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Chromatic transverse dynamics in a nonlinear plasma accelerator
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We present a theoretical investigation of the chromatic dynamics of the witness beam within a plasma based
accelerator. Our approach allows us to include the impact the longitudinal dynamics have on the transverse
dynamics. We start by deriving the single particle motion of an electron in an ion column within a nonlinear,
blowout wake including adiabatic dampening and adiabatic variations in plasma density. Using this, we calculate
the evolution of the beam moments and emittance for an electron beam. Our model can handle near arbitrary
longitudinal phase space distributions. We include the effects of energy change in the beam, imperfect wake
loading, initial transverse offsets of the beam, and mismatch between the beam and plasma. We use our model to
derive analytic saturation lengths for the projected, longitudinal slice, and energy slice emittance under different
beam loading conditions. Further, we show that the centroid oscillations and spot sizes vary between the slices
and the variation depends strongly on the beam loading. Next, we show how a beam evolves in a full plasma
source with density ramps and show that the integral of the plasma density along the ramp determines the impact
on the beam. Finally, we derive several simple scaling laws that show how to design a plasma based injector to
produce a target beam energy and energy spread.
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I. INTRODUCTION

Accelerators, in the form of high energy colliders and light
sources, have proven to be important tools for a diverse range
of research fields. Unfortunately, the size and cost of these
machines are prohibitive, especially at the energy frontier.
Plasma based accelerators are promising, compact alterna-
tives that have been shown to produce accelerating gradients
two to three orders of magnitude larger than conventional
radio frequency accelerators. Great progress has been made in
demonstrating low energy spread beams and high efficiency
acceleration [1–3]. Colliders and light sources, however, re-
quire beams with high brightness and thus place strict limits
on the beam’s transverse emittance. Current plasma based
accelerators struggle to meet these strict requirements. The
emittance of the accelerated beam, called the witness beam,
typically grows considerably as the beam traverses an accel-
erating stage.

Multiple mechanisms contribute to the beam’s emittance
growth within the plasma stage. Recent work has primarily
focused on emittance growth due to mismatch between the
plasma and the beam [4–11] and beam instabilities [12–21].
Yet the emittance growth of a transversely offset beam—due
to chromatic phase spread—has only been briefly considered:
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References [22,23] derived simple expressions for the satu-
rated emittance and initial growth rate, Ref. [24] considered
emittance in the presence of a laser driver, and Ref. [25]
worked out the saturated emittance for an injection mismatch
in a conventional accelerator. In the case of mismatch, emit-
tance growth due to energy gain in the presence of plasma
ramps, or with the inclusion of wake loading, has not been
considered. Typically, the longitudinal phase space is assumed
to take on a simple form and previous approaches cannot
handle arbitrary distributions. Further, the longitudinal slice
emittance has only been briefly investigated [24,26,27], while
the energy slice emittance has yet to receive serious atten-
tion despite its importance in a transverse gradient undulator
[28–30].

We derive the projected emittance, slice emittance (longitu-
dinal and energy), and moment evolution of an electron beam
traveling in a nonlinear, blowout wake including the effects
of adiabatic plasma ramps, energy gain, beam loading, initial
transverse offsets, and the initial longitudinal phase space
distribution. We start by deriving the single particle motion
of an electron, including energy change, in an ion column
with adiabatically varying density. Next, we derive the evo-
lution of the beam moments and the emittance in a way that
allows straightforward evaluation of the slice and projected
beam parameters. We separate the effect of the beam’s initial
longitudinal phase space into a single parameter that can be
analytically evaluated in simple cases. For complicated phase
space distributions, this parameter can be evaluated numeri-
cally while retaining the rest of the analytic formulation.

To show the broad applicability of our model, we present
several examples. First, we consider a beam in a uniform
plasma with continuous energy gain. We use two simple
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models for the longitudinal accelerating field to represent a
beam that overloads the wake and one that does not suf-
ficiently load the wake. In both cases, we derive analytic
saturation lengths for the projected, longitudinal slice, and
energy slice emittance. We show that beam loading causes
particles to mix between energy slices leading to growth in
the energy slice emittance. We then calculate the transverse
offset of the different longitudinal slices and the spot size of
the different energy slices. We show that the slice parameters
depend on the beam loading—a result with experimental con-
sequences. Second, we calculate the witness beam evolution
through a full plasma source with density ramps, and show
that the integral over the ramp density determines how much
of an impact the ramp has on the beam. We show why it is the
ramp shape, and not the length, that is important. Third, we
calculate the beam evolution in a plasma based injector and
derive simple, analytic expressions for designing an injector
to produce a beam with a target energy and energy spread.
These examples demonstrate the generality of our approach. It
combines multiple effects in a straightforward analytic frame-
work.

II. SINGLE PARTICLE MOTION

In a plasma based accelerator operating in the blowout
regime, all of the plasma electrons are evacuated from the
center of the wake leaving a column of ions behind. If the
plasma has a transversely uniform density and ion motion
is neglected, the ions produce a linear focusing force on the
witness beam that is independent of ξ = ct − s, where s is the
distance along the accelerator [31,32]. The equations of mo-
tion in the transverse directions for an electron in the witness
beam are decoupled and given by [9,33]

d2x

ds2
+ γ ′

b

γb

dx

ds
+ K (s)x = 0, (1)

where a prime denotes a derivative with respect to s. The
focusing strength is given by

K (s) = ω2
p(s)

2γb(s)c2
. (2)

In general, K is a function of s through the local plasma
density and the particle energy. The plasma frequency ωp

is defined as ω2
p(s) = n(s)e2/(meε0), γb(s) is the relativistic

factor of the electron, c is the speed of light, n(s) is the plasma
density, e is the elementary charge, me is the mass of the
electron, and ε0 is the permittivity of free space. The betatron
wavenumber is defined as k2

β (s) = K (s).
An approximate solution to the equation of motion can be

derived for a plasma density that varies adiabatically in s. The
adiabatic condition is defined as [10]

|αm(s)| � 1, (3)

where αm is one of the matched Courant-Snyder (CS) parame-
ters defined for a single particle as βm = 1/kβ , αm = −β ′

m/2,
and γm = (1 + α2

m)/βm. βm sets the natural length scale of
the transverse evolution. In a uniform plasma with no energy
gain, βm is constant, and αm = 0. The matched CS parameters
are functions of s due to the variation in plasma density and
particle energy along the accelerator.

In the absence of energy gain, the transverse motion of a
single particle in an adiabatically varying plasma density, i.e.,
under the WKB approximation, is given by [10,11]

x = x0

√
βm

βm0
(cos φ + αm0 sin φ) + x′

0

√
βmβm0 sin φ

x′ = x0
(αm0 − αm) cos φ − (1 + αm0αm) sin φ√

βmβm0

+ x′
0

√
βm0

βm
(cos φ − αm0 sin φ), (4)

where the subscript 0 indicates the initial value of a variable at
s = s0 and x′ = dx/ds = px/ps, px and ps are the longitudinal
and transverse momentum of the particle, respectively. The
betatron phase advance is defined as

φ =
∫ s

s0

kβ (s′)ds′. (5)

We are interested in the general case where the particles
can gain and lose energy. Energy gain (loss) results in a
reduction (increase) in the amplitude of the oscillations due to
adiabatic dampening. We use the ansatz that the single particle
motion has an additional s dependent amplitude A(s),

x = A(s)xc = x0A(s)

√
βm

βm0
(cos φ + αm0 sin φ)

+ x′
0A(s)

√
βmβm0 sin φ, (6)

where xc is the position of a single particle with constant en-
ergy given by Eq. (4). xc satisfies the differential equation x′′

c +
k2
βxc = 0. Inserting the ansatz into Eq. (1) and requiring that

A can take on any value gives a differential equation for A,

2A′ + γ ′
b

γb
A = 0. (7)

The solution of which is A(s) = √
γb0/γb. For Axc to approx-

imately satisfy the equation of motion, Eq. (1), the relative
change in energy over one betatron period must be small
γ ′

b/γb � kβ and γ ′′
b /γb � k2

β .
The transport matrix M defines the motion of the particle

based on its initial conditions(
x
x′

)
= M

(
x0

x′
0

)
=

(
M11 M12

M21 M22

)(
x0

x′
0

)
. (8)

Combining the adiabatic dampening term A(s) with xc gives
the transport matrix for a particle in an adiabatic plasma with
energy change,

M11 =
√

γb0

γb

βm

βm0
(cos φ + αm0 sin φ),

M12 =
√

γb0

γb
βmβm0 sin φ,

M21 =
√

γb0

γb

(αm0 − αm) cos φ − (1 + αm0αm) sin φ√
βmβm0

,

M22 =
√

γb0

γb

βm0

βm
(cos φ − αm0 sin φ). (9)
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FIG. 1. Single particle motion in a plasma accelerator with adia-
batic ramps. The particle starts with x0 = 0 and x′

0 = 0.3 mrad, and
its energy doubles within the accelerator. The top plot shows the
evolution of the particle’s transverse position x. The bottom plot
shows the evolution of the particle’s trajectory angle x′. The solid line
shows the numerical solution to the transverse equation of motion,
the dashed line shows the analytic expression from Eq. (9). The
longitudinal plasma density is shown by the shaded region.

In a uniform plasma, it follows from the definition of βm that
βm = βm0

√
γb/γb0. Inserting βm into Eq. (9) and assuming the

energy gain over a single betatron period is small, αm ≈ 0, we
recover the expression for single particle motion in a uniform
plasma from [9,33].

Figure 1 shows a comparison between Eq. (8) and a numer-
ical solution to Eq. (1) for a single electron traveling through
a plasma based accelerator. The plasma stage is designed to
double the particle’s energy and has identical adiabatic density
ramps on each end. The entrance ramp reduces the incoming
beta function by a factor of 10, and the uniform plasma sec-
tion is 24π/kβu long. The energy gain model and ramp shapes
are detailed in Sec. VI, where identical ramp profiles are used.
kβu = ωpu/(c

√
2γb0) is the approximate betatron wavenumber

at the start of the uniform plasma section, located at skβu =
200. The parameters used here are similar to those found
in current beam driven plasma wakefield accelerator experi-
ments such as those at FACET-II [34,35] and FLASHForward
[36,37]. The analytic solution shows excellent agreement with
the numerical solution; it accurately captures both the adia-
batic dampening and focusing in the ramp. In the next section,
we use this solution to derive general expressions for the
evolution of the beam’s moments and emittance.

III. EVOLUTION OF THE BEAM MOMENTS
AND PROJECTED EMITTANCE

The transverse beam quality can be quantified using the
normalized emittance [38],

εn = (1/mec)
√

σ 2
x σ 2

px
− σ 2

xpx
, (10)

where the beam sizes are σ 2
x = 〈x2〉 − 〈x〉2, σ 2

px
= 〈p2

x〉 −
〈px〉2 and the correlation is σxpx = 〈xpx〉 − 〈x〉〈px〉. In the
ultrarelativistic limit the normalized emittance simplifies to

FIG. 2. When the witness beam is mismatched or offset trans-
versely with respect to the ion column, it will undergo emittance
growth through chromatic dephasing. Different energy slices of the
beam will rotate at different frequencies in transverse phase space,
leading to growth in the projected emittance (the area enclosed by
the white-dashed line grows to the area enclosed by the black-dashed
line).

[39,40]

ε2
n = 〈γb〉2

(
σ 2

δ σ 2
x

〈
x′2〉 + ε2

)
, (11)

where σ 2
δ = (〈γ 2

b 〉 − 〈γb〉2)/〈γb〉2 and ε is the geometric emit-
tance defined as

ε2 = σ 2
x σ 2

x′ − σ 2
xx′ (12)

with σ 2
x′ = 〈x′2〉 − 〈x′〉2 and σxx′ = 〈xx′〉 − 〈x〉〈x′〉. In most

cases, the first term in Eq. (11) is very small and the geo-
metric emittance dominates, giving the more familiar formula
εn ≈ 〈γb〉ε.

Emittance growth results from the γb dependence of kβ .
Different energy slices of the beam oscillate with different
frequencies in the ion channel. Over time the different slices
dephase and no longer overlap in transverse phase space as
shown in Fig. 2. Even if the beam has no initial energy spread,
this chromatic dephasing will occur if imperfect wake loading
induces energy spread in the beam during acceleration. This
same effect dampens out the centroid oscillations of an offset
beam. To calculate the growth explicitly requires the evalua-
tion of the moments of the beam distribution.

The beam moments can be evaluated under the assumption
that there is no initial correlation between the longitudinal dis-
tribution and the transverse distribution. In this case the phase
space distribution of the witness beam at s0 can be written
as f0(x, x′, ξ , δ) = f⊥(x, x′) f (ξ, δ), where δ = (p − p0)/p0

parameterizes the energy spread in the beam and p0 is the
momentum of the reference particle. Here, we are ignoring
the vertical transverse dimension because it is decoupled
and evolves independently in an analogous fashion. We let
f⊥ describe the witness beam without offset; i.e., the beam
centroid is located at the origin in transverse phase space,∫

dxdx′ x f⊥(x, x′) = 0 and
∫

dxdx′ x′ f⊥(x, x′) = 0. Further,
we assume that the distribution is normalized to 1.

If the witness beam is then given an initial offset of �x
in x and �x′ in x′, the beam distribution at s0 can be written
as f�(x, x′, ξ , δ) = f⊥(x − �x, x′ − �x′) f (ξ, δ). Single par-
ticle evolution is described by Eq. (8) and is a function of s,
x0, x′

0, ξ0, δ0: x(s, x0, x′
0, ξ0, δ0), where the ξ0 and δ0 depen-

dence enters through the relativistic factor γb(s, ξ0, δ0). The
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functional form of γb depends on the acceleration model
chosen, we show several in the examples. The function
γb(s, ξ0, δ0) is how the evolution of the longitudinal phase
space is included in the transverse dynamics; specifying dif-
ferent forms of the function allows different longitudinal
effects to be included. Making the change of variables to u =
x − �x and u′ = x′ − �x′, we can write the single particle
evolution in terms of u and u′: x(s, u0 + �x, u′

0 + �x′, ξ0, δ0).
The first beam moment is given by

〈x〉 =
∫

dξ0dδ0 f (ξ0, δ0)
∫

du0du′
0 x(u0, u′

0) f⊥(u0, u′
0).

(13)

The other beam moments, 〈x2〉, 〈x′〉, 〈x′2〉, and 〈xx′〉 take the
same form.

To make the integral tractable, we make the assumption
that the energy spread is small, δ � 1. This allows us to treat
the matched CS parameters and the adiabatic dampening term
A = √

γb0/γb, in Eq. (9) as constant with respect to ξ0 and
δ0. We use bars to denote values for the reference particle:
γ̄b = γb(s, ξ0 = 0, δ0 = 0). Using γb = γ̄b in A, βm, αm, and
γm for all particles defines a matched set of CS parameters for
the beam; this is in contrast to the approach taken in Ref. [10],
where different matched CS parameters are defined for each
energy slice. The only dependence on ξ0 and δ0 remaining in
Eq. (9) is in the energy dependence of the betatron phase φ.

We have to integrate over u and u′ in Eq. (13) first be-
cause x depends on the longitudinal coordinates. The u and
u′ integrals can be written in terms of moments of the wit-
ness beam’s initial (non-offset) phase space distribution. The
second central moments of the phase space distribution, σx,
σx′ , and σxx′ , are defined as σ 2

x = ∫
dxdx′ x2 f⊥(x, x′), σ 2

x′ =∫
dxdx′ x′2 f⊥(x, x′), and σxx′ = ∫

dxdx′ xx′ f⊥(x, x′). These
moments can be expressed in terms of the CS parameters
β = σ 2

x /ε, γ = σ 2
x′/ε, and α = −σxx′/ε.

Evaluating the u, u′ integrals, and writing the beam mo-
ments in terms of the beam’s initial CS parameters gives the
following expressions for the moments of the offset beam:

〈x〉 =
√

γ̄b0

γ̄b
βmε0(d1C1 + d2S1), (14)

〈x2〉 = γ̄b0

γ̄b
βmε0(a + b1C2 + b2S2), (15)

〈x′〉 =
√

γ̄b0

γ̄b

ε0

βm
[−d1S1 + d2C1 − αm(d1C1 + d2S1)], (16)

〈x′2〉 = γ̄b0

γ̄b

ε0

βm

[(
1 + α2

m

)
a − (

1 − α2
m

)
(b1C2 + b2S2)

+ 2αm(b1S2 − b2C2)
]
, (17)

〈xx′〉 = γ̄b0

γ̄b
ε0[b2C2 − b1S2 − αm(a + b1C2 + b2S2)], (18)

where we have kept terms of order α2
m. The a, b, and d terms

are all unitless constants that depend on the beam’s initial
conditions,

d1 = �x√
βm0ε0

,

d2 = αm0
�x√
βm0ε0

+
√

βm0

ε0
�x′,

a = 1

2

(
β0γm0 + γ0βm0 − 2α0αm0 + d2

1 + d2
2

)
,

b1 = β0

βm0
+ d2

1 − a,

b2 = d1d2 − α0 + αm0
β0

βm0
.

The first three constants have physical meaning; d1 and d2

are the normalized phase space coordinates for the motion of
the beam centroid and, as we will show later, a is the relative
emittance growth at saturation.

The s dependence of the moments enters through γ̄b di-
rectly (adiabatic dampening) and through the matched CS
parameters (plasma focusing), which are functions of γ̄b; how-
ever, the primary dependence on s is given by the C and S
terms, which capture both the chromatic phase spreading and
the betatron oscillations. These terms are integrals over the
longitudinal phase space,

C1 =
∫

dξ0dδ0 f (ξ0, δ0) cos[φ(ξ0, δ0)],

S1 =
∫

dξ0dδ0 f (ξ0, δ0) sin[φ(ξ0, δ0)],

C2 =
∫

dξ0dδ0 f (ξ0, δ0) cos[2φ(ξ0, δ0)],

S2 =
∫

dξ0dδ0 f (ξ0, δ0) sin[2φ(ξ0, δ0)].

The two-dimensional longitudinal phase space distribution
can always be reduced to a one-dimensional distribution of
betatron phase advance fφ (φ). The integrals can then be writ-
ten in the form

C1 =
∫

dφ fφ (φ) cos φ, (19)

where we have only written the C1 integral for brevity. The s
dependence enters through the variation of the fφ distribution
as the beam propagates through the plasma. At this point,
the saturated emittance can be determined. As the different
energy components of the beam dephase, the width of the fφ
distribution will grow. At saturation, the width is much larger
than 2π and the C and S integrals tend towards zero. Setting
C and S to zero in the moments and calculating the emittance
gives the saturated emittance

εnsat = εn0

√
1 + σ 2

δ

1

2

(
β0γm0 + γ0βm0 − 2α0αm0

+ �x2

βm0ε0
+ �x′2 βm0

ε0
+ �x�x′ αm0

ε0

)
, (20)

where terms higher than αm have been dropped. The pre-factor√
1 + σ 2

δ can be set equal to one if the final energy spread is
sufficiently small.
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The detailed emittance evolution can be found by rewriting
the C and S integrals. We start by writing the betatron phase
as φ = φ̄ + �φ(ξ0, δ0). Further, we note that the four C and
S integrals can be written as the real and imaginary parts of
two complex integrals. After removing the eiφ̄ term from the
them, the integrals generically evaluate to a pair of complex
numbers with real amplitudes H1, H2, and arguments ψ1, ψ2,

I1 =
∫

dξ0dδ0 f (ξ0, δ0)ei�φ(ξ0,δ0 ) = H1eiψ1 , (21)

I2 =
∫

dξ0dδ0 f (ξ0, δ0)ei2�φ(ξ0,δ0 ) = H2eiψ2 . (22)

The C and S integrals are then given by

C1 = H1 cos(φ̄ + ψ1),

S1 = H1 sin(φ̄ + ψ1),

C2 = H2 cos(2φ̄ + ψ2),

S2 = H2 sin(2φ̄ + ψ2).

If one of three conditions is met or approximately met, the
expression for the emittance simplifies significantly. The first
condition is if ψ1 = ψ2 = 0. The second is if ψ1 = ψ2 =
π/2. The third is if ψ2 = 2ψ1. In all the examples we con-
sider later, either the first or third condition is satisfied. The
emittance then evolves according to

εn = εnsat

√
1 − b2

1 + b2
2

a2
H2

2 − 1

a2

{
a
(
d2

1 + d2
2

) − [
b1

(
d2

1 − d2
2

) + 2b2d1d2
]
H2

}
H2

1 , (23)

where H2 terms describe emittance growth due to mismatch
and H1 terms describe emittance growth due to transverse
offsets in position and angle. In addition, H1, when combined
with the adiabatic dampening, describes the dampening of the
beams centroid oscillations. The H (s) functions describe the
amount of chromatic coherence in the beam, they get smaller
as the beam propagates and dephases. ψ1 is the betatron phase
difference between the projected beam and the reference
particle.

In Fig. 3 we compare the results of numerical particle
tracking with Eq. (23) for a uniform plasma without energy
gain. The witness beam has an initial energy spread and
is either mismatch to the plasma (red), offset transversely
from the drive beam (blue), or both mismatched and offset
(black). In this simple case, Eq. (5) gives the betatron phase

FIG. 3. Emittance growth of a beam in a uniform plasma with-
out energy gain. The beam is transversely offset in the blue and
black curves. The beam is mismatched in the red and black curves.
(a) Shows the emittance evolution for a beam with uniform en-
ergy spread, (b) shows the evolution for a beam with Gaussian
energy spread. The dashed lines represent the analytic theory and
solid lines the numerical particle tracking results. In all cases, the
energy spread is 2%. The mismatch driven emittance growth sat-
urates in half the distance of the offset driven emittance growth.
The final saturated emittance growth is the sum of the mismatch
and offset.

advance as

φ = φ̄
1√

1 + δ0
.

Here, φ is independent of ξ0 because the accelerating field is
constant (in this case zero) in ξ0. The betatron phase advance
of the reference particle is φ̄ = k̄βs, where k̄β = ωp/(c

√
2γ̄b)

is the betatron wavenumber of the reference particle. Ex-
panding to first order in δ0 simplifies the expression to φ =
φ̄ − φ̄δ0/2. Since φ depends linearly on δ0, the I1 and I2

integrals are Fourier transforms of the energy distribution
with frequencies ωδ = φ̄/2 and 2ωδ = φ̄, respectively. If the
distribution of energy is even (symmetric about γ̄b), then H1 =
f̂δ (ωδ ) = f̂δ (φ̄/2), H2 = f̂δ (φ̄), and ψ1 = ψ2 = 0. Here, f̂δ
is the Fourier transform of the energy distribution fδ . Equa-
tion (23) then fully describes the evolution of the projected
emittance.

In the case of a uniform energy spread between −�δ/2 and
�δ/2, f̂δ (φ̄) = sinc�� and f̂δ (φ̄/2) = sinc(��/2), where
�� is the range of φ spanned by the energy spread �� =
�δφ̄. In the absence of transverse offset, this formula reduces
to that given in Ref. [8]. The emittance growth of such a
beam is shown in Fig. 3(a) for various initial mismatches
and transverse offsets. The analytic expression shows excel-
lent agreement with the numerical particle tracking code. The
small oscillations of the numerical result about the theoretical
emittance from Eq. (23) are due to treating βm and γb as
constants and are of order σ 2

δ (for more details see Ref. [10]).
There are two length scales for the emittance growth. The

growth due to mismatch saturates when �� = π giving a sat-
uration length of s2 = π/(�δk̄β ), while the emittance growth
due to transverse offset requires twice the length to saturate,
s1 = 2π/(�δk̄β ).

In the case of a Gaussian distribution of energy, fδ (δ0) =
1√
2π

exp(− δ2
0

2σ 2
δ

) and f̂δ (φ̄) = exp(− φ̄2σ 2
δ

2 ). Without any trans-

verse offset, �x = �x′ = 0, the solution reduces to that given
in Ref. [9]. The theoretical solution is compared to numerical
particle tracking in Fig. 3(b). As can be seen in the figure, the
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saturated emittance is the sum of the emittance growth due to
an offset and mismatch.

IV. EVOLUTION OF THE SLICE MOMENTS
AND SLICE EMITTANCE

Although the projected emittance is normally taken as the
figure of merit, both the longitudinal slice emittance and the
energy slice emittance are of practical interest. We start with
the longitudinal slice emittance, which is of importance for
both light sources and colliders. For an individual slice at ξ ,
the I1 integral takes the form

I1(ξ ) = 1

N (ξ )

∫
dξ0dδ0 f (ξ, δ0)δD(ξ0 − ξ )ei�φ(ξ0,δ0 ),

I1(ξ ) = 1

N (ξ )

∫
dδ0 f (ξ, δ0)ei�φ(ξ,δ0 ) = H1(ξ )eiψ1(ξ ),

(24)

where N (ξ ) = ∫
dδ0 f (ξ, δ0) is a normalization factor and δD

is the Dirac delta function. I2 has the same form with �φ

replaced by 2�φ. The expressions for the moments and emit-
tance of each slice are given by Eqs. (14)–(18) and Eq. (23),
but with H and ψ replaced by the ξ dependent expressions
from Eq. (24). Further accuracy can be achieved by using γ̄b

and βm calculated for each slice rather than the beam as a
whole.

Similarly, the energy slice emittance is found by replacing
the I1 and I2 integrals with

I1(δ) = H1(δ)eiψ1(δ)

= 1

N (δ)

∫
dξ0dδ0 f (ξ0, δ0)δD

(
δ − γb

γ̄b
+ 1

)
ei�φ(ξ0,δ0 ),

(25)

where γb is a function of ξ0 and δ0, N (δ) =∫
dξ0dδ0 f (ξ0, δ0)δD(δ − γb

γ̄b
+ 1). Again, I2 has the same

form as I1 with �φ replaced by 2�φ. Growth in the energy
slice emittance is due to particle exchange between energy
slices as a consequence of imperfect loading of the wake.

Energy slice emittance is important for two reasons: First,
projected emittance growth can be reversed down to the en-
ergy slice emittance using a suitable apochromatic beam line.
An example of this technique is presented in Ref. [41]. Sec-
ond, the energy slice emittance influences the results of some
emittance measurements, such as those taken using the butter-
fly technique. Third, the performance of a transverse gradient
undulator depends on the energy slice emittance [28–30].

V. EMITTANCE GROWTH OF A BEAM WITH
IMPERFECT WAKE LOADING

In the previous sections, we develop general expressions
for the projected and slice emittance growth. In this section,
we work out analytic solutions for the projected and slice
emittance for two situations where the witness beam does not
perfectly load the wake.

Perfect loading requires the witness beam to have a trape-
zoidal current profile to produce a uniform accelerating field
[42]. Existing accelerators and PWFA experiments tend to
use beams that have Gaussian or other nontrapezoidal current
profiles. Depending on the length and current of the witness

FIG. 4. Longitudinal variation in the accelerating field for two
witness beams of different lengths. Both beams have the same
charge. The beam in (a) is too long and does not sufficiently load
the wake, the accelerating field varies approximately linearly along
the beam as shown by the dashed blue line. (b) Shows a beam that
is slightly too short, the variation in the accelerating field is well
approximated by a quadratic function. In both cases the field from
−3σξ0 to 3σξ0 was used for fitting.

beam, the accelerating field can be approximated around the
beam centroid as a linear or quadratic function of ξ . A linear
function is a good approximation when the witness beam does
not have sufficient current to flatten the wake and a quadratic
function is a good approximation if the witness beam has too
much current. To demonstrate this, we ran a series of particle
in cell (PIC) simulations using the code VSim [43]. A 0.5 nC
witness beam and 2 nC drive beam were propagated through
a 3.5 × 1016 cm−3 plasma. Both beams had Gaussian current
profiles. Simulations were run for witness beams of different
lengths, and thus, different peak currents. Figure 4 shows the
longitudinal electric field in the region of the witness beam
for two beams with the same charge, but bunch lengths of
σz = 4.0 µm and σz = 8.0 µm. The electric field around the
shorter beam is well represented by a quadratic function cen-
tered on the beam centroid while the field around the longer
beam can be approximated as linear. We proceed to work
out the projected emittance, longitudinal slice emittance, and
energy slice emittance growth for both cases.

In the linear case, the accelerating field is given by Ez =
−E0 − E1ξ/�ξ . Here, E0 is the accelerating field at ξ = 0
and E1/�ξ describes the slope of the electric field; �ξ is an
arbitrary length scale, we typically set it to the bunch length.
The energy of a particle in the beam as a function of s depends
on ξ0 and δ0 according to

γb = γ̄b + δ0γb0 + E1s
ξ0

�ξ

e

mec2
, (26)

where γ̄b = γb0 + E0se/(mec2). It is straightforward to evalu-
ate Eq. (5) to get the betatron phase advance of each particle

φ = ωp

c
√

2

2mec2

E0e

1

1 + E1ξ0/(E0�ξ )
(
√

γb −
√

γb0(1 + δ0)).

If we make the reasonable assumption that E1ξ0/(E0�ξ ) � 1,
then φ can be expanded in the aforementioned quantity giving

φ = ωp

c
√

2

2mec2

E0e

(
1 − E1ξ0

E0�ξ

)
(
√

γb −
√

γb0(1 + δ0)).
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Even for simple distributions, the C and S integrals are not
closed form without further expansion of φ. We use the fact
that γb ≈ γ̄b to expand the square root in the above expression
in E1ξ0/(E0�ξ ) and δ0:

φ = φ̄ − δ0
φ̄

2

√
γb0

γ̄b
+ E1ξ0

E0�ξ
(k̄βs − φ̄), (27)

where we have dropped terms higher than first order. The
betatron phase advance of the reference particle is

φ̄ = ωp

c
√

2

2mec2

E0e
(
√

γ̄b − √
γb0). (28)

Because φ depends linearly on ξ0 and δ0 as �φ = −δ0ωδ −
ξ0ωξ , the I integrals are related to the 2D Fourier transform of
the distribution,

I1 = f̂ (ωξ , ωδ ), I2 = f̂ (2ωξ , 2ωδ ), (29)

where

ωξ = − E1

E0�ξ
(k̄βs − φ̄),

ωδ = φ̄

2

√
γb0

γ̄b
.

(30)

Consider a beam with a Gaussian longitudinal distribution
with length σξ0 and energy spread σδ0,

f (ξ0, δ0) = 1

2πσξ0σδ0
exp

(
− ξ 2

0

2σ 2
ξ0

− δ2
0

2σ 2
δ0

)
. (31)

The distribution is symmetric so f̂ is real and ψ1 = ψ2 = 0.
H1 and H2 are given by

H1 = e−σ 2
ξ0ω

2
ξ /2−σ 2

δ0ω
2
δ /2,

H2 = e−2σ 2
ξ0ω

2
ξ −2σ 2

δ0ω
2
δ ,

(32)

and the projected emittance and moment evolution is given by
Eq. (23) and Eqs. (14)–(18), respectively.

The longitudinal slice emittance of a Gaussian beam is
straightforward to calculate. Evaluating Eq. (24) gives H1 =
e−σ 2

δ0ω
2
δ /2 and ψ1 = −ωξξ . H2 and ψ2 are given by replacing

ωδ with 2ωδ and ωξ with 2ωξ and the emittance growth is
given by Eq. (23). The longitudinal slice emittance has no
dependence on ξ because all the slices have the same initial
energy spread. The phase term ψ1 shows that the beam offset
will vary sinusoidally along the bunch as shown in the top
of Fig. 5 because ψ1 ∝ ξ0. The oscillation frequency is given
by ωξ .

When finding the energy slice emittance, it will be conve-
nient to use the RMS energy spread,

σ 2
δ = σ 2

δ0

γ 2
b0

γ̄ 2
b

+ σ 2
ξ0

s2E2
1 e2

γ̄ 2
b �ξ 2m2

ec4
. (33)

Using Eq. (25), we calculate H1 and ψ1 for each energy slice,

H1 = exp

[
−σ 2

ξ0σ
2
δ0

2σ 2
δ

(
sE1e

γ̄b�ξmec2
ωδ − γb0

γ̄b
ωξ

)2]
,

ψ1 = δ
1

σ 2
δ

(
γb0

γ̄b
σ 2

δ0ωδ + sE1e

γ̄b�ξmec2
σ 2

ξ0ωξ

)
.

(34)

FIG. 5. Centroid oscillations for each longitudinal slice in a
matched beam initially offset by �x = √

βm0/ε0. The top of the
figure shows the evolution for the longer beam shown in Fig. 4(a),
and the bottom shows the shorter beam from Fig. 4(b). In both
cases the initial energy spread is σδ0 = 4%. The magnitude of the
oscillations is dampened by chromatic phase spreading due to the
initial energy spread within each slice. The oscillations decohere due
to the energy differences the slices pick up as a result of imperfect
wake loading. In (a) the accelerating field varies significantly across
the slices and the oscillations rapidly decohere. In (b) the accelerating
field along the beam is more uniform and the beam oscillates nearly
coherently.

H2 and ψ2 are given by replacing ωδ with 2ωδ and ωξ with
2ωξ . The emittance growth is given by Eq. (23) and the mo-
ments are given by Eqs. (14)–(18).

As with the longitudinal slice emittance, the energy slice
emittance is the same for all slices because H1 is independent
of δ and the betatron phase offset is linearly proportional to
the slice energy because ψ1 is proportional to δ. Chromatic
dephasing cannot occur within an energy slice unless particles
are able to mix between slices. The variation in accelerating
field along the wake causes this mixing to occur.

There are several emittance saturation length scales. The
transverse offset and mismatch driven emittance growth are
determined by H1 and H2, respectively. We define the sat-
uration length as the distance s when the argument of the
exponential in H equals –1. The saturation length for the
longitudinal slice emittance growth due to mismatch is given
by 2σ 2

δ0ω
2
δ = 1; this length also quantifies the contribution of

the initial energy spread to the emittance growth. The length
scale for the emittance growth due to imperfect wake loading
is 2σ 2

ξ0ω
2
ξ = 1. Finally, the saturation length for the energy

slice emittance growth is given by

2σ 2
ξ0σ

2
δ0

σ 2
δ

(
sE1e

γ̄b�ξmec2
ωδ − γb0

γ̄b
ωξ

)2

= 1.

The solution for s for each of these expressions is summarized
in Table I. To calculate the saturation length for the energy
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TABLE I. Saturation lengths for the projected and slice emittances. The projected emittance growth is driven by contributions from both
the initial energy spread and the energy spread induced by imperfect wake loading. The shorter of the two saturation lengths dominates the
projected emittance growth. In contrast, both energy and longitudinal slice emittance growth depend only on the initial energy spread, assuming
the variation in accelerating field is sufficiently strong.

Accelerating field linear in ξ

Saturation length—Offset beam Saturation length—Mismatched beam

Imperfect Loading contributiona s1ξ = E0e
γb0mec2 L +

√(
E0e

γb0mec2 L
)2

+ 2L s2ξ = E0e
2γb0mec2 L +

√(
E0e

2γb0mec2 L
)2

+ L

Longitudinal slice emittance
(initial energy spread contribution) s1δ0 = 4mec2γb0

mecσδ0ωp
√

γb0−eE0

(mecσδ0ωp
√

γb0−2eE0 )2 s2δ0 = 4mec2γb0
2mecσδ0ωp

√
γb0−eE0

(2mecσδ0ωp
√

γb0−2eE0 )2

Energy slice emittanceb s1δ ≈ 8mec2γb0
mecσδ0ωp

√
γb0

(mecσδ0ωp
√

γb0−2eE0 )2 s2δ ≈ 8mec2γb0
2mecσδ0ωp

√
γb0

(2mecσδ0ωp
√

γb0−2eE0 )2

Accelerating field quadratic in ξ

Imperfect Loading contributionc s1ξ = E0e
γb0mec2 Q +

√(
E0e

γb0mec2 Q
)2

+ 2Q s2ξ = E0e
2γb0mec2 Q +

√(
E0e

2γb0mec2 Q
)2

+ Q

Longitudinal slice emittance
(initial energy spread contribution) s1δ0 = 4mec2γb0

mecσδ0ωp
√

γb0−eE0

(mecσδ0ωp
√

γb0−2eE0 )2 s2δ0 = 4mec2γb0
2mecσδ0ωp

√
γb0−eE0

(2mecσδ0ωp
√

γb0−2eE0 )2

aL = E2
0 �ξ2

E2
1 σ 2

ξ0k2
β0

+ 2
√

2 mec2γb0�ξ

kβ0E1eσξ0
.

bAssuming E1 is sufficiently large σ 2
δ0γ

2
b0 � σ 2

ξ0s2E 2
1 e2/(�ξ 2m2

e c4).
cQ = 4

E2
0 �ξ4

E2
2 σ 4

ξ0k2
β0

+ 8 mec2γb0�ξ2

kβ0E2eσ 2
ξ0

slice emittance, we assumed σ 2
δ0γ

2
b0 � σ 2

ξ0s2E2
1 e2/(�ξ 2m2

ec4)
(i.e., the initial energy spread is smaller than the energy spread
induced by the wake), to simplify the expression for σδ . This
assumption is typically well satisfied for a plasma based ac-
celerator with a single stage of reasonable length.

The saturation lengths reveal several properties about the
emittance growth. First, the energy slice emittance always has
a saturation length longer than that of the longitudinal slice
emittance. Consequently, the energy slice emittance is smaller
than the longitudinal slice emittance at every s. Second, both
slice emittances are approximately independent of σξ0 and E1;
they depend only on the initial energy spread σδ0. Third, if the
initial energy spread is too low, the slice emittances will never
fully saturate because acceleration reduces the relative energy
spread faster than dephasing can occur. Mathematically, this
appears as a divergence in the saturation lengths of the slice
emittances. Saturation occurs because the spread in betatron
phase becomes larger than 2π ; the phase spread in a longitudi-
nal slice is �φ = σδ0ωδ , which does not grow without bound.
The maximum phase spread is found by taking the large s
limit,

lim
s→∞ σδ0ωδ (s) = σδ0γb0kβ0

mec2

E0e
. (35)

The maximum emittance is found by inserting this limit into
the expression for H1 and H2. This also means the magnitude
of the transverse oscillations of the longitudinal slices are not
dampened to zero. The above conclusions apply to the energy
slice emittance as long as E1 is sufficiently large [σ 2

δ0γ
2
b0 �

σ 2
ξ0s2E2

1 e2/(�ξ 2m2
ec4)].

Figure 6 compares the growth of the longitudinal slice,
energy slice, and projected emittance. The accelerating field
is the same as that shown in Fig. 4(a), but the beam length has
been doubled to σξ0 = 16.0 µm to exaggerate the difference
between the projected and slice emittance saturation lengths.

The initial energy spread is σδ0 = 0.05 and the beam starts
matched but with �x = √

βm/ε0. The saturation length due to
the variation in the accelerating field is shorter than that due
to the beam’s initial energy spread. As a result, the saturation
length due to imperfect wake loading adequately describes
the projected emittance growth. The difference between the
numerical and analytic solution for the projected emittance
arises due to the large final energy spread in this example.
This growth can be handled analytically using the approach
presented in Ref. [10]; however, for typical experimental pa-
rameters the energy spread is small enough that the correction
is negligible.

FIG. 6. Growth of the projected, longitudinal slice, and energy
slice emittance of the witness beam in a wake where the accelerating
field varies linearly in ξ . The solid lines are the emittance from
numerical particle tracking, the dashed lines are the analytic theory.
The dotted lines show the saturation lengths from Table I: black is the
contribution from the nonuniform accelerating field to the projected
emittance, blue is the initial energy spread contribution as well as
the longitudinal slice, and magenta is the energy slice. The projected
emittance is dominated by contribution from the nonuniform accel-
erating field.
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For the quadratic case, the accelerating field is given by
Ez = −E0 − E2ξ

2/�ξ 2, where E2/�ξ 2 is the quadratic fitting
parameter. As before, �ξ is an arbitrary length scale typically
set to the bunch length. The energy of a particle in the beam is

γb = γ̄b + δ0γb0 + E2s
ξ 2

0

�ξ 2

e

mec2
, (36)

where γ̄bγb0 + E0se/(mec2), the same as before. Following the
same procedure as before, the betatron phase advance of the
particle is given by

φ = φ̄ − δ0
φ̄

2

√
γb0

γ̄b
+ E2ξ

2
0

E0�ξ 2
(k̄βs − φ̄). (37)

The reference phase advance φ̄ is given by Eq. (28). Unlike
before, φ does not depend linearly on ξ0 and thus the C and S
integrals are no longer Fourier transforms. To keep the math
simple, we define the wξ as

wξ = − E2

E0�ξ 2
(k̄βs − φ̄) (38)

while ωδ is given by Eq. (30).
We again assume the Gaussian longitudinal phase space

distribution of Eq. (31). In this case, the I integrals are
straightforward and the evolution is described by

H1 = (
1 + 4σ 4

ξ0w2
ξ

)−1/4
e−σ 2

δ0ω
2
δ /2,

ψ1(wξ , ωδ ) = 1
2 arctan

(
2σ 2

ξ0wξ

)
.

(39)

H2 and ψ2 are given by making the replacement ωδ → 2ωδ

and wξ → 2wξ . In this case ψ does not strictly satisfy the
requirements for Eq. (23) to be valid; however, 2σ 2

ξ0wξ must
be small when the emittance is still growing (the emittance
saturation length for mismatch is given by σ 2

ξ0wξ = 2), al-
lowing us to expand the arctan and satisfy the condition that
ψ2 = 2ψ1. To calculate the saturation lengths, we let (1 +
16σ 4

ξ0w2
ξ )−1/4 ≈ e−1 for mismatch (H2), which corresponds

to σ 2
ξ0wξ = 2. For transverse offset we assume σ 2

ξ0wξ = 4 in
H1 in order to calculate the saturation length. The saturation
lengths are shown in Table I.

As before, all longitudinal slices have the same slice
emittance. The evolution of each longitudinal slice is given
by H (ωδ ) = e−σ 2

δ0ω
2
δ /2 and ψ (wξ ) = −wξ ξ

2. The saturation
length is the same as in the linear loading case. If the bunch
starts offset, the ξ 2 dependence of the phase leads to a large
region in the center of the bunch that undergoes transverse
oscillations in phase. This is evident in the bottom of Fig. 5.

The energy slice emittance is analytically tractable, but
the solution is cumbersome and the H and ψ functions are
not easily extracted. To compare to the linear case, we use
numerical particle tracking to propagate a witness beam in the
accelerating field from Fig. 4(b) and then numerically evaluate
Eq. (25) to get the theoretical prediction. For this example,
the beam is mismatched but not transversely offset. Figure 7
shows a comparison of the energy slice spot size evolution
between the linear and quadratic cases. In both cases the spot
size varies across the energy slices at the exit of the plasma.
Unlike the linear loading case, the emittance in the quadratic
loading case varies across the energy slices. This variation is
described by the H2 function, which is visible in the figure as

FIG. 7. Spot size for each energy slice in a mismatched beam,
β0 = 2βm0. The top of the figure shows the evolution for the longer
beam shown in Fig. 4(a) and the bottom shows the shorter beam
from Fig. 4(b). In both cases the initial energy spread is σδ0 = 4%.
Chromatic dephasing cannot occur within a slice; the dampening of
the β function oscillations is due to particle exchange between slices
driven by wake loading. If Ez is linear in ξ (top), the emittance grows
uniformly for all slices and the beam size only varies with the β

function of each slice. If Ez is quadratic in ξ (bottom), the emittance
varies across the slices leading to more complex dynamics.

a δ dependent dampening of spot size oscillation. The low
energy slices of the beam disappear because particles can only
move to slices with larger δ (if the initial energy spread is
uncorrelated).

The variation in beam parameters with energy could be
used to measure the wake loading. If the beam is intentionally
mismatched into the plasma, the C-S parameters and emit-
tance of each energy slice will have a dependence on the wake
loading. An imaging spectrometer can then indirectly measure
the loading by looking at the variation in σx with energy.

VI. EMITTANCE EVOLUTION IN A PLASMA
SOURCE WITH DENSITY RAMPS

In the previous examples, we have only considered plasma
sources with uniform density. Here, we analytically calculate
the quantities necessary to find the emittance growth in a
plasma source with adiabatic density ramps at the entrance
and exit. We assume the accelerating field varies with plasma
density according to the simple model

E = E0(
√

η − 2η) − E1η
ξ0

�ξ
, (40)

where η = ne/neu, neu is the uniform density in the bulk,
E1η/�ξ is the slope of the wakefield in the blowout regime
[31,32], and E0(

√
η − 2η) describes the variation in longitudi-

nal phase and maximum wake amplitude with plasma density
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[44]. The fields can be approximated from first principles as

E0 = κ

2
πc

√
neume

ε0
,

E1

�ξ
= neue

2ε0
, (41)

where κ is a multiplier accounting for the current of the drive
beam. κ typically varies between 1 and 2. Beam loading is
ignored in this example to keep the math tractable.

The energy of a single particle is then given by

γb =γb0 + δ0γb0 − E0e

mec2
G1 + e

mec2

(
2E0 + E1

ξ0

�ξ

)
G2,

(42)

where

G1(s) =
∫ s

0
ds′√η(s′), G2(s) =

∫ s

0
ds′η(s′). (43)

To find the betatron phase advance in the ramp we assume
the energy spread and energy gained in the ramp is small
compared to the beam’s centroid energy throughout the ramp.
We can then expand kβ as

kβ = ωpu

c
√

2γb0
η

(
1 − 1

2

�γb

γb0

)
,

where �γb = γb − γb0 and ω2
pu = neue2/meε0 is the plasma

frequency of the uniform density region. As before, the be-
tatron phase advance is linear in δ0 and ξ0: �φ = −δ0ωδ −
ξ0ωξ . The I integrals are given by Eq. (29) with

ωξ = ωpu

c
√

2γb0

E1e

2mec2γb0�ξ
D2

ωδ = 1

2

ωpu

c
√

2γb0
G1.

(44)

The betatron phase advance of the reference particle is

φ̄ = ωpu

c
√

2γb0

[
G1 − E0e

2mec2γb0
(2D2 − D1)

]
, (45)

where

D1 =
∫ s

0
ds′√η(s′)G1(s′), D2 =

∫ s

0
ds′√η(s′)G2(s′).

(46)
The emittance growth and beam moments are then found by
getting H1, H2, ψ1, and ψ2 from the I integrals and then
using Eq. (23) to find the emittance and Eqs. (14)–(18) to find
the moments. Without carrying out the full calculation, it is
apparent that minimizing the G and D integrals will minimize
ωξ , ωδ , and �γb, i.e., minimize the undesirable impacts the
ramp has on the beam.

As the beam enters the uniform density region, it is accel-
erated significantly and we can no longer assume �γb � γb0.
Instead, we use the solution presented in Sec. V with the
addition of an initial phase and an initial energy of γ0 → γbl =
γ̄b(s = l ), where l is the length of the ramp. The exit ramp is
handled the same way as the entrance ramp except the initial
energy is γbL = γ̄b(s = l + L), where L is the length of the
uniform plasma. The resulting piece-wise functions for φ̄, ωξ ,
and ωδ are fairly cumbersome and are given in Appendix B.

Qualitatively, the solution is similar to that of a uniform
plasma presented in Sec. V. The primary difference is the

FIG. 8. Evolution of the spot size (top) and divergence (bottom)
of a mismatched beam entering a plasma source with entrance and
exit ramps. The beam is initially focused by the entrance ramp into
the bulk of the plasma source where it undergoes chromatic dephas-
ing and becomes matched to the plasma. As the beam is accelerated,
the divergence continues to decrease due to adiabatic dampening
before the beam is defocused by the exit ramp.

conversion of beam size into divergence by the entrance ramp
(focusing) and divergence into beam size by the exit ramp
(defocusing). This is shown in Fig. 8 where σx and σx′ are
plotted for a mismatched beam, β0 = 1.5βm0 and α0 = αm0,
propagating through a plasma source of length 36π/kβu with
ramps (profile ne = ne0/[1 + (as)2], where a = 0.05kβu) that
reduce β by a factor of 5. The initial longitudinal phase
space of the beam is given by Eq. (31) with σξ0 = 8 μm and
σδ0 = 0.5% and it evolves according to Eqs. (41) and (42)
with κ = 1. In this example, the ramps are short and only
a small amount of chromatic dephasing occurs in them. The
majority of the emittance growth occurs in the bulk plasma.

If the ramps are long or poorly shaped, they can have
significant impacts on the witness beam. The integrals G1, G2,
D1, and D2 determine the amount of phase spread, betatron
oscillation, and, in the case of a beam driven wake, drive
beam energy loss in the ramp. All the integrals are reduced if
the integrated plasma density G2 is minimized. The adiabatic
ramp that minimizes the impact on the beam therefore has the
highest density gradient possible while remaining adiabatic.
Solving Eq. (3) gives the optimal ramp as η = 1/(1 − 2αms)2.
From experience, the ramp needs |αm| < 0.1 for the ramp to
be well described by adiabatic theory. In Fig. 9, we compare
several different adiabatic ramp shapes that all focus the beam
by the same amount. The ramp shapes that minimize the
density integral induce smaller impacts on the witness beam.
The full ramp shape is important and the impact of the ramp
on the beam cannot be described using only the half width and
the adiabatic parameter.

VII. PARTICLE INJECTION INTO A LINEAR
ACCELERATING FIELD

Consider an injector where a low charge beam is gener-
ated within the wake. The following discussion is agnostic to
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FIG. 9. Three plasma ramps with different profiles that all reduce
the beta function by a factor of 5. The chromatic phase spread,
betatron oscillations and drive beam energy loss in the ramp all
depend on the integral over the plasma density (G2 shaded area). The
first ramp (blue, bottom) is the most efficient adiabatic ramp possible
while the Gaussian (red, top) is barely adiabatic at the tail. The ramp
shape can have a significant impact on the beam, and the ramp half
width is not a good indicator of the effectiveness of the ramp.

the details of the injection scheme; for example, it could be
applied equally well to either ionization injection or plasma
photo-cathode injection [45,46]. We can use our theory to ex-
tend the theoretical treatment presented by Ref. [33] to include
arbitrary distributions of injected electrons and offset of the
injected beam with respect to the center of the wake. This
provides a description of the beam evolution after injection
has ceased, starting from the relativistic particle distribution
created by the injection process.

Assume at time τ1 a group of electrons is injected into the
wake and rapidly accelerated until each electron reaches a
phase locked longitudinal position ξ0 with energy γb0. After
the particles are phase locked, the longitudinal distribution
of the particles is given by f (ξ0, τ1), and the transverse dis-
tribution of the particles is described by an initial set of CS
parameters β0, α0, and γ0 and an initial transverse emittance
εn0. Assume particles ionized at a different time τ2 are de-
scribed by the same CS parameters and emittance once they
are phase locked. The longitudinal phase space of particles
injected at τ2 is given by f (ξ0, τ2).

Further, assume a small amount of charge is injected into
the wake, and thus the longitudinal electric field Ez varies
linearly along the length of the injected beam, Ez = −E0 −
E1ξ/�ξ . The energy of an injected particle depends on the
injection time and the phase within the wake according to

γb = γ̄b − E0cτ
e

mec2
+ E1

ξ0

�ξ
(s − cτ )

e

mec2
, (47)

where γ̄b = γb0 + E0se/(mec2) and γb0 is the energy at the
moment of phase locking. The wake is moving at c, so a par-
ticle injected at τ is phase locked into position ξ0 at a location
of s0 = τc. Using the same approach and assumptions as in
Sec. V to evaluate Eq. (5) gives the betatron phase advance of
each particle

φ = φ̄ − k̄βcτ + E1ξ0

E0�ξ
(k̄βs − φ̄), (48)

where φ̄ is given by Eq. (28).

The C and S integrals are now in terms of τ rather than δ,
we only write C1 for brevity,

C1 =
∫

dξ0dτ f (ξ0, τ ) cos[φ(ξ0, τ )]. (49)

Because φ depends linearly on τ and ξ , Eq. (29) holds with
δ replaced by τ . ωξ remains the same as in Eq. (30) while
ωτ = k̄βc.

As pointed out in Ref. [33], the projected emittance ini-
tially rises rapidly during injection before decreasing to a
minimum and finally growing to saturation. We can solve for
the propagation distance that minimizes the emittance growth
by finding the value of s where H1 and H2 are maximized. Fur-
ther, we can solve for the propagation distance that minimizes
the energy spread. In an optimal injector, the energy spread
and emittance will reach their minimal values simultaneously
at the exit of the accelerator.

It is straightforward to solve for the energy spread starting
with Eq. (47). Dropping moments of the longitudinal distribu-
tion higher than order 2 gives

σ 2
δ = e2

c2m2
e γ̄

2
b

(
E2

1 s2

c2�ξ 2
σ 2

ξ + E2
0 σ 2

τ − 2E0E1s

c�ξ
σξτ

)
, (50)

where σξ and στ are the standard deviations of the longitu-
dinal distribution about the mean and σξτ = 〈ξτ 〉 − 〈ξ 〉〈τ 〉.
As long as sE0e/mec2 � γb0, the constant term γb0 in γ̄b can
be dropped, giving the explicit s dependence of the relative
energy spread as

σ 2
δ = E2

1

E2
0 �ξ 2

σ 2
ξ + c2

s2
σ 2

τ − 2E1c

E0�ξs
σξτ . (51)

The first term is the asymptotic energy spread resulting from
imperfect wake loading. The second term is the energy spread
induced by the finite injection time. This energy spread is
fixed; thus, its contribution to the relative energy spread is
suppressed by a factor of 1/γ̄b as the beam accelerates. The
final term accounts for any initial correlation between injec-
tion time and energy, particles that are injected later (earlier)
experience larger (smaller) accelerating fields, thus flattening
the longitudinal phase space.

The minimum energy spread is given by

σ 2
δ min = E2

1

E2
0 �ξ 2

(
σ 2

ξ − σ 2
ξτ

σ 2
τ

)
. (52)

The beam reaches its minimum energy spread at

s = cσ 2
τ E0�ξ

E1σξτ

, (53)

which requires σξτ > 0 in order for s > 0, which is equivalent
to an initial positive chirp. The energy spread can be mini-
mized by creating a large correlation between injection time
and injection position.

Calculating the value of the minimum emittance requires
assuming an initial longitudinal distribution. Take as an ex-
ample an injection process that injects particles into a blowout
wake at a uniform rate from τ = −�τ/2 to τ = �τ/2. After
becoming phase locked, the particles injected at a given τ

are longitudinally distributed in the wake with a Gaussian
distribution centered at vτ . Here, v describes the change in
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the longitudinal position of the particles with injection time.
Positive v means particles injected at later times are injected
closer to the back of the wake. The distribution f (ξ0, τ ) is
separable and can be written as

f (ξ0, τ ) = 1

σξ0

√
2π

e−(ξ0−vτ )2/(2σ 2
ξ0 )

× 1

T
rect

[
τ

T
− 1

2

(
1 − �τ

T

)]
, (54)

where T = s/c + �τ/2 for 0 � s < c�τ/2 and T = �τ for
c�τ/2 � s. The width T accounts for the change in the dis-
tribution during injection. The instantaneous injection length
σξ0 is the bunch length of particles injected at a given τ after
they become phase locked. The full bunch has a length of
σ 2

ξ = σ 2
ξ0T 2v2/12. If the injection time is sufficiently long,

the energy spread of the beam can rise to to 100% (σδ ≈ 0.5
for our distribution); then, we can no longer assume βm and
γb are approximately equal for all particles. The minimum
achievable energy spread, however, is small and our approach
can be used to describe the beam around this minimum. Using
Eq. (29) we get

H1(ωξ , ωτ ) = e−ω2
ξ σ

2
ξ0/2 sinc

[
T

2
(ωξv + ωτ )

]
,

H2(ωξ , ωτ ) = e−2ω2
ξ σ

2
ξ0 sinc[T (ωξv + ωτ )],

ψ1(ωξ , ωτ ) = 1

2
(�τ − T )(ωξv + ωτ ),

ψ2(ωξ , ωτ ) = (�τ − T )(ωξv + ωτ ).

(55)

Since 2ψ1 = ψ2, the emittance evolution is described by
Eq. (23).

In the case of large v and small σξ0 (strictly 1 � T v/σξ0 +
T ωτ/[σξ0ωξ ]), we can approximate the exponential in H1 and
H2 as 1 and solve for s where both H functions are maximized,

s = cE0�ξ

E1v
, (56)

which is the same distance where the minimum energy spread
occurs. This injection distribution works well for the ac-
celerating field assumed here. For even moderate injection
duration; however, the minimum emittance is only marginally
smaller than the saturated emittance.

Using the estimates for E0 and E1 from Eq. (41), we can
derive useful formulas for designing a plasma injector. In this
case κ can also be used to describe the wakefield phase the
particles are injected into. We assume the length of the injector
is chosen to minimize the final energy spread of the beam,
combining Eq. (53) with Eq. (41) gives

L = πcκ

ωp

c

v
. (57)

The final energy spread of the injected beam is given by

σδ f = ωpσξ0

πcκ
(58)

and the final energy of the beam is given by

γb f = γb0 + π2κ2

2

c

v
. (59)

FIG. 10. Evolution of the injected beam in a plasma based in-
jector designed for 1% energy spread at 2 GeV. The accelerating
field varies linearly along the beam. Particles are injected with a
correlation between injection time and longitudinal position. (a) Im-
mediately after injection ends, particles injected earlier have higher
energy because they have experienced the accelerating field for a
longer time. When the beam reaches the design energy (2 GeV)
the energy spread is minimized as particles injected later have ex-
perienced a stronger electric field. (b) If the beam propagates too
long, the energy spread starts to increase. (c) The emittance initially
grows with the energy spread before settling down to just below the
saturated value.

The final energy at the point of minimum energy spread is
independent of the plasma density and only depends on the
correlation between τ and ξ . This occurs because the length
of the plasma scales inversely to the plasma density and the
correlation v. The final energy spread scales with

√
neσξ0.

Thus, the injection region needs to be reduced in proportion
to the skin depth to maintain a given energy spread. Some in-
jection schemes have a minimum attainable σξ0 resulting in a
trade-off between emittance and energy spread because space
charge effects, and thus the initial emittance, are reduced as
plasma density increases. This trade-off can potentially be
mitigated by appropriately loading the wake to reduce the
energy spread.

As an example, let us design an injector to produce 2 GeV
beams with sub 1% energy spread. Assume κ = 1.5 and
γb0 = 25. Immediately we find that the required correlation is
v = c/350, this is reasonable for currently proposed injection
schemes [26,27]. The plasma density might depend on the
target emittance or the drive beam available; we use a typ-
ical experimental value of ne = 5 × 1017 cm−3. The plasma
should be 12.4 mm long to reach minimum energy spread; to
achieve sub 1% energy spread, the particles should be injected
such that σξ0 � 0.35 µm; we want to emphasize that this is not
the final bunch length, but the phase locked length of particles
injected at a given τ . Figure 10 shows the evolution of the
longitudinal phase space, energy spread, and projected emit-
tance for our injector design with �τ =, β0 = 5βm0, α0 = 0,
and εn0 = 2.5 nm rad. The wake loading effectively cancels
out the initial energy chirp of the beam. For parameters of in-
terest to practical injector designs, the minimum emittance is
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approximately equal to the saturated emittance, thus length is
not a concern for εn. The initial spike in emittance is primarily
due to the very large energy spread present while injection is
still occurring. Notice that while the injector length is not par-
ticularly important for the final emittance, it has a significant
impact on the final energy spread.

VIII. CONCLUSIONS

We have demonstrated an analytic approach to calculat-
ing the evolution of the witness beam in a plasma based
accelerator operating in the nonlinear blowout regime. We
included the effects of energy change, loading of the wake,
and adiabatic variations in plasma density, all of which modify
the local betatron oscillation frequency. We developed our
approach to describe the chromatic dephasing of the beam.
This dephasing will cause emittance growth of a beam if
the beam is either transversely offset or mismatched to the
plasma. The growth will saturate if the plasma is sufficiently
long. The saturated emittance is the sum of the contribution
from the offset and the mismatch, with the transverse offset
requiring a longer distance to saturate. In addition, we showed
how to calculate both the energy slice and longitudinal slice
emittance evolution and saturation values.

For simple cases, the projected and slice emittances can be
calculated analytically, letting us investigate general proper-
ties of the emittances. Because the particles are phase locked
in the wake, the longitudinal slice emittance depends only
on the initial energy spread within the slice and grows more
slowly than the projected emittance. In the presence of imper-
fect beam loading, the variation in accelerating field along the
beam causes particles to mix between energy slices, leading
to growth of the energy slice emittance. Depending on the
details of the wake loading, the energy slice emittance will
vary across the slices.

In addition to the emittance, our approach provides the
beam moments and thus the transverse offset and spot size
of the projected beam and the longitudinal/energy slices.
Chromatic dephasing leads to a dampening of any transverse
offset on the same time frame as the emittance growth. For
the energy slices, the mixing process results in an energy
dependence of the beam spot size at the exit of the plasma.
This dependence is sensitive to the details of the beam load-
ing. This will impact the signal the electron beam generates
in an imaging spectrometer, which can be used to indirectly
measure the beam loading.

We showed two examples of how our general approach can
be applied to specific situations. First, we considered a full
plasma accelerator with ramps but with insufficient charge in
the witness beam to load the wake. In this case, the energy
spread produced by the variation in the accelerating field is
sufficient for the emittance to reach saturation regardless of
the initial energy spread. We also showed that it is the integral
of the plasma density ramp profile that determines how much
the ramp perturbs the beam. Second, we considered a plasma
injection scheme. For this example, we derived some simple
scaling laws for the final energy spread and optimal length of
the injector to simultaneously minimize the energy spread and
emittance.

In many of our examples, we considered low charge beams
that do not significantly load the wake. Our approach, how-
ever, is capable of handling more complex loading situations
if the longitudinal dependence of the accelerating field can
be written analytically. Even if it cannot, the integrals can
be solved numerically. Depending on the longitudinal phase
space, this may be faster than particle tracking.

Finally, we note that we have ignored any feedback on the
wake due to the transverse offset of the witness beam. The
transverse wake driven by the witness beam tends to drive in-
stabilities in the beam-wake system. These instabilities have
been widely studied with PIC simulations and simple models
[12–21]. Further studies are needed to determine how the
transverse wakes interplay with chromatic dephasing for an
offset witness beam.
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APPENDIX A: PARTICLE TRACKING

The simulations shown in this paper all use a simple parti-
cle tracking code. Each particle is propagated by numerically
solving Eq. (1). The values of γb(s) and γ ′

b(s) are known from
the acceleration model used for each simulation. The focusing
force, parameterized by kβ (s), is easily found from γb(s) and
the plasma density profile ne(s). Both kβ (s) and γb(s) are
functions of the particles initial ξ , and either δ or τ . The
particle transverse positions are updated from step si to si+1

using the transport matrix formalism(
xi+1

x′
i+1

)
= M(si+1|si )

(
xi

x′
i

)
, (A1)

where we use the standard transport matrix

M(si+1|si) =
(

cos(kβ�s) 1
kβ

sin(kβ�s)

−θkβ sin(kβ�s) θ cos(kβ�s)

)
. (A2)

Here, �s = si+1 − si is the step size, kβ = kβ (si + �s/2) is
the betatron wavenumber evaluated at the half-step, and θ =
1 − γ ′

b(si+�s/2)�s
γb(si+�s/2) describes the adiabatic dampening. The step

size �s is much less than 1/kβ .
The longitudinal coordinate ξ is assumed to stay constant

in the simulations. This is only a valid assumption if the
change in ξ over the simulation length (i.e., a plasma stage)
is small compared to the bunch length. Over a single step,
ξ evolves as ξi+1 = ξi − δ�s/γ 2

b so the total change in ξ

developed over the entire accelerator is approximately

�ξ ≈ −
∫ s

s0

δ

γ 2
b

ds. (A3)

The energy spread is typically largest at the end of the plasma
stage and the witness energy is smallest at the beginning, the
maximum �ξ can then be estimated as �ξ ≈ Lδ f /γ

2
b0. The

parameters used in the simulations presented here are based
off the current state of the art with a witness beam energy
of 10 GeV corresponding to γb = 1.96 × 104, a meter long
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plasma stage, a final energy spread of 5%, and a bunch length
of σz = 6 µm. The longitudinal change is then �ξ ≈ 10−10 m,
negligible compared to the bunch length.

The particles are initialized in action-angle variable space
(J and ψ) using the distribution

ρ(J ) = 1

ε
e−J/ε, (A4)

ρ(ψ ) = 1

2π
rect

(
ψ

2π

)
. (A5)

The particle’s initial position in real space is calculated from
J and ψ using

x0 =
√

2Jβ0 cos ψ + �x, (A6)

x′
0 = −

√
2J

β0
(sin ψ + α0 cos ψ ). (A7)

Excluding Sec. VII, all particle tracking simulations share
similar parameters: γb0 = γb = 1.96 × 104 corresponding
to electrons at 10 GeV, ne0 = 3.5 × 1016 cm−3, and εn0 =
4.0 mm mrad. The longitudinal positions are initialized based
on the distribution of interest.

APPENDIX B: BEAM EVOLUTION IN A PLASMA SOURCE
WITH ADIABATIC RAMPS

Finding the beam evolution in an adiabatic plasma source
with ramps requires assuming the energy change is small in
the ramps but including energy change in the bulk plasma. As
a result, the analytic expressions are piece-wise with different
expressions for the ramps and the bulk. The evolution is fully
described by γb, φ̄, ωξ , and ωδ . The expression for γb and γ̄b

are not piecewise and are given in the text. The expressions
for φ̄, ωξ , and ωδ are

φ̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωpu

c
√

2γb0

[
G1 − E0e

2mec2γb0
(2D2 − D1)

]
s � l

φ̄|l + ωpu

c
√

2
2mec2

E0e (
√

γ̄b − √
γbl ) l < s � l + L

φ̄|l+L + ωpu

c
√

2γbL

[
G∗

1 − E0e
2mec2γbL

(2D∗
2 − D∗

1 )
]

l + L < s,

ωξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωpu

c
√

2γb0

E1e
2mec2γb0�ξ

D2 s � l

ωξ |l − ωpu

c
√

2
E1

E0�ξ

[
1√
γ̄b

G2 + 2mec2

E0e (
√

γbl − √
γ̄b) − 1√

γbl
G2(l )

]
l < s � l + L

ωξ |l+L + ωpu

c
√

2γbL

E1e
2mec2γbL�ξ

[D∗
2 + G∗

1G2(L)] l + L < s,

ωδ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

ωpu

c
√

2γb0
G1 s � l

ωδ|l − ωpu

c
√

2
mec2γb0

E0e

(
1√
γ̄b

− 1√
γbl

)
l < s � l + L

ωδ|l+L + 1
2

ωpu

c
√

2γbL

γb0

γbL
G∗

1 l + L < s,

where G1, G2, D1, and D2 are integrals over the plasma density defined in the text. The starred quantities are the integrals
evaluated over only the exit ramp,

G∗
1 = G1(s) − G1(l + L),

G∗
2 = G2(s) − G2(l + L),

D∗
1 =

∫ s

l+L
ds′√η(s′)G∗

1(s′),

D∗
2 =

∫ s

l+L
ds′√η(s′)G∗

2(s′).

Combining these expressions with Eqs. (29), (21), and (22) gives H1, H2, ψ1, and ψ2. These can be inserting into Eq. (23) to find
the emittance growth and Eqs. (14)–(18) to find the evolution of the beam moments.
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