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Unsupervised machine learning of quenched gauge symmetries: A proof-of-concept demonstration
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One of the most prominent tasks of machine learning (ML) methods within the field of condensed matter
physics has been to classify phases of matter. Given their many successes in performing this task, one may ask
whether these methods—particularly unsupervised ones—can go beyond learning the thermodynamic behavior
of a system. This question is especially intriguing when considering systems that have a “hidden order”. In this
work we study two random spin systems with a hidden ferromagnetic order that can be exposed by applying
a Mattis gauge transformation. We demonstrate that the principal component analysis, perhaps the simplest
unsupervised ML method, can detect the hidden order, quantify the corresponding gauge variables, and map the
original random models onto simpler gauge-transformed ferromagnetic ones, all without any prior knowledge
of the underlying gauge transformation. Our work illustrates that ML algorithms can in principle identify not
manifestly obvious symmetries of a system.

DOI: 10.1103/PhysRevResearch.4.043118

I. INTRODUCTION

Machine learning (ML) methods have in recent years
proven to be a powerful pattern recognition tool with appli-
cations in numerous and varied branches of science. These
have shown their ability to extract, identify, and even propose
descriptive patterns found in the input data. In condensed
matter physics, the application of ML techniques first rose to
prominence with the use of the principal component analysis
(PCA) method [1] and neural networks [2] by displaying
their ability to identify and classify the ferromagnetic and
paramagnetic phases of the Ising model. Since then, the use
of ML in condensed matter physics has rapidly expanded to
include a variety of techniques [3–5]. These and their applica-
tions can be broadly grouped into two categories: supervised
ML (SML), in which the input data to train the machine is
labeled [6–21]; and unsupervised ML (UML), in which the
input data is unlabeled and the machine proposes its own clas-
sification scheme [10,19–31]. Across these two categories,
the identification of thermodynamic phases in various mod-
els has remained a central theme. Evidence is accumulating
that ML-based learning of phases can be guided by physical
insights into a model or system, such as its symmetries. This
has been most clearly demonstrated by exploiting properties
such as locality and translational symmetry to expedite the
learning of convolutional neural networks [2], or by taking
advantage of expected symmetry breaking in spin models to
extract underlying order parameters for hidden orders [7].
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Given the benefits that these physically inspired insights
provide, one may ask a question of foremost importance for
the broad and growing usage of ML in physics: can ML guide
the identification of hidden or unknown properties of a model
with minimal user assistance? A fitting testing ground for such
a question is found in topologically trivial physical models
possessing gauge symmetries; in fact, the investigation of
gauge-symmetric models with ML protocols is a topic of
current interest [16,32,33]. Such models can be simplified by
a suitable mathematical transformation, if “one” is a priori
informed of the appropriate transformation. Our question then
becomes a matter of determining whether ML can detect the
hidden local gauge symmetry of such models without any
prior knowledge. Achieving this would demonstrate that ML
can in principle be used to learn the fundamental mathemat-
ical details of a model beyond its thermodynamic properties.
Although this would be similar in flavor to finding the order
parameter of a SU(2) lattice gauge theory [21], it would go
beyond such context by demonstrating that ML can determine
a gauge transformation to map one entire model to another,
not simply expose its order parameter (even if hidden). In this
vein, and perhaps more interestingly, the controlled mathe-
matical nature of such gauge-symmetric models may suggest
their use as a way to probe the inner mechanism of how a
ML procedure does truly learn. To explore the aforementioned
motivating question, we therefore require (i) a class of models
that present themselves as seemingly complex, but which can
be much simplified by a gauge transformation, and (ii) a ML
method whose classification scheme can be exposed.

In light of (i), we study the Mattis Ising spin glass (MISG)
[34,35] and the Mattis XY gauge glass (MXYGG) mod-
els [35]. To the “uninformed”, and at a first glance, these
two models look very complex: their respective Hamiltoni-
ans possess random spin-spin bond interactions with many
of the inherent intricacies of random systems. Crucially, a
snapshot of their low-temperature ordered state configurations
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FIG. 1. (a) Disordered (paramagnetic) and (b) ordered spin con-
figurations of the MISG model before a gauge transformation;
(c) disordered (paramagnetic) and (d) ordered spin configurations
of the MISG model after a Mattis gauge transformation has been
applied, which renders the model equivalent to the ferromagnetic
Ising model.

displays no immediately recognizable pattern but, instead,
appears completely disordered (paramagnetic), as shown in
Figs. 1(a) and 1(b) for the MISG model. However, the MISG
and MXYGG models can be transformed into regular ferro-
magnetic Ising and XY models, respectively, under a (Mattis)
gauge transformation [34,35], as shown in Figs. 1(c) and 1(d)
for the MISG model. Our general interest is to determine
whether ML can learn the mapping from Figs. 1(a) and 1(b)
to Figs. 1(c) and 1(d), respectively [36].

Regarding (ii), an important consideration is the trade-off
between interpretability and scalability [37,38]. Although a
feedforward neural network (FFNN) is able to correctly clas-
sify the ordered and disordered configurations of the MISG
model, as demonstrated in Appendix A, its lack of inter-
pretability limits the access to arbitrary information it may
have learned about the model’s gauge symmetry. With this in
mind, we instead use PCA [39], which is highly interpretable,
making it a suitable ML method for our exploration. It is
also unsupervised, fulfilling our condition of “minimal user
assistance”.

Performing PCA on the Mattis models, we provide an
affirmative answer to our motivating question. We demon-
strate that PCA is able to distinguish between the disordered
and ordered phases, and show that the principal components
contain excellent approximations of the site-dependent gauge
variables that were hidden from PCA. Moreover, these princi-
pal components can be used to calculate various quantities that
verify the equivalence of the MISG (MXYGG) model with the
ferromagnetic Ising (XY ) model, confirming that PCA has in
essence learned how to map Figs. 1(a) and 1(b) onto Figs. 1(c)
and 1(d), respectively.

II. MODELS

The MISG model [34,35] on a square lattice is defined by
the nearest-neighbor Hamiltonian

HI = −
∑
〈i, j〉

Ji jσiσ j, (1)

where σi ≡ ±1. The couplings {Ji j} take values ±J randomly
(J > 0), but with the imposed constraint that the product of Ji j

couplings around a plaquette is positive: P ≡ ∏
〈i, j〉∈� Ji j > 0.

This constraint enforces nonfrustrated plaquettes, and thus
nonfrustrated ground states, allowing a Mattis gauge transfor-
mation to be applied [34,35]. This transformation reexpresses
Ji j as Ji j → εiε jJ , where {εi} are random site (gauge) vari-
ables that take εi ≡ ±1 values. Through this transformation,
the Hamiltonian (1) becomes H̃I = −J

∑
〈i, j〉 τiτ j , with τi ≡

εiσi = ±1 as the new Ising variables. It is now clear that
this gauged system possesses an order parameter given by
the Ising model “τ magnetization”, M ≡ 〈∑i τi〉 = 〈∑i εiσi〉,
illustrating that the MISG model is nothing but an Ising
ferromagnetic model in disguise. Further details about this
mapping are given in Appendix B.

Similarly, the MXYGG model is described by an XY
model with random phase factors {Ai j} [40–42],

HXY = −J
∑
〈i, j〉

cos(�φi j − Ai j ), (2)

where J > 0, and �φi j = φi − φ j is the difference be-
tween on-site angular variables φi ∈ [0, 2π ). HXY is un-
frustrated as long as the sum of the random phase factors
Ai j around a plaquette is a multiple of 2π , i.e., PXY =
(
∑

〈i, j〉∈� Ai j ) mod 2π = 0 [35]. Under this condition, a Mat-
tis gauge transformation can be applied by defining random
site (gauge) variables {bi} such that Ai j = b j − bi, with
bi ∈ [0, 2π ). HXY then becomes H̃XY = −J

∑
〈i, j〉 cos(�θi j ),

where θi ≡ φi + bi are new XY variables. This gauge trans-
formation maps the MXYGG model onto a ferromagnetic
XY model which has a “θ magnetization” M ≡ 〈∑i(cos θix̂ +
sin θiŷ)〉, or

Mx =
〈∑

i

(cos φi cos bi − sin φi sin bi )

〉
,

My =
〈∑

i

(sin φi cos bi + cos φi sin bi )

〉
. (3)

III. METHODS

PCA is a dimensional reduction technique that identifies
which linear combinations of the input data best characterize
the data set. If the studied system has N sites, with a vari-
able xi (e.g., σi) associated with each site i (i = 1, . . . , N ),
a single “state” of the system is a particular configuration
of the variables {xi}. The input data is defined as n such
states {xi(Tt )}, where each state is sampled at a temperature Tt

(t = 1, . . . , n). Note that multiple states can be sampled at a
same temperature. The whole data set is formatted as a matrix
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Xdata,

Xdata ≡

⎛
⎜⎜⎝

{xi(T1)}
{xi(T2)}

...

{xi(Tn)}

⎞
⎟⎟⎠. (4)

Each row is then centered by subtracting its mean value,
producing a redefined matrix X̄data. The covariance matrix
defined as X̄ T

dataX̄data is then diagonalized. The resulting nor-
malized eigenvalues are the explained variance ratios {λk}
with their corresponding normalized eigenvectors the prin-
cipal components {�u(k)}. The explained variance ratios {λk}
(ordered from largest to smallest) quantify how correlated the
data set is along the direction �u(k) (most to least correlated).
Furthermore, the projection 
(k)(Tt ) of the t th state {xi(Tt )}
onto the kth principal component �u(k) is defined as


(k)(Tt ) ≡
∑

i

u(k)
i xi(Tt ), (5)

where u(k)
i is the ith component of �u(k), implying that �u(k)

contain site-dependent information. Hence, for a fixed k,
{
(k)(Tt )} is a set of n values; each state ({xi(Tt )}) of the
system is characterized by a single value via Eq. (5). {
(k1 )(Tt )}
and {
(k2 )(Tt )} (for k1 �= k2) can be plotted against each other.
As illustrated in Appendix C, this visually reveals how PCA
“clusters” the n values from Eq. (5), along which projections
the data is more or less correlated, and how important the
corresponding projections are for characterizing the full data
set.

PCA is applied to the MISG model by using spin con-
figurations {σi(Tt )} as input data, i.e. the {xi(Tt )} in Eq. (4).
States are sampled for Tt ∈ [J, 4J]. A standard single spin
flip Monte Carlo (MC) algorithm of a system of N = 2500
spins (L = 50) is used. The {εi} gauge variables at each site
are randomly chosen as either ±1 with equal probabilities.
For the MXYGG model, Eq. (2), a MC simulation is per-
formed on a system of 900 spins (L = 30) for temperatures
Tt ∈ [0.2J, 1.8J]. PCA is then applied to three different data
sets: {cos[φi(Tt )]} (the “X data set”), {sin[φi(Tt )]} (the “Y
data set”), or {{cos[φi(Tt )]}, {sin[φi(Tt )]}} (the “XY data set”).
The gauge variables {bi} are randomly drawn from a discrete
distribution { 2πn

5 | n = 1, . . . , 5} [43]. 3 × 104 thermalization
sweeps and 5 × 104 measurement sweeps are used at every
temperature for both models with 50 different temperatures
in the above intervals. Sampling is done every 50 (100) mea-
surement sweeps for the MISG (MXYGG) model, providing
n = 5 × 104 (n = 2.5 × 104) states, respectively. For both the
MISG and MXYGG cases, PCA has no prior information
about the gauge variables {εi} or {bi}, nor the gauged trans-
formed Ising or XY variables {τi} and {θi}. The objective is
thus to determine whether PCA can identify the underlying
“gauge-hidden” long-range order in these systems.

IV. RESULTS

A. MISG model

PCA is applied to the states {σi(Tt )} sampled through MC
simulations for the MISG model. The first principal com-
ponent has a significantly larger explained variance ratio in

FIG. 2. (a) Projection 
(1)(T ) of the MISG spin configurations
{σi} as a function of temperature. (b) τ magnetization M of the MISG
model for the sampled spin configurations. Note that the input data
contains states corresponding to both up and down τ magnetization
in order to consider all ground states allowed by the global Z2

symmetry of the model. (c) Plot of 
(1)(T ) against M.

comparison to all other principal components, similar to the
regular Ising model as shown in Fig. 7(a) of Appendix C.
Furthermore, the corresponding projection 
(1)(T ) clusters
the input data into a central high-temperature cluster and
two adjacent low-temperature clusters, similar to Fig. 7(b)
of Appendix C. This clustering pattern is similar to the pat-
tern reported for the standard ferromagnetic Ising (FI) model,
where the projection 
(1)(T ) is identified as the total mag-
netization [24]. Indeed, the projection 
(1)(T ) of the MISG
model also behaves like an order parameter signaling a tran-
sition at the temperature Tc ≈ 2.269J [see Fig. 2(a)]. For the
MISG model, the order parameter is the τ -magnetization M,
which is calculated in the MC simulations and illustrated
in Fig. 2(b). Moreover, when plotting 
(1)(T ) against M, as
shown in Fig. 2(c), essentially perfect agreement is found
for all input states, revealing that 
(1)(T ) is indeed the τ

magnetization.
This identification leads to the key observation: since the

τ magnetization is a function of the spin variables {σi} and
the gauge variables {εi}, but only the former are provided
to PCA, the first principal component �u(1) must contain a
set of gauge variables learned by PCA. More specifically,
by directly comparing the expressions for 
(1) [Eq. (5) with
xi = σi] and M = 〈∑i εiσi〉, the learned gauge variable ε̃i is
identified as the ith component of �u(1).

These {ε̃i} gauge variables define a set of learned bond
interactions {J̃i j} ≡ {ε̃iε̃ j} and learned square plaquette values
{P̃} ≡ {∏〈i, j〉∈� J̃i j}. A comparison between the distribution
of the learned ({ε̃i}, {J̃i j} and {P̃}) variables identified by
PCA and the original values ({εi}, {Ji j} and {P}) used in
simulations is shown in Fig. 3. As can be seen in Figs. 3(a)

FIG. 3. Histograms of the (a) gauge variables {εi}, (b) bond in-
teractions {Ji j}, and (c) square plaquette values {P} for the MISG
model, comparing real values from MC (known) and values from
PCA (learned).

043118-3



LOZANO-GÓMEZ, PEREIRA, AND GINGRAS PHYSICAL REVIEW RESEARCH 4, 043118 (2022)

and 3(b), the gauge variables {ε̃i} and bond interactions {J̃i j}
are both described by bimodal distributions centered around
±1, agreeing with the distributions for the original random
variables {εi} and {Ji j} introduced in the MC simulation.
Moreover, a remarkable result comes from the distribution for
the plaquette values {P̃}, shown in Fig. 3(c): this distribution is
centered around the value P ≡ 1, which defines the plaquette
constraint used in the construction of the MISG model. The
origin of the minor spread in P̃ can be traced back to an
imprecision in the determination of the learned gauge vari-
ables {ε̄i}. This imprecision arises from the matrix operations
used in PCA. However, when comparing the learned gauge
variables {ε̄i} to the original gauge variables {εi} sitewise, this
imprecision is only about 1% (see Appendix D). Hence, the
learned gauge variables are thus a rather faithful reproduc-
tion of the original gauge variables. The faithfulness of the
learned gauge variables is further confirmed by performing
a MC simulation with the learned gauge variables {ε̃i} and
comparing the resulting thermodynamic behavior with that
from the simulations using the original gauge variables {εi},
as shown in Fig. 11 of Appendix E.

Finally, as was seen when comparing 
(1) with M, sitewise
multiplication of some quantity (e.g., {σi}) by {ε̃i} ≡ {u(1)

i }
gauge transforms that quantity into its analog within the FI
model (e.g., {τi}). As shown in Appendix F, this implies that
any principal component {u(n)

i } of the MISG model can be
mapped onto that of the FI model by this sitewise multipli-
cation. To summarize, our results demonstrate that PCA is not
only able to differentiate between the ordered and disordered
configurations of the MISG model [i.e., between Figs. 1(a)
and 1(b)], as a FFNN does (see Appendix A), but also pro-
duces a direct mapping of these configurations onto those of
the regular FI model [i.e., Figs. 1(c) and 1(d)], thus exposing
the hidden quenched gauge transformation.

B. MXYGG model

From Eq. (5), one may wonder if PCA can only dis-
cover gauge transformations that are linearly applied to the
microscopic variables. We now study the MXYGG model
to demonstrate that this is not the case. For the MXYGG
model, following Refs. [22,24] for the XY model, PCA is first
applied to the aforementioned XY data set generated from
MC simulations of Hamiltonian (2). As in the regular XY
model [24], PCA finds two principal components with compa-
rably high explained variance ratios. Moreover, the associated
projections 
(1)(T ) and 
(2)(T ) corresponding to these two
principal components reveal a similar clustering pattern as
for the regular XY model [24] when plotted against each
other, as in Fig. 4(a). For the regular XY model, these first
two projections are related to the total magnetization via the
quantity [(
(1) )2 + (
(2) )2]1/2, see Fig. 12 of Ref. [24]. This
relation also appears to hold for the MXYGG model when
considering the same quantity, as shown in Fig. 4(b). In other
words, the θ magnetization of the MXYGG model is iden-
tified through PCA, and therefore the gauge variables must
have been learned since only the “bare microscopic” angular
variables {φi} were provided to PCA. To determine the values
of these learned gauge variables and motivated by the analysis
of the MISG model, we turn to the expression of the Mx and

FIG. 4. Projections onto the first two principal components for
(a) the XY data set and (b) the X data set. The color bar indicates
the temperature at which each state is sampled. (c) Quadrature sum
of 
(1) and 
(2) for the XY data set. (d) First 20 explained variance
ratios for the MXYGG model, for the X data set. A similar result
was obtained for λ

y
k for the Y data set (not shown).

My components of the θ magnetization in Eq. (3). These two
expressions reveal how the gauge transformation decomposes
the on-site spin components into two terms depending on the
spin variables {φi} and the gauge variables {bi}. Motivated by
this, we apply PCA onto the X and Y data sets separately.

Focusing on the X data set [{cos[φi(Tt )]}, Fig. 4(c)], two
principal components are found to have comparably high
explained variance ratios, as shown in Fig. 4(d). In contrast,
when performing the same analysis on the regular XY model,
only one relevant principal component is observed for the X
data set, as shown in Fig. 8 of Appendix C. The projections

(1)

x (T ) and 
(2)
x (T ) of the X data set of the MXYGG model

are illustrated in Fig. 4(c). The reason that two principal
components of similar magnitude are found for the MXYGG
model’s X data set is traced back to the presence of cos(φi)
in both Mx and My in Eq. (3) [44], which originates from
the Mattis gauge transformation. In other words, finding that
there are two most relevant principal components with similar
explained variance ratios for the X data set indicates that
PCA has identified the presence of a gauge transformation.
A quantitative estimate of the learned gauge variables {b̃i}
is extracted as detailed in Appendix G. Similar to the PCA-
learned {ε̃i} of the MISG model in Fig. 3(a), PCA has learned
the fivefold equally spaced distributed {bi} of the MXYGG
model illustrated in Fig. 16 of Appendix G. The extraction
of the learned gauge variables, in addition to the finding of
two most relevant principal components in the X data set in
Fig. 4(c) and the θ magnetization in Fig. 4(b), demonstrates
that PCA is able to expose the gauge transformation of the
MXYGG model.
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V. CONCLUSION

We have applied the principal component analysis (PCA)
to two spin models with random interactions, the Mattis Ising
spin glass and Mattis XY gauge glass models on a square
lattice, which can be respectively simplified into the ferromag-
netic Ising and XY models under local gauge transformations.
We have demonstrated that PCA is able to learn these gauge
transformations without any prior information. Our work in-
dicates that unsupervised machine learning (UML) protocols
are indeed capable of more than just classifying data, discrim-
inating between ordered and disordered phases, or learning
other thermodynamic properties of a model. Interpretable
UML methods may additionally learn hidden features of an
underlying model, such as symmetries and gauge transfor-
mations. It might be interesting, as a future extension of this
idea, to use more sophisticated machine learning techniques
to study quantum models displaying a gauge symmetry. In
this context, the use of PCA, neural networks [32,33], au-
toencoders [16], or other ML techniques as gauge-identifying
protocols may become an invaluable tool. Incidentally, this
line of reasoning could help elucidate how PCA and a neural
network are able, when applied together, to learn the SU(2)
gauge theory order parameter [21]. Taken more broadly, our
results suggest that since gauge-symmetric models represent a
class of models with underlying mathematical simplifications,
applying UML methods to such models may help provide a
deeper understanding of how these methods work and what
exactly they learn.

Note added. In the process of finalizing this manuscript
for submission, we became aware of a very recent study [45]
reporting complementary results. In this study, the authors ex-
amined the MISG model using a supervised machine learning
method. They approximately identified the gauge transfor-
mation with the weights within an intermediate layer of the
neural network.
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APPENDIX A: FEEDFORWARD NEURAL NETWORK
ON THE MISG MODEL

A simple 100-neuron, two-layer feedforward neural net-
work (FFNN) was implemented with the TensorFlow Python
module [46]. We use the cross entropy in addition to an L2
correction as the cost function, and an Adam optimizer to train
the network. The neural network was trained for 200 epochs
on configurations of the MISG model above and below the
ordering transition. The prediction (output) and accuracy of
the network are shown in Fig. 5. The prediction is the prob-
ability of the FFNN labelling a configuration as “ordered”.
The accuracy is the percentage of configurations correctly
predicted at a given temperature. Even though the FFNN
correctly classifies the ordered and disordered configurations,
the complexity of the network does not allow us to expose

FIG. 5. (a) Output layer of the FFNN applied, to the MISG
model. (b) Accuracy of the output layer of the FFNN. In both fig-
ures, the red dashed line corresponds to the analytical value of the
transition temperature of the ferromagnetic Ising model.

how the network has learned to classify the configurations, or
what quantities it is internally using to do so. In particular,
it is not clear if the network has learned the Mattis gauge
transformation.

APPENDIX B: DEFINITION OF PLAQUETTES
FOR THE MISG MODEL

A plaquette in a lattice is defined as the smallest re-
gion contained within a closed loop of neighboring sites. On
the square lattice, the resulting plaquettes are composed of
four sites. For the Mattis transformation, we introduce gauge
variables εi for every site to define the coupling constant
Ji j = εiε jJ on every nearest neighbor bond. This procedure
is sketched in Fig. 6 below.

APPENDIX C: PCA CLUSTERS FOR THE REGULAR
ISING AND XY MODELS

For completeness and comparison, and following
Refs. [1,22–24], PCA was applied to the regular
(disorder-free, or pure) Ising and XY models on a square
lattice. The MC simulation parameters are the same as those
used for the MISG and MXYGG models as detailed in the
main text, unless otherwise indicated. For the regular Ising
model, PCA identifies a single principal component with
a high explained variance as illustrated in Fig. 7(a). The
corresponding projection 
(1) shown in Fig. 7(b) classifies
the states {σi} into a central high temperature cluster and

FIG. 6. Plaquette in the MISG model. (a) Example of gauge
variables {εi} for the four sites. (b) Resulting signs of the bond
interactions {Ji j} for the four bonds. (c) Example of ground state
spin configuration of σi variables for these random bond interactions.
Note that the coupling in the Hamiltonian is −Ji j between a pair of
sites i and j. (d) Ground state configuration of τi = εiσi resulting
from the spin configuration illustrated in (c) with the gauge variables
in (a).
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FIG. 7. (a) First 20 explained variance ratios for the regular Ising
model on a L = 80 square lattice and (b) principal component
projection 
(1) versus 
(2).

two adjacent low temperature clusters according to the
magnetization of the state [1].

For the regular XY model, PCA is applied to the X data
set ({cos[φi(Tt )]}) and the Y data set ({sin[φi(Tt )]}) separately.
The projections onto the first two principal components for
each of the two data sets are shown in Figs. 8(a) and 8(b), re-
spectively. These projections should be compared to Fig. 4(b)
of the main text, illustrating a clear difference between the
clustering pattern observed here for the regular XY and the
MXYGG model in the main text. This difference is indicative
of the decomposition produced by the gauge transformation
to the components of the magnetization Eq. (3), as detailed in
the main text.

Additionally, each of the two projections obtained for
the regular XY model, Figs. 8(a) and 8(b), are related to
the two components of the magnetization. To support this,
consider the projections 
(1)

x and 
(1)
y obtained from the X

and Y data sets respectively. Consider also 
(1) and 
(2), the

FIG. 8. (a) and (b) Principal component projections 
(1)
α versus


(2)
α for the X data set (α = x) and Y data set (α = y), respectively.

(c) and (d) First 20 explained variance ratios λα
k for the regular XY

model, for the X data set (α = x) and Y data set (α = y), respectively.
The configurations were sampled from an L = 30 square lattice.

FIG. 9. Histogram of the percentage difference between the orig-
inal and predicted gauge variables, �εi = εi − ε̃i, for the MISG
model on a 50 × 50 lattice.

first two principal components obtained for the full data set.
The total magnetization is given by [(
(1) )2 + (
(2) )2]1/2, as
shown in Fig. 12 of Ref. [24]. This can be compared with
[(
(1)

x )2 + (
(1)
y )2]1/2 (not shown). Good agreement between

both expressions as a function of temperature is found. This
supports the identification of the quantity [(
(1)

x )2 + (
(1)
y )2]1/2

with the total magnetization, which allows the projections 
(1)
x

and 
(1)
y to be identified as the components of the total magne-

tization vector. The total magnetization [(
(1) )2 + (
(2) )2]1/2 is
also studied for the full data set of the MXYGG model in the
main text and illustrated in Fig. 4(b).

In the regular ferromagnetic Ising model, the points in
Fig. 7(b) corresponding to high temperatures and the para-
magnetic state are clustered near the middle (
(1) ∼ 0). This
is similarly seen for the regular XY model, in the center of
Figs. 8(a) and 8(b) (
(1)

x ∼ 0 and 
(1)
y ∼ 0). In contrast, the

points in Fig. 7(b) corresponding to low temperatures form
two clusters on the left and right sides. For the pure XY
model, the points corresponding to low-temperature states
instead form an oval-shaped cluster that cuts through the mid-
dle of Figs. 8(a) and 8(b). This difference between the low
temperature projections in the Ising and XY models is easily
understood, as the spin variables in the regular XY model are
continuous. Therefore, the low-temperature projection forms
one continuous horizontal overall cluster rather than two sep-
arate clusters.

APPENDIX D: NUMERICAL IMPRECISION OF THE
LEARNED GAUGE VARIABLES FOR THE MISG MODEL

By comparing the learned and known values of the gauge
variables in a sitewise manner, i.e., �εi = εi − ε̃i, a histogram
of the imprecision of PCA’s results is obtained (see Fig. 9).
This comparison reveals an imprecision in the learned values
that is not greater than ∼1%; in other words, �εi is, site-by-
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FIG. 10. Histogram of the percentage difference between the
original and predicted gauge variables, �εi = εi − ε̃i, for the MISG
model on a 50 × 50 lattice, for (a) 24 000 configurations sam-
pled from T ∈ [2.0J, 3.5J], (b) 24 000 configurations sampled
from T ∈ [1.1J, 2.4J], (c) 12 500 configurations sampled from
T ∈ [1.1J, 4.0J], and (d) 25 000 configurations sampled from T ∈
[1.1J, 4.0J].

site, of the order 1%. This minor numerical imprecision in the
predicted gauge variables produces the small spread observed
in the distribution of the learned plaquettes {P̃} in Fig. 3(c).

There are a number of ways one could proceed to reduce
this imprecision. One strategy would be to apply PCA to a
data set containing a greater fraction of ordered spin config-
urations. This can be seen by comparing Fig. 10(a), which
samples configurations from mostly above Tc, and Fig. 10(b),
which samples configurations from mostly below Tc, recalling
that Tc ≈ 2.269J for the FI model. Clearly the data set con-
taining more ordered spin configurations results in a greater
precision in the learned gauge variables. However, if the con-
figurations provided are sampled from just above the critical
temperature, where a finite-size effect parameter begins to
acquire a nonzero value, PCA is still capable of learning the
gauge variables, albeit with significantly greater imprecision.
This can be thought of another way: in a temperature win-
dow in the well-ordered phase, thermal fluctuations are less
prominent than near the critical temperature or in the para-
magnetic phase. The reduced thermal fluctuations then result
in less noisy data sets for PCA to manipulate through matrix
operations and learn from, resulting in more precise learning.
A second strategy for improving this precision pertains to
the number of samples used in learning. From a statistics
standpoint, it is evident that a larger number of samples in
general should improve the precision. This is clearly seen
by comparing Fig. 10(c) (with 12 500 configurations) and
Fig. 10(d) (with 25 000 configurations), where the latter is
more precise.

To summarize: the best way to reduce numerical impre-
cision in the learned gauge variables would thus be to apply

FIG. 11. Comparison of thermodynamic quantities (energy per
spin E and specific heat C) calculated within MC simulations, using
the original known gauge variables and the learned gauge variables
from PCA.

PCA to a large sample taken from the ordered phase. This may
also prove to be a useful approach for the application of PCA
to other models and further generalizations of our work; the
learning precision could be improved by using data sets from
the ordered phase of a given model. This can be done by taking
data sets from the ordered phase from the start (i.e., if the
ordered phase is already known), or by taking data sets from
the ordered phase after the fact (i.e., once the “location”—that
is, the critical temperature—of the ordered phase has been
learned by PCA).

APPENDIX E: MC SIMULATION WITH THE LEARNED
GAUGE VARIABLES FOR THE MISG MODEL

After applying PCA to the MISG model, we study the
faithfulness of the learned gauge variables in their ability
to produce thermodynamic behavior consistent with a pure
ferromagnetic Ising (FI) model. We perform a Monte Carlo
(MC) simulation on the MISG model using the learned gauge
variables {ε̃i} and compute the internal energy E and specific
heat C. In Fig. 11, we compare these thermodynamic quan-
tities with those measured for the MC simulation with the
original set of gauge variables {εi}. As can be seen, both
MC simulations possess a closely similar behavior for E and
C over the studied range of temperature. Note that the small
discrepancy in the specific heat C near the critical temperature
is likely caused by the numerical uncertainty found in the
learned {ε̃i} variables that is discussed in the main text and
in Appendix D.

APPENDIX F: GAUGE TRANSFORMATION OF HIGHER
PRINCIPAL COMPONENTS FOR THE MISG MODEL

As stated in the main text, the gauge transformation
identified by PCA can be used to transform higher princi-
pal components into the principal components expected for
the regular FI model. This observation originates from the
similarity between the projections of the MISG model and
those obtained for the FI model. In other words, the gauge
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FIG. 12. Values of the (a) first and (b) second principal compo-
nents of the MISG model, plotted on the lattice sites that they are
associated with. (c) Product of the values of the first and second
principal components on each site. Note that this product has been
rescaled by the lattice dimension L.

transformation must also be present in the higher principal
components. Recall that u(1)

i σi ≈ τi maps the σi variables
of the MISG model onto the τi variables of the FI model.
Therefore, the projection onto any principal component can
be written in the following way, starting from Eq. (5) in the
main text:


(k) =
∑

i

u(k)
i σi (F1)

≈
∑

i

u(k)
i

(
u(1)

i

)2
σi

=
∑

i

(
u(k)

i u(1)
i

)(
u(1)

i σi
)

≈
∑

i

(
u(k)

i u(1)
i

)
τi

≡
∑

i

ũ(k)
i τi, (F2)

where, in the second line, we used u(1)
i = ε̃i ≈ εi = ±1, so

(u(1)
i )2 ≈ 1. This approximation comes from the finding in the

main text that the learned gauge variable ε̃i (which is u(1)
i ) is

almost identical to the original gauge variable εi. The final
result in Eq. (F2) has been introduced in order to draw an
analogy with Eq. (F1), but now considering the τ magnetiza-
tion of the FI model. This expression further suggests that the
kth principal component of the FI model can be obtained by
considering the sitewise multiplication with the first principal
component [i.e., u(1)

i u(k)
i in the line above Eq. (F2) should yield

the kth principal component of the FI model]. To explore this
further, consider for example the second principal component
�u(2) of the MISG model [Fig. 12(b)] and its transformation
�u(1) ⊗ �u(2) [Fig. 12(c)], defined as the sitewise product of
the two principal components (i.e., [�u(1) ⊗ �u(2)]i = u(1)

i u(2)
i ).

The transformed second principal component illustrated in
Fig. 12(c) is highly similar to the second principal component
obtained for the FI model reported in earlier work [24] (see
Fig. 4(b) in Ref. [24]).

APPENDIX G: GLOBAL ROTATION OF THE REGULAR
XY MODEL MAGNETIZATION

For the regular XY model, the x and y components of the
magnetization vector for a state {cos [φi], sin [φi]} is given by

(a) (b)

FIG. 13. Components of the (a) first and (b) second principal
component eigenvectors �u(1) and �u(2) for the XY data set (defined
in the main text) of the regular XY model, before applying a global
rotation by an angle α.

the expressions

Mx =
∑

i

cos (φi), My =
∑

i

sin (φi). (G1)

Here we show that the projections onto the first two principal
components 
(1) and 
(2) are identified as the two components
of the magnetization vector in Eq. (G1) up to a global rotation
of the angles {φi}. The origin of this rotation can be under-
stood using the global U (1) symmetry of the XY model. The
XY model is invariant under global rotations of the x and y
axes. Therefore, PCA can learn the magnetization components
along a new set of axes, x̄ and ȳ, that are related to the original
x and y axes by a global rotation by an arbitrary angle α. Under
such a global rotation α, the magnetization vector becomes

Mx̄ =
∑

i

cos(φi + α)

=
∑

i

(cos φi cos α − sin φi sin α),

Mȳ =
∑

i

sin(φi + α)

=
∑

i

(sin φi cos α + cos φi sin α). (G2)

Comparing the expressions for Mx̄ and Mȳ with Eq. (5) of the
main text implies that, when the XY data set is provided to

FIG. 14. Histogram of extracted global rotation angle α for the
regular XY model.
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(a) (b)

FIG. 15. Components of the (a) first and (b) second principal
component eigenvectors �u(1) and �u(2) for the XY data set (defined in
the main text) of the regular XY model, after having applied a global
rotation by an angle α.

PCA (namely, {{cos[φi]}, {sin[φi]}}), the coefficients u(k)
i in

Eq. (5) are simply cos(α) and sin(α) (up to a minus sign). The
principal components therefore give a direct measurement of
the global rotation angle α along which the magnetization
vector is learned by PCA.

In fact, since the u(k)
i coefficients correspond to sin (α) and

cos (α), the value of α is determined from the u(k)
i values (e.g.,

by taking the arctangent of the ratio of pairs of u(k)
i values,

corresponding to the two components of the magnetization for
the same site i). Extracting α in this way (using the principal
components u(k)

i shown in Fig. 13) produces the histogram
shown in Fig. 14. Furthermore, if the angles {φi} are rotated
by α prior to applying PCA (i.e., giving PCA {{cos[φi +
α]}, {sin[φi + α]}}), the principal components only take val-
ues of only 1s or 0s, as shown in Fig. 15. Having only values of

FIG. 16. Histogram of learned gauge variables {b̃i} for the
MXYGG model, revealing five equally spaced peaks corresponding
to the five discrete choices of bi in the MC simulation.

1s and 0s can be easily interpreted by comparing Eq. (5) of the
main text and Eq. (G2). It means that PCA is directly summing
cos(φi + α) across all sites to calculate Mx̄ (and similarly for
Mȳ), and is therefore learning the magnetization vector along
these new axes.

This same analysis can be applied to the principal com-
ponents of the MXYGG model to extract the local rotations
produced by the gauge variables {bi}. The resulting distribu-
tion for the learned gauge variables {b̃i} is shown in Fig. 16,
revealing five equally spaced peaks as expected for the five
equally spaced choices of the original gauge variables defining
the chosen (realized) MXYGG model. Note that a global
rotation α is also possible for the MXYGG model in addition
to the local rotations {bi} on each site, but the two rotations
cannot be separately identified with the approach discussed
here. Due to this possibility of a global rotation by an angle α,
there is an overall shift in the peaks of the histogram in Fig. 16
relative to the expected values { 2πn

5 | n = 1, . . . , 5} that are
used in the MC simulations of the MXYGG model.
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