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Control of 164Dy Bose-Einstein condensate phases and dynamics with dipolar anisotropy
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We investigate the quench dynamics of quasi-one- and two-dimensional dipolar Bose-Einstein condensates
of 164Dy atoms under the influence of a fast rotating magnetic field. The magnetic field thus controls both
the magnitude and sign of the dipolar potential. We account for quantum fluctuations, critical to formation of
exotic quantum droplet and supersolid phases in the extended Gross-Pitaevskii formalism, which includes the
so-called Lee-Huang-Yang correction. An analytical variational ansatz allows us to obtain the phase diagrams
of the superfluid and droplet phases. The crossover from the superfluid to the supersolid phase and to single
and droplet arrays is probed with particle number and dipolar interaction. The dipolar strength is tuned by
rotating the magnetic field with subsequent effects on phase boundaries. Following interaction quenches across
the aforementioned phases, we monitor the dynamical formation of supersolid clusters or droplet lattices. We
include losses due to three-body recombination over the crossover regime, where the three-body recombination
rate coefficient scales with the fourth power of the scattering length (as ) or the dipole length (add ). For fixed
values of the dimensionless parameter, εdd = add/as, tuning the dipolar anisotropy leads to an enhancement of
the droplet lifetimes.
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I. INTRODUCTION

Quantum gases [1,2] of atomic species of high spin quan-
tum numbers, such as dysprosium [3,4] or erbium [5] atoms
are ideal candidates for probing quantum fluctuations [6].
Particularly, the interplay between long-range anisotropic
dipole-dipole (DDI) and contact interactions gives rise to
a variety of phenomena, including anisotropic superfluidity
[7–9], appearance of roton excitations [10–15], formation of
self-bound quantum droplets [16–23], and supersolid (SS)
states [24,25]. The latter exhibit both global phase coher-
ence and periodic density modulations [26–29] due to the
breaking of translation invariance, and are associated with
the two low-frequency compressional modes [30] of the dipo-
lar Bose-Einstein condensate (dBEC). Supersolidity has been
widely explored in a series of experiments [11,12,14,31–37]
and theoretically in a number of cold atom settings, ranging
from Rydberg systems [38,39], lattice trapped atomic mix-
tures [40–43], and with condensates with spin-orbit coupling
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[44,45] or coupled to a light field [46]. Vorticity patterns of
rotating SS dipolar gases have also been identified [47–50].

The existence of distinct phases in dBECs [51] is inher-
ently related to the presence of roton excitations [52–55].
Specifically, a roton minimum appears in the spectrum due
to attractive DDI. This minimum softens for strong DDI
such that the excitation energy tends to zero and the dipo-
lar gas may suffer collapse. Quantum fluctuations stabilize
the dipolar gas [6,56] balancing against the attractive DDI
[57]. To first order, they are commonly described by the Lee-
Huang-Yang (LHY) interaction energy [58,59]. The inclusion
of the LHY corrections [60,61] leads to an extended Gross-
Pitaevskii equation (eGPE) [18,20,22,62]. This treatment can
accommodate SSs as well as single or multiple droplet pat-
terns [17,18,20], whose arrangement depends crucially on the
transverse direction [61,63].

In the majority of theoretical investigations to date, the
magnetic field which modifies the contact interaction remains
fixed [11,22,33]. In dipolar gases, the possibility exists (and
has remained largely unexplored to the best of our knowledge)
to apply rotating magnetic field with frequency �, to control
the DDI [64–66] through the inherent anisotropy of dipolar in-
teraction. When � is smaller (greater) than the Larmor (trap)
frequency, the dipoles follow the external field, a process
already realized in experiments [67]. In this regime, typical
dynamical instabilities triggered by the rotation at frequencies
lower or of the order of the trap frequency [66] are suppressed
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[65]. As such, it is thus possible to employ the time-averaged
DDI, depending on the angle between the dipole and the field
axis, to tune the dipole strength and sign. It then becomes
feasible to enter different phases of the dBEC via adjusting
the DDI to control the interval of existence of the emergent
phases, exploit the anisotropy to design dipolar configurations
(such as, e.g., specific lattice arrangements), and even sup-
press the droplet evaporation.

An even less pursued direction is to monitor the dynamical
generation of the self-bound states, traversing the relevant
phase boundaries, a scenario that has been exploited in
experiments [11,23]. It would be interesting to explore differ-
ences between the quenched states in the long-time dynamics
as compared to the respective ground-state configurations.
Also, an understanding of the metastable states at interme-
diate timescales due to specific instabilities and the behavior
of the global phase coherence [31] is still far from com-
plete. Motivated by the intensive experimental and theoretical
activity—see, for instance, Refs. [68,69]—we investigate the
ground-state phase diagram and quench dynamics of a dBEC
under the influence of a rotating magnetic field in both the
quasi-1D and the quasi-2D regimes.

We extract the ground-state phase diagram of the quasi-2D
dBEC as a function of the ratio of dipolar to contact interac-
tions, as well as of the atom number. The emergent phases
include the superfluid (SF), the SS, and multiple (DLM) and
single (DLS) droplet states. It is shown that SS states are
characterized by spatially overlapping density humps while
droplets form crystalline patterns arranged as lattices with
polygonal characteristics [70]. These phases have been shown
to occur in fixed magnetic fields [11,31]. Herein, we deter-
mine the explicit boundaries between the different phases,
such as the DLM (also known as insulating droplet region
[33]) and DLS by exploiting the anisotropic nature of the DDI.
Interestingly, we find that a tilted magnetic field favors (in-
dependently of the s-wave scattering) transitions between the
different phases and, in particular, for angles larger than the
magic angle, solely the SF and the DLS persist. The rotating
magnetic field alters the configuration of the dBEC, enforcing,
for instance, broader 2D distributions across the x-y plane
or, e.g., square and honeycomb lattice structures for angles
smaller than the magic angle.

The interaction quench of a SF state across the relevant
phase boundaries results in the dynamical nucleation of elon-
gated arrays in quasi-1D as also observed in Refs. [33,57] and
lattices in quasi-2D of SS and droplets due to the growth of the
roton instability [14]. The latter manifests as ring excitations
or elliptic halos in the early times before developing into
clusters that then saturate. Phase coherence is not maintained
in the course of the evolution and it is fully lost in the droplet
regime. Quenches from the SF to the DLS phase produce DLM

lattices.
We demonstrate that the number of droplets contained in

a lattice is larger for reduced postquench contact interac-
tions or tilted fields with an angle smaller than the magic
angle. Also, the amount of dynamically nucleated droplets in
the long-time quench dynamics is larger as compared to the
respective ground-state postquench configuration. Another
central feature of our findings is the exploration of the self-
evaporation of the above-discussed structures by including

three-body recombination processes into our analysis. This
mechanism prevails for bound states and raises a nontrivial
obstacle in connection with the realization of droplets and
especially SS phases [22,33]. Specifically, we showcase that
the anisotropic magnetic field, lying below the magic angle,
is a tool to increase the lifetime of self-bound states. These
regions were inaccessible in previous studies [16,17] due
to the assumption of an aligned magnetic field along the z
direction.

This paper is structured as follows. Section II describes
the anisotropic dipolar potential and introduces the eGPE
framework. In Sec. III, we extract the ground-state phase
diagram of the quasi-2D dBEC. The dynamical generation
of self-bound SS and droplet states following interaction
quenches is discussed in Sec. IV. In Sec. V, we monitor
the self-evaporation of the quenched states by accounting
for three-body recombination processes. A summary of our
findings together with future perspectives are provided in
Sec. VI. Appendix A is devoted to the construction of the
variational approach for confirming the existence of the
ground-state phases, while Appendix B delineates the ingredi-
ents of our numerical simulations. In Appendix C, we briefly
analyze the collective excitation processes of the quasi-2D
dBEC.

II. BEYOND MEAN-FIELD TREATMENT OF THE
DIPOLAR CONDENSATE

Below we describe the explicit form and properties of the
considered DDI potential as well as providing the intrinsic
system parameters which closely follow recent experimen-
tal settings [11,22,33]. Afterward, we introduce the eGPE
framework that we shall use to track the phase diagram and
subsequently monitor the quench dynamics of the dipolar
condensate.

A. Modifying dipolar potential with a rotating magnetic field

We consider a harmonically trapped dBEC in three dimen-
sions (3D) whose atoms possess a magnetic dipole moment
μm. The atomic dipoles are polarized by a rotating uni-
form magnetic field (in the x-y plane) of strength B, along
e(t ) = cos φez + sin φ(cos(�t )ex + sin(�t )ey) with ex, ey, ez

being the unit vectors in the x, y, and z spatial directions,
respectively. The field rotation frequency � is chosen to be
ωi � � � ωL = μB/h̄, where ωi, i = x, y, z are the trap fre-
quencies, so as to ensure that the dipoles follow the external
field. Typical angular frequencies are of the order of � �
5 × 102ω, with ω denoting the radial ω ≡ ωx = ωy (elon-
gated, ω ≡ ωx) trap frequency of the quasi-2D (quasi-1D)
geometry.

The tilt angle with respect to the z axis is φ, see Fig. 1, such

that the DDI [65] is given by Udd (r, t ) = μ0μ
2
m

4π
[ 1−3(e(t )·r̂)2

r3 ],
where μ0 is the permeability of the vacuum. For φ = 0
and ez · r̂ = 1, a head-to-tail arrangement of the dipoles oc-
curs, leading to an attractive DDI, i.e., Udd < 0, while for
ez · r̂ = 0, the dipoles are located side-by-side and interact
repulsively.
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FIG. 1. Schematic illustration of the dBEC of 164Dy atoms
trapped in (a) a circularly symmetric quasi-2D and (b) an elongated
quasi-1D. A magnetic field is applied rotating at an angle φ around
the z axis and aligning the atomic dipoles along its direction. (c) The
table indicates presence or absence of density modulation (DM) and
global phase coherence (GPC) within the superfluid (SF), supersolid
(SS), single droplet (DLS), and multiple droplet (DLM) phases. Here
we do not refer to typical density modulations originating from the
external trap but to the ones stemming from the competition between
short- and long-range interactions leading to spatially periodic den-
sity undulations.

The corresponding time-averaged DDI, over a full rotation
cycle of the polarizing magnetic field, is

〈Udd (r)〉 = �

2π

∫ 2π
�

0
Udd (r, t )dt

= μ0μ
2
m

4π

[
1 − 3(ez · r̂)2

r3

](
3 cos2 φ − 1

2

)
. (1)

Notice that the last factor in Eq. (1) decreases from 1 to −1/2
when 0 < φ < π/2, and vanishes if φ equals the magic angle
[65] φm = cos−1 1/

√
3 ≈ 54.7◦. The inverted configuration

takes place for φ > φm in which the time-averaged DDI is at-
tractive even though particles reside side-by-side (also known
as the antidipolar regime [64–66]). Therefore, the dBEC sub-
jected to this rotating magnetic field effectively experiences
the time-averaged DDI potential whose strength and sign can
be tuned by varying the tilt angle φ. Such a rotating long-range
potential has already been implemented [4], while it has also
been theoretically employed in Refs. [50,65]. Moreover, we
have confirmed within our numerical simulations that this
time-averaged consideration does not affect our findings if we
compare them to the case where the time-dependent DDI is
instantaneously followed.1 It is worthwhile to mention that the
DDI can be tuned this way independently of the tuning of the
zero-range interaction with Feshbach resonance techniques.
In this manner, it is possible to realize the different dBEC

1The instantaneous DDI in momentum space reads
Udd (k, t ) = (μ0μ

2
m/3)[3(kx cos(�t ) sin(φ) + ky sin(�t ) sin(φ) +

kz cos(φ))
2
/k2 − 1][1 + 3 cos(kR)/(kR)2 − 3 sin(kR)/(kR)3], where

R is the cutoff radius [65].

phases by adjusting solely the strength of the DDI, see, e.g.,
Fig. 2.

Finally, we remark that the presence of rotation should fa-
cilitate the tunability of the DDI, especially in the experiment.
Otherwise, only a tilted magnetic field (in the x − z plane) is
characterized by two different angles.2

B. Extended Gross-Pitaevskii framework

In the ultracold regime, the gas is characterized by a single
macroscopic wave function, ψ (r, t ) = 〈ψ̂ (r, t〉), whose tem-
poral evolution is described by a suitable eGPE [18,22,61,71].
The latter incorporates quantum fluctuations in terms of the
first order beyond the mean-field LHY correction contribution
and, in particular, reads

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2 + V (r) + g|ψ (r, t )|2

+ γ (εdd )|ψ (r, t )|3 +
∫

dr′Udd (r − r′)

× |ψ (r′, t )|2
]
ψ (r, t ). (2)

Here, the 3D harmonic trap is V (r) = m(ω2
x x2 + ω2

y y2 +
ω2

z z2)/2 and m is the atom mass. Apart from the long-range
time-averaged DDI in Eq. (1), the atoms collide via short-
range contact potential, characterized by the effective strength
g = 4π h̄2as/m, with as being the 3D s-wave scattering length.
The penultimate term in Eq. (2) denotes the LHY contri-
bution, which is crucial for the realization of many-body
self-bound states such as the DLs or DLM dipolar droplets,
as well as the SS phase. We remark that in 3D, quantum
fluctuations scale with the gas density as ∼n3/2. In a harmonic
trap, the LHY correction can be incorporated in the eGPE,
with the local density approximation, i.e., n → n(r, t ) =
|ψ (r, t )|2, and with γ (εdd ) = 32

3 g
√

a3
s

π
(1 + 3

2ε2
dd ) [59,71]. Im-

portantly, the dimensionless parameter εdd = add/as with
add = μ0μ

2
mm/12π h̄2 being the dipolar length, quantifies the

relative strength of the DDI as compared to the contact inter-
action.

Below we shall reveal the emergent ground-state phases
of the dBEC stemming from the interplay between the dipo-
lar and contact interactions, employing the parameters of
the recent experiments, but now accounting for a rotating
magnetic field [11,12,33]. Subsequently, the dynamical defor-
mation of the identified dipolar configurations is monitored
upon considering quenches of the s-wave scattering length,
and thus of εdd , across the aforementioned phases. A par-
ticular emphasis is placed on the role of dimensionality
ranging from (i) an elongated quasi-1D trap with frequencies
(ωx, ωy, ωz ) = 2π × (227, 37, 135)Hz [33] to (ii) a circu-
larly symmetric quasi-2D trap characterized by (ωx, ωy, ωz ) =
2π × (45, 45, 133)Hz [61]; see also Figs. 1(a) and 1(b). Our
results can be replicated using a dBEC of 164Dy atoms hav-
ing magnetic moment μm = 9.93μB, where μB is the Bohr

2The DDI for a fixed magnetic field (� = 0) in the x-z plane reads

Udd = μ0μ2
m

4π

1−3[(cos(φ)ez .r̂+sin(φ)ex .r̂)]2

r3 .
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FIG. 2. Phases identified through the chemical potential of a circular quasi-2D dBEC in terms of the relative interaction strength parameter
εdd = add/as and the atom number for different magnetic field orientations, namely, (a) φ = 0◦, (b) φ = 30◦, (c) φ = 60◦, and (d) φ = 90◦.
Apparently, as the magnetic field tends toward the x-y plane (φ = 90◦), the DLM and SS phases do not occur and solely the SF and DLS survive.
The white dashed line indicates μ = 0, while the blue solid (dashed) line delimits the SS (DLS) phase. The dBEC resides in a quasi-2D trap
characterized by (ωx, ωy, ωz ) = 2π × (45, 45, 133)Hz.

magneton. The dipolar length is add = 131aB, where aB is the
Bohr radius.

The characteristic timescale is set by ω−1
x = 3.5 ms (ω−1

x =
0.7 ms) in the quasi-2D (quasi-1D) case. Similarly, the re-
spective length scale refers to the harmonic oscillator length
being losc = √

h̄/(mωx ) = 1.17μm (0.52μm) for the quasi-
2D (quasi-1D) setting.

III. PHASE DIAGRAM OF dBECs IN ROTATING
MAGNETIC FIELDS

In the following, we investigate the ground-state phases of
the 2D dBEC arising for different atom numbers and relative
interactions εdd = add/as. A central aim of our discussion
is to unravel the role of the orientation of the dipoles, as
dictated by the titled time-averaged magnetic field [Fig. 1(b)]
on the emergent structural configurations. The latter are iden-
tified through the relevant integrated density profiles n(x, y) =∫

dz n(x, y, z, t ) and n(y, z) = ∫
dx n(x, y, z, t ) which are ex-

perimentally detectable, e.g., via in situ imaging [6,72], and
herein are normalized to the particle number.

The circularly symmetric quasi-2D trap geometry is re-
alized by applying a tight confinement in the transversal
z direction [Fig. 1(a)]. The same structures also occur in
quasi-1D [Fig. 1(b)] but are omitted here for brevity. For
completeness, in Appendix A, we benchmark the properties
of the static (SF and DLS) phases found within the eGPE
approach utilizing a variational ansatz. A similar approach has
also been recently leveraged within the dBEC context, e.g., in
Refs. [73,74]. All ground states are obtained by propagating
Eq. (2) in imaginary time with a split-step Crank-Nicolson
approach (Appendix B).

A. Aligned dipolar BEC

To distinguish the various dBEC phases, we employ as a
control parameter the chemical potential related to the total
energy E [see Eq. (3)] via μ = ∂E [ψ]/∂n. Naturally, a SF
state has μ > 0, whereas the droplet configurations occur for
μ < 0 since they refer to self-bound states. In addition, we
will show that the SS phase appears in the vicinity of μ → 0.

At φ = 0◦, where the external field forces the dipoles to be
oriented along the z axis, the phase arising at small magni-

tudes of εdd (e.g., εdd < 1.45 for N = 60 000) has μ > 0; see
Fig. 2(a). As such, a typical SF state emerges characterized by
a smooth 2D Thomas-Fermi (TF) density distribution along
the x-y plane, while being compressed along the z axis due to
the tight confinement, see n(x, y) and n(y, z) in Figs. 3(a1) and
3(a4). This SF phase boundary (εdd < 1.4) has been reported
for harmonically trapped 3D dBECs subjected to a static mag-
netic field [48].

However, for εdd above a certain critical value, indicated
by the dashed white line in Fig. 2(a), the system transitions to
a negative μ region. The latter regime accommodates distinct
phases of matter that occur due to the existence of quantum
fluctuations [31]. Indeed, with increasing εdd for a large atom
number (N > 2 × 104) and in the vicinity of μ → 0 [see
the bounded by solid blue line area in Fig. 2(a)], a peri-

FIG. 3. Ground-state density profiles (a1)–(a3) n(x, y) and (a4)–
(a6) n(y, z) representing (a1), (a4) a SF, (a2), (a5) a SS, and (a3),
(a6) a droplet (hexagonal) lattice. A SS state is characterized by
overlapping density humps, while a droplet cluster has a crys-
tal arrangement. The harmonically trapped quasi-2D dBEC with
(ωx, ωy, ωz ) = 2π × (45, 45, 133)Hz has N = 105 particles and it is
subjected to a magnetic field along the z direction, i.e., φ = 0◦. The
color bar alternates for each panel and corresponds to the density
changing from zero (black) to a maximum value (yellow) in units of
1/l2

osc = 0.73μm−2
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odic density modulated pattern develops along the weakly
confined x-y plane. Particularly, a hexagonal lattice appears,
having its seven density humps interlinked by lower density
regions [see n(x, y) in Fig. 3(a2)]. This relatively small spatial
overlap establishes a global phase coherence [24,33,35] across
the dBEC [Fig. 1(c)]. The aforementioned individual density
humps are also imprinted in the transversal z direction with
n(y, z) featuring fringes at their location [Fig. 3(a5)]. Such a
SS phase [33,37,72] has been recently identified theoretically
[63,70] and realized experimentally [75].

A further increase of εdd (smaller as) results in a dra-
matic suppression of the density overlap among the individual
density humps [Fig. 3(a3)]. This behavior occurs for large
atom numbers and large negative μ with the system entering
the DLM phase [Fig. 2(a)]. A typical example is provided in
Fig. 3(a3) where a hexagonal crystal structure builds upon the
x-y plane with isolated stripe patterns being evident in n(y, z)
[Fig. 3(a6)]. With smaller atom numbers, the dBEC transits
to the DLS phase. It is also evident that for N < 4 × 104

where finite-size effects are expected to play a crucial role
[76], the system deforms from a SF to a DLS state and vice
versa with tuning εdd . Notice that the DLS and SF phases
are characterized by a zero global phase coherence [see also
Fig. 1(c)] but differ substantially in their spatial localization
and, importantly, the former is self-bound (μ < 0).

B. Anisotropic dipolar BEC

Next we investigate the impact of a rotating magnetic
field on the emergent phase diagram with varying contact
interaction and atom number in Figs. 2(b)–2(d). At the magic
angle φm, where 〈Udd〉 = 0, only SF states form, indepen-
dently of the value of the εdd (not shown). In fact, as φ →
φm, the overall dipole interaction strength decreases and the
contact interaction dominates, favoring SF formation. Notice
the extended SF phase for μ > 0 and φ = 30◦ illustrated in
Fig. 2(b). Accordingly, the interaction (or εdd ) intervals within
which modulated density structures form (i.e., either SS or
DLM states) shrink and are shifted toward larger εdd . This
shift (marked by dashed white lines) occurs consistently as
long as φ < φm and all four different phases can be realized.
Here, tuning φ to larger values within the DLM phase produces
larger droplet lattices eventually transitioning to a SS [see also
Figs. 6(b1)–6(b3) and the discussion below], while leaving
a SF state almost unaltered only affecting its spatial width.
Note in passing that the aforementioned shrinkage of the DLM

phase as φ → φm appears also in quasi-1D (not shown). How-
ever, it is more prominent in the quasi-2D setting, revealing
that here for φ → φm the isolated droplets are more prone
to coalesce into a single droplet configuration. The difference
between quasi-1D and quasi-2D is traced back to the fact that
in the latter setup, and for our parameter set, the magnitude of
the attractive DDI is enhanced.

When φ > φm, the dipoles become progressively more at-
tractive to each other in the x-y plane, see Figs. 2(c) and 2(d),
and the self-bound DLS region extends toward smaller εdd .
We note that while μ is negative below a critical εdd [see
the dashed white line in Figs. 2(c) and 2(d)], unlike in the
φ < φm scenario, there are no states characterized by a density
modulation along the x-y plane. This again is a consequence

FIG. 4. Variation of the different energy components Eσ (see the
legend) as a function of the tilt angle φ at a fixed εdd = 1.87 for
the quasi-2D dBEC with (ωx, ωy, ωz ) = 2π × (45, 45, 133)Hz. At a
fixed εdd = 1.87, droplets are generated within the φ < 22◦ and φ >

φm regions where EDDI < 0. The green line refers to EDDI/ECI (right
axis) with CI denoting the contact interaction.

of the strongly attractive DDI preventing the emergence of
density undulated patterns. In this way, both the DLM and SS
phases disappear and only the DLS (μ < 0) and SF (μ > 0)
states occur.

The total energy of the dBEC can be organized as follows:

E = EK + EV + ECI + EDDI + ELHY. (3)

In this expression, the energy contributions ECI, EDDI, ELHY

refer to the contact, the dipolar, and the beyond mean-field
LHY interaction energies, respectively. These energy terms
dictate the generation of the different phases. Also, EK denotes
the kinetic energy and EV is the external potential energy.

The dependence of ECI, EDDI, and ELHY with φ for εdd =
1.87 and N = 105 is shown in Fig. 4. Evidently, ECI, EDDI,
ELHY are positive (although relatively small) in the interval
22◦ < φ < φm, and thus a SF is formed. Particularly, ECI is
dominant and all other contributions are considerably weaker,
see also EDDI/ECI in Fig. 4. However, in the case of φ = 22◦,
EDDI is negative and gradually drops as φ lowers. A similar
behavior of the energy constituents is observed for φ > φm

where the DLS state appears. Therefore in these two regions,
namely, φ < 22◦ and φ > φm, the rapid increase of |EDDI| to-
ward negative values, driving the dBEC to collapse, is actually
compensated by the enhanced combined repulsive contribu-
tion of ELHY and ECI occurring for smaller (larger) φ in the
first (second) region. This competition leads to the formation
of stable droplet states in the corresponding φ intervals. Such a
stabilization mechanism also occurs for the case of an aligned
field (φ = 0) in terms of εdd [6].

The spatial distribution of DLS is shown in Fig. 5 at several
values of φ and εdd ; εdd is varied so that we remain in the same
phase. Recall that the DLS is shifted to larger εdd as φ → φm

(Fig. 2) due to the accompanied weakening of the effective
dipole interaction [Eq. (1)]. As such, we choose to present
the DLS state in Fig. 5(a2) at εdd = 4.36 for φ = 30◦. The
larger εdd (smaller as) is responsible for the decreasing width
of n(x, y) when φ → φm [Figs. 5(a1) and 5(a2)]. However, as
the anisotropy is changed through φ with φ < φm and fixed
εdd the dipoles become less repulsive along the x-y plane en-
forcing a spreading of n(x, y) (not shown). A further increase
of φ beyond φm leads to a narrowing of the n(x, y) since the
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FIG. 5. Impact of the field orientation φ on the spatial distribu-
tion of the DLS state. Densities (a1)–(a3) n(x, y) and (a4)–(a6) n(y, z)
of a dBEC with N = 6 × 104 in a quasi-2D trap of (ωx, ωy, ωz ) =
2π × (45, 45, 133)Hz. The single droplet becomes narrower (wider)
for larger φ in the interval φ < φm (φ > φm) and becomes elongated
along the z (y) direction due to the combined effect of the polarization
of the magnetic field and εdd . The characteristic length scale set
by the trap is losc = 1.17μm. The color bar expressed in units of
1/l2

osc = 0.73μm−2 is different for each panel and denotes the density
with intensity from zero (black) to a maximum value (yellow).

dipoles attract each other in the x-y plane assembling in a
side-by-side configuration. Notice that the width of n(x, y) at
φ > φm, e.g., φ = 90◦ in Fig. 5(a3), is still larger than the one
for φ = 0 [Fig. 5(a1)]. This occurs because the increase of the
width of the n(x, y) until φ = φm is larger than its shrinking
for φ > φm. This is in accord with the energy minimization in
Eq. (1). Moreover, we observe that n(y, z) changes from being
highly elongated along z [Figs. 5(a4) and 5(a5)] if φ < φm,
to being so across y [Fig. 5(a6)] for φ > φm due to the sign
change of the DDI along the z axis.

C. Shaping the droplet lattice

In a similar vein, the anisotropy of the DDI also substan-
tially impacts the DLM and SS phases, which emerge only
when the dipoles are repulsive (in the x-y plane), i.e., φ < φm.
Below we focus on the deformations of the DLM phase from
variation of either φ or εdd through as. In Figs. 6(a1)–6(a3),
εdd = 1.75 and N = 2.5 × 105. The number of individual
droplets in the lattice increases as φ is increased and the
dipoles become less repulsive and weaker in magnitude across
the x-y plane, a process favoring further fragmentation of the
droplets. Around φ = 20◦, a phase transition occurs with the
emergence of a hexagonal SS phase. The SS state forms due
to the effective weakening of the DDI for larger φ < φm as
compared to the contact interaction; see also the respective
alterations in the phase diagram of Figs. 2(a)] and 2(b). The
location of this phase boundary with respect to φ depends on
the strength of the contact interaction.

Such a distribution has been independently confirmed by
tuning of as with a fixed magnetic field [70]. It is worthwhile
to mention that the structural deformation of the droplet lattice
can be achieved independent of as by changing the trap aspect

FIG. 6. Integrated density profiles n(x, y) of the dBEC contain-
ing N = 2.5 × 105 atoms with εdd = 1.75 for (a1) φ = 0◦, (a2) φ =
15◦, and (a3) φ = 20◦. n(x, y) for (b1) εdd = 2.11, (b2) εdd = 1.82,
and (b3) εdd = 1.55 with a fixed φ = 10◦. Various bound state
configurations can be created by either tuning the tilt angle, e.g.,
hexagonal lattices, or adjusting εdd such as different polygons. The
external quasi-2D geometry is characterized by (ωx, ωy, ωz ) = 2π ×
(45, 45, 133) Hz defining a length scale losc = 1.17μm. The color bar
(units of 1/l2

osc = 0.73 μm−2) refers to the density which is distinct
for each panel and has a gradient from zero (black) to a maximum
value (yellow).

ratio in the crossover from 2D to 1D, as demonstrated in
Ref. [63]. Along these lines, by adjusting εdd (and, in partic-
ular, as) it is possible to create a variety of intriguing droplet
patterns for fixed φ such as squares at εdd = 2.11 [Fig. 6(b1)],
pentagons at εdd = 1.82 [Fig. 6(b2)], or hexagonal-type lat-
tices at εdd = 1.55 [Fig. 6(b3)]. Recall that a decreasing εdd

(with εdd > 1.4) favors the breaking of each individual droplet
into multiple segments, see also Fig. 2(a), since the DDI dom-
inates with respect to the contact contribution. Exploring the
energetics of such configurations, in analogy to what has been
done, e.g., for multivortex configurations (see, e.g., Ref. [77]
for an example) would be a particularly intriguing direction
for future study.

For completeness, we remark that the background density
of a SS becomes gradually denser for larger φ, destroying its
SS nature3 and finally establishing a SF state.4 Notice that the
transition boundary from a SF to a SS phase can also be deter-
mined from the so-called contrast, C = (nmax − nmin)/(nmax +
nmin). Here, nmax and nmin are the neighboring density maxima
and minima, respectively [78]. A SF state occurs for C = 0,
while C 
= 0 corresponds to a density modulated state.

3The transition from the SS to the SF state can be equally seen in
both the density and the momentum distribution of the dBEC. Indeed,
periodic density undulations vanish as the SF is entered. Also, the
momentum distribution of a SF is characterized by a single peak
structure while, for a SS, multiple additional peaks appear.

4A corresponding SF state is essentially insensitive to variations of
φ and only its width increases (decreases) for larger (smaller) φ as
long as φ < φm (φ > φm).
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FIG. 7. Snapshots of the dBEC density n(x, y) following an inter-
action quench from a SF state with εdd = 1.1 to (a1)–(a6) εdd = 1.45
and (b1)–(b6) εdd = 1.87. The initially 2D smooth density profile de-
forms in the course of the evolution toward a SS and a droplet lattice,
respectively. The dBEC consists of N = 6 × 104 atoms and it is con-
fined in a quasi-2D harmonic trap characterized by (ωx, ωy, ωz ) =
2π × (45, 45, 133)Hz. The color bar denotes the density in units of
1/l2

osc = 0.73 μm−2 and differs for each panel while featuring a gra-
dient from zero (black) to a maximum value (yellow). The system’s
characteristic timescale set by the trap is ω−1

x = 3.5ms and the length
scale defined through the harmonic oscillator length losc = 1.17 μm.

IV. QUENCH DYNAMICS

We next investigate the nonequilibrium dynamics by ini-
tializing the dBEC in a SF state (with εdd = 1.1) and
following an interaction quench to larger εdd values such that
the SS or the droplet phase is dynamically entered. The spon-
taneous nucleation and properties of these beyond mean-field
structures are studied in quasi-2D and quasi-1D geometries
[16,32] for φ = 0◦. Note that even for φ 
= 0 the dynamics is
not substantially altered.

A. Dynamical nucleation of 2D SS and DL lattices

Representative instantaneous density profiles n(x, y; t ) of
the quasi-2D dBEC are presented in Figs. 7(a2)–7(a6) after
a quench from a SF state with εdd = 1.1 to a SS having
εdd = 1.45 according to the phase diagram of Fig. 2(a). The
initially smooth 2D TF distribution n(x, y; t = 0) [Fig. 7(a1)]
is dynamically modified due to the quench. Indeed, the ro-

FIG. 8. Characteristic phase profiles (a1)–(a3) �(x, y, z = 0) at a
specific time instant (see the legends) in the long-time dynamics after
the quench. The pink circles designate the edges of the dBEC cloud.
In all cases, a quench of a quasi-2D dBEC from its SF state at εdd =
1.1 is considered toward the (a1) SF with εdd = 1.2, (a2) the SS hav-
ing εdd = 1.45 and (a3) the DLS with εdd = 1.87 phase. The phase
undulations designate the SS and the droplet states in contrast to the
smooth phase of a SF. (b) The time evolution of the global phase
coherence βc(t ) is presented for different postquench εdd values in
the quasi-2D geometry with (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz.
The dashed lines in (b) represent the time evolution of βc(t ) when
εdd (t ) increases in a linear manner with ramp time τ = 120 ms �
ω−1

x . Coherence is completely lost in the droplet regime, while it
is almost perfectly maintained following an adiabatic ramp toward
the SF and the SS phases. The colors of the dashed lines refer to
the same postquench εdd values with the ones indicated by the solid
lines. Other system parameters are the same as in Fig. 7.

ton [14,79] induced softening in the postquench phase seeds
the subsequent pattern formation. As a result, ring-shaped
density structures develop, becoming more pronounced as
time evolves [Figs. 7(a2)–7(a5)]. For an analysis of the roton-
induced dynamics and its shape in a 3D harmonically trapped
dBEC, see Ref. [15]. It is, in fact, the progressive growth of the
roton mode, characterized by a nonzero angular momentum,
which is responsible in the early time dynamics (t ∼ ω−1

x )
for the development of these ring structures accompanied
by density depleted regions. Later on, for t > 20 ms > ω−1

x ,
following the interference of the ring densities (stemming
from the radial roton) and the growth of azimuthal undulations
(originating from the angular roton5), the dBEC distribution
splits into four overlapping density peaks arranged in a square
configuration and surrounding the central density hump which

5The roton modes in our quasi-2D harmonically trapped setup are
characterized by the quantum number m. In this sense, m = 0 refers
to the radial roton manifesting as a ring structure and m 
= 0 are the
angular rotons having a corresponding number of azimuthal nodes
[15].
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appears to be isolated from the others, see Fig. 7(a6). At these
timescales (t � ω−1

x ), quantum fluctuations take over and the
roton-induced growth saturates [33,37].

The phase profile � = tan−1 [Im(ψ (r))/Re(ψ (r))], where
Re(ψ (r)) [Im(ψ (r))] is the real (imaginary) part of the wave
function, can be seen in �(x, y, z = 0) [Fig. 8(a2)] at t =
150ms � ω−1

x ; see, in particular, the spatial region marked
by the pink circle within which the SS resides. The enhanced
distortions at the condensate edges (|x| � 8 μm, |y| � 8 μm)
stem from the highly nonsmooth low density in conjunction
with the high frequency breathing of the entire cloud. Ac-
tually, there are two breathing modes, see also Appendix C
and Figs. 12(a3) and 12(a4). In particular, one of the breathing
modes hardens in the SS state, similarly to the radial roton
mode [14], for increasing εdd . This breathing mode is related
to the spatially modulated SS density. The frequency of the
second mode is linked to the background SF and diminishes
gradually with increasing εdd . The above behavior of � is to
be contrasted with the normal SF exhibiting a uniform phase
as demonstrated in Fig. 8(a1).

Next, we tune to a postquench εdd = 1.87, where a DLS

phase forms. The dBEC is again dynamically distorted, al-
ready for t < ω−1

x , showing a two-ring structure and a central
density hump due to the presence of the roton mode. The latter
grows at a faster rate compared to the εdd = 1.45 quench,
see Figs. 7(a2) and 7(b2), as expected by the underlying
excitation spectrum [14]. This leads to the disintegration of
the inner ring and the central density peak into multiple
droplets around t ∼ ω−1

x [Fig. 7(b3)]. At the outer rim of
the dBEC, a low density circular structure appears at large
radii, emerging from the edges of the cloud [Fig. 7(b3)]. This
metastable configuration subsequently (t > ω−1

x ) breaks into
a droplet lattice6 [Figs. 7(b4)–7(b6)]. It should be emphasized
that while the postquench ground-state represents a DLS, we
encounter here the spontaneous nucleation of a DLM. This
droplet cluster features, at the early times (t � ω−1

x ), a global
breathing motion and thus the distance between individual
droplets changes [Figs. 7(b5) and 7(b6)]. Let us note that
due to the lack of background SF density, only one breath-
ing mode connected to localized density arrays exists here.
However, in the long-time dynamics (roughly t > 70 ms �
ω−1

x ), the breathing amplitude reduces and the cluster remains
practically stationary, see also Appendix C, at least up to
500 ms, indicating that the system is in a prethermalized
state.

The number of isolated droplets contained in the cluster
in the long-time dynamics (t � ω−1

x ) increases for larger
postquench εdd

7, namely, deeper in the droplet regime; see,

6The position of the roton minimum krot should satisfy krotlz � 1,
where lz = √

h̄/mωz is the harmonic oscillator length scale along the
tightly confined direction. In our case, krot = 3.39 μm−1 with lz =
0.68 μm. Similar findings have been reported e.g. in the experiment
of Ref. [11] where krot = 2.5μm−1 and lz = 0.625 μm.

7It is worth mentioning that the number of dynamically nucleated
droplets in the long-time evolution is, in general, larger from the one
of the respective ground-state configuration. For instance, in the case
of εdd = 1.75, the droplet lattice contains 24 individual droplets in
contrast to four formed in the ground state for N = 105.

TABLE I. Number of isolated droplets in the quasi-2D and the
quasi-1D regimes for different postquench εdd values and fixed φ =
0◦. The number of droplets contained in a cluster becomes larger for
increasing εdd , i.e., deeper in the droplet phase. Initially, the dBEC
resides in a SF state characterized by εdd = 1.1.

Trap geometry εdd = 2.18 2.01 1.87 1.75

Quasi-2D 27 25 24 17
Quasi-1D 16 15 13 11

in particular, Table I for φ = 0◦. In contrast to this response,
their number realized for a fixed postquench εdd is smaller
upon increasing the tilt angle. This trend is visualized in the
case examples of Table II and it is attributed to the reduced
magnitude of the associated DDI.

We also note in passing that, independently of the
postquench εdd , regular polygonal lattices do not form, in
agreement with Ref. [18], but only crystalline structures
as the one depicted in Fig. 7(b6). The existence of the
droplet clusters can also be distinguished by inspecting their
phase profiles which are highly nonuniform [Fig. 8(a3) at
t = 200 ms � ω−1

x ] even when compared with the SS phase
[Fig. 8(a2)].

B. Control of the global phase coherence during the evolution

An observable that provides further verification for the
dynamical creation of the above-discussed beyond mean-field
states is the so-called global phase coherence [31,33,35]; see
also Fig. 1(c), which is defined as follows:

βc(t ) =
∫

dr[n(r, t)|(�(r, t ) − �̄(t ))|]. (4)

Here, �̄(t ) is the spatially averaged phase. Accordingly,
following adiabatic pulses, a SF or a SS state has perfect
global phase coherence [βc(t ) = 0], while self-bound quan-
tum droplets feature βc(t ) 
= 0.

This is expected since as we previously argued the phase of
the gas becomes highly distorted for droplet states in contrast
of being almost uniform for SS and SF phases. The dynamics
of βc(t ) is provided in Fig. 8(b) for various postquench values
of εdd . The pre-quench (initial) SF state is perfectly coherent,
i.e., βc(t = 0) = 0. In all cases, the increase of βc(t ) at short
timescales (t ∼ ω−1

x ) is inherently related to the quench proto-
col and becomes more enhanced for larger quench amplitudes

TABLE II. Number of isolated droplets in the quasi-2D and the
quasi-1D regimes for a specific postquench εdd = 2.18 and consid-
ering different field orientations φ◦. In both cases, the amount of
individual droplets in the respective lattice decreases as φ increases
due to the effective weakening of the DDI. Initially, the dBEC resides
in a SF state characterized by εdd = 1.1.

Trap φ = 0◦ 5◦ 10◦ 15◦ 20◦

Quasi-2D 27 26 25 24 17
Quasi-1D 16 15 14 10 8
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where the respective import of energy into the system is natu-
rally larger.

For quenches within the SF phase, e.g., εdd = 1.2, βc(t )
fluctuates, within 0.13 < βc(t ) < 0.2 after t > 0.7ms, due to
the breathing motion of the gas originating from the quench,
see also Appendix C and Fig. 12. For the same reason, βc(t >

0) is finite also for quenches toward the SS regime (εdd =
1.45) while the relatively intensified oscillations compared to
the SF stem from the arguably larger amplitude of the underly-
ing breathing mode. The coherence loss in the SS phase can be
mitigated by adiabatically increasing εdd .8 In support of this
argument, we utilize a linear ramp εdd (t ) = (εF

dd − εI
dd )t/τ ,

with εF
dd (εI

dd ) being the final (initial) relative strength, while
τ is the ramp time. An almost adiabatic increase of εdd (t ) is
achieved for τ = 120 ms � ω−1

x with βc(t ) → 0 for the SF
and SS as shown in Fig. 8(b). Turning to quenches in the
droplet regime, for instance, in the case of εdd = 1.87, we
observe that βc(t ) features an increase at short timescales and
then fluctuates around π/2. This saturation tendency of βc(t )
deep in the evolution holds equally when performing a linear
increase of εdd (t ), see Fig. 8(b). Note that βc(t ) can be at
most π/2, as has also been demonstrated in Ref. [31]. This
response implies that the initial phase coherence of the SF
phase is rapidly lost and the individual droplets become highly
incoherent.

C. Generation of droplet and SS arrays in the quasi-1D regime

Subsequently, we study the quench-induced dynamics of
the axially elongated dBEC. Characteristic density snapshots
across the x-y plane when performing a quench within the SS
phase, e.g,. εdd = 1.45, are presented in Figs. 9(a1)–9(a6). The
quasi-1D TF distribution [Fig. 9(a1)] of the initial SF state
(with εdd = 1.1) experiences prominent spatial deformations
due to the ensuing roton dynamics [14] being activated when
crossing the SF to SS phase boundary. Specifically, the in-
creased postquench εdd enforces a contraction [Figs. 9(a2)
and 9(a3)] and expansion [Figs. 9(a4)–9(a6)] of the entire
cloud along both x and y directions. This collective mo-
tion prevails at short timescales [Fig. 9(a2)] but afterward
spatial modulations in the density profile arise along the y
axis [Figs. 9(a3)–9(a6)]. For instance, six density peaks are
detected at t = 13.5 ms > ω−1

x [Fig. 9(a4)] which break into
several ones at t = 32 ms � ω−1

x [Fig. 9(a5)]. These arrays
of overlapping density humps developing in n(x, y) reveal the
dynamical formation of the SS state. It is also worth men-
tioning that the periodic spatial compression and expansion of
the dBEC is characterized similarly to the quasi-2D case by
two distinct frequencies. We remark that the participation of
the two distinct breathing frequencies is a characteristic of the
emergence of the SS phase, a result which has been evinced
independently in Ref. [31].

Utilizing a quench to εdd = 1.87 leads to a dramatically
different response of the dBEC as shown in Figs. 9(b1)–
9(b6). Already at the early stages of the evolution ∼ω−1

x ,
we observe that the original smooth density configuration

8Note that a nonadiabatic ramp of εdd (t ), e.g., in our case realized
for τ < 150 ms, always results in a finite global phase coherence.

FIG. 9. The same as in Fig. 7 but for the quasi-1D setting. The
generation of (a1)–(a6) SS for εdd = 1.45 and (b1)–(b6) droplet arrays
when εdd = 1.87 is illustrated. The dBEC consists of N = 6 × 104

atoms and it resides in a quasi-1D trap with (ωx, ωy, ωz ) = 2π ×
(227, 37, 135) Hz. The color bar in units of 1/l2

osc = 1.33 μm−2

refers to the density while it is different for each panel and changes
from zero (black) to a maximum value (yellow). The characteristic
length scale is the harmonic oscillator length losc = 0.85μm and the
corresponding timescale is ω−1

x = 0.7ms.

[Fig. 9(b1)] transforms into an elliptic halo profile [Fig. 9(b2)].
The width of the latter progressively shrinks across the
transverse x direction [Fig. 9(b3)] until the entire cloud be-
comes highly elongated breaking into an array of droplets
[Fig. 9(b4)]. The reason behind the formation of the el-
liptic halo states is the arising modulational instability due
to admixture of different roton modes discussed, for in-
stance, in Refs. [14,15,80] and triggered herein by the quench
within the SS phase. As a byproduct, the dBEC fragments
into multiple highly localized peaks organized in a crystal
pattern.

Notice that in contrast to the SS case of postquench εdd =
1.45, these density humps are entirely isolated and comprise
the self-bound droplets. The droplet array becomes stationary
in the long time dynamics, e.g., t > 100 ms � ω−1

x , while at
earlier times (t > ω−1

x ) the inter-droplet distance changes, see,
e.g., Figs. 9(b4)–9(b6). This phenomenon can be traced back
to the collective breathing motion of the cloud due to the
interaction quench. Interestingly, unlike the SS phase, here a
single breathing frequency occurs, a property that is attributed
to the crystal nature of the droplet phase. These properties
of the breathing mode of a SS and a droplet have also been
experimentally observed for an elongated dBEC in Ref. [30].
It is also worth mentioning that βc(t ) (not shown) features a
response similar to the one of the quasi-2D setup, namely, in
the droplet regime it is eventually (t � ω−1

x ) maximally lost,
while for the SF and SS phases it acquires relatively smaller
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finite values (due to the quench) while being minimized fol-
lowing an adiabatic ramp of εdd . We finally note that as in the
quasi-2D scenario, the stationary array has a lesser number
of droplets upon reducing postquench εdd or increasing φ as
shown in Tables I and II.

V. THREE-BODY LOSS AND SELF-EVAPORATION OF SS
AND DROPLET PHASES

A central obstacle for the detection of self-bound struc-
tures, characterized by highly localized densities, is that
experimentally [22,32] they suffer from three-body losses. In
the following, we explain the impact of the underlying three-
body loss rate in the formation of SS and droplet quasi-2D
configurations. Contrary to previous studies, the employed
rotating magnetic field [Eq. (1)] allows us to expose the ef-
fect of the underlying losses in different interaction regimes
compared to the dipolar interaction length. The corresponding
eGPE [6] has the form of Eq. (2) with the additional imaginary
contribution −(ih̄K3/2)|ψ (r, t )|4ψ (r, t ), where K3 denotes
the three-body recombination rate [6]. A detailed discussion
regarding the competition between the three-body recombina-
tion and beyond mean-field processes is provided in Ref. [6].

The important point here is that the scaling of the
three-body recombination rate is obtained in terms of D =
3add (3 cos2 φ − 1)/4, where add = 131 aB herein. It was
shown [81] that K3 ∼ D4 for εdd � add/D (as � D) and
K3 ∼ Ca2

s (a2
s + βD2) for εdd � add/D (as � D). In the

above expressions, the constants C = 3!32
√

3π2h̄/m and β ≈
0.44. It should be emphasized that for φ = 0◦, both the SS and
the droplet phases occur within εdd � add/D. This is exactly
the situation that has been considered thus far in the literature
for interpreting experimental data [11,16]. Here, this is real-
ized by K3 = 7.1 × 10−43m6/s. However, since our dBEC is
subjected to a tilted magnetic field, it is also possible to enter
the regime εdd < add/D, where K3 explicitly depends on as.

Accordingly, below, we will discern among these two im-
portant scenarios. Utilizing a postquench εdd lying in the
droplet regime for φ = 0◦, we adjust φ toward φm and a SF
state forms, since the dipolar interaction is not strong enough
to create droplets. Then, K3 becomes as dependent. On the
other hand, when φ � φm, and εdd > add/D, the loss-rate
scales explicitly with D and hence φ. This tunability provides
an additional knob for controlling the lifetime of the dynami-
cally accessed self-bound states.

The atom losses are depicted in Fig. 10 for various field
orientations determined by φ and postquench εdd leading to
SS and droplet generation when K3 = 0, see also Figs. 7(a1)–
7(a6) and 7(b1)–7(b6). Throughout these cases, the dBEC is
initiated in a SF state with εdd = 1.1. The case of φ = 0◦
corresponds to εdd > add/D for both the SS and droplet
regimes and therefore K3 is independent of as. We observe
the nucleation of SS structures and droplet lattices for εdd =
1.45 [inset of Fig. 10(a), upper panel] and εdd = 1.87 [in-
set of Fig. 10(a), lower panel], respectively, at intermediate
timescales, t � ω−1

x . These are, however, only transient con-
figurations due to K3 
= 0 associated with non-negligible atom
losses. As such, they subsequently coalesce to narrow density
peaks around the trap center (not shown) and afterward decay
for longer evolution times (t � ω−1

x ) since three-body losses

FIG. 10. (a) Dynamics of the particle loss for different
postquench values of εdd and tilt angles φ (see legend). Droplets
feature the largest losses at φ = 0, while a finite field orientation
leads to a SF state exhibiting more dramatic decay processes. Insets:
Corresponding density snapshots n(x, y) after the quench from εdd =
1.1 visualizing the formation of SS (upper panel) and droplets (lower
panel) at short timescales. (b) Same as in (a) but for several φ (see
legend) and a fixed post-quench εdd = 2.18 residing in the droplet
phase. The emergent patterns persist for longer timescales by means
of a tilted magnetic field. The droplet lifetime is enhanced for fixed
εdd < add/D and increasing φ as long as φ < φm. The dBEC with
N = 6 × 104 experiences a quasi-2D trap of (ωx, ωy, ωz ) = 2π ×
(45, 45, 133) Hz setting a characteristic timescale ω−1

x = 3.5 ms.

compete with the LHY contribution.9 The enhanced atom
losses occurring in the droplet phase as compared to the SS
one manifest due to the relatively higher localized densities
of the former; compare, in particular, the solid red and green
lines in Fig. 10(a). Notice that similar timescales of atom
losses, exploiting a fixed magnetic field, have been observed
in experiments [33,37].

Importantly, tuning the dipolar anisotropy allows us to
enter the εdd < add/D region where the loss rate is interaction
dependent. As a paradigmatic case, herein, we consider φ ≈
50◦ where the loss coefficients are K3 = 2.47 × 10−40m6/s

9We note that a similar phenomenology also occurs when consid-
ering the value of K3 = 1.2 × 10−41m6/s used in Ref. [18].
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and K3 = 6.67 × 10−40m6/s for εdd = 1.87 and εdd = 1.45,
respectively. Notice that for φ ≈ 50◦ the dipolar interaction
is not strong enough, thus leading to a SF state for εdd = 1.87
and εdd = 1.45. However, since K3 is interaction dependent, it
possesses a greater value for smaller εdd (larger as), resulting
in an amplified lossy process, as can be seen by comparing the
dashed lines to the solid ones in Fig. 10(a). Moreover, atom
losses are accelerated in the εdd < add/D region due to the
prevalent K3 ∼ a4

s , contrast the dashed with the solid lines in
Fig. 10(a).

Remarkably, we find that the droplet lifetime can be pro-
longed as long as φ < φm and εdd > add/D by increasing φ

[Fig. 10(b)] while always residing in the droplet regime. As
a characteristic example we consider a quench toward εdd =
2.18, where K3 = 7.1 × 10−43m6/s, K3 = 4.66 × 10−43 m6/s
and K3 = 3.28 × 10−43 m6/s for φ = 0◦, φ = 15◦ and φ =
20◦, respectively. We deduce that the lifetime of the droplet
structures realized at εdd = 2.18 is prolonged by increasing φ

lying in the interval φ < φm.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In the present paper, we examined the ground-state phase
diagram and the nonequilibrium dynamics of a harmonically
trapped dBEC. We exploited the inherent anisotropy of the
dipolar interaction by applying a fastly rotating magnetic field.
Our considerations were based on an extended GP equation (3
D eGPE), including quantum fluctuations to leading order,
and allowed us to study the emergent phases from the delicate
interplay of isotropic short-range and anisotropic long-range
forces in quasi-1D and quasi-2D trapped geometries.

We found that for φ < φm, four different phases emerge
as a function of the strength of the contact interaction and
atom number. These include the SF typically occurring for
ε < 1.4 and μ > 0, the SS residing in the vicinity of μ = 0,
as well as the DLS and DLM characterized by μ < 0. A SF
state exhibits a smooth density distribution in sharp contrast
to SS and droplets where substantially modulated patterns
emerge. These structures have spatial overlap in the SS phase
and exhibit crystalline behavior deep in the droplet regime.
The crystal arrangements correspond to droplet clusters in
quasi-2D, forming canonical polygons, an outcome that holds
equally for φ > φm. The number of separated droplets in a
cluster increases by either increasing the contact interaction
strength or for large atom numbers, and for decreasing φ.
Transitions among the above-described phases are achieved
by appropriately tuning the s-wave scattering length or the
atom number. For φ > φm, where the dipoles attract, the DLS

and SF phases solely form. Additionally, the DLS phase fea-
tures a broad 2D circular distribution in the x-y plane when
φ > φm.

The SS and droplet phases can also form dynamically
upon a quench of the s-wave scattering length from an initial
SF state. SS clusters and droplet lattices are identified in
quasi-2D, while elongated arrays of SS and droplets form in
quasi-1D. These states are nucleated due to the roton-induced
dynamics manifesting as ring-shaped excitations (in quasi-
2D) or elliptic halos (in quasi-1D) at early evolution times
and are accompanied by a collective breathing motion of the

dBEC background caused by the quench. Soon after their
formation, these structures deform into arrays or clusters.

The number of droplets in a lattice is larger for smaller post
quench contact interactions or a finite angle such that φ < φm.
The SF is maximally coherent throughout evolution, while
the droplet phase displays total loss of coherence. For the SS
phase, the existence of a finite background SF leads to a partial
loss of coherence. Interestingly, we observe that following
quenches to the DLS phase, the system relaxes to a lattice, i.e.,
the DLM phase. Moreover, the number of individual droplets
participating in a lattice arrangement is larger as compared to
the ground-state configuration.

We also considered the loss of these dynamical phases due
to three-body recombination. While the loss rate coefficient
scales with K3 ∝ D4, because we tune the dipole anisotropy,
we are also able to probe the phase dynamics in a regime
where K3 ∝ a4

s . We find that the loss rates are enhanced to-
ward the droplet regime for fully repulsively aligned dipoles
at φ = 0 due to density effects, leading eventually to their
self-evaporation. Our results show that employing a tilted
magnetic field where the loss coefficient depends on the dipo-
lar length, it is possible to prolong the lifetime of droplets
as long as φ < φm. Otherwise, the droplet region suffers
faster lossy mechanisms than the other states, irrespectively
of whether the loss coefficient depends on the interaction or
not.

Motivated by observations [4], we have restricted our study
to a particular driving regime, i.e., ω � � � ωL. However, it
would be intriguing to explore the impact of a weak � � ω

rotating field, thus extending present findings to the case
where the dipoles cannot instantaneously follow the external
magnetic field. Importantly, a quantitative understanding of
the pairwise interaction of the droplets in this system and of
the pattern formation on the basis of their effective interacting
particle system [82] would be particularly interesting and rel-
evant in this context. Furthermore, comparison of the results
herein with effective lower-dimensional equations describing
quasi-1D or quasi-2D dBECs could be of interest as well; see,
e.g., Ref. [83] for a 1D example.

It should also be possible to investigate topological pattern
formation in the ground-state phases utilizing a rotating frame
of reference. Likewise, understanding the phase diagram of
the dBEC in the presence of nonlinear excitations such as
vortex complexes in quasi-2D or solitary waves in quasi-1D
will be helpful. Furthermore, studying the impact of finite
temperatures [84,85] in the dynamical nucleation of SS and
droplet lattices is certainly an intriguing perspective. Here,
the dependence of the LHY term on the temperature should
be carefully considered. The quench dynamics of a mixture of
dipolar condensates across the distinct phases, e.g., discussed
in Refs. [86,87] is a more computationally demanding effort,
yet one worthy of consideration.
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APPENDIX A: VARIATIONAL TREATMENT

Let us showcase that the SF and DLS ground-state charac-
teristics of the dBEC phase diagram can be obtained within a
variational approach instead of numerically solving the time-
independent 3D eGPE. Particularly, our model is based on
the assumption that the dBEC wave function acquires the
Gaussian ansatz [73,74]

ψ (x, y, z) =
√

N

π3/2σxσyσz

∏
η=x,y,z

exp(−(
η2

2σ 2
η

) + iη2βη(t )),

(A1)
where the variational parameters are the widths ση in the η =
x, y, z direction and βη which determines the phase curvature.
It is apparent from the functional form of the ansatz that it can-
not capture a droplet lattice or a SS structure. The Lagrangian
L(r) = ∫

d3rL(r), with L(r) being the Lagrangian density:

L = ih̄

2

(
ψ

∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+ h̄2

2m
|∇ψ (r, t )|2

+V (r)|ψ (r, t )|2 + g

2
|ψ (r, t )|4

+ 1

2

∫
d3r′Udd (r − r′)|ψ (r′, t )|2|ψ (r, t )|2

+ 2

5
γQF |ψ (r, t )|5. (A2)

Inserting the ansatz of Eq. (A1) into Eq. (A2) and integrating
over the spatial coordinates, we obtain

L =
∑

η=x,y,z

[
Nh̄

2
β̇ησ

2
η + Nh̄2

2m

(
1

2σ 2
η

+ 2β2
ησ

2
η

)
+ Nm

4
ω2

ησ
2
η

]

+ gN2

4
√

2π3/2

1∏
η ση

+ N2 h̄2

√
2πm

add∏
η ση

(
3 cos2 φ − 1

2

)

× f (kx, ky) + 4
√

2γQF N5/2

25
√

5π9/4

1∏
η σ

3/2
η

, (A3)

where the parameter ki = σz/σi (i = x, y) and the function

f (kx, ky) = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ

[
3 cos2 θ

(k2
x cos2 φ + k2

y sin2 φ) sin2 θ + cos2 θ
− 1

]
.

(A4)

Next, by utilizing the Euler-Lagrange equations of motion for
ση and βη, we arrive at the coupled set of equations

βη = m

2h̄ση

dση

dt
, Nm

d2ση

dτ 2
= − ∂

∂ση

U (ση ). (A5)

These six Euler-Lagrange Eqs. (A5) constitute exact solutions
of the time-independent eGPE. Moreover, in Eqs. (A5), the
effective potential energy U (ση ) is given by

U (ση ) =
∑

η

[
Nh̄2

m

1

2σ 2
η

+ Nm

2
ω2

ησ
2
η

]
+ gN2

2
√

2π3/2

1∏
η ση

+
√

2

π

N2h̄2

m

add∏
η ση

(
3 cos2 φ − 1

2

)
f (kx, ky)

+ 8
√

2γQF N5/2

25
√

5π9/4

1∏
η σ

3/2
η

. (A6)

Apparently, the second set of Eq. (A5) is reminiscent of the
classical equations of motion of a particle with coordinates ση

subjected to the external potential U . As such, the total energy
of the dBEC reads

E = N

2
m

(
1

2

∑
η

[σ̇η]2

)
+ U (ση ). (A7)

Therefore, the ground-state energy of the dBEC is simply
E (0) = U (σ ∗

η ), where σ ∗
η denote the equilibrium widths. These

are determined through minimization of the energy or, equiv-
alently, the effective potential U (ση ).

The resulting energy E as obtained from Eq. (A7) with
respect to σx = σy, σz, and for various angles φ of the mag-
netic field is provided in Figs. 11(a1)–11(a4). To illustrate the
equivalence of the eGPE results discussed in the main text to
the variational treatment, we employ the quasi-2D dBEC with
εdd = 1.87 and add = 131aB containing N = 6 × 104 atoms
in a harmonic trap with (ωx, ωy, ωz ) = 2π × (45, 45, 133)Hz.
The equilibrium widths (σx, σy, σz) of the dBEC are then eas-
ily identified by determining the minimum E0 of the energy E ,
see the white crosses in Figs. 11(a1)–11(a4). Interestingly, the
energy minima [Figs. 11(a1)–11(a4)] enable us to appreciate
the phase of the dBEC that each angle φ favors. Indeed, we
find that for φ = 0◦ the minimum energy is negative, which
is a property associated with the development of a self-bound
droplet. In contrast, in the case of either φ = 30◦ [Fig. 11(a2)]
or φ = 60◦ [Fig. 11(a3)], E0 is positive, thus being repre-
sentative of the SF phase. Recall that the same behavior has
been concluded within the eGPE in the quasi-2D geometry
[Fig. 2(a2)]. Turning to φ = 90◦, again the equilibrium state
has negative energy [Fig. 11(a4)], a behavior that is related to
the single droplet state discussed in Figs. 5(a4)–5(a8).

As a further proof of principle of our benchmark, we
present in Fig. 11(b) the equilibrium widths σx = σy ≡ σr and
σz as predicted in both the variational and the eGPE methods
for the quasi-2D geometry in terms of φ. It becomes evident
that the equilibrium widths show almost the same behavior in
both methods. A discernible difference is that the variational
calculation overestimates (underestimates) the value of σz (σy)
until φ ≈ 20◦ but underestimates (overestimates) σz (σy) for
20◦ < φ < 80◦. Otherwise, they agree. Similar conclusions
can be drawn for the quasi-1D dBEC (not shown).
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FIG. 11. Energy of the quasi-2D dBEC as predicted within the
variational approach [Eq. (A7)] in terms of the widths σz and σx .
Different panels refer to field orientations (a1) φ = 0◦, (a2) φ =
30◦, (a3) φ = 60◦, and (a4) φ = 90◦. The white crosses denote the
location of the respective energy minimum associated with the equi-
librium set (σx , σz). The sign of the energy subsequently characterizes
the equilibrium state as SF or droplet. The equilibrium state energy
between the variational method and the eGPE results are in good
agreement, exhibiting an average error not more than 10%. (b) The
response of (left axis) ση with η ≡ {x, y, z} and (right axis) the ratio
σy/σz for varying φ in the quasi-2D regime with fixed εdd = 1.75 and
N = 6 × 104. The results obtained through the variational principle
(dashed lines) and the eGPE method (solid lines) are in agreement.

APPENDIX B: FURTHER DETAILS ON THE NUMERICAL
IMPLEMENTATION

For the convenience of our numerical simulations, we
cast the eGPE of Eq. (2) into a dimensionless form. This is
achieved by rescaling the length, and time in terms of the
harmonic oscillator length losc = √

h̄/mωx, and the trap fre-
quency ωx, respectively, while the transformed wave function
obeys �(r′, t ′) = √

l3
osc/Nψ (r, t ). The resulting equation is

solved using the split-time Crank-Nicolson discretization
scheme [88,89]. The stationary (lowest energy) states of the
dBEC are obtained through imaginary time propagation, ef-
fectively a gradient descent algorithm. At each time step
of this procedure, we apply the transformation ψ (r′, t ) →

N1/2/‖ψ (r′, t )‖ (for the desired N). This preserves the
normalization of the wave function, while convergence is
reached as long as relative deviations of the wave function (at
every grid point) and energy between consecutive time-steps
are smaller than 10−6 and 10−8, respectively. This solution
is then used as an initial state for the quench dynamics
where the eGPE is propagated in real time. Since the dipo-
lar potential [Eq. (1)] is divergent at short distances, it is
calculated in momentum space, see also Ref. [73] for the
analytical expression of the Fourier transformation of the
dipolar potential. Afterward, we perform the inverse Fourier
transform for obtaining the real-space contributions using the
convolution theorem. Our simulations are carried out in a 3D
box characterized by a grid (nx × ny × nz) corresponding to
(256 × 256 × 128) and (300 × 600 × 300) for the quasi-2D
and the quasi-1D trap, respectively. The employed spa-
tial discretization (grid spacing) refers to �x = �y = �z =
0.1 losc, while the time step of the numerical integration is
δt = 10−5/ωx.

Last but not least, our numerical approach to solve the
eGPE for describing the properties of dBECs has been care-
fully benchmarked. As such, we have confirmed that it is
possible to reproduce a plethora of phases appearing in the
presence of a static magnetic field, e.g., from Refs. [25,33,90],
as well as results where a time-averaged dipolar potential with
a tilted magnetic field has been used, for instance, according to
Refs. [64,66]. Moreover, we have meticulously checked that
in our setting (where the LHY contribution is present), the
time-averaged approach leads to the same results as explicitly
following the time-dependent DDI.

APPENDIX C: COLLECTIVE EXCITATIONS OF
THE QUENCHED DBEC

As already mentioned in the main text, the dBEC under-
goes a collective breathing motion [30,64] originating from
the interaction quench. A common experimentally relevant
measure for estimating the amplitude and frequency of the
underlying breathing is the center-of-mass variance along the
different spatial directions [64,76]. It offers a measure of the
instantaneous width of the dBEC and it is defined by

ση =
√∫

dxdydz|ψ |2η2, (C1)

where η = {x, y, z}. Below, we shall analyze the dynamics
in the quasi-2D regime and therefore σx = σy 
= σz because
ωx = ωy 
= ωz. However, we should note that such breathing
dynamics takes place equally also in the quasi-1D case (not
shown).

The temporal evolution of the condensate widths in the ηth
direction utilizing a quench from a SF state with εdd = 1.1 to
the SF, SS, and DLS phases is illustrated in Figs. 12(a1)–(a6).
For a final SF state, realized here in the cases of εdd = 1.19
and εdd = 1.31, σx(t ) exhibits an almost constant amplitude
oscillatory behavior describing the in-plane compression and
expansion dynamics of the cloud [Fig. 12(a1)]. As expected,
the oscillation (breathing) amplitude is reduced for smaller
quench amplitudes. For the respective frequency, we find
that σx(t ) oscillates in phase with ω

x(y)
SF ≈ 67 Hz at the early
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FIG. 12. Time evolution of the dBEC widths [(a1), (a3), (a5)]
σx and [(a2), (a4), (a6)] σz quantifying the breathing motion of
the background caused by the quench. A quench from a SF state
with εdd = 1.1 toward (a1) and (a2) the SF, (a3) and (a4) the SS, and
(a5) and (a6) the DLM phases characterized by specific postquench
values of εdd (see legend). Apparently, a saturation trend of the
dynamically formed droplet lattice occurs [(a5) and (a6)]. The dBEC
consists of N = 6 × 104 atoms confined in a quasi-2D trap with
(ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz.

stages of the evolution for both εdd = 1.19 and εdd = 1.31.
Later, σx(t ) possesses a smaller frequency ω

x(y)
SF ≈ 64 Hz for

εdd = 1.31. Unlike σx(t ), in the transversal direction, σz(t )

exhibits multifrequency oscillations of time varying amplitude
[Fig. 12(a2)]. Generally, the breathing motion does not decay
in the SF regime.

Turning to a SS postquench state, we observe that σx(t )
experiences a peculiar beating pattern characterized by two
dominant frequencies [Fig. 12(a3)]. They correspond to
ω

x(y)
SS,1 ≈ 73.147 Hz and ω

x(y)
SS,2 ≈ 60.8 Hz for εdd = 1.45, while

ω
x(y)
SS,1 = 75.96 Hz and ω

x(y)
SS,2 ≈ 17.5 Hz for εdd = 1.53. The

mode of higher frequency is related with the deformation of
the SS lattice, and the lower one to the collective motion
of the background SF, see also Figs. 7(a1)–7(a6). Evidently,
upon reducing as, the higher (lower) frequency mode in-
creases (decreases). The involvement of these low-frequency
compressional (breathing) modes is inherently related to the
manifestation of the supersolid state, see also Ref. [31]. This
response is anticipated since, for a smaller as the background
density is more dilute, and the crystal structure becomes more
prominent. As such, the compressional mode associated with
the crystal hardens while the lower one vanishes [30]. Con-
cluding, σz(t ) initially features an increase while fluctuating
and after the formation of the SS lattice it shows a saturation
tendency [Fig. 12(a4)].

For the droplet region, a completely different response
takes place [Figs. 12(a5) and 12(a6)]. Particularly, σx(t )
initially increases and after the formation of the droplet
cluster around t = 4 ms [see also Fig. 7(b4)], it shows an
oscillatory trend of decaying amplitude [Fig. 12(a5)], signal-
ing the collective expansion and contraction of the lattice.
Afterward, in the long-time dynamics, σx(t ) saturates, cap-
turing the stationary configuration of the cluster. A similar
response can be seen in σz(t ) [Fig. 12(a6)]; however, un-
like σx(t ), the growth of σz(t ) is larger for increasing
postquench as, implying a larger amount of transversal
excitations.
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