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Network community detection and clustering with random walks

Aditya Ballal ,1,2 Willow B. Kion-Crosby ,3 and Alexandre V. Morozov 1,2,*

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA

3Helmholtz Institute for RNA-based Infection Research, Würzburg 97080, Germany

(Received 14 March 2022; accepted 26 August 2022; published 18 November 2022)

We present an approach to partitioning network nodes into nonoverlapping communities, a key step in reveal-
ing network modularity and functional organization. Our methodology, applicable to networks with weighted
or unweighted symmetric edges, uses random walks to explore neighboring nodes in the same community.
The walk-likelihood algorithm (WLA) produces an optimal partition of network nodes into a given number
of communities. The walk-likelihood community finder employs WLA to predict both the optimal number
of communities and the corresponding network partition. We have extensively benchmarked both algorithms,
finding that they outperform or match other methods in terms of the modularity of predicted partitions and
the number of links between communities. Making use of the computational efficiency of our approach, we
investigated a large-scale map of roads and intersections in the state of Colorado. Our clustering yielded
geographically sensible boundaries between neighboring communities.
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I. INTRODUCTION

Many complex systems in human society, science, and
technology can be represented by networks, a set of N vertices
linked by edges [1–4]. Examples include the Internet, the
World Wide Web, transportation networks, food webs, social
networks, and biochemical and genetic networks in biology.
These complex networks often contain distinct groups, with
more edges between nodes within the same group than be-
tween nodes belonging to different groups. Detecting such
distinct groups of nodes, called network communities, has
attracted considerable attention in the literature [5–25]; see
[26–28] for comprehensive reviews. Parsing complex net-
works into communities provides useful information about the
underlying structure of the network and may provide insights
into the common function of each group of nodes. For ex-
ample, in gene coexpression networks different communities
represent different gene modules, with genes in the same
module acting together to carry out high-level biological func-
tions such as stress response [29]. Protein-protein interaction
networks are also characterized by pronounced modularity
which may have been shaped by adaptive evolution [30]. In
the context of social networks, communities represent groups
of people with similar interests and behavioral patterns.

Despite clear intuition behind the network community
concept, precise mathematical definitions of network com-
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munities are somewhat elusive, with many empirical metrics
proposed in the literature. These metrics include the modular-
ity score, the internal edge density, and the cut ratio [8,31,32].
Interestingly, many of the empirical scores can be understood
in terms of random walks on graphs, which reveal the stability
of graph communities across timescales [19]. The modularity
score plays a central role in several algorithms for network
community detection [12–14,33]. Commonly used network
community detection methods include Edge Betweenness [5],
Fastgreedy [33], Infomap [16,17], Label Propagation [13],
Leading Eigenvector [12], Multilevel [14], Spinglass [7], and
Walktrap [11]. These methods were benchmarked for com-
putational efficiency and prediction accuracy by Yang et al.
using an extensive set of artificially generated networks [34].
Other algorithms, benchmarks, community metrics, and cur-
rent issues in network community detection are discussed
in recent reviews [27,28]. Several of these methods rely on
random walks for network community detection and scoring
[17,19,20,25].

Network community detection is conceptually similar to
clustering and data dimensionality reduction, which have a
long history of development in machine learning and artificial
intelligence communities [35]. Some of the state-of-the-art
approaches to data clustering and visualization are rooted in
the ideas borrowed from random walks and diffusion theory.
These include non-negative matrix factorization (NMF), a
clustering method originally developed to provide decompo-
sitions into interpretable features in visual recognition and
text analysis tasks [36–39], spectral clustering, an algorithm
closely related to NMF and based on analyzing the eigenval-
ues and eigenvectors of the graph Laplacian [40,41], and a
dimensionality reduction technique based on diffusion maps
which uses random walks to project data points into a lower-
dimensional space [42–44].
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Here we propose two methods for clustering and network
community detection. The first method, which we call the
walk-likelihood algorithm (WLA), leverages information pro-
vided by random walks to produce a partition of data points or
network nodes into m nonoverlapping communities, where the
number of communities is known a priori. Unlike previous al-
gorithms that employ random walks and diffusion in network
community detection [11,12,17,19,20,25], dimensionality re-
duction [42–44], and spectral clustering [40,41], our approach
is based on Bayesian inference of network properties as the
network is explored by random walks [45]. Here, the property
of interest is the posterior probability for each node to belong
to one of the m network communities. Although Bayesian
inference has long been used in the prediction of network
modules, it was typically employed in the context of specific
network-generating processes such as the stochastic block
model [15,18,23]. In contrast, here we consider all network
nodes and edge weights as given and partition the network into
communities on the basis of the number of visits to network
nodes by an ensemble of random walks. Intuitively, we utilize
the fact that a random walk will, on average, visit the nodes in
its own community more frequently than the nodes in all other
communities [19].

WLA is used as the main ingredient in our second method,
walk-likelihood community finder (WLCF), which predicts
the optimal number of clusters (or network communities) mopt

using global moves that involve bifurcation and merging of
communities, and employs WLA to refine node community
assignments at each step. We have subjected both WLA and
WLCF to extensive testing on artificial networks against sev-
eral of the state-of-the-art algorithms mentioned above. After
checking their performance and algorithmic complexity, we
have applied WLA and WLCF to several real-world networks,
including a large-scale network of roads and intersections in
the Colorado state.

II. WALK-LIKELIHOOD ALGORITHM

Let us consider a network with N nodes labeled n =
1 . . . N . The network edges are defined by ÃN×N , a symmetric
adjacency matrix with Ãn′n = 1 if there is an edge between
nodes n and n′, and Ãn′n = 0 everywhere else. We focus
on undirected networks with weighted edges: {wi j}, where
wi j = w ji is the weight of the edge between nodes i and j.
We define wi = ∑

k∈nn(i) wik as the connectivity or weighted
degree of node i, where the sum is over all of its nearest
neighbors. Let AN×N be the transition matrix of the network,
where An′n = P(n → n′) is the probability of jumping from
node n to node n′ in a single step (see Methods for details).
We define an indicator matrix UN×m to partition the network
into m communities labeled by c = 1 . . . m, such that each
element Unc = 1 if and only if n ∈ c, and 0 otherwise. The
weighted size of each community c can then be computed as
Wc = ∑N

n=1 wnUnc, where wn is the weighted degree of node
n. Next, we define a matrix VN×m such that

Vnc =
lmax∑
l=1

(
N∑

n′=1

(Al )nn′wn′Un′c

)
. (1)

Note that Vnc/Wc is the expected number of times, per ran-
dom walk, that the node n is visited by random walks with
lmax steps that start from nodes n′ in community c, where
the nodes n′ ∈ c are chosen randomly with the probability
P(n′) = wn′/Wc. The node n does not have to be in the same
community c as the nodes n′, although the expected number
of visits to the node n should be higher if this is the case.
Furthermore, the expected number of visits to the node n per
random walk given by Eq. (1) corresponds to the actual num-
ber of visits that would be observed when the total number of
random walks with lmax steps that originate from community
c, Gc, is very large: Gc → ∞. Then the total number of
visits to the node n by Gc random walks originating in the
community c is given by Ṽnc = GcVnc/Wc.

With the stochastic process defined by Eq. (1), a single
random walk originating in the community c′ visits all nodes
in the community c for �̃c′c steps on average:

�̃c′c =
∑
k∈c

Vkc′

Wc′
= (V T U )c′c

Wc′
. (2)

Correspondingly, the total number of steps within the com-
munity c (equal to the total number of visits to the nodes
in community c) of Gc′ random walks that originated in the
community c′ is given by �c′c = Gc′ �̃c′c = (Ṽ T U )c′c. The total
Poisson rate parameter for visiting the node n ∈ c by Gc′ ran-
dom walks is given by the sum of the Poisson rate parameters
for each individual random walk:

Gc′
wn�̃c′c

Wc
= wn�c′c

Wc
. (3)

Therefore, for multiple random walks originating from the
same community c′, the Poisson probabilities in Eq. (18) are
generalized to P (Ṽnc′,wn�c′c/Wc) [P (K, λ) is the Poisson
distribution with the number of events K and the rate pa-
rameter λ], where all random walks that start from the nodes
in the community c′ contribute to a single Poisson process
with the total rate given by Eq. (3). Finally, the community
identity of the node n can be inferred probabilistically using a
straightforward generalization of Eq. (19):

P
(
n ∈ c|{Ṽnc′ }m

c′=1, {�c′c}m
c′=1

)
= 1

Z Pr(n ∈ c)
m∏

c′=1

P
(

Ṽnc′ ,
wn�c′c

Wc

)
, (4)

where Pr(n ∈ c) is the prior probability that n ∈ c and Z is
the normalization constant. Omitting the conditional depen-
dencies for simplicity, Eq. (4) can be rewritten as:

log P(n ∈ c) =
m∑

c′=1

Gc′

Wc′
(Vnc′ log Qc′c − Qc′cwn)

+ log Pr(n ∈ c) + H (n) − logZ, (5)

where

Qc′c = �c′cWc′

Gc′Wc
= �̃c′cWc′

Wc
= (V T U )c′c

Wc
(6)
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and

H (n) =
m∑

c′=1

{
Gc′

Wc′
log

(
Gc′

Wc′

)
− log

[(
Gc′Vnc′

Wc′

)
!

]}
(7)

is independent of the community index. Note that according
to Eq. (6), Qcc = �̃cc, the average number of steps within the
community c of a single random walk that originated in the
same community.

We find it convenient to parametrize Gc as Gc = sgc, with
s → ∞ and finite relative weights gc (the choice of gc is
discussed below). Then Eq. (4) can be written as

P(n ∈ c) = lim
s→∞

esFnc+log Pr(n∈c)∑m
c′=1 esFnc′+log Pr(n∈c′ ) , (8)

where Fnc is given by Eq. (5):

Fnc =
m∑

c′=1

gc′

Wc′
[Vnc′ log Qc′c − Qc′cwn]. (9)

In the s → ∞ limit, the effect of the priors is negligible
and the sum in the denominator of Eq. (8) is dominated
by a single term with the largest Fnc′ , so that Eq. (8) simplifies
to

P(n ∈ c) = δcc̃ for c̃ = argmaxc′′Fnc′′ . (10)

Equation (10) allows us to reassign community identities for
each node n. These community identities are then used to
construct the updated matrix U for the next iteration of the
algorithm.

A. Choice of gc

The relative weights gc determine the fraction of random
walks that start from community c. To remove community-
dependent sampling biases, we set gc so that the mean number
of visits to node n ∈ c from all random walks starting in
the community c is independent of its parameters. Note that
according to Eq. (17), the mean number of visits to a node n ∈
c is �ccwn/Wc = sgcQccwn/Wc. Thus, setting gc = Wc/Qcc

ensures that the mean number of visits is swn, which is in-
dependent of the community index c and depends only on
the connectivity of node n. Note that under this scheme, the
total Poisson rate parameter for the visits to the node n ∈ c by
all random walks originating in the community c′ is given by
swn(Qc′c/Qc′c′ ).

B. Convergence criterion

To determine how similar the updated assignment of nodes
to communities is to the previous one, we use the normalized
mutual information (NMI) [46] between the current partition
U and the previous partition U ′ [Eq. (21) in Methods]. We
terminate the iterative node reassignment process if the NMI
between partitions obtained in subsequent iterations is greater
than 0.99.

The iterative node reassignment procedure can be summa-
rized as follows:

WALK-LIKELIHOOD ALGORITHM

INPUT:
Network with N nodes
AN×N : Transition matrix of the network
m: Number of network communities
lmax: Number of random walk steps
wn: Connectivity of each node n = 1 . . . N
U ′

N×m: Initial guess of the partition of the
network into m communities

do:
1. Vnc ← ∑lmax

l=1 (
∑N

n′=1(Al )nn′wn′U ′
n′c ) Eq. (1)

2. Qcc′ ← (V T U ′)cc′/
∑N

n=1 wnU ′
nc′ Eq. (6)

3. Fnc ← ∑m
c′=1 Q−1

c′c′ [Vnc′ log Qc′c − Qc′cwn] Eq. (9) with
gc = Wc/Qcc

4. Unc ← δc̃nc for c̃n = argmaxc′′ Fnc′′ Eq. (10)
5. Compute NMI(U,U ′) Eq. (21)
6. U ′ ← U

while not converged [NMI(U,U ′) � 0.99]

OUTPUT: UN×m: Optimal partition of the network into m
communities

III. WALK-LIKELIHOOD COMMUNITY FINDER

Using the walk-likelihood algorithm (WLA) described
above, we have developed the walk-likelihood community
finder (WLCF), an algorithm for partitioning a network into
communities when the number of communities is not known
a priori. We initialize the WLCF algorithm by assuming that
whole network is a single community. The flowchart of the
algorithm is shown in Fig. 1, with each major step explained
in detail below:

Outer loop:
I. Bifurcation. We divide each network community ran-

domly into two communities. This is illustrated in Fig. 1,
panel I, where community C′

1 bifurcates into communities
C1 and C2, and community C′

2 bifurcates into communities
C3 and C4. Note that this step divides the network into two
communities at the start of the algorithm.

II. Inner loop. The inner loop consists of three consecutive
steps. The loop is terminated if step 2 conditions are not met.

1. Walk-likelihood algorithm: The walk-likelihood algo-
rithm is run to obtain a more accurate partition of the network
(Fig. 1, panel II). Note that the number of communities m does
not change in this step.

2. Criteria for merging communities: To check if the cur-
rent division of the network into m communities is optimal, we
compute modularity scores [8] for all m communities. Then,
for

(m
2

)
pairs of communities, we check if combining any pair

of communities c and c′ increases the modularity score of the
partition. The change in the modularity score after merging
communities c and c′ is given by

�Mcc′ = 2(ecc′ − acac′ ), (11)
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FIG. 1. The flowchart of the WLCF algorithm. The key steps
of the algorithm include random community bifurcation in the be-
ginning of the outer loop iteration (panel I); application of the
walk-likelihood algorithm (panel II); merging communities on the
basis of the changes in the modularity score (panel III).

where ecc′ = (U T ÃU )cc′/
∑N

n=1 wn and ac =∑N
n=1 Uncwn/

∑N
n=1 wn (Ã is the network adjacency matrix).

Note that these definitions generalize the modularity score
[Eq. (13) in Methods] to networks with weighted edges.
If there exists at least one pair of communities such that
�Mcc′ > 0, we proceed to step 3 of the inner loop where one
pair of communities is merged, otherwise we exit the inner
loop.

3. Merging communities: If step 2 conditions are met, we
merge the pair of communities c1 and c2 with the largest
increase in the modularity score Mc1c2 . This is illustrated in
Fig. 1, panel III, where communities C′

1 and C′
2 merge to

form C1.
III. Convergence criteria. The outer loop is terminated if

the number of communities in the partitions obtained in sub-
sequent iterations of the outer loop remains constant and the
NMI between the communities in the current and the previous
partitions is greater than 0.99. The algorithm also stops if
the modularity score of the partition decreases by more than
0.01 in subsequent iterations, or if the maximum number of
iterations has been reached.

Elimination of spurious bifurcation-merge cycles. The
WLCF algorithm can get into a loop where a community c
is bifurcated into c1 and c2 in step I and then c1 and c2 merge
again in step 3 of the inner loop (step II of the outer loop) to
form the same community c. This indicates that community
c cannot be bifurcated any further. In order to avoid such
bifurcation-merge cycles, we check if there are any matches
between the communities in the current partition and those in

the previous partition, by calculating the following score:

Ecc′ = 1 − 2
∑N

i=1 UicU ′
ic′∑N

i=1(Uic + U ′
ic′ )

(12)

between the communities c and c′ of the current partition (U )
and the previous partition (U ′), respectively. If Ecc′ < 0.01,
we assume that the communities c and c′ are the same and
conclude that further bifurcations of the community c are
not possible. Thus, all communities c of the current partition
for which there exists a corresponding community c′ in the
previous partition such that Ecc′ < 0.01, are not bifurcated in
the subsequent iteration of the WLCF algorithm (step I of the
outer loop).

IV. SYNTHETIC NETWORKS

To test the performance of WLA and WLCF algorithms
in a controlled setting using realistic networks with tunable
properties, we have generated a comprehensive set of Lan-
cichinetti, Fortunato, and Radicchi (LFR) benchmark graphs
[47]. The LFR benchmark was specifically created to pro-
vide a challenging test for community detection algorithms.
It was recently used to test many state-of-the-art algorithms
in a rigorous comparative analysis [34]. Similar to real-world
networks, LFR networks are characterized by power-law dis-
tributions of the node degree and community size. Each node
in a given LFR network has a fixed mixing parameter μ =∑N

i=1 kext
i /

∑N
i=1 ki, where kext

i is the number of links between
node i and nodes in all other communities and ki is the total
number of links of node i. Thus, every node shares a fraction
1 − μ of its links with the other nodes in its community and
a fraction μ with the rest of the network [47]. Note that
μ = 0 corresponds to the communities that are completely
isolated from one another, while μ < 1

2 results in well-defined
communities in which each node has more connections with
the nodes in its own community than with the rest of the graph.
Generally speaking, network communities become more dif-
ficult to detect as μ increases.

The parameters of the networks in our LFR benchmark
set are summarized in the Supplemental Material [48] (Ta-
ble S1). These parameters were chosen to enable direct
comparisons with the large-scale evaluation of community
detection algorithms carried out by Yang et al. [34]. In order
to investigate algorithm performance on larger networks, we
have also added graphs with N = 5 × 104 and N = 105 to our
implementation of the LFR benchmark. For each value of N ,
we have created networks with 25 different mixing parameters
μ ranging from 0.03 to 0.75. For each value of N and μ, 20
independent network realizations were created for networks
with N = 5 × 104 and N = 105; for all smaller networks,
102 independent network realizations were created. We used
the Github package LFR-BENCHMARK_UNDIRWEIGHTOVP by
eXascale Infolab [49].

First, we have used a single realization of the LFR net-
work with μ = 0.15 and N = 103 to study the effects of lmax

on the network exploration (see Supplemental Material [48],
Fig. S1). Conceptually similar to diffusion maps [42–44], the
value of lmax is qualitatively related to the scale of the network
structures explored by random walks: lower lmax values create
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a bias towards local exploration, while higher lmax values
enable global exploration of the entire network and transitions
between communities. The natural upper cutoff for lmax is
the network diameter, which is often ∼ log N in scale-free,
real-world networks [2–4]. Indeed, we observe that small lmax

values lead to more visits to nodes in the same community as
the starting node (compared to nodes in all other communities)
as local network neighborhoods are explored (see Supple-
mental Material [48], Fig. S1). However, the exploration is
noisy since many nodes cannot be reached by short random
walks, even if they belong to the same community. As lmax

increases, the difference between visiting nodes in the two
categories decreases, but the uncertainties in the number of
visits decrease at the same time. For very large lmax values,
the whole network is explored.

Next, we have tested how lmax affects the performance
of the WLA algorithm on the entire LFR benchmark (see
Supplemental Material [48], Fig. S2). WLA was provided
with the exact number of communities m� as input, and NMF-
based clustering was used to initialize it. We observe that
while lmax = 1 is suboptimal, all other values produce very
similar results. Therefore, WLA does not appear to be overly
sensitive with respect to this parameter. Nonetheless, it would
be advisable to start with a value of lmax guided by the network
diameter (∼log N in scale-free networks) and explore a few
values around it. Very sparse networks with long chains of
nodes and few crosslinks are likely to require larger values
of lmax. Overall, we conclude that either using intermediate
values of lmax or alternating between intermediate and low
values should lead to reasonable performance. As with hy-
perparameter settings in many other algorithms, finding an
acceptable range of lmax values may require some numerical
experimentation.

Finally, we discuss the choice of WLA prior probabilities
for partitioning networks into communities. The choice of the
prior does not explicitly affect node assignments to communi-
ties in each WLA iteration, due to the s → ∞ limit in Eq. (10).
Nonetheless, cluster initialization affects WLA’s numeri-
cal performance because self-consistent iterations generally
depend on initial conditions. The least informative choice is
the uniform prior, implemented as random assignment of all
network nodes into m communities with equal probabilities
1/m. However, in many cases nonrandom initialization with
the help of existing algorithms such as NMF or NNDSVD
(see Methods) may be preferable. If the scaling exponent β

for the power-law distribution of community sizes is available,
this information can also be used to initialize WLA with more
realistic communities. As expected, using the knowledge of
the distribution of cluster sizes generally leads to a boost in the
WLA performance on the LFR benchmark (see Supplemental
Material [48], Fig. S3).

We have carried out an extensive comparison of the WLCF
and WLA algorithms with four other state-of-the-art com-
munity network detection and clustering methods (Fig. 2).
Two methods, Multilevel [14] and Label Propagation [13],
were chosen because they were recommended by the previ-
ous large-scale investigation of algorithm performance on the
LFR benchmark [34]. We also included Leading Eigenvector
[12] because its cluster bifurcation approach is similar to that
employed by WLCF (Fig. 1). We used the network analysis

package IGRAPH [50] to implement Multilevel, Label Propa-
gation, and Leading Eigenvector; all parameters were set to
their default values.

In addition, we used SCIKIT-LEARN to implement the NMF
clustering method (see Methods for details). Since NMF
requires the number of clusters as input, we provided m�,
the exact number of communities in each LFR network.
Both WLCF and WLA used lmax = 8. In WLCF, random
assignment of nodes to communities upon bifurcation was
employed. Similar to NMF, WLA had to be provided with
the exact number of communities m� as input. As in Fig. S2
(see Supplemental Material [48]), NMF-based clustering was
used to initialize the stand-alone WLA since random partition
of the network into m communities in the beginning results in
somewhat inferior performance, as shown below.

We observe that, qualitatively speaking, WLCF matches
or outperforms all other algorithms in terms of NMI, with
NMF and Multilevel being the most competitive alternatives
(Fig. 2). However, the performance of NMF and Multilevel
tends to deteriorate faster for larger networks. We also note
that WLA provides a significant advantage over NMF (both
algorithms require the exact number of clusters as input).
As expected, the performance of all the algorithms degrades
with μ since network communities become less well sep-
arated as μ increases. Another measure of performance is
the relative error in predicting the number of clusters, �m =
|m − m�|/m�, where m is the predicted and m� is the exact
number of communities in each LFR benchmark network.
WLCF also outperforms Multilevel, Label Propagation, and
Leading Eigenvector using this measure (see Supplemen-
tal Material [48], Fig. S4), especially with μ > 0.5. The
next best-performing algorithm is Multilevel, except for N =
105 where Label Propagation performs much better than
Multilevel but still worse than WCLF. In summary, WLCF
outperforms the other algorithms in terms of both NMI and
�m measures of prediction accuracy.

We have also explored how the performance of WLCF is
affected by various hyperparameter, initialization, and algo-
rithmic choices within its main pipeline (Fig. 1). In addition
to the random assignment of nodes to two new communities
at the bifurcation step which was used in the standard WLCF
algorithm (Fig. 2), we have investigated the effects of more
sophisticated community initialization protocols that employ
either NMF or NNDSVD-based node assignment to provide
better initial conditions for WLA within the WLCF pipeline
(see Supplemental Material [48], Fig. S5). However, the effect
was found to be minor on the LFR benchmark, leading us
to conclude that nonrandom community initialization is not
necessary as part of the WLCF protocol. Interestingly, there
was a noticeable gain when stand-alone WLA was initialized
with NMF-predicted rather than random communities (see
Supplemental Material [48], Fig. S5). Apparently, gains re-
lated to NMF or NNSVD-based WLA initialization largely
disappear when the number of new communities is always
two, as is the case in the WLCF bifurcation step. Another
potential reason is the WLCF community merge step, which
may help rectify errors incurred by the randomly initialized
WLA.

Since WLA depends on the maximum number of random
walk steps lmax, we have also investigated a version of WLCF
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FIG. 2. Performance of WLCF and WLA on the LFR benchmark (NMI). In each panel, normalized mutual information (NMI) [Eq. (21)] is
plotted as a function of the mixing parameter μ for a given LFR network size N (LFR network parameters are listed in Supplemental Material
[48], Table S1). WLCF and WLA are compared with four state-of-the-art network community detection and clustering algorithms: Multilevel
[14], Leading Eigenvector [12], Label Propagation [13], and non-negative matrix factorization (NMF) [36,37]. For each value of N and μ, we
show 〈NMI〉 ± σNMI, where all averages and standard deviations are computed over independent network realizations.

in which WLA was run with lmax = 8 followed by lmax = 1
at every subsequent iteration of the main loop within WLA,
starting with lmax = 8. The alternation between high and low
values of lmax was designed to explore both large- and small-
scale network structures; however, no substantial gain was
observed compared to WLA with lmax = 8 (see Supplemental
Material [48], Fig. S5). Finally, we have explored the overall
role of WLA in the WLCF pipeline by replacing it completely
with NMF-based node assignment (cf. purple curves in Sup-
plemental Material [48], Fig. S5). Excluding WLA from the
pipeline leads to significant degradation of the WLCF per-
formance, leading us to conclude that the performance boost
provided by WLA is indispensable for the overall success of
the WLCF algorithm.

We have also studied how the time complexity of WLCF
and WLA scales with the network size N . We empirically
observe power-law behavior of the runtime on the LFR net-
works from our data set T ∼ Nα , with the scaling exponents
ranging from 1.19 to 1.74 for WLCF and from 1.39 to 1.91
for WLA (see Supplemental Material [48], Fig. S6). This
relatively weak dependence on the network size leads us to
conclude that both of our algorithms are capable of treating
large-scale networks.

V. REAL-WORLD NETWORKS

A. Eight networks

After exploring the performance of our algorithms on the
LFR benchmark, we have applied WLCF to eight small-
and medium-size real-world networks widely studied in the
network literature: Bottlenose dolphins network [51], Les
Misérables network [52], American college football teams
network [5], Jazz musicians network [53], C. elegans neural
network [54], Erdos coauthorship network [55,56], Edinburgh
associative thesaurus network [57], and High-energy theory
(HET) citation network [58] [see Supplemental Material [48],
Methods for the details of each network].

We find that WLCF and Multilevel produce comparable
modularity scores (Table I), while the performance of the
Leading Eigenvector and the Label Propagation algorithms
is worse overall (see Supplemental Material [48], Table S2).
Interestingly, WLCF tends to predict fewer clusters than
Multilevel, furnishing more interpretable partitions without
a substantial loss in the modularity score. To investigate the
nature of the network partitions found by the four algorithms,
we have also computed the distributions of internal edge den-
sity and cut ratio scores [31,32] (see Methods). Despite being
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TABLE I. Performance of community detection algorithms on real-world networks. Shown are the average and the standard deviation of
the modularity score M [Eq. (13)] and the number of clusters Ncl predicted by WLCF and Multilevel algorithms on eight real-world networks
(see Supplemental Material [48] for detailed network descriptions). All statistics are computed using 102 independent runs of each algorithm
per network. The networks are unweighted (i.e., all edge weights are set to 1.0). N is the number of nodes in the network and 〈k〉 is the average
number of links per node, a measure of network sparseness.

WLCF Multilevel

Network N 〈k〉 〈M〉 ± σM 〈Ncl〉 ± σNcl 〈M〉 ± σM 〈Ncl〉 ± σNcl

Dolphin groups 62 5.13 0.5181 ± 0.0123 4.21 ± 0.45 0.5204 ± 0.0029 5.15 ± 0.55
Les Misérables characters 77 6.60 0.5467 ± 0.0109 5.45 ± 0.65 0.5563 ± 0.0028 6.34 ± 0.55
Football teams 115 10.66 0.6023 ± 0.0050 9.75 ± 0.54 0.6039 ± 0.0018 9.69 ± 0.52
Jazz musicians 198 27.70 0.4404 ± 0.0034 3.35 ± 0.48 0.4430 ± 0.0025 3.84 ± 0.37
C. elegans neurons 297 15.80 0.3957 ± 0.0086 4.79 ± 0.82 0.4093 ± 0.0054 5.75 ± 0.50
Erdos coauthors 6927 3.42 0.6650 ± 0.0097 25.41 ± 1.93 0.6957 ± 0.0018 31.77 ± 1.77
Thesaurus words 23219 67.95 0.3201 ± 0.0027 7.62 ± 0.81 0.3149 ± 0.0028 12.20 ± 1.12
HET citations 27770 25.41 0.6529 ± 0.0030 16.37 ± 1.11 0.6554 ± 0.0028 171.56 ± 1.83

normalized by the total number of possible links, both scores
tend to correlate with the number of clusters into which the
network is partitioned since the internal edge density is high
in small, densely connected clusters, whereas the cut ratio is
low in large clusters with relatively few outside links.

We observe that WLCF clusters do not have the highest
internal edge density scores: the scores tend to be consistently
smaller than those of Multilevel clusters (see Supplemental
Material [48], Table S3) and the results are mixed vs Leading
Eigenvector and Label Propagation clusters (see Supplemen-
tal Material [48], Table S4). The biggest discrepancies can be
traced to the differences in the number of clusters predicted
by the four algorithms. For example, WLCF produces many
fewer clusters in the HET citations network, resulting in much
lower internal edge density scores. However, WLCF tends to
produce lower cut ratio scores compared with the other three
algorithms, a sign of more self-contained clusters with fewer
external links. Overall, we conclude that WLCF optimizes
modularity and cut ratio scores to a larger extent than internal
edge density, partly because it partitions the network into
fewer clusters.

We have also investigated how WLCF cluster predictions
are affected by including edge weights. We have focused
on two of the networks where edge weights are available in
the primary data: Les Misérables characters and Thesaurus
words (see SM Methods for edge weight definitions). With the
Les Misérables characters network, we obtain 〈M〉 ± σM =
0.5621 ± 0.0064 and 〈Ncl〉 ± σNcl = 5.82 ± 0.41 over 102 in-
dependent runs of the WLCF algorithm when the weights are
included. These results are similar to those on the unweighted
network, and indeed 〈NMI〉 ± σNMI = 0.78 ± 0.05 between
weighted and unweighted network partitions, showing that
they are fairly consistent. In contrast, for Thesaurus words
we observe 〈M〉 ± σM = 0.4759 ± 0.0069 and 〈Ncl〉 ± σNcl =
15.30 ± 1.62, a much more modular network with twice as
many clusters compared to the unweighted version (Table I).
The low overlap between weighted and unweighted network
clusters (〈NMI〉 ± σNMI = 0.30 ± 0.02) shows that the deci-
sion to include or disregard edge weights plays a major role
in this case. These findings underscore the necessity of the
careful design of the experiments that generate primary data.

B. Colorado road map

To investigate whether our approach can be applied to
large-scale networks, we have chosen a graph defined by
geographical coordinates of road intersections and other land-
marks in the state of Colorado [59]. The network is very
sparse, with N = 435 666 nodes and E = 528 533 edges. We
have made the network unweighted by assigning unit weights
to each edge and run the WLA algorithm on it multiple times
(Fig. 3). We observe that with m � 16, independent runs result
in somewhat different cluster assignments, as can be seen
from the lower NMI values and the error bars in Fig. 3(a).
However, as the number of clusters increases, the assignment
of nodes to clusters becomes more reproducible, with the NMI
values around 0.87 and high consistency between the runs.
Similarly, the modularity score improves with the number of
clusters, with the values around 0.97 for m > 40 [Fig. 3(b)].
These high values of modularity scores are not surprising
since, given the sparseness of the network, it is relatively easy
to partition the graph into smaller clusters that are only weakly
connected to one another.

Figure 3(c) shows a single randomly chosen realization of
partitioning the network into m = 16 clusters (see Supple-
mental Material [48], Fig. S7 for three additional examples
with m = 2, 4, 8). In all of these examples, the results are
intuitively compelling: each cluster occupies a geographically
contiguous region and the boundaries between neighboring
communities often coincide with mountain ranges, major
rivers, and other geographical landmarks. We conclude that
our approach can be used to detect community structure in
large-scale complex networks.

VI. DISCUSSION

In this work, we have developed an approach to parti-
tioning complex networks into nonoverlapping communities.
Networks that occur in nature and society often exhibit com-
munity structure, with nodes within communities connected
by more links than nodes in different communities (see, e.g.,
Refs. [5,6,26–28]). However, this structure is often challeng-
ing to detect and there may be many alternative solutions of
similar quality, confronting community detection algorithms
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FIG. 3. WLA clustering of the Colorado road network. WLA was run 20 times for each value of m, with m =
{2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128} (220 independent runs in total). Each run started from a random initial assignment of nodes to
communities and used lmax = 105. (a) Mean and standard deviation of the normalized mutual information (NMI) for the ensemble of all(20

2

)
unique pairs of network partitions for each value of m. (b) Mean and standard deviation of the modularity score for 20 runs for each value

of m. (c) Visualization of one randomly chosen network partition with m = 16 communities [shown as a red dot in (a) and (b)]. Each node was
assigned the color of its community and superimposed on a Colorado map using its longitude and latitude coordinates. The geographical map of
the Colorado state was obtained from [60] and rendered black and white. Colors were assigned to each community using the greedy coloring
algorithm NETWORKX.ALGORITHMS.COLORING.GREEDY_COLOR from the NetworkX Python network analysis package [61]. The
coloring algorithm assigned 4 colors (red, green, blue, and purple) to 16 communities such that no pair of adjacent communities have the same
color.

with a hard optimization problem. The task of finding com-
munities in networks is similar to a clustering problem in
machine learning, in which, in the case of hard clustering, the
data set is divided into disjoint subsets on the basis of pairwise
distances between data points [35].

Our approach is based on the observation that short ran-
dom walks that start in a given community will preferentially
explore that community. To avoid potential issues related to
finite sampling, we formally consider the limit of an infinite
number of random walks that start from all nodes in the
network. For each random walk, the expected number of visits
to each node in the network is computed exactly using the
transition matrix of the network. Since the total number of
random walks is infinite, there is no sampling noise and the
expected number of visits to each node provides an exact
statistic, which is then used to assign nodes to communities
in a Bayesian sense. The number of steps in each random
walk, lmax, is a key hyperparameter of the algorithm: choosing
a very small value will mean that walks may not be able to
reach some of the nodes within their own community, while
choosing a very large value will make it more difficult to dif-
ferentiate between communities (see Supplemental Material
[48], Fig. S1). Nonetheless, our approach does not appear to
be overly sensitive to the exact value of lmax (see Supplemental
Material [48], Fig. S2).

In practice, our algorithm, which we call the walk-
likelihood algorithm, or WLA for short, is run iteratively
starting from the initial condition that may be random, drawn

from an informative prior, or provided by another algorithm
such as non-negative matrix factorization (NMF) [36,37]. The
algorithm is terminated once the partition of the network
into m communities stops changing substantially from iter-
ation to iteration. Since WLA requires the total number of
communities m as input, we have created another algorithm,
the walk-likelihood community finder, or WLCF, which uses
WLA as a basic building block to produce the optimal number
of network communities mopt through global moves such as
community bifurcation and merging (Fig. 1). Alternatively,
WLA can be simply run multiple times within a prespecified
range of m values, with mopt equal to m of the most modular
partition.

Our main score for judging the success of the cluster-
ing procedure is the network modularity score [8], although
we have also considered two additional measures: the inter-
nal edge density and the cut ratio [31,32]. To benchmark
WLA and WLCF against other algorithms in a controlled
setting, we have employed the LFR benchmark which was
created to provide a challenging test for community detection
algorithms [47]. On this benchmark, WLA and WLCF com-
pare very favorably with several state-of-the-art community
detection and clustering algorithms (Fig. 2 and Fig. S4 in
the Supplemental Material [48]). Moreover, in accordance
with Fig. S2 (Supplemental Material [48]), the dependence
on the exact values of lmax is also found to be weak in
this comparison (see Supplemental Material [48], Figs. S3
and S5).
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Another data set we have considered consists of eight
small- and medium-size real-world networks that are often
investigated in the network science literature (Table I and
Table S2 in the Supplemental Material [48]). On this group
of networks, WLCF produces modularity scores comparable
to those predicted by another algorithm, Multilevel [14], while
partitioning the network into fewer clusters. WLCF also tends
to produce low cut ratio scores, a sign that it identifies self-
contained clusters with few external links. However, WLCF
clusters are not characterized by the highest internal edge
density scores compared to the other algorithms (see Supple-
mental Material [48], Tables S3 and S4), probably because
these scores increase trivially with the number of communities
and WLCF tends to produce fewer clusters.

Using a set of networks from the LFR benchmark, we find
a power-law relation between the WLCF and WLA running
times T and the total number of nodes in the network: T ∼
Nα , with the scaling exponent 1.0 < α < 2.0 that depends on
the network type (see Supplemental Material [48], Fig. S6).
Therefore, our approach can be used to analyze large-scale
networks which may present difficulties to other algorithms.
To demonstrate this ability, we have applied WLA to a net-
work of roads in the state of Colorado with almost half a
million nodes (Fig. 3 and Fig. S7 in the Supplemental Material
[48]). The results are geographically sensible, with neigh-
boring clusters separated by major rivers, mountain ranges,
or corresponding to urban agglomerations such as Denver
metropolitan area.

To summarize, our computational framework for clustering
and network community detection is efficient and robust with
respect to the choice of initial conditions and hyperparame-
ter values. It compares favorably with several state-of-the-art
algorithms. Although ideas centered on random walks and dif-
fusion processes were previously explored in network science
and machine learning in the context of network community
detection [11,12,17,19,20,25], diffusion maps [42–44], and
spectral clustering [40,41], our approach is unique in its use
of random walks to assign nodes to communities probabilisti-
cally in a Bayesian sense. This is a significant extension of our
previous work, which used conceptually similar ideas to infer
properties of the entire network, such as its size, on the basis of
sparse exploration by random walks, but without partitioning
the network into distinct communities [45]. In the future, we
will investigate both applications and algorithmic extensions
of our approach, including its adaptation to the soft clustering
problem.

VII. METHODS

A. Network community metrics

Consider a network (undirected graph) with N nodes,
or vertices. The network is divided into m nonoverlapping
communities, or clusters, with Nc nodes in community c =
1 . . . m: N = ∑m

c=1 Nc. The network contains E edges in total;
we also define Ic, the total number of internal edges that
connect nodes within community c, and Ec, the total num-
ber of external edges that connect nodes in community c to
nodes in all other communities. Finally, a node i (i = 1 . . . N )
has ki edges attached to it, such that E = (1/2)

∑N
i=1 ki and

Tc = ∑
i∈c ki is the total number of edge ends attached to the

nodes in community c.
With these definitions, the modularity score is given by [8]

M =
m∑

c=1

(
ecc − a2

c

)
, (13)

where ecc = Ic/E is the fraction of all network edges that
are internal to community c and ac = Tc/2E is the fraction
of all edge ends that are attached to the vertices in commu-
nity c, such that a2

c is the expected value of the fraction of
edges internal to the community c if the edges were placed
at random. Thus, the modularity score is a sum over dif-
ferences between the observed and the expected fraction of
internal edges in each community. By construction, the posi-
tive modularity score indicates nontrivial groupings of nodes
within the network with, on average, more connections be-
tween nodes within each community than could be expected
by chance.

We also introduce two additional metrics used to estimate
the quality of network partitions into communities [31,32]:
(i) the internal edge density Dc = 2Ic/Nc(Nc − 1), which
measures the fraction of all possible internal edges observed
in cluster c, averaged over all clusters: D = (1/m)

∑m
c=1 Dc;

(ii) the average cut ratio R = (1/m)
∑m

c=1 Rc, where Rc =
Ec/Nc(N − Nc) is the fraction of all possible external edges
leaving the cluster.

B. Non-negative matrix factorization (NMF)

NMF is based on decomposing a non-negative matrix
XN1×N2 into two non-negative matrices LN1×m and Rm×N2 : X =
LR [36–39]. To cluster a graph into m communities using
NMF, the adjacency matrix of the graph, Ã, is factorized into
L and R, and each node is assigned to the community with
the largest matrix element in the corresponding row of L.
Note that N1 = N2 = N in this case. Specifically, the indicator
matrix U is defined as Uic = argmaxi(Lic), resulting in the
partition of the graph into m communities. We used SCIKIT-
LEARN to implement the NMF clustering method [62], with
the coordinate descent solver (solver=‘cd’), Non-negative
Double Singular Value Decomposition (NNDSVD) initializa-
tion (init=’‘ndsvd’) [38], and all other parameters left at their
default values.

C. Random walks on networks with communities

Consider a discrete-time random walk on an undirected
network with weighted edges: {wi j}, where wi j = w ji is the
edge weight or rate of transmission from node i to j (note
that wi j = 1, ∀ i, j for unweighted networks). At each step
the random walker jumps to its nearest neighbor with the
probability P(i → j) = wi j/wi, where wi = ∑

k∈nn(i) wik is
the connectivity (weighted degree) of node i and the sum is
over all nearest neighbors of node i. For unweighted networks
wi = ki, the node degree defined as the total number of edges
attached to node i. We assume that the network has a com-
munity c with Nc nodes. Then the average return time (i.e.,
the average number of random walk steps) to a node n ∈ c,
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provided that there are no transitions outside of the commu-
nity, is given by Wc/wn [45,63–65], where Wc = ∑Nc

i=1 wi

is the weighted size of all nodes in community c. Note that
for a set S = {n1, n2, . . . , nNp} of nodes in community c, the
average return time to any of the nodes in the set S is given by
Wc/Wp in the absence of intercommunity transitions, where

Wp = ∑Np

i=1 wi is the weighted size of all nodes in set S.
Assuming that the distribution of return times is exponen-

tial, or memoryless [45,66], the probability density to return
to a node n ∈ c after exactly ��c steps, with no transitions
outside of the community c, is given by

P(��c) = wn

Wc
e−(wn/Wc )��c (14)

in the continuous approximation [note that
∫ ∞

0 ��cP(��c) =
1]. Correspondingly, the probability of not making a return for
��c steps (i.e., the survival probability) is

S(��c) = 1 −
∫ ��c

0
��′

cP(��′
c) = e−(wn/Wc )��c . (15)

Under the memoryless assumption, the probability of making
K returns to the node n if �c steps are taken within the com-
munity c is given by the Poisson distribution P [45] with the
rate parameter wn�c/Wc:

P(K|�c) = P
(
K,

wn�c

Wc

)
= 1

K!

( wn

Wc
�c

)K
e−(wn/Wc )�c . (16)

The mean number of visits to the node n ∈ c is equal to the
Poisson rate parameter:

E (K|n) = wn�c

Wc
. (17)

Next, consider a stochastic process in which node n is
visited {Knc′ }m

c′=1 times by m random walks, on a network
with m communities. Each random walk starts from an arbi-
trary node in a distinct community c′ = 1 . . . m and therefore
can be unambiguously labeled by the community index. Dur-

ing a random walk originating in community c′, the random
walker takes �c′c steps on each community c of weighted
size Wc: {�c′c}m

c′=1 (we adopt the convention that a jump
from community c′ to c is counted as a step in community
c). Now, if the node n ∈ c, the probability of visiting this
node {Knc′ }m

c′=1 times by m random walks defined above is
given by

P
({Knc′ }m

c′=1|n ∈ c, {�c′c}m
c′=1

) =
m∏

c′=1

P
(
Knc′ ,

wn�c′c

Wc

)
.

(18)
If the community assignment of the node n is not known,

we can use Bayes’ theorem to find the posterior probability
that the node n ∈ c:

P
(
n ∈ c|{Knc′ }m

c′=1, {�c′c}m
c′=1

)
= 1

Z Pr(n ∈ c)
m∏

c′=1

P
(
Knc′ ,

wn�c′c

Wc

)
, (19)

where the normalization constant Z is given by

Z =
m∑

c=1

[
Pr(n ∈ c)

m∏
c′=1

P
(
Knc′ ,

wn�c′c

Wc

)]
(20)

and Pr(n ∈ c) = Nc,0/N is the prior probability that node n is
found in the community c of the initial size Nc,0. If all com-
munities are a priori assumed to be of equal size, Nc,0 = N/m
and the prior is uniform: Pr(n ∈ c) = m−1. More informative
priors may also be used when something is known about the
distribution of community sizes, for example, if P(Nc,0) ∼
Nc,0

−β with known β. In this case, the initial community sizes
can be generated by sampling from P(Nc,0).

Normalized mutual information

We use NMI [46] to quantify the similarity between net-
work partitions U and U ′:

NMI(U,U ′) = 2
∑m

c=1

∑m′
c′=1 PUU ′ (c, c′) log [PUU ′ (c, c′)/(PU (c)PU ′ (c′))]∑m

c=1 PU (c) log PU (c) + ∑m′
c=1 PU ′ (c) log PU ′ (c)

, (21)

where PU (c) = N−1 ∑N
n=1 Unc, PUU ′ (c, c′) = N−1 ∑N

n=1 UncU ′
nc′ , and m and m′ refer to the number of communities in the

partitions U and U ′, respectively. Note that NMI is always between 0 and 1, with NMI(U,U ′) = 1 if and only if the partitions
U and U ′ are exactly the same. Although Eq. (21) is valid for general values of m and m′, we focus on m = m′ because WLA
node reassignment procedure does not change the number of communities.

A Python implementation of WLA and WLCF is available in [67].
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