θ = 0 for |χ〉,

|ψ〉 =
( ∏

n even

χ†
n

)(∏
n odd

U −1
n

)
|vac〉 , θ = π

|χ〉 =
(∏

n odd

χ†
n

)
|vac〉 , θ = 0. (B35)
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