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We construct a unified theory of thermodynamics and stochastic thermodynamics for classical nonequilibrium
systems driven by non-conservative forces, using the recently developed covariant Ito-Langevin theory. The
thermodynamic forces are split into a conservative part and a non-conservative part. Thermodynamic functions
are defined using the reference conservative system. Work and heat are partitioned into excess parts and
house-keeping parts, which are due to, respectively, conservative forces and non-conservative forces. Excess
entropy production (EP) and house-keeping EP are analogously defined. The splitting of thermodynamic forces
is subjected to an arbitrariness resembling a gauge symmetry, with each gauge defining a reference conservative
Langevin system. In the special Gibbs gauge, the nonequilibrium steady state (NESS) is characterized by Gibbs
canonical distribution, the excess heat agrees with that defined by Hatano and Sasa, and the excess EP agrees
with that of Glansdorff and Prigogine, i.e., it is the time rate of the second-order variation of system entropy near
the NESS. Adopting the Gibbs gauge, and focusing on the excess parts of thermodynamic quantities, a complete
analogy between thermodynamics of non-conservative systems and that of conservative systems is established.
One important consequence of this analogy is that both the free energy and excess EP are minimized at NESS.
Our theory therefore constitutes a statistical foundation both for the steady-state thermodynamics theory due to
Sasa and Tasaki and for the stability theory of NESS due to Glansdorff and Prigogine. These results are valid
even if the system is far from equilibrium. By studying detailed fluctuation theorem, we find striking differences
between systems with symmetric kinetic matrices and those with asymmetric kinetic matrices. For systems with
asymmetric kinetic matrices, the total EP is the sum of house-keeping EP, excess EP, and pumped entropy.
Entropy pumping is an exchange of entropy between the system and environment without necessarily involving
dissipation. In the presence of entropy pumping, the system may behave as either a demon or an antidemon.
Fluctuation theorems and work relations are derived both for total work and for excess work. For systems
with symmetric kinetic matrices, there is no entropy pumping, yet in the Gibbs gauge, the excess work and
house-keeping work each satisfies a separate fluctuation theorem. We illustrate our theory using many concrete
examples.
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I. INTRODUCTION

When a system, whether large or small, is in contact with
a thermal bath and is perturbed by constant external forces, it
may converge to an equilibrium state, or to a nonequilibrium
steady state (NESS). For the sake of convenience, we shall
call the former system conservative whereas the latter system
non-conservative. These terms will be made precise in the
setting of nonlinear Langevin dynamics later in this paper.
Whilst thermodynamics and stochastic thermodynamics of
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conservative systems are well understood, the situation of
non-conservative systems turn out to be much more compli-
cated. Study of the statistical mechanics and thermodynamics
of NESS have a very long and convoluted history, and is
still deemed unfinished. A brief review of important ideas
and theories up to 2000 is provided in Sec. I of Ref. [1].
We also refer to the readers to classic textbooks [2–7] and
papers [8–14] for more details. Both the classical theory of
irreversible thermodynamics [2,3] and linear response theory
[13] are applicable only for near-equilibrium systems. The
least dissipation principle of Onsager and Machlup [11,12]
can be used to characterize the most probable path of a
fluctuating nonequilibrium system, but not the statistical dis-
tribution. Glansdorff and Prigogine [7,15] defined the excess
entropy production (EP) as the rate of the second-order varia-
tion of system entropy around the NESS, and showed that its
positivity characterizes the stability of many NESS systems.
Its applicability in the general setting was however disputed
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[16]. A promising candidate for thermodynamic theory of
NESS is the steady-state thermodynamics (SST), initiated by
Oono and Paniconi [17], and further developed by Sasa and
Tasaki [1], which aims to establish a full analogy between
NESS and equilibrium thermodynamics. A crucial step in
this endeavor is to introduce the concept of house-keeping
heat, which must be subtracted from the total heat so that the
remaining excess heat is finite for a quasistatic transition be-
tween different NESS. The principle of minimum (excess) work
[1,17] emerges as an important conjecture, which may be un-
derstood as an analog of second law for nonequilibrium steady
systems.

Stochastic thermodynamics [18–22], which combines
Markov dynamics with nonequilibrium thermodynamics, con-
stitutes a powerful framework for statistical physics of
nonequilibrium systems. It provides the most natural setting
for study of various fluctuation theorems [18,21], which are
rooted in local detailed balance properties, same as Onsager-
Casimir reciprocal symmetry of linear kinetic coefficients
[8–10]. In the setting of NESS, the steady-state fluctuation
theorem [23,24] supplies an asymptotically exact relation
between rate of EP and time-reversal asymmetry of path prob-
ability. The Hatano-Sasa equality [25] was proved for general
Markov processes without detailed balance, and its connec-
tions with excess heat and “the second law of SST” [1,25]
were established for over-damped Brownian dynamics driven
by non-conservative forces. Speck and Seifert [26] proved a
similar equality for the house-keeping heat, which is the dif-
ference between the total heat and the excess heat. Chernyak,
Chertkov, and Jarzynski [27] studied general non-conservative
Langevin models with even variables, and show that Crooks
fluctuation theorem [22] can be constructed for two distinct
types of EP-like quantities, corresponding to two distinct
definitions of time-reversal in the trajectory space. Esposito
and Van der Broeck [28–30] showed that, again for systems
with even variables, the total EP can be decomposed into
two parts, which they call adiabatic EP and nonadiabatic EP,
and each of which satisfies a fluctuation theorem. Integration
of these fluctuation theorems yield respectively the equalities
established in Ref. [25] and in Ref. [26]. About the same time,
Ge and Qian [31] clarified the thermodynamic meanings of
these components of EP for master equation systems. Later,
it was shown independently by Spinney and Ford [32,33] and
by Park et al. [34] that for general Langevin systems with both
even and odd variables, such a decomposition does not work.
Alone a different line, Qian [35,36] studied entropy produc-
tion for Langevin dynamics with even variables and additive
noises. He showed that the stability condition of NESS is
indeed the positivity of excess entropy production as defined
by Glansdorff and Prigogine, i.e., the rate of the second-
order variation of system entropy. This explicitly verifies the
validity of Glansdorff-Prigogine stability criterion, without
assuming that the system is near equilibrium. Additionally,
Kim and Qian [37,38] studied underdamped Hamiltonian sys-
tems driven by velocity-dependent force, and discovered a
novel effect of entropy pumping, which describes exchange
of entropy between the system and its environment without
involving dissipation. This stimulated some further studies on
thermodynamics of information-feedback systems in under-
damped Hamiltonian dynamics [39,40].

Whilst all these ground-breaking papers, as well as many
ensuing papers on related problems [41–47], provide deep in-
sights about thermodynamics and stochastic thermodynamics
of Langevin systems driven by non-conservative forces, many
important questions remain open or only partially answered.
For example, the terms house-keeping and excess have been
introduced for heat, work, entropy, and production in many
papers and in seemingly different ways [1,7,17,36,43,44],
it is not clear whether these definitions are consistent with
each other. Whilst most previous theories are formulated
for systems with even variables and even control parame-
ters, it is not clear whether and to what extent they can be
extended to more general systems with both even and odd
variables and parameters. Additionally, the relation between
Glansdorff-Prigogine stability criterion and the second law of
SST is not clear in general setting. The full correspondence
between SST and stochastic thermodynamics has not been
worked out. Finally, it is not understood how entropy pumping
works in non-Hamiltonian systems. In summary, a general
and fully consistent theory of stochastic thermodynamics for
non-conservative systems is not yet available.

With all these questions in mind, we set out to con-
struct a unified theory of thermodynamics and stochastic
thermodynamics for nonlinear Langevin systems driven by
non-conservative forces. During the course, the terms “ex-
cess” and “house-keeping” will acquire precise and consistent
meanings, and their relations with previous usages will be
clarified. Major results about non-conservative systems, pre-
viously established for more specific systems [25–28,37], will
be rederived in a more general setting and synthesized into a
unified perspective. A complete analogy between conservative
systems and non-conservative systems will be established.
The Glansdorff-Prigogine stability criterion will be rigorously
established for NESS of generic systems driven by non-
conservative forces, which turns out to be equivalent to the
second law of SST. Overall, a firm foundation of SST will be
established.

The present paper is the fourth of a sequel dedicated to a
unified theory of thermodynamics and stochastic thermody-
namics for nonlinear Langevin systems, which is designed to
be applicable to classical nonequilibrium systems with contin-
uous state variables in a very broad setting: The system may
contain both even and odd variables and control parameters;
the noises acting on system are generally multiplicative; the
space of system variables may be curved; the interaction be-
tween the system and environment may be strong; the forces
driving the system may be conservative or non-conservative.
The theory is constructed on two basic assumptions: (1)
white noises, and (2) detailed balance, which reflects the
time-reversal symmetry of microscopic dynamics. The precise
definition of detailed balance, is supplied in Sec. II for conser-
vative systems and in Sec. III for non-conservative systems.

In the first paper [48], a covariant formulation of Ito-
Langevin dynamics was developed. A salient feature of this
formulation is a clear separation of the static aspect, charac-
terized by a generalized potential U , and the kinetic aspect,
characterized by a kinetic matrix Li j . This allows a simple and
covariant formulation of detailed balance conditions. Special
attention is paid to a peculiar term called spurious drift, which
shows up when the noises are multiplicative, or the state
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space is curved. Neglect of spurious drift generally spoils
covariance and detailed balance. In the second paper [49],
the covariant Langevin dynamics was used to construct a
covariant stochastic thermodynamic theory for small systems
in contact with a single heat bath. Using concrete examples, it
was demonstrated that whenever spurious drift shows up, the
conventional theories of stochastic energetics and stochastic
thermodynamics must be replaced by the covariant theory.
Mathematically spurious drift arises because the differential
dx in stochastic differential equations do not transform as
regular vector, but according to the exotic Ito’s rule. We refer
to readers to Refs. [48,49] for more details about spurious
drift. In the third paper [50], it was demonstrated that the
formalism is applicable to systems that are strongly coupled to
their environments, as long as the Hamiltonian of mean force
is defined as the fluctuating internal energy. There is no need
to change the definitions of other thermodynamic variables.

In all three preceding papers [48–50], it was assumed that
the thermodynamic forces acting on the system are conser-
vative, i.e., they can be expressed as negative the gradient
of a generalized potential U , which is associated directly
with a thermodynamic equilibrium. For fixed system param-
eters, the system converges to this equilibrium state. There
are however many non-conservative systems, which converge
not to any equilibrium state, but to NESS with positive
EP. The thermodynamic forces acting on these systems are
said to be non-conservative. A typical example is a poly-
mer chain dragged by a constant force supplied by, e.g.,
an optical or magnetic tweezer. In the NESS, the polymer
moves with a constant speed, and also exhibits internal de-
formation. It is the purpose of the present paper to develop
a theory of stochastic thermodynamics for these systems,
by generalizing the recently developed covariant stochastic
thermodynamics [49].

Our journey begins with the splitting of thermodynamic
forces into a conservative part and a non-conservative part.
Work and heat are both decomposed into a house-keeping
part due to non-conservative force and an excess part due to
conservative force. The house-keeping work is directly dissi-
pated and absorbed by the heat bath (in the form of negative
the house-keeping heat), whereas both the excess work and
the excess heat are used to transform the system state. These
definitions share the same spirit as those of Oono and Paniconi
[17], but are made mathematically precise using the language
of stochastic thermodynamics. Excess EP and house-keeping
EP are also analogously defined. Thermodynamic quantities
are defined both at the trajectory level and at the ensemble
level. In the steady state, the excess parts of thermodynamic
quantities vanish identically, whereas the house-keeping parts
are generally nonvanishing. Differentials of thermodynamic
quantities can be expressed in terms of only excess work and
heat. These differential relations are very much analogous to
those in equilibrium thermodynamics.

The splitting of thermodynamic forces can be carried out
in an infinite many different ways, each defining a reference
conservative system. This is very similar to the gauge sym-
metry of electromagnetism, hence we will use the term gauge
throughout the paper. There is a special Gibbs gauge, where
the NESS is characterized by Gibbs canonical distribution.
In this gauge, the excess heat agrees with that defined by

Hatano and Sasa. The excess EP agrees with that defined by
Glansdorff and Prigogine, i.e., it is the second-order variation
of the total EP near the NESS, and is always non-negative. By
adopting the Gibbs gauge and focusing on the excess parts
of thermodynamic quantities, a complete analogy between
thermodynamics of non-conservative systems and that of con-
servative systems can be established. The NESS minimizes
both the free energy and excess EP. For a nonautonomous
process, the free energy difference constitutes a lower bound
on the excess work that is needed to carry out a transition
from one NESS to another. This is precisely the principle of
minimal excess work, or the second law of SST [1], now estab-
lished for most general nonlinear Langevin systems, arbitrary
far from equilibrium. For over-damped Langevin systems with
additive noises, these results are consistent with those of
Refs. [31,35,36].

Using the detailed fluctuation theorem, we study the total
EP and find two broad classes of behaviors. For systems
with asymmetric kinetic matrices, i.e., asymmetric systems,
the EP can be decomposed into a house-keeping part, an
excess part, and an intriguing pumped entropy. Whilst both
excess EP and the total EP are positive, the house-keeping EP
and the pumped entropy may be either positive or negative.
The pumped entropy describes entropy transfer between the
system and the agent who supply the driving forces with-
out necessarily involving heat dissipation, and is peculiar
to systems with asymmetric kinetic matrices. Depending on
the signs of pumped entropy, the system may behave either
as a Maxwell demon, or an antidemon, transforming heat
into mechanical energy, or the other way around. Fluctuation
theorems and work identities are derived both for processes
starting from thermal equilibrium and for processes starting
from NESS. The former class of results concerns total work,
and are gauge dependent. By continuously varying the gauge,
we obtain an entire manifold of physically distinct fluctua-
tion theorems and work identities. The latter class of result
concerns only excess work and excess EP. All results are
illustrated using multiple concrete examples.

For symmetric systems, i.e., systems with symmetric ki-
netic matrices, there is no entropy pumping, and the total EP
can be split into a house-keeping part and an excess part. In
the special Gibbs gauge, the NESS obeys Gibbs distribution,
whilst both house-keeping EP and excess EP are positive defi-
nite. At the trajectory level, house-keeping work and excess
work each obeys a fluctuation theorem and work identity.
These fluctuation theorems involve adjoint process and adjoint
backward process, which are explicitly constructed. The fluc-
tuation theorem for the house-keeping work is a significant
refinement of the well-known steady-state fluctuation theo-
rem. Whilst these are essentially rewriting of earlier results
[25,27–30] in unified notations and a slightly more general
setting, we also supply multiple novel insights about fluc-
tuation theorems in non-conservative systems, together with
several concrete examples where various results can be tested.

The mission of the present paper is to synthesize and gen-
eralize many significant but seemingly disparate ideas and
theories, so as to provide a unified theoretical framework
for an important but heterogeneous field. Accordingly, we
will take a pedagogical approach, and spend great volume
in explaining physical concepts and deriving equations step
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by step. Even though we made a great effort to simplify the
mathematical derivations, they are still rather complicated,
owing to the intrinsic difficulty of nonlinear Langevin dy-
namics. To help explaining the theory, we will also discuss
many concrete model systems. The discussion of these model
systems will however be brief. More detailed discussions of
these example problems, together with numerical simulations,
will be discussed in future publications. We believe that such
a style, which is also shared to a less extent by two of the
previous papers in the sequel [49,50], fits the nature of the
issue we address. We are confident that the present paper con-
stitutes a firm foundation for more detailed studies of many
non-conservative Langevin systems, which will be carried out
in future.

A few remarks about the applicability of our theory are
in order. Firstly even though in Sec. III we assume that the
system is in contact with a single heat bath, our theory can be
adapted to systems coupled to multiple heat baths with differ-
ent temperatures, as we demonstrate using a simple example
in Sec. V C. Secondly, we always impose natural boundary
conditions or periodic boundary conditions to the Fokker-
Planck equation, so that all boundary terms vanish identically.
There are many realistic systems that are commonly described
by other types of boundary conditions, some of which lead
to NESS. We believe however these boundary conditions can
always be alternatively described in terms of suitable potential
energy or non-conservative forces. Indeed, the example in
Sec. V C shows that a temperature gradient imposed on two
boundaries can be mimicked by non-conservative forces. It is
also important to note that many systems, such as chemical re-
actions, have discrete variables, and hence are better described
by master equations. If the system size is not too small, how-
ever, a continuous approximation may be appropriate, and our
theory becomes applicable. Finally we emphasize that whilst
we supply a unified and consistent theory for thermodynamics
and stochastic thermodynamics of non-conservative Langevin
systems, there are also alternative formulations of theories, see
e.g., [31,51–53]. The relations and differences between these
theories and ours await further study.

The content of this paper is organized as follows. In
Sec. II we briefly review the covariant Langevin dynamics and
stochastic thermodynamics developed in the previous papers
in the sequel [48,49]. In Sec. III we generalize the theory
to include non-conservative forces, and establish a full anal-
ogy with the theory of conservative systems. In Sec. V, we
illustrate the theory using several examples of systems with
asymmetric kinetic matrices. In Sec. VI we specialize to sys-
tems with symmetric kinetic matrices. In Sec. VII, we discuss
several examples of systems with symmetric kinetic matrices.
Finally, in Sec. VIII, we conclude the paper with projection of
future researches. In the Appendix, we supply detailed deriva-
tion of the detailed fluctuation theorem for general nonlinear
Langevin dynamics with non-conservative forces.

II. REVIEW OF PREVIOUS RESULTS

We first briefly review the covariant theories of Langevin
dynamics and stochastic thermodynamics developed in pre-
vious papers [48–50]. Let x = (x1, . . . , xn) be the set of slow
variables, λ the control parameter, and U (x, λ) the generalized

potential. For simplicity, we further assume that the metric
tensor is trivial, i.e., gi j = δi j . Generalization to the case of
nontrivial metric tensor is straightforward, as demonstrated in
Ref. [49]. The system dynamics is described by the covariant
nonlinear Ito-Langevin equation

dxi + ( Li j∂ jU − ∂ jL
i j )dt = biαdWα (t ), (2.1)

where dWα (t ) are the standard Wiener noises, satisfying
dWα (t )dWβ (t ) = δαβ , −∂ jU are the thermodynamic forces
[54], and Li j (x) are kinetic coefficients, both familiar in the
classical theory of irreversible thermodynamics. The term
−∂ jLi j is called spurious drift and has been analyzed in
detail in two previous papers [48,49]. Equation (2.1) is math-
ematically equivalent to the more familiar form of nonlinear
Langevin equation: dxi = F idt + biαdWα (t ), yet has the ad-
vantages that U, Li j both have clear physical meanings and
transform in a simple way under nonlinear transformation of
variables. The kinetic matrix Li j (x) can be decomposed as

Li j (x) = Bi j (x) + Qi j (x), (2.2a)

where Bi j (x) and Qi j (x) are respectively symmetric and anti-
symmetric. The product biα (x)dWα in the r.h.s. of Eq. (2.1) is
interpreted in Ito’s sense. The amplitudes of noises biα (x) are
related to Bi j (x) via

biαbjα = 2 Bi j = Li j + L ji. (2.2b)

For more detailed explanations, we refer to readers to
Ref. [48]. This relation guarantees that the symmetric ma-
trix Bi j is semipositive definite. We will however assume
that Bi j is positive definite for convenience of analysis. Note
that Bi j, Qi j,U may all depend the control parameter λ. The
Fokker-Planck equation (FPE) associated with the Langevin
dynamics (2.1) is given by

∂t p(x, t ) = ∂iL
i j (∂ j + (∂ jU ))p(x, t ) = Lp, (2.3)

where L is the Fokker-Planck operator

L ≡ ∂iL
i j (∂ j + (∂ jU )). (2.4)

We further assume that the following detailed balance condi-
tions [48,49] of Bi j, Qi j,U are satisfied:

εiB
i j (x∗, λ∗)ε j = Bi j (x, λ), (2.5a)

εiQ
i j (x∗, λ∗)ε j = −Qi j (x, λ), (2.5b)

U (x∗, λ∗) = U (x, λ), (2.5c)

where x∗, λ∗ are respectively the time reversals of x, λ, and
∫

x
means integration over the space of x, as in Refs. [49,50]. It is
further assumed that U satisfies∫

x
e−U (x) = 1. (2.5d)

The detailed balance conditions (2.5) guarantee that
pEQ(x, λ) = e−U (x,λ) can be interpreted as a proper thermal
equilibrium state, and the dynamics satisfies the reversibility
condition

Pλ(x1|x; dt )pEQ(x, λ) = Pλ∗ (x∗|x∗
1; dt )pEQ(x∗

1, λ
∗). (2.6)

Since Bi j is positive definite, for fixed control parameter λ,
the system converges to the unique thermal equilibrium state
pEQ(x, λ).

043125-4



UNIFIED THEORY OF THERMODYNAMICS AND … PHYSICAL REVIEW RESEARCH 4, 043125 (2022)

Equation (2.6) implies that the probability density of a
dynamic trajectory x(t ) in the forward process (with control
parameter λ) is the same as the probability density of the re-
versed trajectory x∗(−t ) in the backward process with control
parameter λ∗. This is the precise meaning of detailed balance,
or microscopic reversibility according to Onsager [8–10].

Assuming that the system is in contact with a single heat
bath, the generalized potential is related to the Hamiltonian of
mean force H (x, λ) [50,55–59] via

U (x, λ) = β(H (x, λ) − FEQ(λ)), (2.7)

where FEQ(λ) is the equilibrium free energy of the system as
a function of λ,

FEQ(λ) = −T log
∫

x
e−βH . (2.8)

The time-reversal symmetry (2.5c) is translated into

H (x∗, λ∗) = H (x, λ), (2.9a)

F (λ∗) = F (λ). (2.9b)

In a previous paper of this sequel [50], it was shown that the
generalized potential U is uniquely determined by the Hamil-
tonian of mean force H but not vice versa. This is because U
must satisfy the normalization Eq. (2.5d), and hence contains
less information.

The Hamiltonian of mean force is defined as the fluctuating
internal energy [49,50]. The nonequilibrium internal energy,
entropy, and free energy of the system are defined respectively
as

E [p] ≡
∫

x
p(x)H (x, λ), (2.10a)

S[p] ≡ −
∫

x
p(x) log p(x), (2.10b)

F [p] ≡ E − T S =
∫

x
p(x)(H + T log p(x)). (2.10c)

Note that kB = 1, and hence entropy is dimensionless.
Heat and work at trajectory level are defined as

d̄Q ≡ dxH (x, λ), (2.11a)

d̄W ≡ dλH (x, λ), (2.11b)

where dxH and dλH are respectively the differentials of H due
to changes of x and of λ. The first law holds at the trajectory
level,

dH (x, λ) = d̄Q + d̄W. (2.11c)

Heat and work at the ensemble level are defined as ensem-
ble averages of the corresponding quantities at trajectory level,
defined in Eqs. (2.11). In Langevin dynamics, ensemble aver-
age means averaging both over noises and over pdf p(x, t ). It
was proved in Ref. [49] that

d̄Q =
∫

x
〈dxH〉 p =

∫
x

HLp dt, (2.12a)

d̄W =
∫

x
p dλH, (2.12b)

where 〈dxH〉 means average of dxH over noises, and L is
defined in Eq. (2.4). The first law also holds at the ensemble
level

dE = d̄Q + d̄W. (2.13)

The differential of the nonequilibrium free energy is

dF = d̄W + d̄Q − T dS. (2.14)

It was shown in Ref. [50] that −βd̄Q is the change of condi-
tional entropy of the heat bath given the system state. Hence
dS − βd̄Q is the change of the joint entropy of the system and
the bath, i.e., the change of total entropy of the universe. The
differential of the total entropy is

dStot = dS − βd̄Q = −
∫

x
(log p + U )d p

= β(d̄W − dF ). (2.15)

The rate of total EP can be calculated using Eq. (2.3),

�tot ≡ dStot

dt
= dS

dt
− βd̄Q

dt
= β

(
d̄W

dt
− dF

dt

)

=
∫

x
[(∂i + ∂iU )p]

Bi j

p
[(∂ j + ∂ jU )p] � 0, (2.16)

which is non-negative. The last inequality follows form the
positivity of the symmetric matrix Bi j .

If λ is fixed, d̄W/dt = 0, Eq. (2.16) says that the rate of
EP is always non-negative, and vanishes when the system
achieves equilibrium. Hence the equilibrium state is charac-
terized by minimization of EP rate. Additionally, Eq. (2.16)
also says that the free energy decreases monotonically as
the system evolves, until it achieves equilibrium. Hence the
equilibrium state is characterized both by minimization of
free energy and by minimization of EP rate. If λ is not fixed,
Eq. (2.16) says d̄W � dF , which imposes a lower bound on
the work needed to realize a nonequilibrium process. This
result is called the principle of minimal work, and may be
taken as an alternative but equivalent representation of the
second law.

The probability current is defined as [48]

ji = −Li j (∂ j + (∂ jU ))p + ∂ j (Q
i j p), (2.17)

such that the FPE (2.3) can be rewritten into the form of
current conservation

∂t p + ∂k jk = 0. (2.18)

The probability current can be decomposed into a reversible
part ji

R and an irreversible part ji
IR [60,61],

ji = ji
R + ji

IR, (2.19a)

ji
IR = −Bi j (∂ j + (∂ jU ))p, (2.19b)

ji
R = −Qi j (∂ j + (∂ jU ))p + ∂ j (Q

i j p), (2.19c)

where ji
IR only involves Bi j , and ji

R only involves Qi j . If the
matrix Bi j is nonsingular, we can rewrite Eq. (2.16) in terms
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of irreversible probability current,

�tot =
∫

x
ji
IRB−1

i j p−1 j j
IR, (2.20)

where B−1
i j is the inverse matrix of Bi j .

Let Pλ(x1|x; dt ) be the probability density that the system
starts from x and evolves to x1 = x + dx after time dt , with
the control parameter fixed at λ. Corresponding to this in-
finitesimal forward step of trajectory, there is a time-reversed
infinitesimal step, the backward step, where the system starts
from x∗

1 and evolves to x∗ after time dt , with the control
parameter fixed at λ∗. The corresponding transition proba-
bility density is Pλ∗ (x∗|x∗

1; dt ). The ratio of Pλ(x1|x; dt ) and
Pλ∗ (x∗|x∗

1; dt ) is related to the heat d̄Q absorbed by the system
during the forward step via the following formula:

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= −βd̄Q = −dxU . (2.21a)

This identity was proved in the Appendix of Ref. [49] for the
Langevin dynamics Eq. (2.1) satisfying detailed balance (2.5).
Since heat is the energy transfer from the heat bath to the
system, and the heat bath is assumed in equilibrium, −βd̄Q =
βdEB = dSB can be understood as the entropy change of
the bath during the infinitesimal forward process, where SB

is the bath entropy conditioned on the system state. Hence
Eq. (2.21) can also be rewritten as

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= dSB. (2.21b)

Equations (2.21) supply the key connection between EP
and time-reversal asymmetry of path probability density, and
play a fundamental role in the development of stochastic ther-
modynamics.

Using Eq. (2.21), both Crooks fluctuation theorem and
Jarzynski equality can be established, from which follows
the second law inequality (2.16). For details, see Sec. IV of
Ref. [49].

III. STOCHASTIC THERMODYNAMICS OF
NON-CONSERVATIVE LANGEVIN SYSTEMS

A. Non-conservative thermodynamic forces

The thermodynamic force −∂ jU in Langevin equa-
tion (2.1) is said to be conservative, because it is negative
the gradient of a generalized potential. We introduce a non-
conservative component ϕ j of thermodynamic force such that
the total force becomes −∂ jU + ϕ j . The non-conservative
force ϕi cannot be written as gradient of a potential. This
may be due to two possible reasons: (i) ∂iϕ j �= ∂ jϕi, or (ii)
∂iϕ j = ∂ jϕi but there is a close loop in the x space along which∮

dϕi �= 0. The later arises only if the x space is multiply con-
nected. In the presence of non-conservative force, Eqs. (2.1),
(2.3), and (2.4) become

dxi + ( Li j (∂ jU − ϕ j ) − ∂ jL
i j )dt = biαdWα, (3.1)

∂t p = ∂iL
i j (∂ j + (∂ jU − ϕ j ))p, (3.2)

L ≡ ∂iL
i j (∂ j + (∂ jU − ϕ j )). (3.3)

We assume that the non-conservative force ϕi is generated by
some reversible mechanism, same as the potential generalized
U . Hence we expect that the non-conservative force ϕi satis-
fies time-reversal symmetry similar to the conservative force
−∂iU . However, since ∂iU and ϕi appear in the dynamics
only through the combination −∂iU + ϕi, the detailed balance
conditions should also be imposed on the combination. Hence
the local detailed balance conditions for non-conservative
Langevin systems are

εiB
i j (x∗, λ∗)ε j = Bi j (x, λ), (3.4a)

εiQ
i j (x∗, λ∗)ε j = −Qi j (x, λ), (3.4b)

εi(∂
∗
i U (x∗, λ∗) − ϕi(x∗, λ∗)) = ∂iU (x, λ) − ϕi(x, λ), (3.4c)∫

x
e−U (x) = 1. (3.4d)

In the above equations, we use λ to denote all control pa-
rameters, which may appear both in U, Li j as well as in ϕi.
In the absence of non-conservative force ϕi, Eq. (3.4c) may
be integrated to yield Eq. (2.5c). Equations (3.4) are called
local detailed balance conditions because in the presence of
non-conservative force ϕi, we do not expect the existence of
an equilibrium state pEQ such that Eq. (2.6) holds. Instead the
system converges to a NESS with positive EP, whose study is
the central task of the present paper.

The Langevin dynamics (2.1), which is obtained from
Eq. (3.1) by setting ϕi = 0, will be referred to as the reference
conservative Langevin system. The decomposition of the total
thermodynamic force −∂iU + ϕi into a conservative force
−∂iU and a non-conservative force ϕi is not unique. We can
make the following gauge transformation using an arbitrary
function ψ (x):

U → U + ψ, (3.5a)

ϕi → ϕi + ∂iψ, (3.5b)

which leaves the total force −∂iU + ϕi, and hence also leaves
the Langevin equation (3.1) invariant. (Strictly speaking ψ

is not completely arbitrary, because e−U−ψ should also be
normalized. This subtlety, however, has no influence on our
discussion below.) The essence of this gauge invariance is
the arbitrariness of the reference conservative Langevin sys-
tem. We will discuss this gauge invariance in more detail in
Sec. III K.

In some situations, for the sake of simplicity, we prefer to
impose time-reversal symmetry on U and on ϕi separately.
Equation (3.4c) then should be replaced by the following two
conditions:

U (x∗, λ∗) = U (x, λ), (3.6a)

εiϕi(x∗, λ∗) = ϕi(x, λ). (3.6b)

It is however important to remember that we are allowed to
split the thermodynamic force in a way such that Eq. (3.4c) is
valid but Eqs. (3.6) are not.

It is important to note that for a given physical system, it
may not be always clear how to define time reversal λ∗ of the
control parameter. In Sec. VII C, we address a problem where
there are two possible ways to impose the time-reversal sym-
metry on the non-conservative forces. In one way, Eqs. (3.6)
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are satisfied, hence the theory has local detailed balance, and
the theory constructed in this paper is applicable. Yet in the
other way, Eqs. (3.6) are not satisfied, the local detailed bal-
ance is lost, and the theory constructed in this paper is not
applicable. A general theory of stochastic thermodynamics
for non-conservative Langevin systems without local detailed
balance is much more complicated, and shall not be addressed
in this paper. For some basic aspects of these systems, see
Ref. [42].

There seems a common misconception that detailed bal-
ance property is sufficient to guarantee the existence of
thermal equilibrium. Our discussion above indicates that local
detailed balance conditions are not sufficient to guarantee
that the system converges to thermal equilibrium. A simple
counter-example is a colloid driven by a constant force, which
settles down to a NESS with constant velocity and constant
entropy production. The Langevin equation clearly has de-
tailed balance. Yet the constant force cannot be expressed
as the negative gradient of potential satisfying Eq. (3.4d),
hence must be deemed as non-conservative. More interest-
ing examples are given by systems with entropy-pumping,
which constantly exchange entropy with their environment.
The theory of entropy pumping will be developed in Sec. III H
and Sec. III I. Examples of entropy pumping will be given
by Sec. V A and Sec. V B. The stationary states in these
systems must be understood as nonequilibrium steady state,
even though the rate of EP may be (arbitrarily close to) zero.

The probability current and its reversible and irreversible
components are obtained from Eqs. (2.19) by replacing −∂ jU
with the total thermodynamic force −∂ jU + ϕ j :

ji = ji
R + ji

IR, (3.7a)

ji
IR = −Bi j (∂ j + (∂ jU ) − ϕ j )p, (3.7b)

ji
R = −Qi j (∂ j + (∂ jU ) − ϕ j )p + ∂ j (Q

i j p). (3.7c)

The FPE (3.2) can be rewritten into the form of current
conservation,

∂t p + ∂k jk = 0. (3.8)

Finally, we note that Eqs. (3.1) and (3.2) are both covariant
under nonlinear transformation of variables. The transforma-
tion rules of Li j and U were discussed in preceding papers
[48,49]. The non-conservative force ϕi transform as a covari-
ant vector, same as ∂iU .

B. Alternative parameterizations

The steady state pdf of FPE (3.2) can be written into the
following form:

pSS(x; λ) = e−U G (x;λ). (3.9)

We define the Gibbs gauge such that the generalized potential
is U G(x; λ) and the non-conservative force is ϕG

i (x, λ), which
is determined by the following condition:

∂iU
G(x, λ) − ϕG

i (x, λ) = ∂iU (x, λ) − ϕi(x, λ). (3.10)

The FPE (3.2) can then be rewritten as

∂t p = ∂iL
i j
(
∂ j + (

∂ jU
G − ϕG

j

))
p, (3.11)

The Hamiltonian of mean force can be analogously defined
in the presence of non-conservative force, which leads to [the
counterpart of Eq. (2.7)]

U G(x, λ) = βHG − βFSS, (3.12)

where FSS is the free energy of the steady state,

FSS = −T log
∫

x
e−βHG

. (3.13)

Hence, Eq. (3.9) can also be written in the Gibbs form

pSS(x; λ) = e−βHG+βFSS , (3.14)

We use the name Gibbs gauge because within this gauge,
the NESS pdf, Eq. (3.9) or (3.14), has a Gibbs form. This will
lead to a complete analogy between the thermodynamic the-
ory of NESS and that of usual equilibrium states. The NESS
pdf Eq. (3.9) must satisfy the FPE (3.11) with the left-hand
side (l.h.s.) vanishing. This leads to the Gibbs gauge condition

∂i
(
Li je−U G

ϕG
j

) = 0, (3.15)

which, together with Eq. (3.10), completely determines U G

and ϕG
i .

In the steady state, the probability current is divergence-
less, and hence it is possible (here we assume that x space is
multidimensional) to parametrize it as

ji
SS = ∂ j (Q̂

i je−U G
), (3.16)

where Q̂i j is another antisymmetric matrix. Following the
discussion in Ref. [48], we may define

L̂i j = Bi j + Q̂i j, (3.17)

and rewrite Eqs. (3.1) and (3.2) into

dxi + ( L̂i j (∂ jU
G) − ∂ j L̂

i j )dt = biαdWα, (3.18)

∂t p = ∂iL̂
i j (∂ j + (∂ jU

G))p. (3.19)

Using these notations, the probability current is

ji = −L̂i j (∂ j + (∂ jU
G))p + ∂ j (Q̂

i j p), (3.20)

Equations (3.18), (3.19), and (3.20) must be equivalent to
Eqs. (3.1), (3.2), and (3.7) with U, ϕi replaced by U G, ϕR

i .
In particular, comparing Eqs. (3.18) and (3.1), we find the
following relation between Q̂i j and Qi j :

(Q̂i j − Qi j )∂ jU
G − ∂ j (Q̂

i j − Qi j ) = −Li jϕ j . (3.21)

As pointed out in Ref. [48], the antisymmetric matrices Q̂ and
Q are not uniquely determined by the Langevin equation.

If the system has odd variables and parameters, the NESS
pdf generally is not invariant under time reversal, which
means

U G(x; λ) �= U G(x∗; λ∗), (3.22)

HG(x; λ) �= GG(x∗; λ∗), (3.23)

FSS(λ) �= FSS(λ∗). (3.24)
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Additionally, the matrix Q̂i j generally does not have the same
symmetry as Qi j ,

εiQ̂
i j (x∗, λ∗)ε j �= −Q̂i j (x, λ).. (3.25)

These (not very nice) features should be kept in mind.

C. Work and heat at trajectory level

For now we assume that the system is in contact with
a single heat bath. We shall use the reference conservative
system to define various thermodynamic potentials of the non-
conservative system. Hence the HMF H (x, λ) of the reference
conservative system is defined as the fluctuating internal en-
ergy, which is related to U (x, λ) via Eq. (2.7). The internal
energy, entropy, and free energy are defined as Eqs. (2.10).
Note that these definitions depend on the choice of gauge.

We define the work at the trajectory level as

d̄W ≡ dλH + fi ◦ dxi, (3.26)

where ◦ is the product in Stratonovich’s sense,

fi(x) ◦ dxi ≡ fi(x + dx/2)dxi,

= fi(x)dxi + 1
2 (∂ j fi )dxidx j, (3.27)

and fi is related to ϕi via

fi = T ϕi. (3.28)

Demanding the first law of thermodynamics at the trajectory
level

dH = d̄W + d̄Q, (3.29)

the heat at the trajectory level should be defined as

d̄Q ≡ dxH − fi ◦ dxi. (3.30)

In the absence of non-conservative forces, these definitions
reduce to those of conservative systems, see Eq. (2.11a). If fi

can be written as the gradient of a potential ψ , we can write
d̄Q = dx(H − ψ ), which is also of the form Eq. (2.11a).

D. Justification of definitions of heat and work

To justify our definitions of work and heat in the presence
of non-conservative force, we consider a Hamiltonian system
interacting with a heat bath, which is also modeled as a Hamil-
tonian system. The total Hamiltonian is decomposed into a
system part H and a bath part HB,

H tot = H (x; λ(t )) + HB(x, y), (3.31)

where x = (q, p) are the system variables and y = (Q, P) are
the bath variables. The system is additionally driven by non-
conservative force f , which cannot be derived from a potential
energy. The dynamics of the joint system is described by the
Hamiltonian equations

q̇i = ∂H tot

∂ pi
, (3.32a)

ṗi = −∂H tot

∂qi
+ fi, (3.32b)

Q̇a = ∂H tot

∂Pa
, (3.32c)

Ṗa = −∂H tot

∂Qa
. (3.32d)

The work should be defined as the differential of total
energy. Using the Hamiltonian equations, we find

d̄W ≡ dH tot = dλH + fidqi, (3.33)

which agrees with our definition Eq. (3.26), since, in the
absence of noises, fidqi can be interpreted either as a
Stratonovich product or as an Ito product. Now consider the
change of system energy,

dH = ∂H

∂qi
dqi + ∂H

∂ pi
d pi + ∂H

∂λ
dλ

= dxH + dλH,

= dxH − fidqi + dλH + fidqi. (3.34)

Since the last two terms in right-hand side (r.h.s.) is the work,
the first two terms must be the heat, which again agrees
with our definition of heat, Eq. (3.30). Equation (3.34) then
becomes the first law at the trajectory level,

dH = d̄Q + d̄W. (3.35)

Subtracting Eq. (3.35) from Eq. (3.33), we obtain

d (H tot − H ) = dHB = −dQ. (3.36)

Hence heat is negative the energy change of the bath.
To provide further justification for our definitions of work

and heat, we consider the unitary limit of the Langevin dy-
namics where Bi j = 0. This may be, for example, realized
by switching off the coupling between the system and the
heat bath. For simplicity, we further assume ∂ jQi j = 0. (This
condition is satisfied by all examples we discussed below.)
The Langevin equation (3.1) then reduces to

dxi + Qi j (∂ jU − f j )dt = 0. (3.37)

The differential heat and work can be calculated by using
Eq. (3.37) in Eqs. (3.26) and (3.30). Noticing that noise
variances vanish and hence the Stratonovich product fi ◦ dxi

can be replaced by usual product fidxi, we find that the heat
vanishes identically,

d̄Q = 0, (3.38)

d̄W = dH = dλH + fidxi. (3.39)

These results are of course completely expected.

E. Work and heat at ensemble level

Heat and work at ensemble level are defined as averages of
the corresponding quantities at trajectory level,

d̄W ≡ 〈〈d̄W〉〉 = 〈〈dλH + fi ◦ dxi〉〉, (3.40a)

d̄Q ≡ 〈〈d̄Q〉〉 = 〈〈dxH − fi ◦ dxi〉〉, (3.40b)

where the symbol 〈〈 · 〉〉 means average both over the Wiener
noises dWα and over the probability distribution p(x, t ). When
calculating these averages, formula (3.27) should be used for
Stratonovich product, dxH should be expanded up to the sec-
ond order in dx, and the Ito-Langevin equation (3.1) should be
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used for dxi. Additionally Ito’s formulas [49] must be applied
for dxidx j ,

dxidx j = biαb jβdWαdWβ + O(dt3/2)

= 2Bi jdt + O(dt3/2), (3.41)

where ignored terms do not contribute to the continuous time
limit. Finally, it should be noted that Wiener noises dWα (t )
are independent of any function of x(t ). Carrying out all these
steps, it can be shown that for arbitrary function ψ (x), we have

〈〈dxψ〉〉 =
∫

x
ψLp. (3.42)

Calculating the averages in Eqs. (3.53), we obtain work and
heat at ensemble level,

d̄W = dt
∫

x
[− fiL

i j (∂ j + ∂ jU − ϕ j ) + Qi j (∂i f j )]p

+
∫

x
(dλH )p, (3.43a)

d̄Q = − dt
∫

x
(∂iH − fi )L

i j (∂ j + ∂ jU − ϕ j )p

− dt
∫

x
Qi j (∂i f j )p. (3.43b)

Let us now look at differential of internal energy, defined in
Eq. (2.10a). The change of Eq. (2.10a) are due to two sources:
change of parameter λ, and dynamic evolution of p(x, λ) as
described by FPE (3.2). We obtain

dE = d
∫

x
H p =

∫
x

(p dλH + H Lp dt ). (3.44)

But we may also understand dE as the ensemble average of
Eq. (3.29),

dE = 〈〈dH〉〉 = 〈〈d̄W〉〉 + 〈〈d̄Q〉〉
= d̄W + d̄Q, (3.45)

with d̄W and d̄Q given by Eqs. (3.53). Equations (3.44) and
(3.45) are of course equivalent, as we can directly verify.

Now recall that entropy and free energy are defined in
Eqs. (2.10). Taking the differential of Eq. (2.10c), and using
the first law at the ensemble level, Eq. (3.45), we obtain the
differential of free energy,

dF = d̄W + d̄Q − T dS, (3.46)

which may be rewritten into

dS − βd̄Q = β(d̄W − dF ). (3.47)

The l.h.s. is the change of the joint entropy of the system
and the heat bath. In classical thermodynamics, it has the
interpretation of total EP, and is positive definite. In stochastic
thermodynamics with conservative force, Eq. (3.47) is indeed
positive, see Eq. (2.16). We will see that in the presence of
non-conservative force, things become more complicated.

The differential of system entropy is

dS = −d
∫

x
p log p = −dt

∫
x
(log p)Lp. (3.48)

Combining this with Eq. (3.43b) we obtain

dS − βd̄Q = dS + dSB

= dt
∫

x
(∂i + (∂iU ) − ϕi )p

Bi j

p
(∂ j + (∂ jU ) − ϕ j )p

+ dt
∫

x
p Qi j (∂iϕ j ). (3.49)

Whilst the first term in r.h.s. is positive definite, the second
term dt

∫
x p Qi j (∂iϕ j ), is not. Unless Qi j (∂iϕ j ) = 0, Eq. (3.49)

is generally not positive definite, and hence cannot be inter-
preted as EP. The physical meaning of the second term in r.h.s.
of Eq. (3.49) will be discussed in Sec. III H.

F. House-keeping and excess, and analogy
with conservative systems

It is convenient to separate the work at the trajectory level
into a house-keeping part and an excess part,

d̄Whk ≡ fi ◦ dxi, (3.50a)

d̄Wex ≡ dλH = (∂λH ) dλ, (3.50b)

d̄W = d̄Whk + d̄Wex, (3.50c)

where the superscript “hk” and “ex” mean respectively
“house-keeping” and “excess”. The heat can be decomposed
in a similar fashion,

d̄Qhk ≡ − fi ◦ dxi = −d̄Whk, (3.51a)

d̄Qex ≡ dxH, (3.51b)

d̄Q = d̄Qhk + d̄Qex. (3.51c)

Note that the excess work (3.50b) and excess heat (3.51b)
only involve the HMF H (x, λ), and are formally identical to
those for conservative systems, see Eqs. (2.11). By contrast,
the house-keeping work (3.50a) and heat (3.51a) only involve
the non-conservative force, and are equal in magnitude but
opposite in sign. The first law Eq. (3.29) can thus be rewritten
into an alternative form

dH = d̄Wex + d̄Qex, (3.52)

which involves only the excess work and heat. Qualitatively
speaking, the house-keeping work is entirely dissipated to the
environment in the form of (negative) the house-keeping heat,
whereas both the excess work dλH and the excess heat dxH
are spent on transforming the system state. The usage of these
terms are in spirit as those in previous papers on steady-state
thermodynamics [1,17,25].

We must remember however that the splitting of work and
heat is gauge dependent. In another word, a gauge transfor-
mation, as given by (3.5), leads to a different splitting. In
laboratory, each experimental setup prescribes a particular
control scheme of conservative and non-conservative forces,
and therefore defines a particular gauge. This experimentally
chosen gauge, however, may not be the most convenient one
for theoretical study.

House-keeping and excess heat and work at ensemble level
are defined as the ensemble averages of the corresponding
quantities at the trajectory level,

d̄W hk ≡ 〈〈d̄Whk〉〉, (3.53a)
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d̄Qhk ≡ 〈〈d̄Qhk〉〉 = −d̄W hk, (3.53b)

d̄W ex ≡ 〈〈d̄Wex〉〉, (3.53c)

d̄Qex ≡ 〈〈d̄Qex〉〉, (3.53d)

d̄W = d̄W hk + d̄W ex, (3.53e)

d̄Q = d̄Qhk + d̄Qex. (3.53f)

Carrying out these ensemble averages, we find the house-
keeping work and heat,

d̄W hk = dt
∫

x
[− fiL

i j (∂ j + ∂ jU − ϕ j ) + Qi j (∂i f j )]p,

(3.54a)

d̄Qhk = −d̄W hk, (3.54b)

which are again equal in magnitude and opposite in sign. The
excess work and heat at ensemble level are

d̄W ex =
∫

x
(dλH )p, (3.55a)

d̄Qex = −dt
∫

x
(∂iH )Li j (∂ j + ∂ jU − ϕ j )p

= dt
∫

x
H Lp. (3.55b)

Note that Eqs. (3.55a) and (3.55b), are formally identical
to those of conservative systems, see Eqs. (2.12). One must
remember however the Fokker-Planck operators are different
for conservative and non-conservative systems.

Using d̄Qhk + d̄W hk = 0, we can rewrite Eqs. (3.45) and
(3.46) as

dE = d̄W ex + d̄Qex, (3.56)

dF = d̄W ex + d̄Qex − T dS, (3.57)

which again indicates that only the excess work and heat are
used to transform the system state, whereas the house-keeping
work as being directly dissipated and absorbed by the heat
bath. In the steady state, both λ and p(x, t ) remain fixed.
Hence according to Eqs. (3.55), d̄W ex and d̄Qex both vanish
identically. Equation (3.44) was formulated first by Hatano
and Sasa in Ref. [25] for over-damped Langevin dynamics
with additive noises.

Let us define the house-keeping EP and excess EP as

dShk ≡ −βd̄Qhk = βd̄W hk, (3.58)

dSex ≡ dS − βd̄Qex = dS − 〈〈dxU 〉〉. (3.59)

Again dShk may be understood as the entropy change due
to heat directly dissipated into the heat bath, whereas dSex

may be understood as the entropy change due to transform of
system state. Combining these with Eq. (3.53f) we obtain

dS − βd̄Q = dShk + dSex. (3.60)

Using Eq. (3.57) and (3.59) we also have

dSex = β(d̄W ex − dF ). (3.61)

Combining Eqs. (3.58) and (3.59) with Eqs. (3.54), (3.55),
and (3.48), we obtain the following expressions for house-
keeping EP and excess EP:

�hk ≡ dShk

dt

=
∫

x
[−ϕiL

i j (∂ j + ∂ jU − ϕ j ) + Qi j (∂iϕ j )]p, (3.62a)

�ex ≡ dSex

dt

=
∫

x
[(∂i + (∂iU ))p]

Li j

p
[(∂ j + (∂ jU ) − ϕ j )p]. (3.62b)

Thermodynamic relations (3.52), (3.56), (3.57), and (3.61)
for non-conservative systems have identical structure as
Eqs. (2.11c), (2.13), (2.14), and (2.15) for conservative sys-
tems. A comparison of these relations, which are summarized
in the first five rows of Table I, allows us to establish a useful
analogy between stochastic thermodynamics of conservative
systems and that of non-conservative systems. This analogy
suggests the physical picture that the house-keeping parts
of work, heat, and EP provide the dissipative background,
whereas the excess parts of work, heat, and EP follow the
same rules as in the stochastic thermodynamics of conser-
vative systems. Consider now the steady state, where all
thermodynamic variables are stationary. For a conservative
system, the steady stat is the thermal equilibrium state, and
dStot, d̄W, d̄Q all vanish identically. For a non-conservative
system, the steady state is a nonequilibrium state with d̄W, d̄Q
nonvanishing. Yet the excess quantities dSex, d̄W ex, d̄Qex all
vanish identically. This provides a further analogy between
thermodynamics of non-conservative systems and that of con-
servative systems, which is summarized in the sixth row of
Table I.

Note however the analogy is not complete. For conser-
vative systems, Eq. (2.16) tells us that the thermodynamic
equilibrium state minimizes both the free energy and the EP.
Yet for non-conservative systems, the excess EP as given by
Eq. (3.62b) is generically not positive definite. This implies
that the excess EP is generally not minimized at NESS. Ad-
ditionally, Eq. (3.61) tells us that for fixed λ, the excess EP is
proportional to the change of free energy. We then also see that
in general the free energy is not minimized at NESS neither.

It is tempting to interpret the house-keeping EP as the
EP needed to maintain the NESS. Such an interpretation is
however inappropriate in general situation, for at least two
reasons. Firstly, the house-keeping EP as given by Eq. (3.62a)
generically depends on the pdf p(x, t ), and hence is not a
property of the NESS alone. Secondly, and more seriously,
Eq. (3.62a) may even be negative. We will discuss a simple
example in Sec. V A.

G. Gibbs gauge, and further analogy with conservative systems

The analogy between thermodynamic theory of conser-
vative systems and that of non-conservative systems can be
made complete in the Gibbs gauge, which was defined in
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TABLE I. Comparison of thermodynamic relations for conservative systems and for non-conservative systems. Results with † are valid
only in the Gibbs gauge.

Conservative Non-conservative

Thermodynamic variables d̄W, d̄Q, d̄W, d̄Q, dStot d̄Wex, d̄Qex, d̄W ex, d̄Qex, dSex

First law (trajectory) dH = d̄W + d̄Q dH = d̄Wex + d̄Qex

First law (ensemble) dE = d̄W + d̄Q dE = d̄W ex + d̄Qex

Free energy dF = d̄W + d̄Q − T dS dF = d̄W ex + d̄Qex − T dS
EP dStot = β(d̄W − dF ) = dS − βd̄Q dSex = β(d̄W ex − dF ) = dS − βd̄Qex

Steady state dStot = dS = dE = dF = d̄W = d̄Q = 0 dSex = dS = dE = dF = d̄W ex = d̄Qex = 0
Second law dStot � 0 dSex � 0 †
Free energy (EQ) Minimum free energy (NESS) Minimum free energy†
Entropy production (EQ) Minimum Entropy production (NESS) Minimum excess EP†
Work (EQ) Minimum work (NESS) Minimum excess work†

Sec. III B. In this gauge, we have∫
x
[(∂i + ∂iU

G)p]Li jϕG
j =

∫
x
(∂i p eU G

)Li je−U G
ϕG

j

= −
∫

x
(p eU G

)∂iL
i je−U G

ϕG
j

= 0, (3.63)

where in the second equality we integrated by parts, and in
the last step we used the Gibbs gauge condition (3.15). Using
this, together with Eqs. (3.59), (3.61) and (3.62b), the excess
EP can be rewritten as

�ex = β

(
d̄W ex

dt
− dFSS

dt

)
= dS

dt
− β

d̄Qex

dt

=
∫

x
(∂i(log p + U G))Bi j p(∂ j (log p + U G))

� 0, (3.64)

where FSS is the steady-state free energy defined in Eq. (3.13),
and in the last inequality we used the positivity of the matrix
Bi j . Hence the positivity of excess EP can be used as a crite-
rion of the stability of NESS.

The structures of Eqs. (3.64) and (2.16) are identical. Since
Eq. (2.16) tells us that equilibrium state minimizes both the
rate of EP and free energy, Eq. (3.64) tells us that, in Gibbs
gauge, the NESS minimizes both the rate of excess EP and the
free energy. Hence NESS in Gibbs gauge is characterized both
by the principle of minimal free energy and by the principle
of minimal excess dissipation. Likewise, whilst Eq. (2.16)
says that in conservative systems, the minimum work needed
to carry out a process from one equilibrium state to another
equilibrium state is the free energy difference between these
two equilibrium states, Eq. (3.64) tells us that in the Gibbs
gauge the minimum excess work needed to carry out a process
from one NESS to another NESS is the free energy difference
between these two steady states. This is precisely the principle
of minimal excess work, posed as conjecture by Oono and Pan-
iconi [17], as well as by Sasa and Tasaki [1], now proved for
arbitrary nonlinear Langevin dynamics within Gibbs gauge.
These results are summarized in the last four rows of Table I.

The upshot of Table I is that within the Gibbs gauge,
there is a complete analogy between thermodynamic theory
of conservative systems and that of non-conservative systems.

Specializing to the stationary state, it means that the thermo-
dynamics of equilibrium states is identical to that of steady
sates, as long as we only keep track of the excess parts of
work, heat, and EP. More specifically, as long as we identify
the HG as the system Hamiltonian (of mean force), classi-
cal statistical mechanics and thermodynamics can be used to
study the static properties of NESS, as well as the transitions
between different NESS.

To further demonstrate the analogy, we consider slow vari-
ation of the control parameter λ, such that the system transits
goes from one NESS to another NESS. In equilibrium thermo-
dynamics, we know that the total EP associated with a process
from one equilibrium state to another approaches zero as the
speed of the process becomes infinitely slow, i.e., it becomes
quasistatic. For quasistatic process from NESS to another
NESS, the excess EP is given by Eq. (3.64). We expect that
the pdf deviates only slightly from the instantaneous NESS
pdf as given by Eq. (3.9). Hence let us write,

p(x, t ) = pSS(x, λ(t )) + δp(x, t ). (3.65)

Substituting this back into FPE (3.2) and expand up to first
order, we obtain

∂tδp + ∂ pSS

∂λ
λ̇ = Lδp. (3.66)

It is easy to see that δp is linear in λ̇, and hence vanishes
as λ̇ → 0. It then follows that the integrand in Eq. (3.64) is
quadratic in λ̇, and the integrated excess EP converges to zero
as the process becomes infinitely slow,

�Sex =
∫ t f

ti

dSex

dt
dt ∝

∫
dt λ̇2 → 0. (3.67)

Hence indeed the excess EP of quasistatic transition from one
NESS to another is zero, which is analogous to equilibrium
thermodynamics.

The relative entropy between p and the NESS pSS is

D(p||pSS) =
∫

x
p(x, t ) log

p(x, t )

pSS(x)

=
∫

x
p(x, t )(log p(x, t ) + U G(x; λ)). (3.68)
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Recall that the nonequilibrium free energy in Gibbs gauge is

βF [p(x, t )] =
∫

x
p(x, t )(log p(x, t ) + βHG(x; λ)), (3.69)

and further use Eq. (3.12), we may rewrite Eq. (3.68) as

D(p||pSS) = βF [p(x, t )] − βFSS, (3.70)

whereas FSS is the steady-state free energy defined in
Eq. (3.13).

Now assume that the control parameter λ is fixed. Taking
the time derivative of Eq. (3.70), we obtain

d

dt
D(p||pSS) = β

d

dt
F [p(x, t )]

=
∫

x
(log p(x, t ) + U (x; λ))Lp(x, t ). (3.71)

Further, using Eq. (3.3) and integrating by parts, and compar-
ing with Eq. (3.62b), we obtain

d

dt
D(p||pSS) = β

d

dt
F [p(x, t )] = −�ex. (3.72)

Hence in the Gibbs gauge the excess EP is precisely nega-
tive the rate of the relative entropy D(p||pSS). Furthermore,
D(p||pSS), or equivalently F [p(x, t )], serves as a Lyapunov
function for non-conservative Langevin dynamics, because it
decreases monotonically, and its rate vanishes identically at
the NESS.

H. Entropy production and pumped entropy

For Langevin dynamics described by Eq. (3.1) satisfy-
ing detailed balance conditions (3.4), the logarithmic ratio
between the transition probability of the forward process,
Pλ(x1|x; dt ), and that of the backward process, Pλ∗ (x∗|x∗

1; dt ),
is derived in Eq. (4.6) of Appendix,

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= dSB + dSP, (3.73a)

where dSB and dSP are defined as

dSB ≡ −βd̄Q = −dxU + ϕi ◦ dxi, (3.73b)

dSP ≡ −Qi j (∂iϕ j )dt . (3.73c)

Note that the control parameter may also appear in the
non-conservative force ϕi. Whilst dSB is the change of bath
entropy, dSP should be interpreted as entropy cost for main-
taining the non-conservative force. Alternatively, we may
understand dSP as the entropy pumped out of the system
by the non-conservative force, and hence will be called
the pumped entropy. Similar terms have been identified and
studied sometime ago in Brownian motion driven velocity
dependent force [37,38]. The ensemble average of dSP is

dSP = �Pdt =
∫

x
dSP p = −dt

∫
x

Qi j (∂iϕ j )p, (3.74)

which is precisely negative the extra term appearing in the
r.h.s. of Eq. (3.49). The sum dSB + dSP in the r.h.s. of
Eq. (3.73a) can then be understood as the entropy change
of the environment during the infinitesimal step of evolution
in the forward process. Iin the absence of non-conservative
force, Eqs. (3.73) reduces to Eqs. (2.21).

To have a better understanding of the pumped entropy,
we revisit the unitary limit of the Ito-Langevin dynamics,
Eq. (3.37). The corresponding FPE is

∂t p = ∂iQ
i j (∂ j + (∂ jU ) − f j )p

= (∂ jU )(∂i p) − Qi j∂i( f j p), (3.75)

where we have used the assumption ∂ jQi j = 0. Let us cal-
culate the rate of Gibbs-Shannon entropy using Eq. (3.75).
Integrating by parts a few times, we obtain

d

dt
S[p] = − d

dt

∫
x

p log p = −
∫

x
log p ∂t p,

=
∫

x
Qi j (∂iϕ j )p = − d

dt
SP = −�P. (3.76)

Let us rewrite this into a more informative form

dS

dt
+ dSP

dt
= 0, (3.77)

which says that in the presence of non-conservative force,
the system entropy is not conserved, but the sum of S and
SP is conserved. Our expectation is that a reversible, unitary
dynamics must preserve the total entropy. Hence dSP must
be interpreted as the entropy change of the agent who sup-
plies the non-conservative force, or, equivalently, the entropy
pumped out of the system by the agent during the dynamic
evolution. The associated rate �P is then the rate of en-
tropy pumping. Such an interpretation was first proposed by
Kim and Qian in the study of Hamiltonian system driven by
velocity-dependent forces [37,38]. Note the interesting simi-
larity between the above argument and Landauer’s principle,
which says that thermodynamic entropy may be reduced at the
cost of information entropy, and vice versa. Note also that it
is logically inconsistent to associate dSP with entropy change
of the heat bath, the system described by Eq. (3.75) is not in
contact with any heat bath.

Coming back to the non-conservative Langevin dynamics.
The total entropy change of the universe now consists of three
parts: entropy change of system, entropy change of the heat
bath, and the entropy pumped out of the system by the non-
conservative force. Equation (3.49) can now be rewritten into
the following form:

�tot = dStot

dt
= dS

dt
+ dSB

dt
+ �P (3.78a)

=
∫

x
(∂i + (∂iU ) − ϕi )p

Bi j

p
(∂ j + (∂ jU ) − ϕ j )p

� 0, (3.78b)

where the EP is apparently non-negative, and hence is consis-
tent with the second law. Using Eq. (3.7b), we may rewrite
Eq. (3.78a) solely in terms of irreversible probability current,

�tot =
∫

x
ji
IRB−1

i j p−1 j j
IR, (3.78c)

which is formally identical to Eq. (2.20). Using Eq. (3.47), we
may also rewrite Eq. (3.78a) as

�tot = dStot

dt
= β

(
d̄W

dt
− dF

dt

)
+ �P � 0, (3.78d)

043125-12



UNIFIED THEORY OF THERMODYNAMICS AND … PHYSICAL REVIEW RESEARCH 4, 043125 (2022)

which imposes a lower bound on the work needed to carry out
a thermodynamic process. Inequality similar to Eq. (3.78d)
was derived in the study of information heat engines [62,63],
which transform thermodynamic entropy into information en-
tropy and at the same time extract mechanical energy from
heat bath.

Note that using Eqs. (3.78a) and (3.60), we can also de-
compose the EP in a different way,

dStot = dShk + dSex + dSP, (3.79a)

�tot = �hk + �ex + �P. (3.79b)

Whilst we have shown that both dStot and dSex are positive
definite, dShk and dSP may be either positive or negative.
Hence the total EP is generally not minimized at the NESS.

Decomposition of EP for nonlinear Langevin dynam-
ics with both even and odd variables were also studied in
Refs. [32,33]. The results are, however, different from ours.

I. Entropy and energy balance in NESS

NESSs are similar to equilibrium states in the sense that all
thermodynamic variables are stationary. Yet, they are also dif-
ferent from equilibrium states in that they have nonvanishing
rate of EP. As we have seen above, for systems with asym-
metric kinetic matrix, there is an also interesting possibility
of entropy pumping, where the system exchanges entropy
with environment without dissipation. This leads to several
possible scenarios of entropy and energy balance in NESS,
which we will discuss now.

Since in NESS, both λ and the pdf are fixed, we have
from Eqs. (3.55) that d̄W ex = d̄Qex = 0. It then follows from
Eq. (3.54b) and (3.53) that

d̄Q = d̄Qhk = −d̄W ex = −d̄W. (3.80)

This can in fact be understood as the first law in NESS, since
the internal energy is also stationary. Now since dF = 0,
Eqs. (3.78d) and (3.80) yield

dSP

dt
� −βd̄W

dt
= βd̄Q

dt
, (3.81)

where dSP, d̄Q, d̄W can be either positive or negative. In
the boring scenario, illustrated in Fig. 1(a), pumped entropy
vanishes, dSP = 0, and we have

− d̄Q

dt
= d̄W

dt
� 0, (3.82)

which means that the non-conservative force does positive
work, and the energy is constantly dissipated to the heat bath
in the form of heat. The conservative force does no work since
the parameter λ is fixed. A slightly interesting more scenario is
shown in Fig. 1(b), where the work is only partially dissipated
to the bath, with the remaining part output as another form of
work. This can be realized by coupling two non-conservative
forces to the system, one doing positive work, and the other
doing negative work. The agent and the system then behave
as an engine with nonideal efficiency. An interesting example
involving time-dependent protocol is Brownian gyrator pro-
posed by Filliger and Reimann [64].

The situation becomes more interesting if the pumped en-
tropy is nonzero. For simplicity, we assume that dStot/dt is

FIG. 1. Four possible scenarios of entropy and energy balance
in steady states. (a) The agent supplies work to the system, which
is completely dissipated to the heat bath. (b) The agent supplies
work to the system, part of which is output as work of another
form, the remaining energy is dissipated to the bath. The system
then behaves as an engine. One example is to use thermo-electric
effect as a battery. (c) The agent extracts both work and entropy
from the system, and the system absorbs heat from the bath. The
agent behaves as a Maxwell demon constantly measures the system
and extracts energy and information entropy. (d) The agent supplies
both work and entropy to the system, and the system releases heat to
the bath. The agent behaves as a demon running backwards, i.w., an
antidemon.

very small, i.e., the NESS is nearly reversible, comparing
with dSP/dt . If dSP/dt > 0, entropy is constantly pumped out
of the system by the non-conservative force. Equation (3.81)
then becomes

− d̄Q

dt
= d̄W

dt
< 0, (3.83)

which means that heat flows from the bath to the system at
a constant rate, and the non-conservative force does negative
work, i.e., energy is constantly extracted out of the system.
In this case, as illustrated in Fig. 1(c), the agent acts like
a Maxwell demon, who extracts both energy and entropy
from the system. This is similar to a Szilard engine, where
the entropy extracted from the bath is saved in the memory
space of the agent in the form of information entropy. Unlike
a Szilard engine, however, here the system does not need
any time-dependent protocol to realize entropy pumping. The
system described by Langevin dynamics with fixed λ is a
steady-state information engine.
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If dSP/dt < 0, Eq. (3.81) then becomes

− d̄Q

dt
= d̄W

dt
> 0, (3.84)

which means that the agent does positive work, and the associ-
ated energy flows to the heat bath in the form of heat, as shown
in Fig. 1(d). In this case, entropy is pumped into the system
at a constant rate by the non-conservative force. This is the
Maxwell demon running backwards. In the case of reversed
Szilard engine, the agent erases information in its memory
via mechanical work. The erased information entropy and the
energy are dissipated in the bath.

Examples of entropy pumping will be discussed in Sec. V.

J. Connections with steady-state thermodynamics
and Glansdorff-Prigogine stability criterion

Sasa and Tasaki defined a free energy for the steady state
expressed as a Gibbs distribution, see Eq. (2.33) of Ref. [1],
which is precisely the steady-state free energy we defined in
Eq. (3.13).

Hatano and Sasa defined excess heat and house-keeping
heat in the setting of over-damped Langevin dynamics as

d̄Qhk = − f G
i ◦ dxi,= −T ϕG

i ◦ dxi, (3.85)

d̄Qex = d̄Q − d̄Qex = dxHG, (3.86)

using our notations (c.f. Eq. 16 of Ref. [25]). But these are
precisely our definitions (3.51) specialized in Gibbs gauge.
Hence, our theory can be deemed as a generalization of the
theory of Hatano and Sasa to covariant nonlinear Langevin
dynamics where both system variables and control parameters
may have odd components.

Hatano and Sasa [25] proved the following equality for
general Markov process with a unique steady state:

〈e− ∫
dλU G〉 = 1, (3.87)

where it is assumed that the system starts from the NESS (3.9)
in the initial time. As long as the system variables are continu-
ous, the Markov process can be described by our theory. Using
Eq. (3.12) we have

dλU G = βdλHG − βdλFSS

= βd̄W ex − βdFSS. (3.88)

Hence the Hatano-Sasa equality (3.87) becomes

〈e−W ex+β�FSS〉 = 1. (3.89)

Further using Jensen’s inequality, we obtain

W ex � �FSS = FSS(λ f ) − FSS(λi), (3.90)

where λi and λ f are respectively the control parameters in the
initial and final time of the process, whilst FSS(λ f ) and FSS(λi)
are the corresponding steady-state free energies. This result
is called “the second law of steady-state thermodynamics” in
Refs. [25] and “the second law of time-dependent Markov
processes” in Refs. [1]. Since Eq. (3.90) was proved using
Eq. (3.87), it is applicable only for processes starting from
NESS. Note however in the final time the system is generally
not in the NESS.

By contrast, Eq. (3.64) was derived for processes that start
from generic nonequilibrium states, with dF the differential
of nonequilibrium free energy, defined in Eq. (2.10c). Inte-
grating this inequality over a finite process, we obtain

W ex � �F = F [p(t f )] − F [p(ti )], (3.91)

where F [p(ti )], F [p(t f )] are the nonequilibrium free energy
at the initial and final times. Hence the range of applicability
of the inequality (3.91) is larger than that of (3.90). For a
process starting from NESS, both Eqs. (3.91) and (3.90) are
applicable. Yet Eq. (3.91) becomes

W ex � �F = F [p(t f )] − FSS(λi ). (3.92)

Since the NESS minimizes the free energy, we have
F [p(t f )] � FSS(λ f ), and hence Eq. (3.92) is stronger than
Eq. (3.90). Consequently, we may call Eq. (3.64) the strong
version of the second law of steady-state thermodynamics.

Glansdorff and Prigogine [7,15] defined the excess EP as
the rate of the second-order variation of system entropy, and
showed that for systems near thermal equilibrium, its positiv-
ity can be used as a criterion for the stability of NESS. The
applicability of Glansdorff-Prigogine criterion for systems far
from equilibrium or stochastic systems is however still contro-
versial. Here we will show that the definition of excess EP by
Glansdorff and Prigogine is consistent with our definition in
Gibbs gauge, and their stability criterion is valid for nonlinear
Langevin systems even far away from equilibrium.

We consider the variation δp around the NESS,

p = pSS + δp, (3.93)

and study the resulting variation of the total EP, expanded in
terms of δp. Firstly inspecting Eqs. (3.62a) and (3.74) we see
that �hk and �P are both linear in p, and hence they do not
have second-order variation. Secondly, inspecting Eq. (3.64),
we see that �ex has no zeroth- or first-order contribution.
Hence near the NESS the total EP can be expanded as

�tot = �tot
SS + δ1�tot + δ2�tot + · · · , (3.94)

δ1�tot = δ1�hk + δ1�P, (3.95)

δ2�tot = �ex, (3.96)

where δ1�tot, δ2�tot are respectively of first and second order
in δp, and neglected terms are at least of third order in δp.
Using Eq. (3.64) we can further obtain the following explicit
form of �ex in terms of δp near NESS,

�ex =
∫

x
(∂ie

U G
δp)Bi je−U G

(∂ie
U G

δp) + · · · . (3.97)

We may further define “affinity” Ai(x) via

Ai(x) ≡ ∂i(log p + U ) − ϕi, (3.98)

so that the total EP (3.78a) can be rewritten as

�tot =
∫

x
Ai(x) ji

IR(x), (3.99)

where ji
IR(x) is the irreversible probability current given in

Eq. (6.4). This result is analogous to the result in irreversible
thermodynamics, see Eq. (14.6) of Ref. [3], or the result in
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master equation systems, see Eq. (7.6) of Ref. [14]. The dif-
ference is of course in previous theories, all system variables
are even, and hence the irreversible current is also the total
current, whereas in the present, theory, only the irreversible
current enters Eq. (3.99). Note that in the NESS, the total
current is divergenceless, but the the irreversible current is
generally not divergenceless.

Recall that the free energy is minimized at NESS. Using
Eq. (3.69), we may expand F [p] near the NESS,

F [p] = FSS + δ2F = FSS + T
∫

x

δp2

2 pSS
. (3.100)

It is easy to see from Eq. (3.69) that the second-order variation
of βF is identical to negative the second-order variation of
system entropy,

δ2βF [p] = −δ2S[p]. (3.101)

Combining these results with Eqs. (3.72) and (3.96), we fi-
nally obtain

�ex = δ2�tot = − d

dt
δ2βF = d

dt
δ2S. (3.102)

Hence, same as in Glansdorff-Prigogine theory, the excess EP
in our theory is also the second-order variation of the system
entropy around the NESS. Furthermore, Eq. (3.97) explicitly
demonstrates that the excess EP is positive if and only if
the matrix Bi j is positive, which is in turn equivalent to the
stability of the NESS. Hence the positivity of the excess EP
can be used as a criterion for stability of NESS. For over-
damped Langevin systems with additive noises, these results
were established in Refs. [35,36].

An interesting comparison can be made between stochas-
tic thermodynamics and irreversible thermodynamics at this
stage. At the level of stochastic thermodynamics, the posi-
tivity of excess EP is guaranteed by positivity of the noise
covariance matrix Bi j , which is always valid. As shown
in Sec. V A of Ref. [49], irreversible thermodynamics
corresponds to the deterministic limit of stochastic thermody-
namics, where the Langevin equations becomes deterministic
dynamic equations. It may happen that there is a bifurca-
tion in the loci of minimum of the generalized potential
U (r, λ), as one tunes the parameter λ. Such a bifurcation is
identified as a nonequilibrium phase transition in irreversible
thermodynamics. Yet, at the level of stochastic thermo-
dynamics, due to statistical fluctuations, both the steady
state pdf and current change smoothly crossing the bifurca-
tion point. Nonequilibrium phase transition can only appear
in the thermodynamic limit, where statistical fluctuations
are negligible, and irreversible thermodynamics becomes
asymptotically exact, except in the vicinity of a critical
point.

K. Gauge transformation revisited

For completeness, we summarize the properties of gauge
transformation. According to Eqs. (3.5) and (3.28), (2.7),
U, H, ϕi, fi transform as

U → U + ψ, (3.103a)

H → H + T ψ, (3.103b)

ϕi → ϕi + ∂iψ, (3.103c)

fi → fi + T ∂iψ. (3.103d)

Note that ψ (x, λ) generally depend both on x and on λ, and
is not invariant under time reversal, i.e., ψ (x, λ) �= ψ (x∗, λ∗).
Using Eqs. (3.26), (3.29), (3.30), and (3.73c), we further have

d̄W → d̄W + T dψ, (3.104a)

d̄H → d̄H + T dψ, (3.104b)

d̄Q → d̄Q, (3.104c)

dSP → dSP. (3.104d)

Further using Eqs. (3.50) and (3.51), we may find

d̄Whk → d̄Whk + T dxψ, (3.105a)

d̄Wex → d̄Wex + T dλψ, (3.105b)

d̄Qhk → d̄Qhk − T dxψ, (3.105c)

d̄Qex → d̄Qex + T dxψ. (3.105d)

Hence even though the heat is gauge invariant, neither of
its house-keeping or excess component is gauge invariant.

Since both the heat and pumped entropy are gauge-
invariant, the formula Eq. (3.73) is also gauge-invariant.

The transform of thermodynamic quantities at ensemble
level can be similarly obtained. In particular, d̄Q, d̄SP, dS, and
dStot are all invariant under gauge transformation, whereas the
differential of nonequilibrium free energy and work transform
as

dF → dF + T 〈〈dψ〉〉, (3.106a)

dW → dW + T 〈〈dψ〉〉. (3.106b)

Finally, the house-keeping and excess EP transform as

dShk → dShk + T 〈〈dxψ〉〉, (3.107a)

dSex → dSex − T 〈〈dxψ〉〉. (3.107b)

That is, the decomposition Eq. (3.79) of EP is gauge de-
pendent. This is in strong contrast with the decomposition
Eq. (3.78a), which is gauge invariant.

Associated with the system Hamiltonian, are the cor-
responding equilibrium (or steady state) free energy and
equilibrium Gibbs distribution,

FEQ = −T log
∫

x
e−βH , (3.108)

pEQ(x, λ) = e−β(H−FEQ ), (3.109)

which transform as

FEQ → FEQ − T log〈e−ψ 〉, (3.110)

pEQ → e−ψ

〈e−ψ 〉 pEQ. (3.111)

The transformation Eqs. (3.103) is a gauge transform from
the perspective of Langevin dynamics, because it preserves
the dynamics equation (3.1). Yet, it leads to a physically dis-
tinct HMF and Gibbs distribution. Similar features also show
up in the gauge transformation of quantum mechanics, where
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a gauge transformation leaves the Schrodinger equation in-
variant, but changes the quantum Hamiltonian.

IV. FLUCTUATION THEOREMS

In this section we will derive two types of fluctuation the-
orems. The first type concerns the total EP and is applicable
to processes that start from and end at thermal equilibrium
states, which are invariant under time reversal. The theorem is
formulated in terms of total work and pumped entropy, both
defined as functional of trajectory. The second type concerns
the excess EP, and is applicable to processes that start from
and end at NESS, which are generically not invariant under
time reversal. The theorem is formulated in terms of excess
work. The first type of fluctuation theorems is gauge depen-
dent. Hence as we change the gauge continuously, we obtain
a continuous manifold of fluctuation theorems. By contrast,
the second type of fluctuation theorem is applicable only in
Gibbs gauge. Both types of fluctuations belong to transient
fluctuation theorem, which hold exactly for processes with fi-
nite durations. We do not expect house-keeping EP or pumped
entropy obey any transient fluctuation theorem in generic sit-
uation.

A. Fluctuation theorem for the total EP

Let us define the forward process and the backward process
as follows.

(i) Forward process. At t = ti, the system starts with
equilibrium state

pEQ(x, λi ) = e−U (x,λi ) = eβ(F (λi )−H (x,λi )). (4.1)

where λi = λ(ti ). Because U, H, F all have time-reversal
symmetry, i.e., they satisfy Eqs. (2.5c) and (2.9), pEQ(x, λi )
is invariant under simultaneous time-reversal of x and λi:
pEQ(x∗, λ∗

i ) = pEQ(x, λi ). The system evolves according to
the Langevin dynamics (3.1), with the dynamic protocol given
by λF(t ) = λ(t ), ϕF(t ) = ϕ(λ(t )) with t ∈ [ti, f f ]. Here the
superscript F means Forward, the subscripts i and f mean
initial and final. Note that the time dependence of the non-
conservative force ϕ is completely determined by that of the
control parameter λ, and hence strictly speaking, we do not
need to specify ϕ separately.

(ii) Backward process. At t = −t f , the system starts with
equilibrium state

pEQ(x, λ∗
f ) = e−U (x,λ∗

f ) = eβ(F (λ∗
f )−H (x,λ∗

f )), (4.2)

where λ f = λ(t f ). Note that pEQ(x, λ∗
f ) is also invariant un-

der simultaneous time reversal of x and λ f : pEQ(x∗, λ f ) =
pEQ(x, λ∗

f ). The dynamic protocol is given by λB(t ) =
λ∗(−t ), ϕB(t ) = ϕ(λ∗(−t )), with t ∈ [− f f ,−ti]. Here the su-
perscript B means backward.

As in Ref. [49], we use γ to denote a generic dynamic
trajectory (the forward trajectory) of the system x(t ), t ∈
[ti, t f ], and use γ̃ to denote the time-reversed trajectory x̃(t ) =
x∗(−t ) (the backward trajectory). As illustrated in Fig. 2(a),
the forward trajectory starts from x(ti ) and ends at x(t f ),
whereas the backward trajectory starts from x̃(−t f ) = x∗(t f )
and ends at x̃(−ti ) = x∗(ti ). For every infinitesimal step in
the forward trajectory, there is a corresponding infinitesimal

FIG. 2. Top: Forward and backward trajectories. Corresponding
to every step x → x + dx in the forward trajectory (shown in red)
there is a step x∗ + dx∗ → x∗ in the backward trajectory (shown in
blue). Bottom: Forward and backward protocols.

step in the backward trajectory, as illustrated in Figs. 2(a) and
2(b). In the forward step, the system goes from x to x + dx,
whereas the control parameter goes from λ to λ + dλ. By
contrast, in the backward step, the system goes from x∗ + dx∗
to x∗, whereas the control parameter goes from λ∗ + dλ∗ to
λ∗. The differential work, heat, and pumped entropy along the
infinitesimal forward trajectory, defined in Eqs. (3.26), (3.30),
and (3.73c), are the exact opposite of the corresponding quan-
tities along the back trajectory,

(d̄W)B = −(d̄W)F, (4.3)

(d̄Q)B = −(d̄Q)F, (4.4)

(dSP)B = −(dSP)F. (4.5)

The first two equalities are obvious. We prove the last equality
below

(dSP)B = Qi j (x∗, λ∗)∂∗
i ϕ j (x∗, λ∗)dt

= εiQ
i j (x∗, λ∗)ε j∂iϕ j (x, λ)dt

= −Qi j (x, λ)∂iϕ j (x, λ)dt

= −(dSP)F, (4.6)

where in the second and third equalities we used respectively
the detailed balance conditions (3.6b) and (3.4b).

Now the integrated work, the integrated heat, and the in-
tegrated pumped entropy along the forward trajectory can be
obtained,

W[γ , λF] ≡
∫

γ

(d̄W)F =
∫

γ

(dλH + fi ◦ dxi ), (4.7)

Q[γ , λF] ≡
∫

γ

(d̄Q)F =
∫

γ

(dxH − fi ◦ dxi ), (4.8)

SP[γ , λF] ≡
∫

γ

(dSP)F = −
∫

γ

Qi j (∂iϕ j )dt . (4.9)
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The corresponding quantities along the backward trajectory in
the backward process can be similarly calculated,

W[γ̃ , λB] ≡
∫

γ

(d̄W)B = −W[γ , λF], (4.10a)

Q[γ̃ , λB] ≡
∫

γ

(d̄Q)B = −Q[γ , λF], (4.10b)

SP[γ̃ , λB] ≡
∫

γ

(dSP)B = −SP[γ , λF]. (4.10c)

For each infinitesimal segment of the forward process
and the corresponding segment of the backward process, we
obtain an equality (3.73), which relates the transition proba-
bilities to change of environmental entropy. Summing up all
these equalities, we obtain an equality for the entire trajectory,
which relates the conditional path probability of the forward
process to that of the backward process,

log
pF[γ |γ0]

pB[γ̃ |γ̃0]
= −βQ[γ , λ] + �SP[γ , λ], (4.11)

where γ0 = x(ti ) is the initial state of the forward trajectory,
whereas γ̃0 = x∗(t f ) is the initial state of the backward trajec-
tory. Note that we used λ to represent the dynamic protocol of
the forward process λF(t ). As carefully explained in Ref. [49],
Eq. (4.11), as well as its extensions (4.14) and (4.18), are
better understood in their discretized forms.

The unconditional path probabilities of the forward and
backward processes can be constructed by multiplying the
conditional path probabilities and the pdf of the initial states,
given respectively by Eqs. (4.1) and (4.2),

pF[γ ] = pF[γ |γ0] e−U (x(ti ),λi ), (4.12)

pB[γ̃ ] = pB[γ̃ |γ̃0] e−U (x∗(t f ),λ∗
f )

= pB[γ̃ |γ̃0] e−U (x(t f ),λ f ), (4.13)

where in the last equality we used the detailed balance condi-
tion (3.4c) for U (x, λ). Taking the ratio of the preceding two
equations and further using Eq. (4.11), we obtain

log
pF [γ ]

pB[γ̃ ]
= �U [γ , λ] − βQ[γ , λ] +SP[γ , λ], (4.14)

where �U [γ , λ] is the difference of U (x, λ) between the final
and initial state of the forward trajectory,

�U [γ , λ] = U (x(t f ), λ f ) − U (x(ti), λi )

= β(H (x(t f ), λ f ) − H (x(ti), λi ) − �F (λ)),

(4.15)

where in the last step we have used Eq. (2.7), and �F (λ) is
the difference of equilibrium free energies between the final
and the initial states,

β�F (λ) = F (λ f ) − F (λi). (4.16)

Now applying the first law of thermodynamics along the for-
ward trajectory we find

H (x(t f ), λ f ) − H (x(ti), λi ) = W[γ , λ] +Q[γ , λ], (4.17)

we can relate the unconditional path probability of the forward
process to that of the backward process,

log
pF [γ ]

pB[γ̃ ]
= βW[γ , λ] − β�F (λ) +SP[γ , λ]. (4.18)

With the understanding that both system and bath are in equi-
librium in the initial and final state of the process, the r.h.s.
can be understood as the change of total entropy along the tra-
jectory γ in the forward process. The first term is the change
of system entropy and bath entropy, whereas the second term
is the entropy pumped out of the system by the agent who
supplies the non-conservative force. In the absence of entropy
pumping, Eq. (4.18) reduces to Eq. (4.33) of Ref. [49].

We can now define the joint pdfs of integrated work and
pumped entropy in the forward and backward processes,

pF(W, SP) ≡
∫

D[γ ] pF[γ ] δ(W − W[γ , λ])δ(SP −SP[γ , λ]), (4.19)

pB(W, SP) ≡
∫

D[γ̃ ] pB[γ̃ ] δ(W − W[γ̃ , λ̃])δ(SP −SP[γ̃ , λ̃]). (4.20)

Using Eqs. (4.18) and (4.10), as well as the fact that the functional integral measure is invariant under time reversal: D[γ ] =
D[γ̃ ], we can rewrite Eq. (4.19) into

pF(W, SP) =
∫

D[γ ] pB[γ̃ ]
pF[γ ]

pB[γ̃ ]
δ(W − W[γ , λ])δ(SP −SP[γ , λ]) (4.21)

=
∫

D[γ̃ ] pB[γ̃ ]eβW [γ ,λ]−β�F (λ)+SP[γ ,λ] δ(W − W[γ , λ])δ(SP −SP[γ , λ]) (4.22)

= eβW −β�F (λ)+SP

∫
D[γ̃ ] pB[γ̃ ] δ(W + W[γ̃ , λ̃])δ(SP +SP[γ̃ , λ̃]) (4.23)

= eβW −β�F (λ)+SP pB(−W,−SP). (4.24)

We obtain a fluctuation theorem for joint pdfs of W, SP,

pF(W, SP)e−SP−βW +β�F = pB(−W,−SP). (4.25)
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The total entropy production at the trajectory level is �Stot ≡
βW − β�F + SP, we can obtain from Eq. (4.25) the fluctua-
tion theorem for �Stot ,

pF(�Stot )e−�Stot = pB(−�Stot ). (4.26)

If we integrate out SP in both sides, we obtain

pF(W )〈e−SP〉W e−βW +β�F = pB(−W ), (4.27)

where 〈e−SP〉W means the conditional average of e−SP given
W . If we integrate our W in both sides, we obtain

pF(SP)〈e−βW 〉SP e−SP+β�F = pB(−SP), (4.28)

where 〈e−βW 〉SP means the conditional average of e−βW given
SP. If we integrate out both W and SP, we obtain the general-
ized Jarzynski equality,

〈e−βW −�SP〉 = e−β�F . (4.29)

Fluctuation theorem and work identity in the presence of
entropy pumping were first derived by Qian and Kim in
Ref. [38]. Note however our result Eq. (4.25) is slightly more
general than the results of Ref. [38]. Similar fluctuation theo-
rems have also been obtained in the study of information heat
engines [62,63].

B. Bochkov-Kuzovlev gauge

Let us now consider a gauge transformation as defined in
Eqs. (3.5), which keeps the Langevin equation invariant. In
Sec. III K we have already shown that heat, pumped entropy,
and the formulas (3.73) and (4.11) are all gauge invariant.

By strong contrast, system Hamiltonian, work, and free
energy all change under generic gauge transformation, as
demonstrated in Sec. III K. Consequently, the initial pdfs of
the forward and backward processes, Eqs. (4.1) and (4.2),
also change under the gauge transformation: we are studying
different physical processes as we change the definition of
system Hamiltonian. It then follows that fluctuation theorems
and work identity (4.25), (4.27), (4.28), and (4.29), all change
under gauge transformation. As we continuously change of
the definition of system Hamiltonian, we obtain a continuous
manifold of fluctuation theorems and work identities, which
are physically distinct from each other.

An extreme choice of gauge is to let the Hamiltonian H to
be completely fixed and independent of λ, i.e., dλH = 0. This
implies that the free energy is also fixed, �F = 0. The con-
servative force then remains fixed, with the control parameter
only appears in the non-conservative force fi. We will call this
Bochkov-Kuzovlev (BK) gauge. In this gauge, the excess work
vanishes identically. The total work and heat are then

d̄WBK = f BK
i ◦ dxi, (4.30)

d̄QBK = dxHBK − f BK
i ◦ dxi. (4.31)

Equations (4.25), (4.27), (4.28), and (4.29) then become

pF(W, SP)e−βW −SP = pB(−W,−SP), (4.32)

pF(W )〈e−SP〉W e−βW = pB(−W ), (4.33)

pF(SP)〈e−βW 〉SP e−SP = pB(−SP), (4.34)

〈e−βW −�SP〉 = 1. (4.35)

Equation (4.35) is called Bochkov-Kuzovlev (BK) equality
[65]. Jarzynski studied an example [66] driven by conservative
force, and show that BK equality is different from Jarzynski
equality, even though these equalities concern the same phys-
ical processes.

C. Fluctuation theorem for excess EP

Let us first consider the case where the control parameter
is fixed. We define the adjoint process (or dual process), with
respect to the forward process, using the following relation of
path probability distributions:

pF[γ ] = pAd[γ̃ ], (4.36)

where γ̃ = x∗(−t ) is the time reversal of the path γ = x(t )
as defined in Sec. IV A. The adjoint process is generated by
a Fokker-Planck operator LAd, which will be derived below.
Since the forward process is stationary, so is the adjoint pro-
cess. In particular, the adjoint process starts from the NESS
associated with its own FPO. Equation (4.36) implies the
following relation between two-time joint pdfs:

pF(x + dx, dt ; x, 0) = pAd(x∗, dt ; x∗ + dx∗, 0). (4.37)

If we integrating both sides over x2, we obtain a relation
between the steady state pdfs of the forward and adjoint
processes,

pSS
F (x) = e−U (x) = pSS

Ad(x∗) = e−Ū (x∗ ). (4.38)

This leads to the ration between the generalized potentials of
two processes, both in Gibbs gauge,

U (x) = Ū (x∗). (4.39)

Strictly speaking, we should use notations U G and Ū G since
we are using Gibbs gauge. Throughout this subsection, how-
ever, we always adopt Gibbs gauge but neglect the superscript
G in order to simplify the notations. Using Markov property,
Eq. (4.37) can now be written in terms of one-time pdfs and
transition pdfs,

pF(x + dx|x; dt )e−U (x) = pAd(x|x∗ + dx∗; dt )e−Ū (x∗+dx∗ )

= pAd(x|x∗ + dx∗; dt )e−U (x+dx),

(4.40)

which can be further written as

log
pF(x + dx|x; dt )

pAd(x|x∗ + dx∗; dt )
= −dxU (x). (4.41)

To find the Fokker-Planck operator for the adjoint pro-
cess, it is more convenient to use the parametrization of
Ito-Langevin equation discussed in Sec. III B, i.e., Eqs. (3.18)
and (3.19). Adapting the derivation in Sec. III A of Ref. [48]
of this sequel, we can easily show that the Fokker-Planck
operator of the adjoint process (which was called the tilde
process there), is characterized by generalized potential Ū and
kinetic matrix ¯̂Li j :

¯̂Li j = B̄i j + ¯̂Qi j, (4.42)

which are related to those of the forward process via

Ū (x, λ) ≡ U (x∗, λ), (4.43a)
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B̄i j (x, λ) ≡ εiB
i j (x∗, λ)ε j = Bi j (x, λ∗), (4.43b)

¯̂Qi j (x, λ) ≡ −εiQ̂
i j (x∗, λ)ε j . (4.43c)

Note that Eq. (4.43a) is a rewriting of Eq. (4.39). Note that in
the second equality of Eq. (4.43b), we have used the detailed
balance property of Bi j , Eq. (3.4a). If the forward process
has detailed balance and is conservative, the detailed balance
properties Eqs. (2.5) must hold (with Q̂i j replacing Qi j). Then
we may use Eqs. (2.5) to rewrite the r.h.s. of Eqs. (4.43), which
yields

B̄i j (x, λ) ≡ Bi j (x, λ∗), (4.44a)
¯̂Qi j (x, λ) ≡ Q̂i j (x, λ∗), (4.44b)

Ū (x, λ) ≡ U (x, λ∗), (4.44c)

which means that the adjoint process is related to the forward
process via time reversal of control parameter. This is in fact
defined as the backward process for the conservative system.

Using the representation (3.18) and (3.19), the probability
current is given by Eq. (3.20). In the steady state it becomes
Eq. (4.45),

ji
SS = ∂ j (Q̂

i je−U ), (4.45)

The steady-state current of the adjoint process is obtained by
replacing Q̂i j and U respectively by ¯̂Qi j and Ū in Eq. (4.45),

j̄ i
SS = ∂ j (

¯̂Qi je−Ū ), (4.46)

Combining Eqs. (4.45) and (4.46) with Eqs. (4.43), it is easy
to prove the following symmetry property:

j̄ i
SS(x) = −εi ji

SS(x∗, λ). (4.47)

In fact, Eqs. (4.43a) and (4.47) can be deemed as an alternative
definition of the adjoint process. For models with only even
variables and even control parameter, they reduce to

Ū (x) = V (x), (4.48)

j̄ i
SS(x) = − ji

SS(x, λ). (4.49)

Hence the adjoint process and the forward process share the
same pdf by opposite probability current in their steady states.
This agrees with the definition of dual process in Ref. [27–30].

Now if we take the alternative representation of the forward
process in terms of U, Li j, ϕi, as given in Eqs. (3.1), the
probability current is given by Eq. (3.7). In the steady state
we have

ji
SS = Li jϕ je

−U + ∂ jQ
i je−U . (4.50)

Equating Eqs. (4.50) with (4.45), we recover the relation
(3.21). Likewise, the steady-state current of the adjoint pro-
cess can be obtained from Eq. (4.50) by replacing Li j, ϕi and
U with L̄i j, ϕ̄i and Ū ,

j̄ i
SS = L̄i j ϕ̄ je

−Ū + ∂ j Q̄
i je−Ū . (4.51)

Inserting Eqs. (4.50) and (4.51) into Eq. (4.47), and further
using Eqs. (4.43), we obtain

εiϕ̄i(x∗) = −[(B(x) − Q(x))−1(B(x) + Q(x))ϕ(x)] j, (4.52)

which fully determines the non-conservative force in the ad-
joint process in terms of that in the forward process. Note that
this relation holds only in the Gibbs gauge.

Now consider the case where the control parameter varies
with time λF(t ) = λ(t ) in the forward process with t ∈ [ti, t f ].
The adjoint backward process is defined in the time interval
t ∈ [−t f ,−ti], such that

UAdB(x, t ) = Ū (x∗,−t ), (4.53)

Bi j
AdB(x, t ) = B̄i j (x∗,−t ), (4.54)

Qi j
AdB(x, t ) = Q̄i j (x∗,−t ). (4.55)

Hence, it is the adjoint process with time being further re-
versed. Furthermore, the forward process starts from the
NESS associated with the control parameter λi,

pSS(x, λi ) = e−U (x,λi ), (4.56)

whereas the adjoint backward process starts from the NESS
with pdf

p̄SS(x, λ f ) = e−Ū (x,λ f ) = e−U (x∗,λ f ). (4.57)

which is also the time reversal of the steady state of the
forward process with control parameter fixed at λ f .

Now for each dynamic trajectory γ = x(t ) in the forward
process, there is a corresponding trajectory γ̃ = x∗(−t ) in the
adjoint backward process. We can divided both trajectories
into many infinitesimal steps. For each step, we can apply the
relation Eq. (4.41). Summing up all these relations, we obtain

log
pF[γ |γ0]

pAdB[γ̃ |γ̃0]
= −

∫
γ

dxU (x)

= −�U +
∫

γ

dλU , (4.58)

where γ0 = x(ti ) and γ̃0 = x∗(t f ) = x̃(−t f ) are the initial
states of the forward and backward trajectories, whereas �U
is the total change of U along the forward trajectory,

�U [γ , λ] = U (x(t f ), λ f ) − U (x(ti ), λi ) (4.59)

We may construct the unconditional path probabilities from
the conditional path probabilities. For the forward process we
have

pF[γ ] = pF[γ |γ0] e−U (x(ti ),λi ), (4.60)

whereas for the adjoint backward process we have

pAdB[γ̃ ] = pAdB[γ̃ |γ̃0] e−U (x(t f ),λ f ) (4.61)

Combining Eqs. (4.58) to (4.61), we obtain

log
pF[γ ]

pAdB[γ̃ ]
=

∫
γ

dλU G = β

∫
γ

dλ(HG − FSS)

= βW ex[γ ] − β�FSS, (4.62)

where in the second equality we have used Eq. (3.12), and
FSS is the steady-state free energy defined in Eq. (3.13). The
r.h.s. of Eq. (4.62) can be understood as the excess EP at the
trajectory level.

Now following the same proof as in Sec. IV A, we obtain
a fluctuation theorem for the excess work on the forward
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process,

pF(W ex)

pAdB(−W ex)
= eβW ex−β�F , (4.63)

where pAdB(−W ex) is the pdf of the excess work in the ad-
joint backward process. From this result we easily obtain the
Hatano-Sasa equality, Eq. (3.89).

V. EXAMPLES OF ASYMMETRIC SYSTEMS

We discuss several examples of nonlinear Langevin sys-
tems driven by non-conservative forces with asymmetric
kinetic matrices. The main purpose is to illustrate the descrip-
tive power of our theory. Hence, analyses of these examples
will be rather brief. Nonetheless, all presented results can be
verified directly using our theory. Some of these examples will
be studied in greater detail in future papers.

A. Weakly damped Hamiltonian systems

We consider a Hamiltonian system with Hamiltonian
p2/2m + V (x) and driven by a non-conservative force f . The
system is also in contact with a heat bath. The Langevin
equations are

dr = p
m

dt, (5.1a)

d p =
(
−∇V + f − γ

p
m

)
dt +

√
2γ T dW, (5.1b)

where −∇V is the conservative force, whilst f is the non-
conservative force, which possibly depends on momentum.
The case ∂p · f �= 0 was first studied by Kim and Qian in
Ref. [37,38], where the notion of entropy pumping was first
discussed. Equations (5.1) can be written into the standard
form (3.1) with

U = βH − βF = β

(
p2

2m
+ V (r, λ) − F

)
, (5.2)

x =
(

r
p

)
, ϕ =

(
β f
0

)
, L = T

(
0 −I
I γ I

)
, (5.3)

B = T

(
0 0
0 γ I

)
, Q = T

(
0 −I
I 0

)
. (5.4)

The pumped entropy (3.73c) is given by

dSP = −(∂p · f ) dt . (5.5)

To avoid confusion, we use ρ(r, p) instead of p(r, p) to
denote the pdf. The total EP can be obtained from Eq. (3.78a),

�tot = γ T
∫

r,p
ρ(r, p)

(
∂p log p + βp

m

)2

, (5.6)

which is non-negative, and vanishes if and only if the momen-
tum distribution is Maxwellian,

ρ(r, p) = g(r) e−p2/2mT . (5.7)

It is important to note that neither conservative nor non-
conservative force appears in Eq. (5.6). By contrast, the

FPE is

∂tρ =
[
− p

m
∇r + ∇p · (∇rV − f ) + γ

m
∇p · p + γ T ∇2

p

]
ρ,

(5.8)

which does explicitly depend on the forces.
Let us consider the simplest example, where V = 0 and f

is constant. We impose periodic boundary condition on the co-
ordinates, so that there is no globally defined potential, which
generates f . The Langevin equations then become linear and
can be exactly solved. In particular, the steady state pdf can be
easily found,

ρSS(x, p) = e−(p−m f /γ )2/2mT

(2πmT )3/2V
, (5.9)

where V is the volume of the coordinate space. Substituting
this result into Eq. (5.6) and integrating, we find that the total
EP is

� = f 2

γ T
= f · v0

T
, (5.10)

where v0 = f /γ is the average velocity of the particle. The
pumped entropy vanishes identically. The excess EP can be
obtained from Eq. (3.64),

�ex = γ T
∫

r,p
ρ(r, p)

(
∂p log p + β(p − m f /γ )

m

)2

, (5.11)

which is non-negative and is minimized at the NESS. The
house-keeping EP is then

�hk = �tot − �ex, (5.12)

which may be either positive or negative.
Let us now look at the over-damped limit of this problem.

The Langevin equation becomes

dr + T

γ
(β∇V − β f )dt =

√
2T

γ
dW , (5.13)

which corresponds to the standard form (3.1) with

U = βV, x = r, ϕ = β f , (5.14)

B = T

γ
I, Q = 0. (5.15)

The EP is

�tot
od = T

γ

∫
r
ρ(x)(∇r log p − β f )2, (5.16)

where the subscript od means “over-damped”. The square in-
side the integral can be expanded, and the cross term vanishes
identically because f is constant. Hence, we find

�tot
od = f 2

γ T
+ T

γ

∫
r

(∇ρ)2

ρ
. (5.17)

In this over-damped theory, the total EP achieves its minimum
at the steady state where ρ = 1/V and ∇ρ = 0.

Inspecting the expressions of EP in under-damped theory,
Eq. (5.6) and in over-damped theory, Eq. (5.17), we see that
these two functionals are very different. Whereas Eq. (5.6) has
a minimum zero, the minimum of Eq. (5.17) has a minimum
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value f 2/γ T . A moment of thought indicates that the dissipa-
tion occurs completely in the momentum degree of freedom,
and in the over-damped theory, the momentum has already
achieved a steady (non-Maxwellian) distribution with finite
dissipation. This is why the EP in the over-damped theory
has a minimum f 2/γ T . So is EP minimized at the NESS?
Apparently, the answer to this question depends on the level of
the description we adopt for the problem. In the under-damped
theory, the answer is no, whereas in the over-damped theory,
the answer is yes. It is also interesting to comment that whilst
in our Fokker-Planck theory, the EP as given by (3.78a) is
always non-negative, we may also define EP at the level of
dynamic trajectory, as the sum of −βd̄Q, the pumped entropy,
and the change of stochastic entropy. This EP at the trajectory
level can take negative values, since there are trajectories
where the non-conservative force does negative work.

Let us now consider a slightly more complicated case,
where V = 0, but the non-conservative force depends on mo-
mentum. For simplicity, we only consider one dimensional
case, then f = h′(p) can always be written as a derivative.
The Fokker-Planck operator can be rewritten into the standard
form Eq. (3.1) with

U (p) = β

(
p2

2m
− 1

γ
h(p)

)
+ C, (5.18)

where C is a normalization constant. Hence the steady-state
distribution is given by

ρSS(x, p) =
exp

{
β
( p2

2m − 1
γ

h(p)
) + C

}
(2πmT )3/2V

. (5.19)

The EP rate and the pumped entropy rate can both be
calculated and expressed as average over the steady-state dis-
tribution,

� = 〈 f (p)2〉SS

γ T
� 0, (5.20)

�P = −〈 f ′(p)〉SS, (5.21)

βd̄Q

dt
= −βd̄W

dt
= � − �P. (5.22)

By choosing appropriate function f (p), we may achieve one
of the following three interesting scenarios:

(1) �P = � > 0, d̄Q/dt = −d̄W/dt = 0. In general, the
average momentum of Eq. (5.19) is not zero. The system then
moves with a steady velocity without any energy input. The
total EP is just the entropy pumped out of the system, which
is presumably stored as information entropy. The system be-
haves as an information swimmer [67], which use information
entropy to perform steady motion.

(2) �P > 0, d̄Q/dt = −d̄W/dt > 0. The system then ab-
sorbs heat from the bath, output work, and also entropy is
pumped out of the system. The system behaves as a demon
who transforms thermal energy into mechanical work.

(3) �P < 0, d̄Q/dt = −d̄W/dt < 0. The system behaves
as a demon running backwards, transforming information en-
tropy into thermodynamic entropy, as the cost of mechanical
work.

More detailed study of this model will be presented in a
future paper.

FIG. 3. Schematics of Landau-Lifshitz-Gilbert dynamics.

B. Landau-Lifshitz-Gilbert equation and spin torque

Here we study the dynamics of a magnetic moment
inside a uniform magnetic field, possibly driven by a non-
conservative force called spin torque [68,69]. We start from
the Landau-Lifshitz-Gilbert equation (LLG), which describes
the dissipative dynamics of magnetic moment m inside an
effective magnetic field H ,

dm
dt

= −γ0m × H − η m × (m × H ), (5.23)

where m × H denotes cross product between vectors m and
H . The first term in r.h.s. gives the precession of the magnetic
moment around the magnetic field H , whereas the second
term describes damping, as illustrated in Fig. 3, with η the
damping coefficient. Note that the magnitude |m| is conserved
by the dynamics (5.23).

The stochastic version of LLG was derived both in
Stratonovich’s form [70–72] and in Ito’s form [71,72]. Here
we use Ito’s calculus, which is equivalent but is considerably
simpler. We first note that Eq. (5.23) can be written in the form
of

dmi + Li j∂ jU = 0, (5.24a)

Li j = Bi j + Qi j, (5.24b)

Qi j = T γ0ε
i jkmk, (5.24c)

Bi j = T η
(
m2δi j − mim j

)
, (5.24d)

U = −βm · H. (5.24e)

Note that both m and H are odd under time reversal. It is easy
to check that Qi j, Bi j,U as given in Eqs. (5.24) satisfy the
detailed balance conditions (2.5).

But Eq. (5.24a) is deterministic limit [48] of the covariant
Langevin equation (2.1). Adding back the spurious drift and
noises, we can recover the full covariant Langevin equation,

dmi + ( Li j∂ jU − ∂ jL
i j )dt = biαdWα (t ). (5.25)

The matrix biα is not uniquely determined by Eq. (5.24a).
There are many possible which satisfy the condition
Eq. (2.2b). The simplest choice is

biα =
√

2ηT

m
(m2δiα − mimα ), (5.26)

where α = 1, 2, 3, and m = |m| is the magnitude of m. Fur-
ther noticing

∂ jL
i j = −2T η mi, (5.27)
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we may rewrite the covariant Langevin equation (5.25) in the
following vector form:

dm = − γ0m × H dt − η m × (m × H ) dt

− 2T η mdt +
√

2ηT m × dW , (5.28)

where dW is the 3d vector-valued Wiener noise, and the
wedge product m × dW is interpreted in Ito’s sense. Note that
−2T η mdt is the spurious drift.

Using Ito’s formula

dWαdWβ = δαβdt, (5.29)

and Ito-Langevin equation (5.28), we easily find

dm2 = d (m · m) = 2m · dm + dm · dm

= −4T ηm2dt + 4T ηm2dt = 0. (5.30)

Hence, the magnitude |m| is conserved by the stochastic LLG
dynamics. Note that it would not be so if we miss the spurious
drift term.

The Fokker-Planck operator associated with the Langevin
dynamics Eq. (5.28) can be worked out in a standard way,

L0 = T η(m2∇2 − mim j∂i∂ j − 2m · ∇ )

+ η(−m2H · ∇ + (m · H )m · ∇ + 2m · H )

+ γ0(m × H ) · ∇. (5.31)

It is easy to verify that this operator has a steady state eβm·H ,
which describes the thermodynamic equilibrium.

If the system is not far below the Curie point, the fluc-
tuations of the magnitude of m may not be neglected. The
corresponding Langevin equation is usually called stochastic
Landau-Lifshitz-Bloch equation [73–75], which was formu-
lated in several different formats. Here we again formulate
it in the standard form (3.1). To describe the fluctuations of
|m| we add a term a (m2 − m2

0)2/2 to the generalized potential
Eq. (5.24e), so that the new generalized potential becomes

U = −βm · H + a

2

(
m2 − m2

0

)2
. (5.32)

We also need to add longitudinal part to the kinetic matrix Bi j ,
which controls the dynamics of |m|,

Bi j = T η⊥(m2δi j − mim j ) + T η‖mim j, (5.33)

biα =
√

2η⊥T

m
(m2δiα − mimα ) +

√
2η‖T

m
mimα, (5.34)

where η⊥ and η‖ are respectively the damping coefficients
in directions perpendicular and parallel to m. Qi j remains
the same as in Eqs. (5.24) The resulting covariant Langevin
equation then becomes

dm = γ0T (m × ∇U )dt

+ η⊥T m × (m × ∇U )dt + η‖T m(m · ∇U ) dt

− 2T (η⊥ − 2η‖) mdt

+
√

2η⊥T m × dW + √
2η‖T m · dW , (5.35)

where ∇ means gradient with respect to m.
We shall now add a non-conservative force into Eq. (5.28),

which has the particular form f = m × P. It describes the
torque acting the magnetization due to injection of spin cur-
rent from outside, and is called spin torque [68,69]. The

equation with spin torque is obtained from Eq. (5.28) via the
replacement

H → H + f = H + m × P. (5.36)

It is clear that f = m × P cannot be written as the gradient of
a potential, and hence is non-conservative. To satisfy detailed
balance (3.6b), the vector P must be even under time reversal.
This is in fact guaranteed by unit analysis.

The stochastic LLG with spin torque, which may be called
Landau-Lifshitz-Gilbert-Slonczewski equation (LLGS), is
then

dm = − γ0m × (H + m × P) dt

− η m × (m × (H + m × P)) dt

− 2T η mdt +
√

2ηT m × dW , (5.37)

For simplicity let us assume that P is independent of m. The
pumped entropy term can then be easily calculated,

dSP = −Qi j (∂iϕ j ) dt = 2 γ0m · P dt . (5.38)

Hence in the presence of non-conservative force, the system
constantly exchange entropy with its environment.

The FP operator associated with Eq. (5.37) is

L = L0 + δL, (5.39)

where L0 is given in Eq. (5.28) and δL is due to the non-
conservative force,

δL = γ0(−m2P · ∇ + (m · P)m · ∇ + 2m · P)

− ηm2(m × P) · ∇. (5.40)

The total EP can be calculated using (5.24), (5.36) back into
Eq. (3.78a),

� = T η〈m2(∇ log p − βH − β f )2

− (m · (∇ log p − βH − β f ))2〉, (5.41)

where 〈 · 〉 means
∫

m · p(m). Depending on the magnitude and
direction of P, the system may behave as either a dissipator,
a demon, or an anti-demon. A systematic study of this model
will be supplied in a future paper.

C. Temperature gradient

Up to now we have assumed that the system is in contact
with a single heat bath above. This assumption is in fact
not necessary. Our Langevin equation with non-conservative
forces, Eq. (3.1), can be used to describe systems coupled
to multiple heat baths with different temperatures. The tem-
perature difference behaves as non-conservative forces after
appropriate transformation of variables. This is demonstrated
by a toy model of heat transport shown in Fig. 4. The total
Hamiltonian is

H = p2
1

2m1
+ p2

2

2m2
+ p2

3

2m3

+V1(q1 − q3) + V2(q2 − q3) + V3(q3; λ), (5.42)

where the control parameter λ is only coupled to q3. The
under-damped Langevin equations are

q̇1 = ∂H

∂ p1
= p1

m1
, (5.43a)
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FIG. 4. A toy model of heat transport. An elastic solid consisting
of three particles connected by springs. Particles 1 and 2 are respec-
tively in contact with heat bath T1 and T2, whereas the particle 3 is not
in contact with any heat bath. The control parameter λ only appears
in V3(q3; λ).

q̇2 = ∂H

∂ p2
= p2

m2
, (5.43b)

q̇3 = ∂H

∂ p3
= p3

m3
, (5.43c)

ṗ1 = −γ1
∂H

∂ p1
− ∂H

∂q1
+

√
2γ1T1ξ1, (5.43d)

ṗ2 = −γ2
∂H

∂ p2
− ∂H

∂q2
+

√
2γ2T2ξ2, (5.43e)

ṗ3 = − ∂H

∂q3
= −∂ (V1 + V2 + V3)

∂q3
, (5.43f)

where ξ1, ξ2 are usual Gaussian white noises

〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′), i = 1, 2. (5.44)

Stochastic thermodynamics for such system can be devel-
oped by generalizing the theory discussed in Ref. [49]. Within
this theory the entropy change of environment at the trajectory
level is given by

dSEV = −β1d̄Q1 − β2d̄Q2, (5.45a)

d̄Q1 = d(q1,p1 )H, (5.45b)

d̄Q2 = d(q2,p2 )H, (5.45c)

where d̄Q1 and d̄Q2 are respectively the heat released by the
heat baths T1 and T2. The definition of work remains the same
d̄W = dλV3.

Let us define the generalized potential as

U = β1
p2

1

2m1
+ β̄1V1(q1 − q3)

+β2
p2

2

2m2
+ β̄2V2(q2 − q3)

+β3
p2

3

2m3
+ β3V3(q3; λ)), (5.46a)

and define the non-conservative forces as

ϕq1 = (β̄1 − β1)
∂V1

∂q1
, (5.46b)

ϕq2 = (β̄2 − β2)
∂V2

∂q2
, (5.46c)

ϕq3 = (β̄1 − β3)
∂V1

∂q3
+ (β̄2 − β3)

∂V2

∂q3
, (5.46d)

ϕp1 = ϕp2 = ϕp3 = 0. (5.46e)

Further defining x = (q1, p1, q2, p2, q3, p3), and the matrix
of kinetic coefficients as

L =

⎛
⎜⎜⎜⎜⎜⎝

0 −T1 0 0 0 0
T1 γ1T1 0 0 0 0
0 0 0 −T2 0 0
0 0 T2 γ2T2 0 0
0 0 0 0 0 −T3

0 0 0 0 T3 0

⎞
⎟⎟⎟⎟⎟⎠, (5.47)

we can rewrite Eqs. (5.43) into the standard form of non-
conservative Langevin equation (3.1),

q̇1 = T1
∂U

∂ p1
, (5.48a)

q̇2 = T2
∂U

∂ p2
, (5.48b)

q̇3 = T3
∂U

∂ p3
,

ṗ1 = −γ1T1
∂U

∂ p1
− T1

(
∂U

∂q1
− ϕq1

)
+

√
2γ1T1ξ1,

ṗ2 = −γ2T2
∂U

∂ p2
− T2

(
∂U

∂q2
− ϕq2

)
+

√
2γ2T2ξ2,

ṗ3 = −T3

(
∂U

∂q3
− ϕq3

)
. (5.48c)

Note that the “temperatures” β̄1, β̄2, β3 remain arbitrary. They
are the gauge parameters, which reflect the arbitrariness we
discussed in Sec. III K. It is easy to verify that these equa-
tions are mathematically equivalent to Eqs. (5.43).

It is easy to verify that there is no entropy pumping in
this problem. Hence the entropy change of the environment
associated with Eqs. (5.48) is given by Eq. (3.73b), which we
rewrite explicitly

dSEV = −dxU + ϕi ◦ dxi. (5.49)

Using Eqs. (5.46) it is easy to verify that Eqs. (5.45a) and
(5.49) are equivalent. Hence, the total EPs in two representa-
tions are identical. Variation of q3, p3 makes no contribution
to dSEV because these variables do not couple to any heat bath.
We will not elaborate further on the details of this problem.

D. Charged particle in magnetic field

Lorentz force cannot be understood as a usual conservative
force, which is the gradient of certain potential energy. On
the other hand, Lorentz force can neither be understood as
usual non-conservative force, since it does not do any work,
and does not dissipate any energy. In usual Hamiltonian me-
chanics, the effects of magnetic field are taken into account
by defining canonical momenta, which are linear combination
of mechanical momentum and vector potential. Here we show
that magnetic field can be taken into account by introducing a
new component of the antisymmetric kinetic matrix Q.

Consider a charged particle in a uniform magnetic field and
also coupled to a damping environment, which is assumed to
be uncharged and hence not influenced by the magnetic field.

043125-23



MINGNAN DING, FEI LIU, AND XIANGJUN XING PHYSICAL REVIEW RESEARCH 4, 043125 (2022)

The Langevin equations can be obtained by incorporating the
Lorentz force into Eq. (5.1),

dr = p
m

dt, (5.50a)

d p =
(
−∇V + q v × H − γ

p
m

)
dt +

√
2γ T dW, (5.50b)

where H is the constant magnetic field. These equations can
be rewritten into the standard form of covariant Ito-Langevin
equations, (3.1), by defining

U = β

(
p2

2m
− F

)
, x =

(
r
p

)
, ϕ =

(
0
0

)
, (5.51)

B = T

(
0 0
0 γ I

)
, Q = T

(
0 −I
I QB

)
, (5.52)

where QB is a 3 × 3 matrix with

(QB)i j = −qεi jkHk . (5.53)

It is easy to see that Q satisfies the detailed balance condition
(3.4b), because magnetic field is odd under time reversal.

VI. SYMMETRIC SYSTEMS

In this section, we consider Langevin systems whose vari-
ables and control parameters are all even, i.e., εi = 1, hence
according to Eq. (3.4) the kinetic matrix is symmetric. These
systems will be called symmetric systems. As we have already
known, for these systems, there is no entropy pumping. We
will further show that both excess EP and house-keeping EP
are positive definite. Additionally, the joint pdf of house-
keeping work and excess work obeys a series of fluctuation
theorems, from which we can also derive fluctuation theorems
and work identities for pdfs of house-keeping work and excess
work separately. The fluctuation theorem for the excess work
is a special case of the theorem we derived in Sec. IV C.
Throughout this section, we will use Gibbs gauge, but will
ignore the subscript G.

A. Gibbs gauge and thermodynamics of NESS

For symmetric systems, Eqs. (3.1), (3.2), and (3.3) become

dxi + ( Bi j (∂ jU − ϕ j ) − ∂ jB
i j )dt = biαdWα, (6.1)

∂t p = ∂iB
i j (∂ j + (∂ jU − ϕ j ))p, (6.2)

L ≡ ∂iB
i j (∂ j + (∂ jU − ϕ j )). (6.3)

The probability current becomes

ji = ji
IR = −Bi j (∂ j + (∂ jU ) − ϕ j )p. (6.4)

Using the Gibbs gauge, the steady-state current is

ji
SS = Bi jϕ je

−U , (6.5)

∂i ji
SS = ∂iB

i jϕ je
−U = 0. (6.6)

Note that if we reverse the non-conservative force ϕi → −ϕi

with the generalized potential U fixed, the steady-state current
(6.5) changes sign whereas the steady state pdf (3.14) remains
the same. This is the meaning of adjoint process, to be dis-
cussed shortly below. Note that Eq. (6.6) is the Gibbs gauge

condition for symmetric systems, which can be obtained from
Eq. (3.15) by setting Li j = Bi j .

Since Qi j = 0, the pumped entropy (3.73c) vanishes iden-
tically, and Eq. (3.79) reduces to

dStot = dS − βd̄Q = (�ex + �hk )dt . (6.7)

The house-keeping and excess EPs are given by Eqs. (3.62a)
and (3.62b), with Li j replaced by Bi j . The excess EP is already
shown to be positive in Eq. (3.64). Using Eq. (3.63), the
house-keeping EP can also be shown to be positive,

�hk =
∫

x
ϕiB

i j pϕ j � 0, (6.8)

�ex =
∫

x
(∂i(log p + U ))Bi j p(∂ j (log p + U )) � 0. (6.9)

It was first shown by Esposito and van den Broeck [28–30]
that the total EP of symmetric systems can be decomposed
into two positive components.

It is important to note that the house-keeping EP as given
by (6.8) is generally depends on the pdf, hence minimization
of excess EP, which yields the NESS, is different from min-
imization of the total EP. There is, however, one interesting
exception. If both the kinetic coefficients Bi j and the non-
conservative forces ϕi are independent of the state variables
x, they may be pulled out of the integral in Eq. (6.8). Then the
house-keeping EP is indeed independent of the system state,

�hk → ϕiϕ jB
i j . (6.10)

In this case, the steady state does minimize the total EP. In
some systems, it may happen that ϕi and Bi j depend only
weakly on system state, and hence their fluctuations are neg-
ligible. Then the total EP is approximately minimized at the
steady state.

B. Fluctuation theorems

For symmetric systems, Eq. (3.73) reduces to

log
Pλ,ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )
= −dxU + ϕi ◦ dxi. (6.11)

Equations (4.27) and (4.29) then reduce to the usual Crooks
fluctuation theorem and Jarzynski equality,

pF(W )e−βW +β�F = pB(−W ), (6.12a)

〈e−βW 〉 = e−β�F , (6.12b)

where are applicable to processes starting from and ending at
equilibrium states. Because all variables and parameters are
even under time reversal, these equilibrium states can also be
interpreted either as NESSs. In fact, for symmetric systems,
the difference between equilibrium states and NESS can only
be seen at the level of probability current, not at the probability
distribution. Note also Eqs. (6.11) and (6.12) are valid in
arbitrary gauge. Hence the gauge degree of freedom can be
used to obtain a continuous manifold of fluctuation theorems
and work identities.

To derive fluctuation theorems for excess work and house-
keeping work, we need to define four types of dynamic
processes, all in Gibbs gauge. For simplicity of notations, we
denote non-conservative force as ϕ.
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FIG. 5. An infinitesimal step in the forward process, the back-
ward, the adjoint, and the adjoint backward processes. The arrow
indicates the propagation of time.

(i) Forward process. The system starts from NESS

pSS(x, λ(ti )) = e−U (x,λ(ti )), (6.13)

at t = ti and the dynamic protocol is λF(t ) = λ(t ), ϕF(t ) =
ϕ(λ(t )) with t ∈ [ti, f f ]. Here we use the term protocol to
denote both the control parameter and the non-conservative
force.

(ii) Backward process. The system starts from NESS

pSS(x, λ(t f )) = e−U (x,λ(t f )). (6.14)

at t = −t f , and the dynamic protocol is λB(t ) =
λ(−t ), ϕB(t ) = ϕ(λ(−t )), with t ∈ [− f f ,−ti].

(iii) Adjoint process. The system starts from NESS
(6.13), and the dynamic protocol is λAd(t ) = λ(t ), ϕAd(t ) =
−ϕ(λ(t )), with t ∈ [ti, f f ].

(iv) Adjoint backward process. The system starts
from NESS (6.14), and the dynamic protocol is λAdB(t ) =
λ(−t ), ϕAdB(t ) = −ϕ(λ(−t )), with t ∈ [− f f ,−ti]. Here the
superscript AdB means adjoint backward.

An infinitesimal step of each of these processes is il-
lustrated in Fig. 5. The transition probabilities of these
infinitesimal steps are calculated in Appendix, where we also
show

log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x|x1; dt )
= log

Pλ,−ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )

= −dxU = −βdQex, (6.15a)

log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x1|x; dt )
= log

Pλ,−ϕ (x|x1; dt )

Pλ,ϕ (x|x1; dt )

= ϕi ◦ dxi = −βdQhk. (6.15b)

In the above, the subscripts (λ, ϕ) refer to the infinitesimal
protocol of the forward and backward processes, whereas
(λ,−ϕ) refers to the infinitesimal protocol of the adjoint and
backward adjoint processes, as illustrated in Fig. 5. The in-

tegrated house keeping and excess work and heat along the
forward process are (with fi = T ϕi)

Whk[γ , λF, ϕF] =
∫

γ

fi ◦ dxi, (6.16a)

Qhk[γ , λF, ϕF] = −
∫

γ

fi ◦ dxi, (6.16b)

Wex[γ , λF, ϕF] =
∫

γ

dλH, (6.16c)

Qex[γ , λF, ϕF] =
∫

γ

dxH. (6.16d)

These functionals can be similarly defined for the back-
ward, adjoint, and adjoint backward processes. We shall not
list their concrete forms here, in order not to make the work
excessively long. These functionals have the following sym-
metry properties:

Whk[γ , λF, ϕF] = −Whk[γ̃ , λB, ϕB]

= −Whk[γ , λAd, ϕAd]

= Whk[γ̃ , λAdB, ϕAdB], (6.17a)

Qhk[γ , λF, ϕF] = −Qhk[γ̃ , λB, ϕB]

= −Qhk[γ , λAd, ϕAd]

= Qhk[γ̃ , λAdB, ϕAdB], (6.17b)

Wex[γ , λF, ϕF] = −Wex[γ̃ , λB, ϕB]

= Wex[γ , λAd, ϕAd]

= −Wex[γ̃ , λAdB, ϕAdB], (6.17c)

Qex[γ , λF, ϕF] = −Qex[γ̃ , λB, ϕB]

= Qex[γ , λAd, ϕAd]

= −Qex[γ̃ , λAdB, ϕAdB]. (6.17d)

Using Eqs. (6.15) for every small steps, as well as the initial
pdfs Eqs. (6.13) and (6.14) for all processes, we can establish
the following relations:

pF[γ ]

pB[γ̃ ]
= eβWhk[γ ]+βWex[γ ]−β�F (λ), (6.18)

pF[γ ]

pAd[γ ]
= pAdB[γ̃ ]

pB[γ̃ ]
= eβWhk[γ ], (6.19)

pF[γ ]

pAdB[γ̃ ]
= pAd[γ ]

pB[γ̃ ]
= eβWex[γ ]−β�F . (6.20)

We can now define the joint probability density for house-
keeping and excess works for the forward process,

pF(W hk,W ex) ≡
∫

D[γ ] pF[γ ] δ(W hk − Whk[γ , λ,ϕ])

× δ(W ex − Wex[γ , λ,ϕ]), (6.21)

from which we can also obtain the marginal pdfs for the
house-keeping work and excess work,

pF(W hk ) ≡
∫

W ex
pF(W hk,W ex), (6.22)

pF(W ex) ≡
∫

W hk
pF(W hk,W ex). (6.23)
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The notations we use for these pdfs are not precise from
mathematical point of view, but should cause no difficulty in
understanding. Similar probability density functions can also
be defined for the backward, adjoint, and adjoint backward
processes.

Following a proof similar to that in Sec. IV A, we can prove
the following fluctuation theorems:

pF(W hk,W ex) = eβ(W hk+W ex−�F ) pB(−W hk,−W ex)

= eβW hk
pAd(−W hk,W ex)

= eβ(W ex−�F ) pAdB(W hk,−W ex). (6.24)

Note that the Crooks fluctuation theorem Eq. (6.12a) can be
derived from the first equality of Eqs. (6.24). From these
results we further obtain the following fluctuation theorems
for the reduced pdf of house-keeping work and for excess
work,

pF(W hk )e−βW hk = pAd(−W hk ), (6.25)

pF(W ex)e−βW ex+β�F = pAdB(−W ex), (6.26)

as well as the corresponding work identities,

〈e−βW hk 〉 = 1, (6.27)

〈e−βW ex〉 = e−β�F . (6.28)

Equations (6.26) and (6.28) were already derived in Sec. IV.
Because βW hk and βW ex − β�F can be understood as

the house-keeping EP and excess EP at the trajectory level,
Eqs. (6.25)–(6.28) can be rewritten in terms of the total house-
keeping EP and excess EP,

pF(�Shk )e−�Shk = pAd(−�Shk ), (6.29)

pF(�Sex)e−�Sex = pAdB(−�Sex), (6.30)

〈e−�Shk 〉 = 〈e−�Sex〉 = 1. (6.31)

It is important to note that, unlike Eqs. (6.12), which are valid
in arbitrary gauge, Eqs. (6.24)–(6.31) are valid only in the
Gibbs gauge.

Relations (6.29) and (6.30) were derived in Ref. [28–30],
where �Shk and �Sex are respectively called adiabatic
entropy production and nonadiabatic entropy production.
Equations (6.24), which are the most general versions of all
these fluctuation theorems, have not been derived previously,
to the best of our knowledge.

C. Implications of fluctuation theorems

Several significant implications can be inferred from the
above fluctuation theorems.

(i) Even though the fluctuation theorems (6.24)–(6.28) are
derived in Gibbs gauge, we must remember that the processes
involved can be realized in infinitely many different gauges,
each corresponding to a different experimental setup. This
point becomes very important when applying the theory to
concrete systems.

(ii) Let us for now assume that the control parameter λ

is fixed, and that the system is in the steady regime. The

excess work then vanishes identically at the trajectory level,
according to Eq. (3.50b). The pdf of W ex is then concentrated
at zero. The steady-state free energy is also fixed, and hence
�F = 0. Hence the fluctuation theorem for the excess work
becomes trivial. Also because λ are fixed, the forward process
and backward process are then identical to each other, whereas
the adjoint process and the adjoint backward process are also
identical to each other. Note however the forward process and
the adjoint process are generically different. Now Eq. (6.12a)
and (6.25) respectively become

e−βW hk
pF(W hk ) = pF(−W hk ), (6.32)

e−βW hk
pF(W hk ) = pAd(−W hk ), (6.33)

from which we deduce

pF(W hk ) = pAd(W hk ). (6.34)

Hence, even though the forward process and the adjoint pro-
cess are generally different physical processes, they have the
identical probability distribution of work in the steady regime.
For the same reason, the backward process and the adjoint
backward process have the identical probability distribution
of work in the steady regime.

(iii) The fluctuation theorem (6.32) holds exactly for ar-
bitrary time interval �t = t f − fi. This is in strong contrast
with the famous steady-state fluctuation theorem, which was
only established as asymptotically exact in the long time limit.
Hence the fluctuation theorem for house-keeping work (6.32)
is a significant refinement of the steady-state fluctuation the-
orem. Note that all these derivations are applicable only for
symmetric systems.

(iv) If the control parameter is not fixed, the fluctuation
theorem of excess work becomes nontrivial. An interesting
and very common scenario is that a small system is embed-
ded in a large system in nonequilibrium dissipative state. For
example, a polymer chain or a colloid is immersed in a gra-
dient flow or in a temperature gradient, and at the same time
manipulated by an optical tweezer. For these problems, the
non-conservative force drives shear flow or the temperature
gradient. The house-keeping work is an extensive quantity,
whose fluctuations are difficult to measure experimentally.
By strong contrast, the control parameter λ only couples to
the small system. Hence the excess work and excess EP are
typically small, whose fluctuations can be characterized by
Eq. (6.26), and can be experimentally tested. We believe that
this is the most interesting scenario.

VII. EXAMPLES OF SYMMETRIC SYSTEMS

In this section, we discuss three examples of symmetric
models. We first describe the systems using the natural gauge
defined by experimental setups, then find the NESS, and rep-
resent the systems in Gibbs gauge. We then calculate excess
and house-keeping work, as well as the excess and house-
keeping EP. Finally we discuss how backward process, adjoint
process, and adjoint backward process can be realized.
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FIG. 6. A polymer dragged by a constant force.

A. A dragged polymer

We consider a polymer dragged by a constant force. The
polymer is modeled as two mass points connected by a har-
monic spring. The force is acting only on one of the mass
points. For simplicity, we treat the system as one dimensional,
and assume that two mass points have the equal mass and
friction constant. Both the spring constant and force may be
controlled experimentally. The system is schematically shown
in Fig. 6.

We start from the over-damped Langevin equations,

dx1 + 1

γ
[k(x1 − x2) − f ]dt =

√
2T

γ
dW1, (7.1a)

dx2 + 1

γ
k(x2 − x1)dt =

√
2T

γ
dW2, (7.1b)

which can be written into the covariant form (3.1) with

x =
(

x1

x2

)
, U = 1

2
βk(x1 − x2)2, (7.2)

L = B = T

γ
I, ϕ =

(
β f
0

)
, (7.3)

where U and ϕ denote the generalized potential and non-
conservative force in the natural gauge defined by experimen-
tal setup.

In the steady state, the polymer moves with average speed
f /2γ , and the average extension of the spring should be such
that the elastic force balances the friction, 〈�x〉 = 〈x1 − x2〉 =
f /2k. Hence the steady state pdf, as well as the corresponding
generalized potential, Hamiltonian, and nonconservative force
in Gibbs gauge are

pSS(x) = 1

L

√
π

βk
e−βk(x1−x2− f /2k)2/2, (7.4)

U G(x; k, f ) = βk

2

(
x1 − x2 − f

2k

)2

+ log k

2
, (7.5)

HG(x; k, f ) = 1

2
k

(
x1 − x2 − f

2k

)2

, (7.6)

ϕG =
(

β f /2
β f /2

)
, (7.7)

The Hamiltonian HG is determined by the generalized po-
tential U G up to an additive constant, which was chosen to
maximally simplify HG. Using Eqs. (7.5) and (7.7), we easily
verify Gibbs gauge condition Eq. (6.6).

The house-keeping EP and excess EP are respectively,

�hk =
∫

x
ϕG

i Bi j pϕG
j = f 2

2T γ
, (7.8)

�ex = T

γ

∫
x

p

[(
∂1 log p + βk(x1 − x2) − 1

2
β f

)2

+
(

∂2 log p − βk(x1 − x2) + 1

2
β f

)2]
, (7.9)

which are indeed both positive. Notice that for this particular
problem �hk is independent of system state. Hence, the total
EP is minimized by the NESS. Starting from any initial state,
the EP decreases monotonically as a function of time. If we
study the conformational behavior of the polymer in the mov-
ing frame, there is no way for us to deduce that the system is
in a NESS instead of an equilibrium state!

At the trajectory level, the house-keeping work and excess
work are given respectively by

d̄Whk = T ϕi ◦ dxi = f

2
(dx1 + dx2), (7.10)

d̄Wex = (∂kH )dk + (∂ f H )df . (7.11)

The Langevin equations (7.1) can be rewritten in terms of
the center-of-mass coordinate X = (x1 + x2)/2 and relative
coordinate x = x1 − x2,

dX − f

2γ
dt =

√
2T

2γ
dWX , (7.12a)

dx + 1

γ /2
(kx − f /2)dt =

√
2T

γ /2
dWx, (7.12b)

where these two variables are completely decoupled. It be-
comes clear now that the house-keeping work Eq. (7.10) is
precisely the work associated with the dragged motion of the
center-of-mass coordinate X ,

d̄Whk = f ◦ dX, (7.13)

whereas the excess work is the work associated with the
relative coordinate x,

d̄Wex = dλHG, (7.14)

where HG is Eq. (7.6) expressed in terms of x. Since the
Langevin equations Eq. (7.12) of x and X are completely
decoupled, a theory of stochastic thermodynamics can be
constructed for separately for x and for X . Each theory yields
its own fluctuation theorem and work relation.

The EP associated with X and x can be obtain straightfor-
wardly,

�CM =
∫

X
(∂X log p(X ) − β f )2 T p(X )

2γ

= �hk + T

2γ

∫
X

p′(X )2

p(X )
, (7.15)

�Rel =
∫

x
(∂x log p + βk(x − f /2k))2 2T p(x)

γ

= �ex − T

2γ

∫
X

p′(X )2

p(X )
. (7.16)

They differ from �hk, �ex, given by Eqs. (7.8) and (7.9),
only by a part, which depends on p(X ), but is independent
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FIG. 7. How forward, backward, adjoint, and adjoint backward
processes may be realized for a dragged polymer chain.

of both control parameters k, f . It therefore has no impact on
fluctuation theorems.

Let us now discuss, for a given forward process, how back-
ward process, adjoint process, and adjoint backward process
can be realized. For concreteness, we assume that the spring
constant k is fixed, and the dragging force f (t ) acting on
x1 follows a specified pattern in the forward process with
0 < t < τ . In the backward process, the force still acts on x1

but varies as f B(t ) = f (τ − t ). The adjoint process is defined
such that in the Gibbs gauge, the non-conservative force is the
opposite of that of the forward process, whereas the gener-
alized potential is the same. Such a process can be realized
by apply a force − f (t ) on the second particle x2. Finally in
the adjoint process, the force is acting on x2 and is given by
− f (τ − t ). These processes are illustrated in Fig. 7.

B. A particle in circular force field

This is a simplified version of the model was first discussed
by Jarzynski et al. in Ref. [27]. As illustrated in Fig. 8, we
consider a particle moving in a 2d isotropic potential V (r, λ)
and a circular non-conservative force field g(r) eθ . The under-
damped Langevin equations are

d px =
(
−γ

px

m
+ f

x

r
− g

y

r

)
dt +

√
2γ T dWx, (7.17)

d py =
(
−γ

py

m
+ f

y

r
+ g

x

r

)
dt +

√
2γ T dWy, (7.18)

FIG. 8. A particle subjected to a conservative force f and non-
conservative force g.

where f (r) = −V ′(r). We consider the over-damped limit,
where the Langevin equations become

dx = − f x − gy

γ r
dt +

√
2T

γ
dWx, (7.19)

dy = − f y + gx

γ r
dt +

√
2T

γ
dWy, (7.20)

which correspond to the covariant form (3.1) with

U = βV (r), B = T

γ
I, ϕ =

(−βg sin θ

βgcos θ

)
, (7.21)

where θ is the polar angle. The FPE is

∂t p = T

γ

[
∂x

(
∂x − f x − gy

T r

)
+ ∂y

(
∂y − f y + gx

T r

)]
p.

(7.22)

It is easy to verify that the steady state is given by

pSS(r) = e−βV (r), (7.23)

and the Gibbs gauge condition Eq. (6.6) is satisfied. Hence the
parametrization Eq. (7.21) is already in the Gibbs gauge. The
excess and house-keeping works are then easily obtained,

d̄Whk = T ϕ ◦ dx = g(r)

r
(−y ◦ dx + x ◦ dy), (7.24)

d̄Wex = (∂λV (r, λ))dλ. (7.25)

The total EP can be written as

� = T

γ

∫
x

[(
∂x p

p
− f x − gy

T r

)2

+
(

∂y p

p
− f y + gx

T r

)2]
.

(7.26)

Using integration by parts, as well as the fact that pSS satisfies
the steady state FPE, we can easily rewrite it into the sum of
two positive parts,

� = T

γ

∫
x

p(x, y)[(∂x log p eβV )2 + (∂y log p eβV )2]

+ 1

γ T

∫
x

p(x, y) g(r)2, (7.27)

where the first part is the excess EP and the second part is the
house-keeping EP. Note that the house-keeping EP depends
on p(x, y). Hence the total EP is not minimized at the NESS.

Finally, the adjoint process and adjoint backward process
can be obtained from the forward process and backward pro-
cess by reversing the sign of g(r), i.e., the direction of the
non-conservative force.

C. Confined Brownian particle in shear flow

Our last example is a Brownian particle confined by a
central force potential V (x) = k(x − x0)2/2 in a shear flow,
as illustrated in Fig. 9. Both k and x0 can be tuned externally.
The velocity field of the fluid is

�v(x, y) = y

τ
x̂. (7.28)
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FIG. 9. A confined Brownian particle in shear flow. The disks
represent the quadratic confining potentials. The yellow arrows in-
dicate the velocity field of the fluid. The blue curves with arrows
represent the loci of the center of the confining potential in dif-
ferent processes, which act as control parameters. Note that in the
adjoint and adjoint backward processes, the confining potential is
anisotropic, whereas the shear flow is reversed.

The over-damped Langevin equations that describe the motion
of the Brownian particle are

γ
(

ẋ − y

τ

)
dt + ∂xV (x)dt =

√
2γ T dWx, (7.29)

γ ẏ dt + ∂yV (x)dt =
√

2γ T dWy. (7.30)

Note that the friction force acting on particle is γ (x − y/τ ),
which vanishes only if the particle moves with the fluid. The
above Langevin equations can be written in the covariant form
in the natural gauge with

x =
(

x
y

)
, L = B = T

γ
I, (7.31a)

U = βk

2
(δx2 + δy2), ϕ =

(
βγ y/τ

0

)
. (7.31b)

With the above parametrization, (γ y/τ ) x̂ is interpreted as
the non-conservative force acting on the particle due to the
fluid in shear flow. If we treat γ /τ as a single parameter, it
is even under time reversal, as one can see easily from unit
analysis. (Both γ and τ are odd.) The non-conservative force
as given in Eq. (7.31b) satisfies the detailed balance condition
(3.6b), and hence our theory is applicable. Within this inter-
pretation, then, the shear flow in the backward process is the
same as that in the forward process, as shown in Fig. 9.

We may however treat τ as the control parameter with the
friction coefficient γ being fixed. The combination γ /τ then
changes sign under time reversal, i.e., it behaves as an odd
parameter. The detailed balance condition (3.6b) is then no
longer satisfied, and our theory is not applicable. It turns out
that a different theory of stochastic thermodynamics may be
developed for this interpretation, which is in the same spirit
as the theory developed in Ref. [45]. The total EP calculated
in these two theories are different from each other, yet all
excess thermodynamic quantities are identical. Note, however,

in both theories, the EP due to the shear flow itself, which is
extensive in the size of the fluid, is not included.

A detailed comparison of these two theories will be sup-
plied elsewhere. Here we adopt the first interpretation, by
treating γ /τ as an even parameter. We can then follow the
theory developed in Sec. III and write down the work and heat
at the trajectory level (in the natural gauge):

d̄W = dλV + γ y

τ
◦ dx, (7.32)

d̄Q = dxV − γ y

τ
◦ dx, (7.33)

where ◦ is the product in Stratonovich’s sense.
It is not easy to solve for the NESS for the general case.

The situation is, however, greatly simplified if the shear flow is
weak, so that the steady state remains approximately e−βV (x).
In the Gibbs gauge, the generalized potential U G and the non-
conservative force ϕG

i are related to those in the natural gauge
via a gauge transformation,

U G = U + ψ, (7.34)

ϕG
i = ϕi + ∂iψ, (7.35)

where ψ is a quadratic function of x, also small comparing
with U . The Gibbs gauge condition (6.6) can be rewritten as

∂iϕ
G
i − ϕG

i ∂iU
G = 0. (7.36)

But U G in Eq. (7.36) can be approximated by U , which leads
to

∂iϕ
G
i − ϕG

i βk δxi = 0, (7.37)

where δxi = xi − xi
0. We expect that ψ is quadratic in δx, and

ϕG
i is linear in δx. It is easy to verify that the solution to

Eq. (7.37) is

ϕG
i = α εi jδx j, (7.38)

where α is an arbitrary constant, whilst εi j is the antisym-
metric tensor. The constant α is determined by substituting
Eq. (7.38) into Eq. (7.35), and requiring that ∂i∂ jψ = ∂i∂ jψ .
This also determines the gauge transformation ψ , as well as
U G, ϕG in the Gibbs gauge,

ψ = −βγ

2τ
(δxδy + 2 δx y0), (7.39a)

U G = βk

2
(δx2 + δy2) − βγ

2τ
(δxδy + 2 δx y0), (7.39b)

ϕG
i = βγ

2τ
εi jδx j, (7.39c)

where the generalized potential U G is determined only up to
an additive constant, which depends on y0 and all other param-
eters. It can be fixed of course by the normalization condition.
Note that the non-conservative force field Eq. (7.39c) is pre-
cisely clockwise circular force field, opposite to that studied in
Sec. VII B. The second term in the r.h.s. of Eq. (7.39b) arises
due to the dragging effect of the shear flow. It has two effects:
(1) the probability distribution of x anisotropic, and (2) its
center is translated relative to the confining potential V (x),
along the x direction.
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Now the adjoint process (again in Gibbs gauge) can be
obtained from Eq. (7.39) by reversing the non-conservative
force field, i.e., from clockwise to counterclockwise,

U Ad,G = βk

2
(δx2 + δy2) − βγ

2τ
(δxδy + 2 δx y0), (7.40a)

ϕAd,G
i = −βγ

2τ
εi jδx j . (7.40b)

Now suppose we want to realize the adjoint process
in the reversed shear flow, as shown in Fig. 9(c). The
non-conservative force is then the opposite of that in
Eq. (7.31b). The generalized potential then can be obtained
from Eqs. (7.40) by making another gauge transform. The
results are

U Ad = βk

2
(δx2 + δy2) − βγ

τ
(δxδy + 2 δx y0), (7.41a)

ϕAd
i = −βγ

τ
δi1δy. (7.41b)

The potential U Ad corresponds to an asymmetric confining
potential as shown in Fig. 9. The forward process and its
corresponding adjoint backward process are also illustrated in
Fig. 9.

It can be seen that in the present problem the forward
process and the adjoint process are physically different. Yet
Eq. (6.34) guarantees that for fixed control parameters, the
distributions of house-keeping work in these two processes
are identical to each other.

In typical experiments, the size of the fluid is micro-
scopic, hence the total house-keeping entropy production and
house-keeping work, which are due to both the sheared fluid
and the confined particle, are extensive quantities, whose
fluctuations are difficult to measure. Yet the excess entropy
production and excess work are small quantities, whose fluc-
tuations can be characterized by the fluctuation theorem of
excess work. More detailed will be supplied in a separate
paper.

VIII. CONCLUSIONS

With judicious choice of system variables, most classi-
cal nonequilibrium systems can be described by Markov
processes, with either discrete or continuous state variables.
With system parameters fixed, a Markov process converges
either to an equilibrium state with detailed balance, or to
a nonequilibrium steady state without detailed balance. The
thermodynamics and stochastic thermodynamics for the for-
mer case has been well established, as the consequence of a
very large body of papers due to many authors. By synthe-
sizing and generalizing many important ideas and theories, in
this paper we developed a general theory of thermodynamics
and stochastic thermodynamics for latter case. The combina-
tion of the earlier papers in this sequel [48–50] and the present
paper supply a consistent and relatively complete theoretical
framework for thermodynamics and stochastic thermodynam-
ics of all classical nonequilibrium systems with continuous
state variables.

Our theory is based on splitting of thermodynamic forces
into a conservative part and a non-conservative part, an
operation that is gauge dependent. Each gauge defines an

experimental setup, and the same physical process can
be realized by many different experimental setups. In the
special Gibbs gauge, there is a full correspondence be-
tween the thermodynamic theory of non-conservative systems
and that of the conservative systems. Specializing to the
stationary regime, our theory provides a rigorous justi-
fication of the Glansdorff-Prigogine stability criterion of
NESS, as well as the steady-state thermodynamics, de-
veloped by Oono and Paniconi, as well as Sasa and
Tasaki.

For asymmetric systems, entropy pumping constitutes a
universal mechanism of entropy exchange between system
and its environment, which does not involve dissipation. Us-
ing entropy pumping, a system may export entropy steadily
and maintain a low entropy, far-from-equilibrium state. All
living systems constantly probe their environments and adapt
their behaviors accordingly. From statistical physics point of
view, these may very well be understood in terms of entropy
pumping. We feel that further exploration along this direction
may help reveal the essential difference between living sys-
tems and nonliving systems. For small systems embedded in
large nonequilibrium backgrounds, the fluctuation theorems
of excess work and excess EP provide valuable characteriza-
tion of fluctuations. All these issues will be explored in greater
detail in future papers.
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APPENDIX: DERIVATION OF DETAILED
FLUCTUATION THEOREMS

1. Derivation of Eq. (3.73)

We first sketch the results in the Appendix of Ref. [49],
which are useful for our present purpose. For a full proof
with all details, also see Ref. [76]. Here, we assume that the
metric tensor is trivial, gi j = δi j . The most general form of
Ito-Langevin equation is

dxi − F i(x, λ)dt = biν (x, λ)dWν, (A1)

where F i(x, λ) is usually called the systematic force, and λ is
the control parameter, which may vary with time. Consider a
transition from x at time t to x1 at time t + dt , and let α ∈
(0, 1), so that

xα = x + α(x1 − x) = x + αdx (A2)

is an intermediate point between x and x1. The differential
transition probability are given by Eqs. (A2) of Ref. [49] with
the metric tensor set to δi j ,

dμ(x1)Pλ(x1|x; dt ) = dμ(x1) e−Aα (x1,x;dt,λ)√
(4πdt )n det Bi j (xα, λ)

, (A3a)

043125-30



UNIFIED THEORY OF THERMODYNAMICS AND … PHYSICAL REVIEW RESEARCH 4, 043125 (2022)

Aα (x1, x; dt, λ) = [dxi − dt (F i − 2α∂kBik )α]
B−1

i j (xα, λ)

4dt

× [dx j − dt (F j − 2α∂lB
jl )α]

+α (∂iF
i )αdt − α2(∂i∂ jB

i j )αdt,

(A3b)

where Aα (x1, x; dt, λ) is called the action, dμ(x1) = dnx1 is
an infinitesimal volume element around x1, B−1

i j is the in-
verse matrix of Bi j = ∑

ν biνbjν/2 [c.f. Eq. (2.2b)], and (· · · )α
means that all functions inside the bracket are evaluated at xα .
The action only needs to be calculated up to the first order
in dt , whereas dxi, dt are all infinitesimal, and for typical
paths, dx ∝ dt1/2. Consequently, it does not matter where
we evaluate the functions in the last two terms of the action
Eq. (A3b). The functions in the first term, however, need to be
evaluated precisely at xα . Here and below, we shall often hide
x, λ dependence in F i and Bi j , to simplify the notations.

For our purpose, it is most convenient to use α = 1/2
version of the transition probability (A3a)

dμ(x1)Pλ(x1|x; dt ) = dμ(x1) e−A1/2(x1,x;dt,λ)√
(4πdt )n det Bi j (x1/2)

, (A4a)

A1/2(x1, x; dt, λ) = [dxi − dt (F i − ∂kBik )1/2]
B−1

i j (x1/2)

4dt

× [dx j − dt (F j − ∂lB
jl )1/2]

+ 1

2
(∂iF

i )dt − 1

4
(∂i∂ jB

i j )dt . (A4b)

Using Eqs. (A4a) as well as the facts that dμ(x) = dμ(x∗),
and det Bi j (x) = det Bi j (x∗), we easily find

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= A1/2(x∗, x∗
1; dt, λ∗) − A1/2(x1, x; dt, λ).

(A5)

The systematic force F i(x, λ) in Eq. (A1) can be decom-
posed into

F i
R(x, λ) ≡ 1

2

(
F i(x, λ) − εiF

i(x∗, λ∗)
)
, (A6)

F i
IR(x, λ) ≡ 1

2

(
F i(x, λ) + εiF

i(x∗, λ∗)
)
, (A7)

F i(x, λ) = F i
IR(x, λ) + F i

R(x, λ), (A8)

where F i
R(x, λ) and F i

IR(x, λ) are respectively the reversible
part and the irreversible part of the forces. From these we
derive (no summation over repeated indices below)

εiF
i

R(x∗, λ∗) = −F i
R(x, λ), (A9a)

εiF
i

IR(x∗, λ∗) = F i
IR(x, λ), (A9b)

εiF
i(x∗, λ∗) = F i

IR(x, λ) − F i
R(x, λ). (A9c)

The following result can be proved using Eqs. (A4) and (A5)
(c.f. Eq. (A22) in the Appendix of Ref. [49])

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= (
dxi − dt F i

R(y)
)
B−1

i j (y)
(
F IR

j (y)

− ∂lB jl (y)
) − dt ∂iF

i
R(y). (A10)

Now for the covariant Langevin equation (3.1) with non-
conservative forces, we have

F i = ∂ jL
i j − Li j (∂ jU − ϕ j ), (A11a)

Using the detailed balance conditions (3.4), we can easily
show

F i
R = ∂ jQ

i j − Qi j (∂ jU − ϕ j ), (A11b)

F i
IR = ∂ jB

i j − Bi j (∂ jU − ϕ j ). (A11c)

Substituting Eqs. (A11) back into Eq. (A10), we find

log
Pλ(x1|x; dt )

Pλ∗ (x∗|x∗
1; dt )

= ( − ∂iU (y) + ϕi(y))dxi − Qi j (∂iϕ j )dt,

= −dxU + ϕi ◦ dxi − Qi j (∂iϕ j )dt, (A12)

where ϕi ◦ dxi is a product in Stratonovich’s sense,

ϕi ◦ dxi = ϕi(x + dx/2)dxi, (A13)

and dxU is the differential of U (x),

dxU = ∂iU ◦ dxi = ∂iU (y)dxi. (A14)

2. Derivation of Eqs. (6.15)

Here we consider models with all variables even under time
reversal. Detailed balance then demands Qi j = 0, and hence
Li j = Bi j = B ji. Equation (A11) becomes

F i = ∂ jB
i j − Bi j (∂ jU − ϕi ). (A15)

The action in Eq. (A4b) then becomes

A1/2(x1, x; dt, λ, ϕ) = [dxi + dtBik (∂kU − ϕk )1/2]
B−1

i j

4dt

× [dx j + dtB jl (∂lU − ϕl )1/2]

−1

2
∂i(Bi j (∂ jU−ϕi ))dt+1

4
(∂i∂ jB

i j)dt .

(A16)

Note that we explicitly demonstrate the dependence of the
action on the non-conservative force ϕ.

The forward, backward, adjoint, and adjoint backward pro-
cesses are defined in Sec. VI B. See also Fig. 5 for illustration
of infinitesimal steps of all these processes. The transition
probabilities of the infinitesimal forward and backward pro-
cess are given by [c.f. Eq. (A4a)]

Pλ,ϕ (x1|x; dt ) = e−A1/2(x1,x;dt,λ,ϕ)√
(4πdt )n det Bi j (x1/2)

, (A17)

Pλ,ϕ (x|x1; dt ) = e−A1/2(x1,x;dt,λ,ϕ)√
(4πdt )n det Bi j (x1/2)

. (A18)

The action A1/2(x1, x; dt, λ, ϕ) can be obtained from
Eq. (A16) by exchange of x, x1, or equivalently, by replace-
ment dx → −dx,

A1/2(x, x1; dt, λ, ϕ)

= [−dxi + dtBik (∂kU − ϕk )1/2]
B−1

i j

4dt
[−dx j + dtB jl (∂lU

−ϕl )1/2] − 1

2
∂i(Bi j (∂ jU − ϕi ))dt + 1

4
(∂i∂ jB

i j )dt .

(A19)
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Taking the ration between Eqs. (A17) and (A18), and using Eqs. (A16) and (A19), we find

log
Pλ,ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )
= −A1/2(x1, x; dt, λ, ϕ) + A1/2(x1, x; dt, λ, ϕ)

= −dxU + ϕi ◦ dxi. (A20)

The transition probability of the infinitesimal adjoint process and adjoint backward process are

Pλ,−ϕ (x1|x; dt ) = e−A1/2(x1,x;dt,λ,−ϕ)√
(4πdt )n det Bi j (x1/2)

, (A21)

Pλ,−ϕ (x|x1; dt ) = e−A1/2(x,x1;dt,λ,−ϕ)√
(4πdt )n det Bi j (x1/2)

, (A22)

where the action A1/2(x1, x; dt, λ,−ϕ), A1/2(x, x1; dt, λ,−ϕ) can be obtained from Eq. (A16) and (A19) by changing the sign
of ϕ,

A1/2(x1, x; dt, λ,−ϕ) = [dxi + dtBik (∂kU + ϕk )1/2]
B−1

i j

4dt
[dx j + dtB jl (∂lU + ϕl )1/2]

− 1

2
∂i(Bi j (∂ jU + ϕi ))dt + 1

4
(∂i∂ jB

i j )dt . (A23)

A1/2(x, x1; dt, λ,−ϕ) = [−dxi + dtBik (∂kU + ϕk )1/2]
B−1

i j

4dt
[−dx j + dtB jl (∂lU + ϕl )1/2]

− 1

2
∂i(Bi j (∂ jU + ϕi ))dt + 1

4
(∂i∂ jB

i j )dt . (A24)

Using the above results, we can prove

log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x|x1; dt )
= log

Pλ,−ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )
= −dxU − eU ∂i(B

i jϕ je
−U )dt = −dxU = −βdQex, (A25)

where in the third equality we have used the Gibbs gauge condition Eq. (6.6). This is Eq. (6.15a). Similarly we can prove
Eq. (6.15b)

log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x1|x; dt )
= log

Pλ,−ϕ (x|x1; dt )

Pλ,ϕ (x|x1; dt )
= ϕi ◦ dxi + eU ∂i(B

i jϕ je
−U )dt = ϕi ◦ dxi = −βdQhk. (A26)

Using the preceding two equations, we obtain two equivalent decomposition of Eq. (A20)

dSEV = log
Pλ,ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )
= −dxU + ϕi ◦ dxi

= log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x|x1; dt )
+ log

Pλ,−ϕ (x|x1; dt )

Pλ,ϕ (x|x1; dt )

= log
Pλ,ϕ (x1|x; dt )

Pλ,−ϕ (x1|x; dt )
+ log

Pλ,−ϕ (x1|x; dt )

Pλ,ϕ (x|x1; dt )
. (A27)
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