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In situ controllable magnetic phases in doped twisted bilayer transition metal dichalcogenides

Johan Carlstrom
Department of Physics, Stockholm University, 106 91 Stockholm, Sweden

® (Received 27 April 2022; revised 10 August 2022; accepted 26 August 2022; published 22 November 2022)

We study the electronic structure of hole-doped transition metal dichalcogenides for small twist angles,
where the on-site repulsion is extremely strong. Using unbiased diagrammatic Monte Carlo simulations, we
find evidence for magnetic correlations which are driven by delocalization, and can be controlled in sifu via
the dielectric environment. For weak spin-orbit coupling we find that the moderately doped system becomes
antiferromagnetic, while the regime of strong spin-orbit coupling features ferromagnetic correlations. We show
that this behavior is accurately predicted by an analytical theory based on moment expansion of the Hamiltonian,

and an analysis of corresponding particle trajectories.
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I. INTRODUCTION

Moiré materials—resulting from the incommensurate
stacking of single atomic layers—have emerged as an impor-
tant platform for exploring strongly correlated physics. This
field was initiated by the discovery of superconductivity [1]
and strongly correlated phases [2] in twisted bilayer graphene
(TBG) at “magic angles” where virtually flat bands occur
in the spectrum [3]. While TBG remains a very active re-
search field, it presents certain problems due to its theoretical
complexity and the fragile nature of the electronic structure.
TBG defies the construction of symmetric Wannier functions,
meaning that it cannot be accurately described by a con-
ventional lattice model [4], and this complicates theoretical
analysis. Experiments are faced with the problem that the
interesting correlated phases of TBG only exist for certain
twist angles, thus requiring extensive fine tuning.

Twisted Dbilayer transition metal dichalcogenides
(TTMDs), especially WSe,, have been identified as an
attractive alternative to TBG [5] due to being robust, highly
tunable via the twist angle and the dielectric environment, and
relatively simple to model theoretically [6]. To the first-order
approximation they can be described by a spin-orbit coupled
Hubbard model on a triangular lattice. The bandwidth of the
TTMDs can be tuned over several orders of magnitude by
the twist angle, while spin-orbit coupling and doping can be
controlled in situ [7]. The electronic properties also evolve
continuously over an extensive range of twist angles, allowing
for greater experimental control.

Experiments on the TTMDs have revealed a rich phe-
nomenology, and the combination of a high degree of control
and a simple theoretical description suggests that a more
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comprehensive understanding of strongly correlated physics
may now be possible. In particular, several enigmatic phe-
nomena observed in the cuprate superconductors have been
reproduced recently. At a 4.2° twist angle, a strange metal
regime has been identified at small doping, giving way to
a Fermi liquid at higher carrier concentrations [8]. At a
5.1° twist, indications of superconductivity were reported
with a critical temperature of 7, & 3 K [9]. These twist an-
gles correspond to a parameter regime where the on-site
repulsion is comparable to the bandwidth [7,10], implying
strong magnetic correlations. For physically realizable model
parameters, superexchange processes are predicted to favor
antiferromagnetism [7,11], and so this scenario bears a strik-
ing similarity to the cuprate superconductors [12]. Recently,
strange metal behavior was also predicted theoretically using
dynamic mean-field theory [10].

Thus far, both theory and experiments have focused on
the scenario of a large twist angle where the bandwidth is
comparable to the on-site repulsion. At half filling or small
doping, this results in superexchange processes with an energy
scale that is comparable to the hopping integral. At the small-
est twist angles, this situation changes dramatically as the
on-site repulsion becomes much larger than the bandwidth.
The dramatic suppression of superexchange at small twist
angles, in combination with tunable spin-orbit coupling and
a nonbipartite lattice, makes the TTDMs an ideal platform for
studying kinetically driven magnetism.

In this paper, we focus on magnetic correlations that are
driven by delocalization, as opposed to superexchange. Using
diagrammatic Monte Carlo [13], we establish that propagating
charge carriers can induce either ferromagnetism or antiferro-
magnetism, depending on the spin-orbit coupling, which is in
turn controlled by the dielectric environment.

II. MODEL

The low-energy physics of the TTMD WSe, can approxi-
mately be described by a generalized “moiré Hubbard model”
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on the triangular lattice with spin-orbit coupling [6,7]:

H=— tijaC, o+ ) Uohyifrin fijg = 1"
o (i) i

ey

Here, o refers to both spin and valley, as these are locked in
transition metal dichalcogenides [14,15]. The phase ¢ is deter-
mined by the potential difference between the two layers, and
is thus controllable in situ. Density functional theory (DFT)
calculations indicate that realistically achievable parameters
correspond to approximately 0 < ¢ < 7 /3 [9]. In this model,
interchanging the spin corresponds to taking ¢ — —¢, while
the particle-hole transformation is equivalent to taking ¢ —
¢+ .

The hopping integral |f| decays exponentially with the
moiré period, which is in turn determined by the twist angle
0. As aresult, the bandwidth can be tuned over several orders
of magnitude in the interval 1° < 6 < 5° [7]. By contrast,
the on-site repulsion changes by less that a factor 2 in the
same interval, thus permitting the relative interaction U/t to
change dramatically. At & = 4°-5°, the hopping integral has
been estimated to |¢| ~ 100 K while U/t ~ 8 [10], and so the
regime 6 ~ 1° corresponds to extremely large on-site inter-
actions with a corresponding suppression of superexchange
processes. Higher-order corrections to the model (1) consist of
longer-range hopping and also nonlocal repulsive interactions.

In this paper, we focus on the physics corresponding to
small twist angles, where U is much greater than the band-
width. For our calculations, we will specifically consider
the strong-coupling limit U — oo, though our results remain
valid for a range of finite couplings as well. In this regime,
magnetic correlations emerge as the effective density of states
of a charge carrier is renormalized by the mean free path [16].
On bipartite lattices, the lowest energy for a single charge
carrier is obtained on a polarized background, leading to the
well-known Nagaoka theorem [17], with generalizations to
finite doping as well [18].

For the moiré Hubbard model, no analytical results exist
in Nagaoka’s scenario, though certain qualitative assessments
can be made based on the moments of the kinetic energy.
First, we note that the moments of the dispersion €k can
be connected to an expansion of H for a state consisting of
a single localized hole on a polarized background (denoted

by ¥),
/dkfﬁ ~ (Y|H"|V). (2)

Here, the expansion in H can be regarded as a quantum walk,
with nonvanishing contributions resulting when the system
returns to the initial state. For a polarized background, the
mean free path is infinite, and the dopant is correspondingly an
ideal fermion. By contrast, other types of backgrounds lead to
areduced mean free path that renormalize the effective density
of states seen by the carrier [16].

There are two principal types of trajectories in the quantum
walks (2): self-retracing paths that inherently preserve the spin
background, and nonretracing paths that exchange elements
of the background (see also Fig. 1). It is only the latter of
the two that depends on the spin background. Since all odd

FIG. 1. Two classes of trajectories. The self-retracing path (a) is
a zero-area loop that inherently preserves the spin background. In
the nonretracing path (b), the carrier exchanges elements of the
background, meaning that the interference of the initial and final state
becomes dependent on the spin background.

terms in the expansion (2) must enclose a nonvanishing area, it
follows that they are nonretracing. Hence, all odd terms in the
expansion (2) are significantly reduced if the mean free path is
finite, as occurs in the absence of ferromagnetic correlations.
Furthermore, most of the effective bandwidth of a carrier on a
Mott insulating background is contained in the self-retracing
paths [16,19].

From the preceding considerations, we arrive at the follow-
ing conjecture for the interplay of delocalization and magnetic
correlations: When the system is weakly to moderately hole
doped, the charge carriers will occupy the top of the effective
band and provide a kinetic energy that is dE/N ~ —€mnax,
where N is the number of carriers and €, is the effec-
tive band top. If the odd terms in (2) increase the band top
€max, then delocalization will drive drive the system towards
ferromagnetism, while if they decrease the band top, then anti-
ferromagnetic correlations will be preferred, as this minimizes
the mean free path.

Figure 2 shows how the band top and bottom depend on
the spin-orbit coupling. At the edge of the parameter space
(¢ = £ /3) the band top is situated at 6¢, while the bottom

Ek/t
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FIG. 2. Kinetic energy at k = (0,0) and k = +(4x/3,0) for
|¢| < /3 and o = 1. At the edge of the parameter region (¢ =
+7/3), the band top is situated at ¢, = 6¢ while the bottom corre-
sponds to —3¢. This asymmetry results from odd terms in (2), and
allows a hole to delocalize with an energy of —6¢ on a ferromagnetic
background, providing a strong case for ferromagnetism. At ¢ = 0,
the situation is the precise opposite.
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corresponds to —3¢, implying that the odd terms in (2) in-
crease €max. At ¢ = 0, this situation is reversed. Based on the
preceding conjecture, this implies that the system becomes
ferromagnetic at the edges of the parameter space, and an-
tiferromagnetic at the origin, with a crossover occurring at
¢ ~ 1 /6.

Because of spin-orbit coupling, SU(2) symmetry is explic-
itly broken down to Z,—corresponding to time reversal—
when ¢ # nmr. This means that the Mermin-Wagner theorem
[20] does not apply, and that a long-range ferromagnetic order
may persist to finite temperatures, despite the system being
two dimensional (2D).

III. NUMERICAL TREATMENT

To the test the preceding conjecture on how delocalization
interacts with magnetism, we employ diagrammatic Monte
Carlo, which is a numerical protocol based on the stochastic
sampling of Feynman-type graphs [13]. This method has the
advantage that it can be employed directly in the macroscopic
limit, and is asymptotically exact, as the only systematic
source of error is a truncation of the series. To be able to
address systems with strong interactions we use a particular
formulation known as strong-coupling diagrammatic Monte
Carlo (SCDMC) [21-24], where the diagrammatic elements
are connected vertices of propagating electrons that are non-
perturbative in U. The computational protocol employed here
is outlined in detail in Ref. [21]. We work in the grand canon-
ical ensemble.

The expansion parameter is the hopping integral ¢. The
principal observable that we compute is the polarization op-
erator of the hopping integral, which we denote IT,(w, k).
The dressed hopping integral is then obtained via the Bethe-
Salpeter equation according to

1
r=1(k) — I, (w, k)’
By conducting a skeleton expansion in the dressed hopping
integral 7, and iterating until convergence, we obtain a self-
consistent solution that implicitly takes into account certain

classes of diagrams up to infinite order. The dressed Green’s
function can be derived from the polarization according to

1
I, ' (w, k) — t(k)

f(w, k) = 3

G(w, k) = “)

Because SU(2) symmetry is explicitly broken, we expect
the onset of ferromagnetism to be accompanied by critical
behavior, which implies a divergent susceptibility with respect
to symmetry-breaking perturbations. Furthermore, even in the
proximity of a phase transition, the correction from diagrams
at higher order tend to be large. This presents a challenge for
diagrammatic methods, which are based on the expansion of
an analytical function. To overcome this difficulty, we impose
a strong symmetry-breaking perturbation on the system, in the
form of an external field

n¢—n¢

SH :BT, B = By/B, (5)

where S is the inverse temperature. At half filling or in the
atomic limit, the response to the perturbation (5) is that of a

paramagnet, so that

—By/2
puin = 11— = ©)
"y +ny e Bo/2 4 B2’

which defines the relative density of the minority component,
Pmin- We choose By & 2.946, so that pyi, = 0.05 for a para-
magnet. This choice is motivated by the fact that we require a
strong symmetry-breaking perturbation to obtain convergence
of the series, but that we do not want to expand around a fully
polarized state. Next, we consider hole doping the system. We
choose our chemical potential such that the carrier density is
20% when the system is fully polarized, though the resulting
equation of state will depend on renormalization of the kinetic
energy due to a finite mean free path in the system. Now, we
conduct a self-consistent expansion in ¢ to obtain the Green’s
function.

In Fig. 3 we display the relative density of the minority
component for values of the spin-orbit coupling in the inter-
val 0 < ¢ < /3 and an inverse temperature 8t = 3. In the
atomic limit we expect ppmi, = 0.05, and so a deviation from
this figure is a result of delocalization. For small values of ¢,
we find that the relative density of the minority component
increases, implying that a short mean free path decreases the
kinetic energy of charge carriers, thus driving the system to
form antiferromagnetic correlations. At strong spin-orbit cou-
pling, we instead see a reduction of the minority component
density, implying a preference for a long mean free path and
thus ferromagnetism. The crossover occurs at ¢. =~ 0.5 which
is very close to our prediction that ¢, = 7 /6 = 0.52.

It may be noted that in Figs. 3(e)-3(g), the lowest ex-
pansion order (N = 2) predicts negative densities ppi,. This
results from an overcorrection of the density that occurs at
second order, which is only compensated for at higher expan-
sion order.

Next, we focus on the point ¢ = /3, where we expect,
and also find, the largest reduction of the minority compo-
nent density. In Fig. 3(g) we observe that pp;, is oscillating
with an amplitude that falls off rather slowly, suggesting that
we are close to the convergence radius of the expansion. To
reach lower temperatures we therefore employ a resummation
scheme of the form

Wi({x}) — Wi({xDe 5. (7)

Here, W;({x}) denotes the weight of the topology i with in-
ternal variables {x}, while V; is the expansion order of this
topology, and £ is the resummation parameter. From the
reweighted series we obtain observables which formally de-
pend on the expansion order and the resummation parameter
&, so that

Pmin = Pmin(V, §). (8)

For a series with a finite convergence radius we expect that
Pmin(N, ) converges as N — oo for a range & > &y,. Our
aim is now to estimate pPpmin(N — 00, & > &nin) and extrap-
olate this result to £ = 0. Thus, we compute ppi, (N, &) for
N =8,9,10 and a range of &. Figure 4(a) shows pmin as
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FIG. 3. Relative density of the minority component [pomin = 14 /(14 4 n,)] obtained from diagrammatic Monte Carlo expansion up to an
order N = 8 or N = 9 [(a)—(g)]. The expansion is conducted for spin-orbit couplings in the interval 0 < ¢ < 7 /3 and in a strong external field
according to Eq. (5). The external field is chosen such that pp;, = 0.05 in the atomic limit [see Eq. (6)], and the deviation from this figure is
thus a result of delocalization of charge carriers. The system is hole doped, and the chemical potential in (a)—(g) is chosen such that the carrier
density is 20% if the system is fully polarized. The shaded region is an estimate for py,;, as N — oco. The results in (a)—(g) are summarized and
compared to the paramagnetic response in (h). At small spin-orbit coupling, we observe an increase in the minority component, implying that
delocalization favors a short mean free path, and thus antiferromagnetism. At large spin-orbit coupling, the preference is for ferromagnetism.
The critical point separating these regions can be identified by the crossing of the Monte Carlo data (red dashed line) and the paramagnetic
response (green dotted line), which occurs at ¢. &~ 0.5. We may compare this result to the initial conjecture: We anticipate that the type of
magnetism favored by delocalization is primarily determined by the magnitude difference between the band top (€,.x) and bottom (€, ). This
suggests a critical point at ¢, = 7 /6 &~ 0.52. The predicted phase diagram shown in (i) is thus in excellent agreement with our findings.

a function of the resummation parameter for inverse tem-
peratures 3 < B < 3.75. For & > &, ~ 0.45-0.5 the lines
corresponding to different expansion orders N coincide, indi-
cating convergence. Thus, we fit a second-order polynomial to
the simulation data in the region £ > &.;,. Extrapolating this
function to £ = 0 gives an estimate for ppi, (N — 00, & = 0).
A summary of the estimate is given in Fig. 4(b): As the tem-
perature is reduced, ppmin decreases monotonically. It should
be stressed, that this calculation is conducted for a magnetic
field that decreases with temperature according to Eq. (5), so
that the reduction of the minority density is entirely the result
of delocalization.

The error bars in Fig. 4(b) were obtained by varying the
cutoff &y, and observing how the result changes. However, it
should be stressed that there is also an implicit error associated
with the choice of fitting function. We also tried other fitting
functions, including a third-order polynomial, though this re-
sulted in greater sensitivity to noise in the simulation data.
Nonetheless, the key qualitative feature of the series—that

Pmin decreases as the temperature is reduced—is reproduced
for all fitting functions we tried.

IV. DISCUSSION

We have identified a mechanism by which delocalization of
charge carriers gives rise to magnetic correlations in the moiré
Hubbard model. Based on an analysis of particle paths, we
conjecture a crossover from antiferromagnetic correlations at
weak spin-orbit coupling to a ferromagnetic regime at strong
coupling. A comparison of this theory to diagrammatic Monte
Carlo simulations shows excellent agreement. As the temper-
ature is reduced, we confirm a rapid reduction of the minority
component in the strong-coupling regime, indicating that the
system eventually becomes fully polarized.

While the results reported here were obtained in the strong-
coupling limit, they remain relevant for physical parameter
regimes of the TTMDs. For example, at twist angles of 6 =
4°-5°, estimates of effective model parameters yield [¢| ~
100 K and U/t ~ 8 [10]. If the hopping integral is shrunk by
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FIG. 4. Temperature dependence of the relative density of the
minority component [ponin = n4/(ny + ny)], obtained by resumma-
tion of the series. By reweighting diagram topologies according to
Eq. (7), we obtain a series for pmin(V, £). We computed pmin(&V, §)
for N = 8,9, 10 and a range of resummation parameters £ (a). For
& > &nin ~ 0.45-0.5, the solutions for different expansion orders
N coincide, indicating that the series for pmin(N, &) has converged
to Pmin(N — 00, ). Thus, we fit a second-order polynomial to the
simulation data in the region & > &, where p has converged with
respect to N, indicated by the solid orange line. The polynomial pro-
vides an extrapolation to & = 0, indicated by the dashed orange line.
We extracted these results for inverse temperatures 3 < gt < 3.75.
The estimate for p(N — oo, & = 0) is summarized in (b). As the
temperature decreases, the relative density of the minority compo-
nent drops. It should be noted that the applied field is taken to be
B = Byt /B, and so the decrease of the minority component density
is only driven by the increasing energy scale of delocalization as
compared to temperature. The system considered is hole doped at
~20%.

two orders of magnitude via the twist angle, and the on-site
repulsion changes by less than a factor 2 [7], then this gives a
superexchange J/t ~ 4t /U ~ 1/100 and¢ ~ 1 K. The energy
scale of a magnetic bond is thus €, ~ #/400, implying that

emp ~ 1072 in our simulations. Thus, a conservative estimate
in this scenario is that at the energy scale of magnetic bonds
would be at least two orders of magnitude smaller than the
simulated temperature, which corresponds to 0.25-0.33 K.
This clearly demonstrates the existence of parameter regimes
where superexchange is irrelevant, and the strong-coupling
limit is an accurate description of the system.

In the polarized regime, the moiré Hubbard model (1)
reduces to a system of ideal single-component fermions.
However, if we also include noncontact interactions, then we
obtain an effective “polarized moiré model” of the form

H==> tyclc;+ Y Viiuiny, t;=ltle?. (9
(i) ij

Here, we have not included beyond nearest-neighbor hop-
ping as these terms are extremely small, and most likely
not important. The nearest-neighbor interactions can be quite
large, however: An approximative assessment suggests that
U/Vnn ~ 15 atatwist angle of 1°and U/Vnn ~ 3 at 5° [7]. In
our example, where U/t ~ 400, this would imply that Vyn >
25t, so that the interaction is much larger than the bandwidth.
Even beyond a nearest-neighbor interaction, the energy scale
can be comparable to or larger than the bandwidth.

We expect nonlocal interactions to have a limited impact
on kinetically driven magnetism, since these terms do not
affect the interaction between charge carriers and the spin
background. However, at much lower temperatures they may
drive instabilities in the system.

Finally, we note that the magnetic phases that appear for
small twist angles can be controlled in situ via the dielectric
environment: The spin-orbit coupling—which determines the
kinetically driven spin correlations—is regulated by the po-
tential difference between the two layers, and is estimated
to take values in an interval 0 < ¢ < /3 [9]. The critical
point ¢, ~ 7 /6 falls inside this range by a wide margin,
indicating that the system can be dialed between polarized and
antiferromagnetic in real time. In the ferromagnetic regime,
we expect that the minority component becomes gapped at
sufficiently low temperature, implying that the system only
transmits currents of the majority component. This would
allow TTMDs to be used to construct “spin filters” that are
controllable in situ.
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