
PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

Graph coloring with physics-inspired graph neural networks

Martin J. A. Schuetz,1,2,3 J. Kyle Brubaker,2 Zhihuai Zhu,2 and Helmut G. Katzgraber 1,2,3

1Amazon Quantum Solutions Lab, Seattle, Washington 98170, USA
2AWS Intelligent and Advanced Compute Technologies, Professional Services, Seattle, Washington 98170, USA

3AWS Center for Quantum Computing, Pasadena, California 91125, USA

(Received 7 March 2022; accepted 28 September 2022; published 23 November 2022)

We show how graph neural networks can be used to solve the canonical graph coloring problem. We frame
graph coloring as a multiclass node classification problem and utilize an unsupervised training strategy based on
the statistical physics Potts model. Generalizations to other multiclass problems such as community detection,
data clustering, and the minimum clique cover problem are straightforward. We provide numerical benchmark
results and illustrate our approach with an end-to-end application for a real-world scheduling use case within a
comprehensive encode-process-decode framework. Our optimization approach performs on par or outperforms
existing solvers, with the ability to scale to problems with millions of variables.

DOI: 10.1103/PhysRevResearch.4.043131

I. INTRODUCTION

The graph coloring problem (GCP) is arguably one of the
most famous problems in the field of graph theory [1,2].
Phrased as an optimization problem, the goal is to find an
assignment of labels (traditionally referred to as colors) to the
vertices (nodes) of a graph such that no two adjacent vertices
are of the same color, while using the smallest number of
colors possible. The convention of using colors dates back to
the historic inception of this problem: trying to color a map of
the counties of England with the smallest number of colors
sufficient to color the map such that no regions sharing a
common border would be assigned the same color [1]. Today
graph coloring is still an active field of research, with real-
world applications across a strikingly wide range of domains,
including (for example) the production of sports schedules,
the assignment of taxis to customer requests, the creation
of timetables at schools and universities, the allocation of
computer programming variables to computer registers, air
traffic flow management [3], and the game of Sudoku, among
others [1].

With online access to first-generation quantum com-
puters steadily expanding, the GCP has recently attracted
considerable interest in the broader quantum computing
community. In the current era of noisy intermediate-scale
quantum (NISQ) devices, typical approaches either involve
hybrid quantum-classical algorithms such as the quantum ap-
proximate optimization algorithm (QAOA) [4] or quantum
annealing [5,6]. Given the low-level access to these devices,
the GCP typically has to be cast as a quadratic unconstrained
binary optimization problem (QUBO) [7] or, equivalently,

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

as an Ising Hamiltonian [8], at the expense of increased re-
source requirements. Specifically, the QUBO description of
the GCP with q > 2 colors for a graph with n nodes requires
q × n binary variables, or (logical) qubits in the corresponding
quantum-native or quantum-inspired approach. In addition,
the constraint that each vertex is assigned exactly one color
has to be enforced by hand with additional penalty terms [8].
Because of this added overhead due to the binary representa-
tion, it would be preferable to tackle the problem in its native
mathematical form. In this work we propose the use of graph
neural networks to do so, aided by statistical physics concepts.

In the deep learning community, graph neural networks
(GNNs) have emerged as a novel class of neural network ar-
chitectures designed to consume graph structure data [9–16],
with the ability to learn effective feature representations of
nodes, edges, or even entire graphs. Paradigmatic problems
studied with GNNs can be categorized as node classifi-
cation, link prediction, graph classification, or community
detection, among others. Prime examples include the classi-
fication of users in social networks [17,18], the prediction
of future interactions in recommender systems [19], and the
prediction of certain properties of molecular graphs [20,21].
Leaving the details of specific GNN implementations aside
(see Refs. [15,22,23] for further details), the underlying
theme for GNNs is the implementation of a message pass-
ing [24] scheme whereby GNNs iteratively update the node
(or edge) embeddings by aggregating information from their
local neighbors following the topology of the underlying
graph. Because of their inherent scalability and graph-based
design, GNNs present a platform that can solve the graph
coloring problem at scale. We have previously presented a
physics-inspired, GNN-based framework to (approximately)
solve quadratic unconstrained binary [7] combinatorial opti-
mization problems with up to millions of variables [25]. In
this work we natively extend this framework to multicolor
decision variables, and show how to solve the graph coloring
problem (GCP) without the need for extra penalty terms as
needed when using a QUBO-based approach. To this end we

2643-1564/2022/4(4)/043131(10) 043131-1 Published by the American Physical Society

https://orcid.org/0000-0003-3341-9943
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043131&domain=pdf&date_stamp=2022-11-23
https://doi.org/10.1103/PhysRevResearch.4.043131
https://creativecommons.org/licenses/by/4.0/

SCHUETZ, BRUBAKER, ZHU, AND KATZGRABER PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

νhk
ν

hk−1
u

hk−1
ν

1

1

2 2

2

3

3

FIG. 1. Schematic illustration of our approach. Following a re-
cursive neighborhood aggregation scheme, the graph neural network
is iteratively trained against a loss function based on the Potts model
(enforcing different color assignments to adjacent nodes). At training
completion, the final values for the soft node assignments at the
final graph neural network layer are projected to hard class (color)
assignments σi = 1, . . . , q, as illustrated here for q = 3 colors. This
solution is optimal as the sample graph contains maximum cliques of
size three.

frame the GCP as a multiclass node classification problem
and use an unsupervised training strategy based on the Potts
model [26], a generalization of the Ising model in statistical
physics. For illustration purposes, our approach is schemati-
cally depicted in Fig. 1. As discussed in more detail below,
generalizations of this approach to applications such as data
clustering [27] and community detection [28–30] are straight-
forward.

The paper is structured as follows. In Sec. II we provide
some context for our work, discussing the relevant literature
at the cross section between graph coloring and graph neural
networks. In Sec. III we describe the basic concepts for our
work, with details on the GCP, the physics of the Potts model
and its inherent connection to the GCP, and graph neural
networks. In Sec. IV we then detail the theoretical framework
underlying our approach, providing a comprehensive physics-
inspired, GNN-based approach towards solving the GCP and
related multicolor optimization problems. Section V outlines
an end-to-end application for a real-world scheduling use
case, followed by numerical experiments in Sec. VI. Finally,
in Sec. VII we draw conclusions and give an outlook on future
directions of research.

II. RELATED WORK

In this section we briefly review relevant existing literature,
with the goal to provide a detailed context for our work. To
keep the scope manageable, we focus on work using GNN-
based solution strategies. For an extensive review of the GCP
we refer to Ref. [1].

Supervised learning. In Ref. [31] the authors devise a
binary classifier to solve the decision version of the graph
coloring problem, i.e., whether or not a given graph is q
colorable. To this end, Lemos et al. propose a model that
combines a graph neural network with a multilayer percep-
tron. To train this model a standard binary cross entropy loss
function is used, comparing the model’s final prediction with
the known ground truth for a given GCP instance, as obtained
with a complementary CSP solver, albeit for small problem
instances only that can be solved exactly. As discussed in
Ref. [32], such a supervised approach critically depends on
the existence of representative, labeled training data sets with
previously optimized hard problem instances, resulting in a
somewhat problematic chicken-and-egg scenario. In contrast

to our model, the approach outlined by Lemos et al. can un-
derestimate the chromatic number, and—going beyond binary
graph classification—requires a heuristic clustering algorithm
such as k means in order to provide a constructive coloring
solution.

Unsupervised learning. Conceptually, our work is most
similar to those approaches that aim to train neural networks
in an unsupervised, end-to-end fashion, without the need for
labeled training sets. Specifically, Li et al. have recently used
graph neural networks to solve the GCP following an unsu-
pervised training strategy [33]. With a focus on the formal
discriminative power of GNNs for the graph coloring problem
and motivated by mere intuition, the authors utilize a loss
function which, as we show in this work, follows straightfor-
wardly from the Potts model, and therefore emerges as part of
a larger, unifying, physics-inspired framework. We also find
that our solver improves upon the results of Li et al. on several
benchmark problems.

Against this background, our work makes a physics-
inspired contribution to the emerging cross fertilization
between combinatorial optimization and machine learn-
ing [34,35]. Specifically, we provide a unified framework
that pairs the Potts model [26]—as extensively studied in the
context of statistical physics—with deep learning tools in the
form of graph neural networks to model and solve a large
class of graph-based, multicolor optimization problems such
as graph coloring, community detection, or data clustering, all
within a completely unsupervised, end-to-end framework.

III. PRELIMINARIES

To set up our notation and terminology, we first provide
a formal problem definition for the graph coloring problem
(GCP). We then highlight its close connection to the Potts
model. Finally, we provide a brief review of graph neural
networks.

Graph coloring. We consider an undirected graph G =
(V, E) with vertex set V = {1, 2, . . . , n} and edge set E =
{(i, j) : i, j ∈ V}. Given such a graph, in the graph coloring
problem we seek to assign an integer c(ν) ∈ {1, 2, . . . , q} to
every vertex ν ∈ V , such that (i) the assignment is free of color
clashes, i.e., c(u) �= c(v) ∀(u, v) ∈ E , and (ii) the number of
colors q is minimal. We refer to a clash-free coloring using
at most q colors as a proper (feasible) q coloring. If such a
q coloring can be found, the graph is said to be q colorable.
The chromatic number of a graph G, denoted as χ = χ (G),
with 1 � χ � n, is the minimum of colors required for a
feasible coloring of G. Accordingly, our goal is to find the
chromatic number χ , with a coloring where adjacent vertices
are assigned to different colors. In general, this problem is
computationally hard, with exact algorithms displaying an
exponential runtime in the size of the input n. Specifically,
it is known to be NP hard to compute the chromatic number
χ , typically leaving heuristics such as greedy coloring or
tabu-search based methods as the go-to approximation strate-
gies [1].

The graph coloring problem is also closely related to
yet another NP-hard combinatorial optimization problem, the
minimum clique cover problem (MCC) [36]. In MCC the goal
is to partition the nodes of a graph into cliques, with as few

043131-2

GRAPH COLORING WITH PHYSICS-INSPIRED GRAPH … PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

cliques as possible. Conversely, graph coloring provides color
classes, i.e., partitions of the vertex set into independent sets
(that is subsets with no adjacencies), yielding the following
equivalence between clique covers and coloring: Because a
subset of vertices is a clique in G if and only if it is an
independent set in the complement of G, a partition of the
vertices of G is a clique cover of G if and only if it is a coloring
of the complement of G. For a given graph G, the smallest
number for which a clique cover exists is called the clique
cover number.

Potts model. The GCP outlined above is closely related to
the standard Potts model, as argued below. In the Potts model
every vertex is associated with a spin variable σi = 1, . . . , q
that can take on q different values. The Hamiltonian for the
Potts model can be expressed in compact form as

HPotts = −J
∑

(i, j)∈E
δ(σi, σ j), (1)

where δ(σi, σ j) refers to the Kronecker delta, which equals
one whenever σi = σ j and zero otherwise, thus capturing the
hard-core spin-spin interactions characteristic for the Potts
model [26,37]. Accordingly, if two adjacent spins σi and σ j

are in the same state, the energy contribution is −J , while
it is zero whenever they are in different states. To enforce
a feasible coloring of the underlying graph, we consider an-
tiferromagnetic interactions and (if not stated otherwise) set
J = −1 in the following.

Generalizations to settings with weighted interactions Ji j

(where some constraints are more important than others) are
straightforward. Important applications thereof include data
clustering [27] and community detection as captured by the
maximization of the modularity parameter [28–30], among
others. Specifically, we find that the latter can be described
by the generalized Potts Hamiltonian

HPotts = −
∑
i, j

Ji jδ(σi, σ j), (2)

with interaction strength

Ji j = 1

2m

(
Ai j − did j

2m

)
, (3)

where Ai j refers to the adjacency matrix of the graph, di =∑
j Ai j is the degree of node i, and m = 1/2

∑
i di. Finally,

for two colors (q = 2) the Potts model reduces to the MaxCut
problem, with Hamiltonian HMaxCut = ∑

i< j Ji jziz j with Ji j =
Ai j/2 and binary spin variables zi ∈ {−1, 1} [25], as can be
seen by the transformation δ(σi, σ j) → (1 + ziz j)/2.

The close connection between the GCP and the Potts
model becomes apparent in the (dimensionless) partition
function [38] of the Potts model, which allows one to compute
most thermodynamic variables of a system through deriva-
tives. For the Potts model it is given by

Z =
∑
{σi}

exp[−βHPotts], (4)

where β = 1/kBT is the inverse temperature (with T >

0) and kB is the Boltzmann constant. Using the relation
exp[Kδ(σi, σ j)] = 1 + [exp(K) − 1]δ(σi, σ j), we then find in

generality

Z =
∑
{σi}

∏
(i, j)∈E

[1 + [exp(K) − 1]δ(σi, σ j)]. (5)

In the zero-temperature limit we obtain [39]

Z → PG (q) =
∑
{σi}

∏
(i, j)∈E

[1 − δ(σi, σ j)] for T → 0. (6)

In the last step we have introduced the chromatic function
(polynomial) PG (q), a central quantity in the theory of graph
coloring, thus directly relating the Potts model to graph col-
oring. In the limit T → 0 adjacent spins are forced to occupy
different states, and the partition function Z simply reduces
to the chromatic function PG (q) which counts the number of
possible q colorings of G as a function of the number of colors
q. The chromatic number χ = min{q ∈ N : PG > 0} is then
the smallest positive integer that is not a zero of the chromatic
polynomial.

Graph neural networks. Graph neural networks are an
emergent family of neural networks that extend the standard
deep learning toolbox to graph data [40]. While convo-
lutional neural networks are well defined only over rigid,
grid-structured data (such as images), and recurrent neural
networks are built for sequences of data (such as text), the
GNN formalism provides a general framework for defining
neural networks on graph-structured data [40]. With permuta-
tion invariance (under the arbitrary labeling of nodes) built in
by design, GNNs offer a scheme to generate node representa-
tions that incorporate the topology of the graph. The common
theme to any type of GNN is that it implements some form
of neural message passing, whereby messages (in the form
of vectors) are exchanged between the nodes of the graph to
iteratively update the internal representations of the graph’s
nodes [24]. More formally, for a given input graph G = (V, E)
along with any relevant node features X ∈ Rd0×n, a GNN can
be used to generate node embeddings pν,∀ν ∈ V [40]. This
is done iteratively as follows: Consider hidden embedding
vectors {hk

ν} representing each node ν ∈ V . In each iteration
k, every embedding vector hk

ν is updated based on information
inferred from the corresponding local neighborhood, denoted
as Nν = {u ∈ V|(u, ν) ∈ E}. At layer (iteration) k = 0, the
initial representations h0

ν ∈ Rd0 are usually derived from the
node’s labels or given input features of dimensionality d0 [41].
This single-layer update can then be formalized as

mk
ν = AGGREGATEk

θ

({
hk−1

u |u ∈ Nν

})
,

hk
ν = UPDATEk

θ

(
hk−1

ν , mk
ν

)
, (7)

for the GNN layers (iterations) k = 1, . . . , K , with
AGGREGATE(·) and UPDATE(·) referring to some
(typically parametrized) differentiable functions [40]. See
Refs. [15,16,22,23] for several popular design choices
such as graph convolutional networks (GCNs). In Eq. (7),
the vector mk

ν represents the kth layer message for node
ν = 1, . . . , n as aggregated from the corresponding local
graph neighborhood Nν . At each iteration k, every node
aggregates information from its local neighborhood, and as
these iterations progress each node embedding encapsulates
a larger receptive field within the graph. Specifically, after
k iterations every node embedding contains information

043131-3

SCHUETZ, BRUBAKER, ZHU, AND KATZGRABER PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

about its k-hop neighborhood, with the final output (after
K iterations of message passing) defined as pν = hK

ν .
This output can then be used for prediction tasks, such as
node classification. To optimize the predictive power of
this approach, the (parametrized) final node embeddings
pν = hK

ν (θ) are fed into a problem-specific loss function,
with some form of stochastic gradient descent optimizing the
weight parameters θ of the network.

IV. THEORETICAL FRAMEWORK

In this section we discuss in detail the theoretical frame-
work underlying our work. We show how to solve the GCP
using GNNs, with the antiferromagnetic Potts model provid-
ing a canonical choice for the loss function controlling the
unsupervised GNN training process.

We consider an undirected graph G = (V, E) with ver-
tex set V = {1, 2, . . . , n} and edge set E = {(i, j) : i, j ∈ V}.
Given such graph, our goal is to assign colors to the nodes
of the graph in such a way that adjacent nodes are assigned
different colors and the number of colors used is minimal. To
this end we associate a discrete variable (spin) σν = 1, . . . , q
with every vertex ν ∈ V , thereby assigning one of q possible
states (colors) to every node in the graph. To enforce a valid
coloring we consider the standard Potts spin model [26] with
antiferromagnetic interactions as given in Eq. (1); this model
gives no energy contribution to neighboring spins with differ-
ent colors, but penalizes color clashes with a positive energy
offset. The ground-state energy is then zero if and only if the
graph is q colorable, thus providing a good cost function for
encoding the GCP. To make the GCP compatible with our
GNN-based approach we first reformulate the Potts model (1)
in terms of one-hot-encoded variables ŷi as

HPotts = −J
∑

(i, j)∈E
ŷᵀ

i · ŷ j . (8)

Here the variable ŷi describes the class assignment for node
i ∈ V within a q-dimensional unit vector where all compo-
nents are zero except for one (set to 1) and signals the color
assignment as σi = ∑q

α=1 αŷ[α]
i , with ŷ[α]

i denoting the αth
component of ŷi, and by definition

∑
α ŷ[α]

i = 1. Next, gener-
alizing our approach as detailed in Ref. [25] to multiclass node
classification problems, we apply a relaxation strategy to the
problem Hamiltonian HPotts to generate a differentiable loss
function L(θ) with which we perform unsupervised training
on the multicolor node representations of the GNN. To this
end we replace the (hard) one-hot-encoded decision vectors
ŷi with corresponding (soft) normalized assignments pi(θ) ∈
[0, 1]q, letting ŷi → pi(θ). In our approach, these soft assign-
ments pi(θ) are generated by our GNN ansatz as final node
embeddings pi = hK

i ∈ [0, 1]q at layer K , after the application
of a standard softmax activation function, and used as an input
for the Potts-like loss function L(θ) given by

HPotts −→ LPotts(θ) = −J
∑

(i, j)∈E
pᵀ

i · p j . (9)

To arrive at the predicted soft assignments pi for all nodes
i = 1, . . . , n, the GNN follows a standard recursive neigh-
borhood aggregation scheme [24,42], where each node ν =

FIG. 2. Example 4-coloring solution to the graph coloring prob-
lem for a random 3-regular graph with n = 100 nodes. At training
completion the GNN provides color (class) assignments to each
vertex. The optimization problem is to assign the colors in a way
that adjacent nodes must be assigned different colors, while using
the smallest number of colors possible (corresponding to the antifer-
romagnetic ground state of the underlying Potts model).

1, 2, . . . , n collects information (encoded as feature vectors)
of its neighbors to compute its new feature vector hk

ν at layer
k = 0, 1, . . . , K . Similar to Ref. [25], the node embeddings
h0

ν are initialized randomly. After k iterations of aggregation,
a node is represented by its transformed feature vector hk

ν ,
which captures the structural information within the node’s k-
hop neighborhood [14]. For the multiclass node classification
task at hand we use convolutional aggregation steps, followed
by the application of a nonlinear softmax activation function
with the dimensionality set by the number of colors q, thereby
providing one-hot-encoded q-dimensional soft (probabilistic)
node assignments pν = hK

ν ∈ [0, 1]q, with the softmax func-
tion automatically ensuring normalization as

∑q
α=1 p[α]

ν = 1.
By virtue of this built-in normalization and in stark contrast
to any QUBO-based approach [7,8,43], we do not have to
add additional terms to the loss function to enforce a one-
hot constraint that drives the solution towards one unique
color assignment per node. Conversely, once the unsupervised
training process has completed, we apply a simple projection
heuristic to map the soft assignments pν to hard class variables
σν = 1, . . . , q using, for example, σν = argmax(pν) to find
the class (color) with the largest predicted probability, thus
providing unique color assignments for every node. As shown
in Fig. 1, the final color assignment {σν} can then be visualized
as a q coloring of the graph. For further illustration, an exam-
ple 4-coloring solution (as implemented with this approach)
for a random 3-regular graph with n = 100 vertices is shown
in Fig. 2. Far beyond this sample scale, the scalability inherent
to GNNs opens up the possibility of studying unprecedented
problem sizes with hundreds of millions of nodes when lever-
aging distributed training in a mini-batch fashion on a cluster
of machines as demonstrated recently in Ref. [44].

Our approach features several hyperparameters, including
the number of layers K , the dimensionality of the embedding
vectors hk

i , and the learning rate β, which can be optimized
via hyperparameter optimization techniques. In particular,
the number of colors q can be seen as a GCP-specific
hyperparameter that together with the graph G defines the

043131-4

GRAPH COLORING WITH PHYSICS-INSPIRED GRAPH … PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

(a) (b)

(d) (c)

FIG. 3. Example end-to-end application of graph coloring for a task scheduling problem. (a) The problem is specified in terms of a schedule
detailing six resource requests (vertical axis) as a function of time, spread out over the course of 24 h (horizontal axis). (b) Encoding: The
problem is encoded in the form of an interval graph where every node represents one request labeled by the corresponding time interval,
and edges refer to clashes within the resource requests whenever two requests overlap in time. (c) Processing: We solve the graph coloring
problem on this interval graph using a graph neural network with a Potts-type loss function as detailed in the main text. Once the algorithm
has converged, we obtain a graph colored with the smallest number of color clashes for the given number of colors. In this example we find a
feasible coloring with χ = 3 colors as expected based on the clique of size three. (d) Decoding: Finally the proposed colors are mapped back
to the original resource requests. In this example we find that three resources are sufficient in order to satisfy all requests.

input pair (G, q) for the decision problem whether or not G
allows for a q coloring. To identify the chromatic number χ ,
one can perform, for example, a naive search by sequentially
checking if G is q colorable for q = 1, 2, . . . , or use a bi-
nary search to cut down the average number of calls required
logarithmically. Alternatively, one can try to solve the graph
coloring problem (i.e., the search for a feasible coloring) in
parallel with the minimization of colors used by adding a
corresponding regularization term to the loss function (such as
∼q2). However, such a term should not overpower the regular
Potts-like term LPotts(θ), as to not drive the overall solution
towards an infeasible coloring.

V. INDUSTRY APPLICATIONS

The graph coloring problem is known to describe many
real-world applications, in particular in scheduling and allo-
cation problems [1]. Prominent examples include timetabling

problems or frequency assignment problems, relevant to the
planning of wireless communication services [1,45]. To illus-
trate both our GNN-based approach as well as the real-world
applicability of the graph-coloring problem, we now discuss
an end-to-end application for a canonical scheduling use case.
We do so within a comprehensive three-step encode-process-
decode approach in which we (i) first phrase the use case as
a graph coloring problem (encoding), (ii) we then solve this
problem using our GNN-based approach (processing), and fi-
nally (iii) decode the coloring solution to an actual solution for
the use case at hand (decoding). For the sake of this illustrative
example we consider a small problem instance as illustrated in
Fig. 3. More thorough numerical benchmarks are presented in
Sec. VI.

We consider a scenario involving the scheduling of tasks
with given start and end times, with applications in car shar-
ing, taxi companies, aircraft assignments, etc. Specifically,
we face n resource requests (or bookings) with a start time

043131-5

SCHUETZ, BRUBAKER, ZHU, AND KATZGRABER PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

indicating when the resource will be needed and an end time
indicating the resource is available; see Fig. 3(a) for an exam-
ple problem with n = 6 resource requests. The problem is then
to assign resources (e.g., cars) to these requests (e.g., book-
ings) in the most efficient way involving the smallest number
of resources needed. As illustrated in Fig. 3(a), typically some
requests will overlap in time leading to request clashes that
cannot be satisfied by the same resource. As commonly done
in resource allocation problems and scheduling theory, this
situation can conveniently be described with the help of an
undirected interval graph in which a vertex is introduced for
every request, with edges connecting vertices whose requests
overlap. Figure 3(b) displays an encoding of the problem with
a graph made of six vertices and six edges, including a clique
of size three. While inexpensive, special-purpose algorithms
exist for interval graphs [1], we can then solve the graph
coloring problem on this interval graph (in the same way
as any other GCP) using our general-purpose GNN-based
approach. To this end, we run unsupervised multiclass clas-
sification directly on the interval graph with n = 6 nodes and
final softmax nonlinearity of dimension q = 3, as opposed to
QUBO-based approaches involving q × n = 18 binary vari-
ables [4]. For the sample problem illustrated in Fig. 3(c) we
obtain a feasible coloring using just three colors (χ = 3).
Finally, as shown in Fig. 3(d), we decode this coloring to the
corresponding assignment in which three resources are used
to satisfy all six requests.

VI. NUMERICAL EXPERIMENTS

We now turn to systematic numerical experiments using
standard benchmark problems for graph coloring. In particu-
lar, we provide results for the publicly available COLOR data
set [46], as well as well-known citation data sets (Cora [47],
Citeseer [48], and Pubmed [49]) often used for graph-
based benchmark experiments. The former provide small and
medium-sized dense problem instances with relatively large
known chromatic numbers (χ ∼ 10), while the latter are large,
but sparse real-world graphs (which, for the purpose of graph
coloring, we consider as undirected graphs, dismissing any
potential node or edge features). Our basic GNN architecture
is very similar to the one detailed in Ref. [25], except for the
dimension of the final GNN layer set here to the number of
colors q. We provide results for two standard types of GNN ar-
chitectures, that is graph convolutional networks (GCN) [15]
as well as GraphSAGE [13]. Model configurations (hyper-
parameters) are detailed in the Appendix. We compare our
results (as given by the cost directly reported by the Potts
Hamiltonian) to previously published results sourced from
Ref. [33], including results based on the tabu-search based
heuristic called Tabucol [50], a local search algorithm which
tracks single moves within a tabu list. We complement these
with our own benchmark results obtained with Tabucol and
a greedy coloring algorithm. The latter parses through the
graph’s vertices one by one according to some vertex ordering
and greedily assigns the first available color. If no available
color can provide a feasible coloring, yet another color is ex-
pensed, thus (by design) always providing a feasible coloring
with a corresponding upper bound on the chromatic number
denoted as χ̄greedy. Here we have implemented a greedy algo-

rithm with largest-first ordering strategy as further detailed in
Refs. [1,51]. Our greedy results for χ̄greedy largely agree with
results presented in Ref. [52].

For a given graph and a fixed number of colors q, we
report the total number of color clashes as achieved with
our physics-inspired GNN solvers (dubbed PI-GCN and PI-
SAGE, respectively), and we assess the solution quality with
the normalized error ε = HPotts/|E | quantifying the number
of color clashes normalized by the number of edges |E |.
Accordingly, the quantity
 = 1 − ε can be regarded as the
coloring accuracy achieved (that is the number of edges with-
out coloring conflicts divided by the total number of edges).
In addition, we report upper bounds on the chromatic number,
denoted as χ̄GNN. To this end we have implemented a simple
search as well as randomized post-processing heuristic. For a
given GNN solution, the latter tries to remove remaining color
clashes at the expense of one additional color, by randomly
going through existing clashes, and randomly assigning the
new color to one of the two nodes at hand. This process is re-
peated till a feasible coloring (with zero cost) has been found.
Our method has been implemented in python, leveraging the
open-source libraries Deep Graph Library [53] and PyTorch
(for GNN handling), and NetworkX (for graph handling). All
reported experiments have been run on p3.2×large AWS
EC2 instances, with 1 GPU, 8 virtual CPUs, 81 GiB memory,
16 GiB GPU memory, with 2.3 GHz (base) and 2.7 GHz
(turbo) Intel Xeon E5-2686 v4 processors.

COLOR graphs. We study several benchmark instances
from the COLOR data set [46] which can be categorized as
follows [46]:

(i) Book graphs: For a given work of literature, a graph is
created with each node representing a character. Two nodes
are connected by an edge if the corresponding characters en-
counter each other in the book. This type of graph is publicly
available for Tolstoy’s Anna Karenina (anna), and Hugo’s Les
Misérables (jean), among others.

(ii) Myciel graphs: This family of graphs is based on the
Mycielski transformation. The Myciel graphs are known to be
difficult to solve because they are triangle free (clique number
2) but the coloring number increases in problem size [46].

(iii) Queens graphs: This family of graphs is constructed
as follows. Given an n by n chessboard, a queens graph is
a graph made of n2 nodes, each corresponding to a square
of the board. Two nodes are then connected by an edge if
the corresponding squares are in the same row, column, or
diagonal. In other words, two nodes are adjacent if and only
if queens placed on these two nodes can attack each other in a
single move. In all cases, the maximum clique in the graph is
no more than n, and the coloring value is lower bounded by n.

Our numerical results are summarized in Table I, and
example solutions are displayed in Fig. 4. We consistently
find sub-one-percent normalized errors (i.e., ε < 1%) across
all COLOR instances, some of which have been deemed as
hard [54,55], with the GraphSAGE-based architecture typ-
ically outperforming the GCN-based baseline architecture.
This observation appears to be in agreement with existing
literature [41] showing that GCN architectures tend to be more
susceptible to oversquashing (bottleneck) effects than other
GNN architectures. In this work, with its inherent neighbor-
hood sampling strategy, GraphSAGE is seen be more robust

043131-6

GRAPH COLORING WITH PHYSICS-INSPIRED GRAPH … PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

TABLE I. Numerical results for COLOR graphs [46]. For a given number of colors q, we report the cost = HPotts, that is the number of
conflicts in the best coloring result, as achieved with our physics-inspired GNN solvers (PI-GCN and PI-SAGE), together with results for the
Tabucol algorithm, as partially sourced from Ref. [33]. Upper bounds on the chromatic number χ as found by a greedy algorithm as well as
PI-SAGE are reported as χ̄greedy and χ̄GNN, respectively. Best results are marked in boldface. The last column gives the normalized error ε (for
the best PI-GNN result) specifying the relative fraction of edges with color clashes. Example solutions are displayed in Fig. 4. Further details
are provided in the main text.

Graph Nodes Edges Density Colors q χ̄greedy χ̄GNN Tabucol Tabucol [33] GNN [33] PI-GCN PI-SAGE Error ε

anna 138 493 5.22% 11 11 11 0 0 1 1 0 0.00%
jean 80 254 8.04% 10 10 10 0 0 0 0 0 0.00%
myciel5 47 236 21.83% 6 6 6 0 0 0 0 0 0.00%
myciel6 95 755 16.91% 7 7 7 0 0 0 0 0 0.00%
queen5-5 25 160 53.33% 5 5 5 0 0 0 0 0 0.00%
queen6-6 36 290 46.03% 7 8 7 0 0 4 1 0 0.00%
queen7-7 49 476 40.48% 7 9 7 0 10 15 8 0 0.00%
queen8-8 64 728 36.11% 9 10 10 0 8 7 6 1 0.14%
queen9-9 81 1056 32.59% 10 12 11 0 5 13 13 1 0.09%
queen8-12 96 1368 30.00% 12 13 12 0 10 7 10 0 0.00%
queen11-11 121 1980 27.27% 11 15 14 20 33 33 37 17 0.86%
queen13-13 169 3328 23.44% 13 17 17 35 42 40 61 26 0.78%

to potential oversquashing effects as relevant for the larger
and dense COLOR instances. This increased performance of
PI-SAGE comes at a price of extended training times, with
per-epoch training times being ∼5–50× longer than for PI-
GCN on the same graph. Whereas the PI-GCN model takes
anywhere from ∼0.167 to 2 h to train, the PI-SAGE model
takes anywhere from ∼1 to 8 h to train for the COLOR graphs
considered. With potentially multiple factors contributing to
this disparity, a more detailed analysis of this observation
is left for future research. Finally, we find that PI-SAGE
performs on par with Tabucol across the COLOR instances.
In addition, the estimated chromatic numbers found with PI-
SAGE are on par or better than the greedy baseline results. For
example, for queen7-7 we find χ̄GNN = 7, while χ̄greedy = 9.
For solutions with nonzero cost we find that a simple post-
processing heuristic can provide a fully purified (feasible)
solution at the expense of a small number of colors, thereby
providing a simple estimate for the chromatic number. For

FIG. 4. Example solutions to the graph coloring problem for the
myciel5 (left) and queen7-7 (right) graphs from the COLOR data set
with q = 6 and q = 7 colors, respectively. The solution for myciel5
corresponds to a feasible coloring with normalized error ε = 0%,
whereas the solution for queen7-7 represents an infeasible, but low-
energy solution with ε = 0.84% for which the remaining four color
clashes have been highlighted with bold (conflicting) edges. Further
details are provided in Table I and the main text.

example, solutions with just one remaining color clash, as
is the case for queen8-8 and queen9-9, are trivial to purify
at the expense of one color (yielding estimates of χ̄GNN =
q + 1). For a larger number of color clashes, as is the case for
queen11-11 and queen13-13, several iterations of this simple
post-processing routine may be necessary till a feasible col-
oring is found. While further improvements may be possible
through additional GNN runs at colors q + 1, q + 2, . . . , we
observe on-par or better performance compared to the greedy

(a) (b)

(c) (d)

FIG. 5. Illustration of our simple post-processing heuristic to
estimate upper bounds on the chromatic number. Color clashes have
been highlighted with bold (conflicting) edges. Panels on the left
display example original (infeasible) solutions found by PI-GNN
(not corresponding to the best solutions found with PI-GNN). Panels
on the right show the results of a simple post-processing strategy.
For the queen7-7 example this randomized post-processing heuristic
can remove all color clashes and provide a feasible coloring, at the
expense of one additional color. For the queen9-9 instance, one color
clash is still outstanding after application of one iteration of this
purification protocol. Further details are provided in the main text.

043131-7

SCHUETZ, BRUBAKER, ZHU, AND KATZGRABER PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

TABLE II. Numerical results for citation graphs [47–49]. Further details are provided in the caption of Table I and in the main text.

Graph Nodes Edges Density Colors q χ̄greedy χ̄GNN Tabucol Tabucol [33] GNN [33] PI-GCN PI-SAGE Error ε

Cora 2708 5429 0.15% 5 5 5 0 31 3 1 0 0.00%
Citeseer 3327 4732 0.09% 6 6 6 0 6 3 1 0 0.00%
Pubmed 19717 44338 0.02% 8 8 9 NA NA 35 13 17 0.03%

baseline already with this simple post-processing only. The
core of this post-processing routine is illustrated in Fig. 5.

Citation graphs. Next we provide results for publicly
available, real-world citation graphs, with up to n ∼ 2 × 104

nodes. While Cora and Citeseer refer to networks of computer
science publications (with nodes representing publications
and edges referring to citations), the Pubmed citation net-
work is a set of articles related to diabetes from the PubMed
database [47–49]. Following Ref. [33], the number of avail-
able colors q for the Cora, Citeseer, and Pubmed graphs has
been set to 5, 6 and 8, respectively. The results of our analysis
are displayed in Table II, with the greedy coloring algorithm
providing optimal baseline results for these sparse instances
[with graph densities in the range ∼(0.02–0.15)%]. We find
that the basic PI-GCN solver displays consistent, small errors
ε ∼ 10−4, close to the global optimum. For the Cora and Cite-
seer graphs PI-GCN finds solutions with just one single color
clash within ∼5 × 103 edges, while PI-SAGE finds optimal
solutions at zero cost. Note that local optimality has been ver-
ified for these solutions through a series of simple local spin
flips. Similarly, even for the largest instance (Pubmed with
n ∼ 2 × 104 nodes) we obtain a small error of ε ∼ 3 × 10−4,
while Tabucol fails to color the graph within a 24 h time
limit [33]. Conversely, we find that PI-GCN converges for the
Cora and Citeseer instances in ∼5 to 40 min, respectively,
while Pubmed takes ∼6.7 h for training completion. The
comparatively long training time for Pubmed is arguably due
to separate logic being used to calculate the loss function:
Because of memory constraints on the training instances,
here we implemented sparse tensor calculations to ensure we
would avoid memory overload, at the expense of training time.
A more thorough analysis together with the investigation of

warm-starting (transfer learning) strategies is left for future
research.

Overall, we find that the general-purpose PI-GNN solver
shows the potential to provide competitive coloring results
compared to established, state-of-the-art heuristics such as
the Tabucol algorithm [50] or greedy coloring algorithms; in
particular for large graphs (where Tabucol runtimes become
extensively long) or dense graphs (where greedy algorithms
may show performance drops). However, with the possibility
to scale to problems with millions of nodes [25], as well
as the ability to solve other multiclass problems such as
community detection or data clustering within the very same
framework.

VII. CONCLUSION AND OUTLOOK

In summary, we have shown how graph neural networks
can be used to solve graph coloring problems using insights
from statistical physics as our guiding principle. In our ap-
proach we frame graph coloring as a multiclass (multicolor)
node classification problem, with the Potts model providing
a canonical choice for the loss function with which we train
the GNN. Natively extending our framework as presented in
Ref. [25], we apply a relaxation strategy to the Potts model
by dropping integrality constraints on the decision variables
in order to generate a differentiable loss function with which
we perform unsupervised training on the node representations
of the GNN. The GNN is then trained to generate soft as-
signments to predict the likelihood of belonging in one of
q classes, for each vertex in the graph. In post training we
use simple projection heuristics to find a coloring solution
consistent with the original problem.

TABLE III. Hyperparameters for results on COLOR graphs. All hyperparameters refer to our PI-SAGE architecture. All runs used the
AdamW optimizer with default values (other than learning rate, as per the table).

Graph Colors q Embedding d0 Layers K Hidden dims [d1, d2,...] Learning rate β Dropout Number epochs Patience

anna 11 43 1 [22] 0.03507 0.3298 100 000 500
jean 10 50 1 [62] 0.01663 0.3185 100 000 500
myciel5 6 16 1 [18] 0.01333 0.3964 100 000 500
myciel6 7 8 1 [22] 0.01779 0.2225 100 000 500
queen5-5 5 77 1 [32] 0.02988 0.3784 100 000 500
queen6-6 7 20 1 [12] 0.05105 0.3425 100 000 500
queen7-7 7 67 1 [12] 0.02175 0.2339 100 000 500
queen8-8 9 32 1 [10] 0.02728 0.2878 100 000 500
queen8-12 12 107 1 [23] 0.01730 0.1796 100 000 500
queen9-9 10 109 1 [16] 0.02636 0.3257 100 000 500
queen11-11 11 75 1 [25] 0.04600 0.2974 100 000 500
queen13-13 13 112 1 [199] 0.14426 0.1571 100 000 500

043131-8

GRAPH COLORING WITH PHYSICS-INSPIRED GRAPH … PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

TABLE IV. Hyperparameters for results on citations graphs. All hyperparameters refer to our PI-GCN architecture. All runs used the Adam
optimizer with default values (other than learning rate, as per the table).

Graph Colors q Embedding d0 Layers K Hidden dims [d1, d2,...] Learning rate β Dropout Number epochs Patience

Cora 5 2342 1 [3496] 0.00556 0.0148 100 000 500
Citeseer 6 5127 1 [2472] 0.00983 0.0161 100 000 500
Pubmed 8 5137 1 [6082] 0.02966 0.1715 100 000 500

Finally, we highlight possible extensions of research going
beyond our present work. First, using the unifying framework
established by the Potts model, it would be interesting to
apply our approach to other multiclass problems such as com-
munity detection, data clustering, and the minimum clique
cover problem. Beyond that, one could apply our approach
to other large-spin (nonbinary) problems such as, for exam-
ple, variations of the Blume-Capel model which can be seen
as a generalization of QUBO to large-spin (i.e., multicolor)
variables. Furthermore, one could systematically study the
potential existence of sharp coloring thresholds and the on-
set of hardness with associated critical graph connectivities,
for both families of random graphs as done in Ref. [37]
but also more structured real-world problems. Finally, there
are several ways to potentially boost the performance of
our GNN-based optimizer. For example, one could explore
alternative GNN implementations, potentially in combina-
tion with graph rewiring techniques, as recently proposed
and analyzed in Ref. [56], thereby decoupling the train-
ing graph from the original problem graph and providing
additional GNN design choices. In addition, post training
one could replace the simple deterministic (argmax) pro-
jection scheme used here with more sophisticated strategies

such as local search routines that further refine the mapping
from soft (probabilistic) class assignments to hard (integer)
variables.

An end-to-end open source demo version of the code im-
plementing our approach has been made publicly available
at [57].

ACKNOWLEDGMENTS

We thank M. Kastoryano, E. Kessler, T. Mullenbach, N.
Pancotti, M. Resende, S. Roy, and G. Salton for fruitful
discussions.

APPENDIX: HYPERPARAMETERS FOR PI-GNN
ON BENCHMARK INSTANCES

In this Appendix we provide details for the specific model
configurations (hyperparameters) as used to solve the COLOR
and citation graph instances with our physics-inspired GNN
solver (PI-GNN). The results achieved with these model
configurations are displayed in Tables I and II; the corre-
sponding hyperparameters are given in Tables III and IV,
respectively.

[1] R. M. R. Lewis, A Guide to Graph Colouring - Algorithms and
Applications (Springer, Heidelberg, 2016).

[2] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness (Freeman, San
Francisco, 1979).

[3] N. Barnier and P. Brisset, Graph coloring for air traf-
fic flow management, Ann. Operations Res. 130, 163
(2004).

[4] Y.-H. Oh, H. Mohammadbagherpoor, P. Dreher, A. Singh,
X. Yu, and A. J. Rindos, Solving multi-coloring combinato-
rial optimization problems using hybrid quantum algorithms,
arXiv:1911.00595.

[5] O. Titiloye and A. Crispin, Quantum annealing of the graph
coloring problem, Discrete Optimization 8, 376 (2011).

[6] B. Pokharel, Z. Gonzalez Izquierdo, P. Aaron Lott, E.
Strbac, K. Osiewalski, E. Papathanasiou, A. Kondratyev,
D. Venturelli, and E. Rieffel, Inter-generational comparison
of quantum annealers in solving hard scheduling problems,
arXiv:2112.00727.

[7] F. Glover, G. Kochenberger, and Y. Du, Quantum bridge analyt-
ics I: A tutorial on formulating and using QUBO models, 4OR
17, 335 (2019).

[8] A. Lucas, Ising formulations of many NP problems, Front.
Phys. 2, 5 (2014).

[9] M. Gori, G. Monfardini, and F. Scarselli, in 2005 IEEE In-
ternational Joint Conference on Neural Networks (IEEE, Palm
Springs CA, 2005), Vol. 2, p. 729.

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini, The graph neural network model, IEEE Trans.
Neural Networks 20, 61 (2008).

[11] A. Micheli, Neural network for graphs: A contextual construc-
tive approach, IEEE Trans. Neural Networks 20, 498 (2009).

[12] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, in Advances
in Neural Information Processing Systems (Curran Associates,
Inc., 2015), p. 2224.

[13] W. Hamilton, Z. Ying, and J. Leskovec, in Advances in Neu-
ral Information Processing Systems (Curran Associates, Inc.,
2017), p. 1024.‘

[14] K. Xu, H. Weihua, J. Leskovec, and S. Jegelka, in International
Conference on Learning Representations (OpenReview.net,
2019).

[15] T. N. Kipf and M. Welling, Semi-Supervised Classification with
Graph Convolutional Networks, in ICLR (OpenReview.net,
2017), https://openreview.net/forum?id=SJU4ayYgl.

[16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu, A comprehensive survey on graph neural networks,
arXiv:1901.00596.

043131-9

https://doi.org/10.1023/B:ANOR.0000032574.01332.98
http://arxiv.org/abs/arXiv:1911.00595
https://doi.org/10.1016/j.disopt.2010.12.001
http://arxiv.org/abs/arXiv:2112.00727
https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2010350
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/arXiv:1901.00596

SCHUETZ, BRUBAKER, ZHU, AND KATZGRABER PHYSICAL REVIEW RESEARCH 4, 043131 (2022)

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, in Proceedings of the
20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Association for Computing Ma-
chinery, 2014), p. 701.

[18] Z. Sun, Z. H. Deng, J.-Y. Nie, and J. Tang, in International Con-
ference on Learning Representations (OpenReview.net, 2018).

[19] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, Graph convolutional neural networks for web-scale
recommender systems, arXiv:1806.01973.

[20] A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, and
P. M. Kim, Fast and flexible protein design using deep graph
neural networks, Cell Syst. 11, 402 (2020).

[21] T. Gaudelet, B. Day et al., Utilising graph machine learning
within drug discovery and development, arXiv:2012.05716.

[22] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, in Inter-
national Conference on Learning Representations (IEEE, New
York, 2016).

[23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, in International Conference on Learning Represen-
tations (OpenReview.net, 2018).

[24] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, in Proceedings of the 34th International Conference
on Machine Learning-Volume (JMLR, 2017), Vol. 70, p. 1263.

[25] M. J. A. Schuetz, J. K. Brubaker, and H. K. Katzgraber,
Combinatorial optimization with physics-inspired graph neural
networks, Nat. Mach. Intell. 4, 367 (2022).

[26] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235 (1982).
[27] M. Blatt, S. Wiseman, and E. Domany, Superparamagnetic

Clustering of Data, Phys. Rev. Lett. 76, 3251 (1996).
[28] S. Fortunato, Community detection in graphs, Phys. Rep. 486,

75 (2010).
[29] S. Fortunato and D. Hric, Community detection in networks: A

user guide, Phys. Rep. 659, 1 (2016).
[30] M. E. J. Newman and M. Girvan, Finding and evaluating com-

munity structure in networks, Phys. Rev. E 69, 026113 (2004).
[31] H. Lemos, M. Prates, P. Avelar, and L. Lamb, Graph colouring

meets deep learning: Effective graph neural network models for
combinatorial problems, arXiv:1903.04598.

[32] N. Karalias and A. Loukas, Erdoes goes neural: An unsuper-
vised learning framework for combinatorial optimization on
graphs, arXiv:2006.10643.

[33] W. Li, R. Li, Y. Ma, S. On Chan, and B. Yu, Rethinking Graph
Neural Networks for Graph Coloring (ICLR 2021 Conference
Withdrawn Submission).

[34] J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder,
End-to-end constrained optimization learning: A survey,
arXiv:2103.16378.

[35] Q. Cappart, D. Chetelat, E. Khalil, A. Lodi, C. Morris, and
P. Velickovic, Combinatorial optimization and reasoning with
graph neural networks, arXiv:2102.09544.

[36] R. M. Karp, Complexity of Computer Computations (Plenum,
New York, 1972), Chap. Reducibility among Combinatorial
Problems, p. 85.

[37] L. Zdeborová and F. Krzakala, Phase transitions in the coloring
of random graphs, Phys. Rev. E 76, 031131 (2007).

[38] J. M. Yeomans, Statistical Mechanics of Phase Transitions (Ox-
ford University Press, Oxford, 1992).

[39] F. Y. Wu, Potts model and graph theory, J. Stat. Phys. 52, 99
(1988).

[40] W. L. Hamilton, Graph representation learning, Synthesis
Lectures on Artificial Intelligence and Machine Learning 14,
1 (2020).

[41] U. Alon and E. Yahav, in ICLR (OpenReview.net,
2021).

[42] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and
S. Jegelka, in International Conference on Machine Learning
(ICML) (PMLR, 2018), p. 5453.

[43] G. Kochenberger, F. Glover, B. Alidaee, and C. Rego,
An unconstrained quadratic binary programming approach
to the vertex coloring problem, Ann. Oper. Res. 139, 229
(2005).

[44] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan,
Z. Zhang, and G. Karypis, DistDGL: Distributed graph neural
network training for billion-scale graphs, arXiv:2010.05337.

[45] A. Eisenblaetter, M. Groetschel, and A. M. C. A. Koster, Fre-
quency planning and ramifications of coloring, Discuss. Math.
Graph Theory 22, 51 (2002).

[46] M. Trick, COLOR Dataset, URL (2002), https://mat.tepper.
cmu.edu/COLOR02/.

[47] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore,
Automating the construction of internet portals with machine
learning, Inform. Retrieval 3, 127 (2000).

[48] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T.
Eliassi-Rad, Collective classification in network data, AI Mag.
29, 93 (2008).

[49] G. Namata, B. London, L. Getoor, and B. Huang, in 10th Inter-
national Workshop on Mining and Learning with Graphs (2012),
Vol. 8, p. 249.

[50] A. Hertz and D. de Werra, Using tabu search techniques for
graph coloring, Computing 39, 345 (1987).

[51] A. Kosowski and K. Manuszewski, Graph Colorings (Ameri-
can Mathematical Society, 2004), Chap. Classical Coloring of
Graphs, pp. 2–19.

[52] M. Aslan and N. A. Baykan, A performance comparison of
graph coloring algorithms, Int. J. Intell. Syst. Appl. Eng. 4, 1
(2016).

[53] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., Deep graph library: A graph-
centric, highly-performant package for graph neural networks,
arXiv:1909.01315.

[54] S. Gualandi and F. Malucelli, Exact solution of graph coloring
problems via constraint programming and column generation,
INFORMS J. Comput. 24, 81 (2012).

[55] D. Kirovski and M. Potkonjak, in Design Automation
Conference (Association for Computing Machinery, 1998),
p. 427.

[56] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and
M. M. Bronstein, Understanding over-squashing and bottle-
necks on graphs via curvature, arXiv:2111.14522.

[57] https://github.com/amazon-research/gcp-with-gnns-example.

043131-10

http://arxiv.org/abs/arXiv:1806.01973
https://doi.org/10.1016/j.cels.2020.08.016
http://arxiv.org/abs/arXiv:2012.05716
https://doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/PhysRevLett.76.3251
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1103/PhysRevE.69.026113
http://arxiv.org/abs/arXiv:1903.04598
http://arxiv.org/abs/arXiv:2006.10643
http://arxiv.org/abs/arXiv:2103.16378
http://arxiv.org/abs/arXiv:2102.09544
https://doi.org/10.1103/PhysRevE.76.031131
https://doi.org/10.1007/BF01016406
https://doi.org/10.1007/978-3-031-01588-5
https://doi.org/10.1007/s10479-005-3449-7
http://arxiv.org/abs/arXiv:2010.05337
https://doi.org/10.7151/dmgt.1158
https://mat.tepper.cmu.edu/COLOR02/
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1007/BF02239976
https://doi.org/10.18201/ijisae.273053
http://arxiv.org/abs/arXiv:1909.01315
https://doi.org/10.1287/ijoc.1100.0436
http://arxiv.org/abs/arXiv:2111.14522
https://github.com/amazon-research/gcp-with-gnns-example

