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Quantum skyrmion lattices in Heisenberg ferromagnets
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Skyrmions are topological magnetic textures that can arise in noncentrosymmetric ferromagnetic materials. In
most systems experimentally investigated to date, skyrmions emerge as classical objects. However, the discovery
of skyrmions with nanometer length scales has sparked interest in their quantum properties. Here, we simulate
the ground states of two-dimensional spin-1/2 Heisenberg lattices with Dzyaloshinskii-Moriya interactions and
discover a broad region in the zero-temperature phase diagram which hosts quantum skyrmion lattices. We argue
that the quantum skyrmion lattice phase can be detected experimentally in the magnetization profile via local
magnetic polarization measurements as well as in the spin structure factor measurable via neutron scattering
experiments. Finally, we explore the resulting quantum skyrmion state, analyze its real-space polarization profile
and show that it is a nonclassical state featuring entanglement between quasiparticle and environment mainly
localized near the boundary spins of the skyrmion.
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I. INTRODUCTION

Magnetic skyrmions are vortexlike quasiparticles charac-
terized by a nontrivial topological invariant in real space
[1–4]. These states are typically found in noncentrosymmetric
ferromagnets in a certain range of external magnetic field
and temperature, and are stabilized by an antisymmetric spin
exchange energy, termed Dzyaloshinskii-Moriya interaction
(DMI) [1]. After their first detection in a magnetic system
by a neutron diffraction experiment in 2009 [5], and a full
tomography by electron microscopy in 2010 [6], intense
follow-up studies revealed intriguing dynamical properties,
rendering skyrmions potentially useful for memory and com-
puting devices [7–11]. Usually, the skyrmions encountered
in these systems arise from thermal fluctuations and extend
over length scales that are much larger than the interatomic
distance and thus behave like classical objects. Other possi-
bilities to create skyrmions are through suitable dc current
devices, such as those proposed in Refs. [12,13]. However,
smaller skyrmions do exist [14] and have already created
interest in possible quantum properties of skyrmions. Several
works have predicted the quantum behavior of skyrmions by
using classical magnetic textures as a starting point and study-
ing quantum corrections in the semiclassical ferromagnetic
regime [15–19].

Beyond this semiclassical limit, some works have indicated
that quantum analogs of classical skyrmions might exist in
spin systems. The authors of Ref. [20] used a multiscale
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approach to demonstrate that mesoscopic magnetization vor-
tices are stabilized by quantum fluctuations [18,21], which
suggests the possibility of inherently quantum-mechanical
counterparts of these states at zero temperature. So far, at-
tempts to classify skyrmion excitations with sizes comparable
to the interatomic spacing have been made in frustrated quan-
tum lattice systems [22] and ferromagnetic lattices with DMI
[23,24]. Several geometries have been studied to understand
the quantum analogs of classical skyrmions, and quantitative
results have been obtained by numerical diagonalization of
the Hamiltonian [22–24]. Since the dimension of the quantum
Hamiltonian scales exponentially with the number of lattice
sites, such exact diagonalization (ED) strategies are limited
to small system sizes containing at most ≈30 spin-1/2 sites
(without exploiting symmetries). Although DMI interactions
are among the most popular to investigate the formation of
classical skyrmion phases, their quantum analogs are analyt-
ically hard to handle and quantitative results beyond system
sizes amenable for ED are still lacking. As an alternative
route to quantum skyrmions that avoids DMI, frustrated spin
lattice systems were studied in Ref. [22]. Using ED for small
systems and analytical spin-wave theory, the authors identified
skyrmions with magnon bound states and developed a phe-
nomenological theory based on a trial wave function.

Here, we use the density matrix renormalization group
(DMRG) algorithm to explore ferromagnetic phases of
quantum spin-1/2 Heisenberg models with DMI and uni-
axial anisotropy. As our main result, we discover a zero-
temperature quantum phase with a nontrivial magnetic spin
texture that signals an emergent quantum skyrmion lattice.
This phase was previously overlooked because it appears only
beyond a critical system size which for realistic parameters
is larger than the system sizes amenable to ED. We iden-
tify three ferromagnetic phases that can be directly observed
and distinguished in the space-resolved magnetization pro-
file. Furthermore, we argue that the polarization gives access
to the zero-temperature phase diagram of the model under
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FIG. 1. DMI vector pattern D±ai for nearest-neighbor interac-
tions on triangular and square lattices.

investigation. Contrary to similar quasiparticles found in frus-
trated lattices [22] or quantum skyrmions embedded in a
classical magnet [24], we show that the skyrmion lattice phase
reported here emerges from entangled spin-1/2 pairs, which
bear witness to a genuine quantum mechanical origin without
classical analog, a feature that may pave the way toward a
microscopic description of skyrmion qubits used for realizing
quantum logic elements based on nanoscale devices [25].

II. MODEL

We study the zero-temperature phase diagram of a quantum
spin-1/2 Heisenberg model with DMI and external magnetic
field. The Hamiltonian reads:

Ĥ = 1

2

∑
〈r,r′〉

[JŜr · Ŝr′ + Dr′−r · (Ŝr × Ŝr′ )] +
∑

r

B · Ŝr, (1)

where Ŝr = h̄σ̂r/2, with Pauli matrices σ̂α,r for α ∈ {x, y, z},
denotes a spin-1/2 operator at position r. J < 0 is the ferro-
magnetic exchange coupling strength, Dr′−r is the DMI vector,
and B = Bêz denotes the applied magnetic field along the
z axis. The notation 〈r, r′〉 implies a sum over all pairs of
nearest-neighbor lattice sites. In Sec. VI, we will also consider
the impact of a uniaxial magnetic anisotropy with strength K ,

ĤK = 1

2

∑
〈r,r′〉

KŜz
r Ŝz

r′ . (2)

We solve the above Hamiltonian numerically by means
of matrix product state (MPS) simulations on different
two-dimensional (2D) Bravais lattices with open boundary
conditions consisting of lattice sites r = ∑

i niai spanned by
basis vectors a1,2 with az,i = 0. For details on the implemen-
tation and on the 2D-1D mapping required for using MPS, we
refer to the Appendix and Ref. [26]. The DMI vectors read

Dr′−r = Dêz × (r′ − r), (3)

with a positive DMI vector amplitude D > 0. For triangular
and square lattices, we depicted the orientation of the DMI
vectors in Fig. 1.

We apply the external magnetic field B parallel to the
lattice plane normal êz. Without loss of generality, we as-
sume negative values B < 0 such that field-polarized spins
are eigenstates of Ŝz

r with eigenvalue +1/2 and therefore
align with the plane normal. For convenience, we will express
interatomic distances in units of the lattice constants ai = |ai|
and energies in units of D, with h̄ = 1.
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FIG. 2. Local polarization mz,r (in color) of the ground states
of the three different phases as obtained by DMRG simulations of
Eq. (1). Arrows depict the direction and size of the magnetization
components mx/y,r perpendicular to the external field. We study
different triangular (a)–(l) and square (m)–(r) systems with regular
boundaries (odd rows) and circular boundaries (even rows). The
parameters used are J = −D/2 and K = 0, with a varying external
field B = −0.1D (first column), B = −0.5D (second column) and
B = −1.0D (third column). We find quantum skyrmions for system
sizes larger than a critical diameter L ≈ 8a, irrespective of the lattice
symmetries and boundary conditions.

The Hamiltonian (1) may be seen as the quantum coun-
terpart of typical classical spin models which give rise to
magnetic skyrmions [1–4]. In this work, we discuss the emer-
gence of quantum skyrmions and quantum skyrmion lattices
in two-dimensional triangular and square lattices at zero tem-
perature and with different open boundary shapes (see Fig. 2).

III. INDIVIDUAL QUANTUM SKYRMIONS

For small system diameters (L � 5a), the exact eigenvalues
and eigenvectors of the full Hamiltonian can be computed nu-
merically, for instance by the Lanczos or Arnoldi algorithms,
and we first cross-checked our own ED codes by reproducing
the results of Ref. [23]. To ensure the correctness of our find-
ings, we further compared expectation values computed from
the MPS obtained by DMRG with ED results for all system
sizes amenable for ED and found quantitative agreement up to
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a self-imposed accuracy δ. We thereby checked that finite-size
ground states of the spin-1/2 Hamiltonian can be approxi-
mated faithfully with MPS (for more details, see Appendix A
and [26]). In fact, the reliability of DMRG for 2D spin-1/2
quantum Heisenberg models has already been demonstrated in
numerous works, with a strong bias toward frustrated antifer-
romagnets and spin liquids, which are prime examples of the
most demanding systems to simulate numerically due to the
presence of topological order and long-range entanglement
[27–57]. In this work, we focus on the computationally less
demanding scenario of magnetically ordered phases hosting
skyrmions and field-polarized (FP) states in the ferromagnetic
regime J < 0.

Beyond a critical system diameter of L ≈ 8a, we find val-
ues of D and B for which the ground state of the Hamiltonian
Ĥ hosts skyrmion-like spin textures confined in the interior
(bulk) of the lattice, which we display in Fig. 2. We checked
that these skyrmion wave functions correspond to approxi-
mate eigenstates of the Hamiltonian by computing the energy
variance ε and performed a linear extrapolation toward results
without numerical errors (see Appendix A for a discussion).

We compute the components of the spin magnetization,
which are local expectation values mr = 〈Ŝr〉. Since mz,r is
parallel to the external field, we call this magnetization com-
ponent the polarization. For B ≈ J = −D/2, the local spin
profiles yield magnetization textures similar to those obtained
for classical skyrmion configurations of the Néel (hedgehog)
type: the central spin is polarized opposite to the applied
magnetic field, and the spins wind radially from the center
toward the periphery. In Fig. 2, we depict the polarization
along the field (mz,r) using a color scale and the in-plane
magnetization (mx/y,r) by arrows. More detailed radial and an-
gular distributions of panel Fig. 2(e) are depicted in Fig. 3. In
Fig. 4, we show that the average polarization mz = 1

N

∑
r mz,r,

as a function of the external field, yields three disconnected
regions uniquely associated with the three phases of Eq. (1).

We estimate the size of an individual quantum skyrmion
as the number of lattice sites over which the polarization
changes its orientation once and the components orthogonal
to the external field vanish. The radius can then be read out
from Figs. 2 and 3 and results in r0 ≈ 3a for J = −0.5D and
K = 0. These quantum skyrmion (SK) ground states occur
not only for the fine-tuned parameters presented in Fig. 2
but in a wide range of intermediate values of the magnetic
field. Furthermore, the emergence of individual skyrmions for
small lattices is largely independent of the lattice geometry.
While the effect of boundaries cannot be neglected for the
small systems considered here, we verified that the size of
an individual skyrmion is neither affected by the boundary
conditions (see Fig. 2) nor the system diameter (see Fig. 8).

As we show in Fig. 2, for small magnetic fields, the sys-
tem’s ground state is a helical spin spiral (HS) state. This is
characterized by a degenerate ground state, in which each pos-
sible ground state features oscillations of the magnetization
along a symmetry axis of the lattice. The large ground-state
degeneracy makes the spin spiral phase notoriously difficult to
simulate for tensor network states. In contrast, for large mag-
netic fields, the system reaches a ferromagnetic state, where
all spins are polarized parallel to the external magnetic field.
The bulk of the field-polarized ferromagnet is devoid of entan-

FIG. 3. Components of the local polarization mr of the centered
skyrmion ground state depicted in Fig. 2(e). From the radial winding
at fixed y = 0 (upper panel) the radius of the quasiparticle can be
estimated to r0 ≈ 3a. The azimuthal projection (lower panel) at fixed
|r| = a reveals a sinusoidal winding of the components mx,y, with a
phase difference of π .

glement and can thus be most efficiently approximated by an
MPS. For parameters that result in SK ground states, DMRG
reliably converges within a few dozen sweeps and yields ex-
cellent MPS approximations with maximum truncation error
�ρ ≈ 10−6, even for small bond dimensions M = 32 [26].

We want to stress that the fine-tuned regime J = −0.5D
is not necessary to enter the skyrmion lattice phase. By in-
creasing the ferromagnetic exchange coupling to a value J =
−2D, we obtain qualitatively similar results, which we present
in Fig. 4. Note, however, that the corresponding system
diameter for J = −2D is dramatically increased compared to
J = −0.5D. We attribute this to the fact that the skyrmion
radius is determined by the ratio J/D.

FIG. 4. Average polarization mz as a function of the external
field strength B. The ferromagnetic exchange interaction (without
anisotropy, K = 0) is fixed to J = −0.5D (system diameter 9) and
J = −2D (system diameter 21) as indicated in the figure. The color
scale indicates the maximum entanglement entropy S (see text).
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IV. ENTANGLEMENT

To probe whether the spins of a skyrmion are entangled, a
genuine quantum feature of many-body systems, we compute
the entanglement entropy of a suitable bipartition of the sys-
tem. The latter is defined as SvN = −tr(ρA ln ρA), which can
be understood as the von Neumann entropy of the reduced
density matrix ρA = trB(ρAB), obtained by splitting the set of
lattice sites N into two disjoint sets A and B, and performing
the partial trace over subsystem B. For our purposes, it is
sufficient to fix A and B as two patches that are symmetric
about the central site (see Appendix B). We denote the entropy
associated with this symmetric center-site partition choice as
S, which is plotted in color in Fig. 4 and Fig. 9, panels (c)
and (d).

MPS are constructed to target states of small entropy
by truncating the reduced density matrix to a dimension
dim(ρA) � M, which yields an upper bound for the entangle-
ment entropy of an MPS state, S̃ = ln M, a quantity on the
order of 1 − 10 for typical simulations. The bulk of FP states
can be approximated by product states of spin-1/2 particles
aligned to the axis of the magnetic field, and for those states,
one finds S ≈ 0 up to small finite-size corrections. In contrast,
for systems hosting a single quantum skyrmion, we obtain val-
ues for the entanglement entropy in the range 0.2 < S < 0.7,
which demonstrates the presence of significant entanglement
in the spin-1/2 quantum skyrmion and indicates that they can-
not be expressed as a classical product state. Finally, in the HS
phase, we find the strongest entanglement (0.7 < S). While
we focus mainly on skyrmions with ferromagnetic exchange
interaction (J < 0), we find strong signatures of skyrmions
and skyrmion lattices for antiferromagnetic exchange (J >

0) as well. However, this phase differs from the ferromag-
netic skyrmions and skyrmion lattices, most apparently in the
entanglement, which is significantly larger. We postpone a
detailed investigation of quantum skyrmions and skyrmion
lattices for antiferromagnetic exchange couplings to future
work.

The von Neumann entropy targets quantum correlations
between a bipartition of the system but does not provide local
information about the entanglement between individual spin-
1/2 pairs. To access the spatial distribution of entanglement,
it is therefore more convenient to calculate the concurrence
Cr1r2 , defined for two lattice sites at positions r1 and r2.
For a generic state it can be expressed through the root of
the spectrum of the non-Hermitian matrix Rr1r2 = ρr1r2 ρ̃r1r2 ,
where ρr1r2 = trr/∈{r1,r2}(ρ) is the reduced density matrix of the
two sites r1 and r2, and ρ̃r1r2 = (σy ⊗ σy)ρ∗

r1r2
(σy ⊗ σy) is a

rotation of this reduced density matrix. The concurrence is
constructed from the square roots λi (ordered in decreasing
order) of the eigenvalues of R,

Cr1r2 = max {0, λ1 − λ2 − λ3 − λ4}. (4)

It is related to the entanglement of formation: for separable
states C vanishes, and it increases monotonically toward the
limit C = 1 for two maximally entangled spin-1/2’s [58].
Using the concurrence, we obtain the space-resolved entan-
glement distribution between spin pairs in the different phases
and present its qualitative distribution by green links in Fig. 5.
For a more quantitative analysis, we differentiate between

FIG. 5. Concurrence sketch of representative ground states in the
three phases without anisotropy K = 0 and J = −2D. The system di-
ameter is L = 21. We plot the local magnetization as colored arrows
and the concurrence by green lines connecting pairs of sites. In panel
(a), we present a SK state at B = −D/4, in (b) a HS ground state for
B = −D/16 and in (c) a FP state at B = −3D/4.

concurrences of different ranges up to third-nearest neighbor
in Table I.

For HS states, we find the largest concurrences up to CHS =
0.16. Therefore, we use CHS as a measure of reference to
quantify the entanglement of the remaining ordered states. For
the FP states (large magnetic field), we find almost vanishing
entanglement in the bulk, indicating that the bulk spins are
separable. Small nonzero values of C ≈ 0.35CHS occur at the
boundary due to the finite system size and strong DMI. Fi-
nally, for the quantum SK states (intermediate magnetic field),
we find that the spins inside the skyrmion quasiparticle are
only weakly entangled, but we find concurrences C ≈ 0.8CHS

at the outer rim spins of the skyrmion, signaling significant en-
tanglement of the quantum skyrmion with the field-polarized
environment. Interestingly, both the helical state and quantum
skyrmion show long-range concurrences between distant spin
pairs beyond next-to-nearest neighbors.

V. STRUCTURE FACTOR AND NEUTRON SCATTERING
CROSS SECTION

We compute the Fourier components of the spin-spin cor-
relation function as follows,

Sαβ (q) =
∑
rr′

eiq·(r′−r)〈Ŝα,rŜβ,r′ 〉, (5)

where α, β ∈ {x, y, z}, q = (qx, qy, qz ) a wave vector which is
later associated with the scattering vector, and the expectation
values of the product of spin operators are evaluated with
the ground state obtained by the MPS simulations of small
hexagon flakes [Figs. 2(d)–2(f)]. From Sαβ , the elastic mag-
netic neutron scattering cross section dσ/d� at momentum
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TABLE I. List of concurrences corresponding to Fig. 5, i.e., HS,
SK, and FP state at different spin distances (nearest neighbor, next-
nearest neighbor, and third-nearest neighbor). Values are depicted
in a linear gray scale, with black corresponding to the maximum
in the nearest-neighbor concurrence of the HS state. We find that
HS and SK states feature entangled spin pairs beyond next-nearest
neighbors, whereas FP states show only minute entanglement at the
system boundaries with vanishing entanglement in the bulk.

transfer vector q is given by [59]:

dσ

d�
(q) ∝

∑
αβ

(δαβ − q̂α q̂β )Sαβ (q), (6)

where q̂ = q/q = (q̂x, q̂y, q̂z ). Concerning experiments, we
emphasize that dσ/d� corresponds to a scattering geome-
try where the externally applied magnetic field B = Bêz is
parallel to the wave vector of the incoming neutron beam, and

where the detector plane is spanned by the two components qx

and qy of the scattering vector. In the limit of the small-angle
approximation, one can assume qz = 0.

In Fig. 7 we display dσ/d� for the helical, skyrmion, and
field-polarized states (see Fig. 6 for all components Sαβ of the
structure factor). The geometry and local polarization of those
states is displayed in Figs. 2(d)–2(f). Generally speaking,
long-range magnetic ordering is signaled by the presence of
Bragg peaks in dσ/d� at momentum transfers q correspond-
ing to the wave vectors of the ordering. We expect additional
diffuse magnetic scattering components in dσ/d� rooted in
spatial variations of the spin orientation.

As expected, the cross section of the FP state in Fig. 7(c)
is isotropic and exhibits a single broad peak centered at q = 0
mainly caused by the component Szz parallel to the external
field. The contributions in Sαβ (α ∈ {x, y}, β ∈ {x, y, z}) are
attributed to finite-size effects, caused by a helical winding of
〈Sr〉 near the boundaries due to the strong DMI interaction
(see Fig. 2). The azimuthal average of the cross section in
Fig. 7(c), defined as (2π )−1

∫ 2π

0 dϕ(dσ/d�) can be well
described by the form factor of a uniformly polarized thin
circular disk with a radius R corresponding to the cluster ra-
dius, i.e., dσ/d�(q) ∝ [2J1(qR)/(qR)]2, where J1(z) denotes
the first-order Bessel function. To highlight this point, we dis-
play the first two minima of [J1(qR)/(qR)]2 (for R = 4a) by
dotted white lines in Fig. 7(c) and find a very good agreement
to the numerical data of the discrete system. The HS state in
Fig. 7(a) is characterized by a superposition of spin spirals
with wave vectors q 
= 0, resulting in six pronounced Bragg
peaks in Szz(q). We observe in the SK phase a superposition of
the two extreme limits: In particular, we find a Bragg peak at
q = 0, together with an off-diagonal Bragg “ring” caused by
the radial polarization winding of the skyrmion [see Fig. 7(b)].
The radius of the skyrmion can be estimated as r0 = q−1

0 ≈ 3a
with q0 ≈ 1/(3a) the momentum modulus of the q 
= 0 Bragg
ring, consistent with the estimate given in Fig. 3. Hence, the
predicted quantum skyrmion profile yields a distinct signature
in the measurable neutron scattering cross section and allows a
determination of its size. We want to stress that a classical spin

FIG. 6. Components of the structure factor Sαβ (q) (arbitrary units). Left: Helical state at B = −0.1D. Center: Skyrmion state at B =
−0.5D. Right: Field-polarized state at B = −1.0D. The geometry and local polarization is displayed in Figs. 2(d)–2(f).

043113-5



ANDREAS HALLER et al. PHYSICAL REVIEW RESEARCH 4, 043113 (2022)

FIG. 7. Elastic magnetic differential scattering cross sec-
tion dσ/d� (in arbitrary units). (a) Helical state at B = −0.1D,
(b) skyrmion state at B = −0.5D, and (c) field-polarized state at
B = −1.0D for a triangular disk system of radius R = 4a. The ge-
ometry and local polarization is displayed in Figs. 2(d)–2(f).

profile compatible to the (normalized) quantum mechanical
expectation values can lead to a cross section in qualitative
agreement with the ones reported here. However, quantitative
deviations are expected because, for classical systems, the
spin-spin correlation functions factorize since the zero tem-
perature configuration is nondegenerate for B 
= 0. Therefore,
a direct measurement of the connected spin-spin correlation
function 〈σ̂α,rσ̂β,r′ 〉 − 〈σ̂α,r〉 〈σ̂β,r′ 〉 will differentiate classical
from quantum skyrmion states at zero temperature. Classi-
cal and quantum states also differ locally in the spin norm,
which is not necessarily conserved in general | 〈Ŝr〉 | � 1/2.
We find that the domain wall spin norm at the outer rim of the
skyrmion (where the concurrence is large) is about 4% lower
compared to the field-polarized environment.

VI. QUANTUM SKYRMION LATTICE PHASE

After having discussed the properties of individual quan-
tum skyrmions in the preceding paragraphs, we now turn to
the phase diagram of the system. Our numerical technique
makes it possible to reach system sizes much larger than
that of individual skyrmions, which in principle allows us
to extrapolate toward a phase diagram in the thermodynamic
limit. While the HS and the FP phase remain unchanged when
increasing the system size, at intermediate magnetic fields,
the ground state for large lattices features a regular lattice
of quantum skyrmions (SKX). Similarly to their classical
analogs, the individual skyrmions form a dense packing, and
for larger system sizes, we thus find quantum skyrmion chains
and lattices, for which we plot examples in Fig. 8.

(a) (b) (c)

FIG. 8. Local polarization of regular rhomboid triangular lattice
ground states at J = B = −0.5D and K = 0. For parameters in the
SKX3a regions of Fig. 9 and larger systems, the quasiparticles are
densely packed and form a skyrmion lattice.

We elucidate the appearance and robustness of quantum
skyrmion lattices as a function of the external magnetic field,
the strength of DMI, and perturbations of the form Eq. (2) due
to uniaxial anisotropy. For this calculation, we have concen-
trated on a triangular lattice with disk boundary conditions of
diameter L = 9 sites, for which we obtain a single centered
skyrmion for B = J = −0.5D in the unperturbed case K = 0
[see Fig. 2(e)]. We relax the fine-tuned parameter lines of
Fig. 2 by variations of B, J , and consider nonzero uniaxial
anisotropies for J < 0 by varying K .

Based on our simulations, we predict the existence of at
least three distinct quantum phases of our model: (i) a region
hosting HS states for weak field amplitudes, (ii) a valley for
field strengths of the order of B ≈ −0.5D, which features
a lattice formed by quantum skyrmions of radius r ≈ 3a
(SKX3a), and (iii) an FP phase where spins align parallel to
the external field.

Helical spin spiral states are characterized by a vanishing
average polarization mz, whereas field-polarized states are
maximally polarized (up to finite-size effects). As shown in
Fig. 2, quantum skyrmions are embedded in a background of
field-polarized spins, and as a consequence, the state in the
skyrmion lattice phase will have a finite polarization smaller
than a corresponding field-polarized state. We numerically
confirm this intuitive picture and find disjoint intervals of
average polarization mz uniquely linked to each phase [see
Fig. 4(a)], which can be summarized in the zero-temperature
phase diagram presented in Fig. 9. Note that Fig. 9 is obtained
by simulations of a fixed flake system size and is therefore
only qualitatively correct in the thermodynamic limit. Further-
more, the interplay between system size and skyrmion length
scale might lead to incommensurate phases which will be the
subject of future work. In order to determine the exact position
of quantum critical points or the nature of the quantum phase
transition, a finite size extrapolation is necessary, a study
which we leave for future work.

Our results about the dependence of the skyrmion phase on
the uniaxial anisotropy are in qualitative agreement with cor-
responding classical systems, where it is known that a weak
uniaxial anisotropy tends to stabilize skyrmion configurations
at smaller magnetic fields [14,60]. Furthermore, we observe
that the skyrmion radius increases with −J/D, such that quite
large spin-1/2 systems might be needed to resolve even in-
dividual quantum skyrmions. Based on our results for J =
−0.5D we conjecture that the skyrmion lattice phase should
also exist for such cases where the individual quasiparticles
have a larger radius, but due to limitations dictated by the nu-
merical complexity (which we discuss in Appendix A), other
numerical techniques must be consulted to make quantitative
predictions about the phase diagram for −J/D � 0.5. Similar
values of the exchange coupling are expected in present thin
film experiments [61], thereby making our results of practical
relevance.

Besides the ferromagnetic SKX3a phase, which is the fo-
cus of this work, we find signatures of a quantum skyrmion
lattice phase in the absence of exchange coupling and even
for antiferromagnetic couplings J � 0. However, because
of the significantly enhanced entanglement [see Fig. 9(c)],
the MPS ansatz for this phase requires an exponential
scaling of the bond dimension with the system size, and
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FIG. 9. Average magnetization [(a) and (b)] and maximum en-
tanglement entropy [(c) and (d)] of the quantum spin-1/2 model
defined by the Hamiltonian in Eq. (1) and Eq. (2) as a function of
the external field strength B. The skyrmion lattice phase depicted in
Fig. 8 is found within the pockets labeled SKX3a. The blue region
hosts HS states and the red region features FP states. In (a) and (c),
we vary J with K = 0, whereas (b) and (d) show the deformation of
the phase boundaries by an uniaxial anisotropy K with J = −0.5D.

therefore simulations of large clusters are out of reach for
DMRG.

VII. SUMMARY

We have demonstrated that the ground state of the two-
dimensional ferromagnetic spin-1/2 Heisenberg model in the
presence of DMI hosts quantum skyrmions at intermediate
magnetic fields B ≈ J = −D/2. The resulting magnetic tex-
tures are characterized by a central spin pointing opposite to
the direction of the applied magnetic field and winds radially
outwards toward the field-polarized environment, similar to
a classical Néel skyrmion. For periodic boundary conditions
and in the thermodynamic limit, we expect the ground state of
the skyrmion lattice phase to be degenerate, scaling with the
area of the individual skyrmion quasiparticles, such that the
bulk of a system with open boundary conditions corresponds
to a spontaneously symmetry broken state. The existence
of quantum skyrmions yields experimental signatures in the
position-dependent magnetization, the average polarization,
and the structure factor, and we showed that these observables
allow a distinction between a spin spiral phase at small mag-
netic fields, a skyrmion phase at intermediate magnetic fields,
and a field-polarized phase at large magnetic fields.

While the spin texture is reminiscent of classical
skyrmions, we should point out that in the present case, the
skyrmion phase arises as a quantum ground state at zero tem-
perature with open boundary conditions. In contrast, classical
skyrmions typically occur at finite temperatures and result
from a minimization of the free energy. Moreover, our exam-
ination of the resulting quantum state using the entanglement
entropy and the concurrence has revealed that the quantum
skyrmion state features significant entanglement shared be-
tween spin pairs of the skyrmion boundary. We argued that
the quantum and classical states can be distinguished by the
norm of the polarization | 〈Ŝr〉 | � 1/2 (conserved for classi-
cal states) and by corrected correlation functions (vanishing
for classical states). We therefore conclude that a semiclassi-
cal treatment of the quantum skyrmion based on a classical
magnetic texture would not necessarily capture the internal
degrees of freedom of a quantum skyrmion.

Towards larger system sizes, we found that the quan-
tum skyrmion phase is characterized by a regular lattice of
skyrmions. As the size of individual skyrmions is determined
by the system parameters B, J , D, and K , a regular lattice
requires commensurability between the lattice size and the
skyrmion size. While our numerical simulations cannot reach
the limit of infinite system size, our results allow us to extrap-
olate that the ground state in the thermodynamic limit features
a dense packing of quantum skyrmion textures. Each of these
quantum skyrmions has entanglement localized near its do-
main wall, but the entanglement between different skyrmions
is small, which suggests that they can be approximated as
individual quasiparticles.

We expect that our results may guide the develop-
ment of an effective analytical field theory of the quantum
skyrmion phase. Based on our experience, we conclude
that variational tensor networks provide a suitable numeri-
cal technique to study these systems. This is not surprising
for gapped quantum phases with short-range interactions
and bounded entanglement. Nevertheless, using MPS for
a two-dimensional system is not without pitfalls, as the
necessary mapping on a one-dimensional system causes non-
local interactions. We have made sure that our results have
fully converged for lattice sizes corresponding to individual
skyrmions. However, we have seen that the numerical errors
grow for the system sizes required for 4 × 4 skyrmion lattices
(29 × 29 spin-1/2 in total). For such large systems, we expect
our results to be only qualitatively correct.

Regarding alternative numerical schemes, we have verified
that our MPS results agree quantitatively with all available
results from exact diagonalization. We have also compared
our results to variational methods based on neural-network
quantum states. However, we found significant deviations
between the exact result and neural-network states even for
small system sizes, and the error was already on the or-
der of 10% for the energy eigenvalues. This suggests that
neural-network states may not provide an efficient variational
ansatz for mesoscopic spin systems with DMI. We expect that
quantum Monte-Carlo simulations might be useful to go to
larger system sizes. However, the inclusion of DMI together
with an external magnetic field brings about a sign problem
that hinders convergence. Other promising tensor network
states for 2D spin systems with DMI are variational tree
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tensor network states [62] and projected entangled pair states
(PEPS) [63]. We expect finite PEPS to outperform MPS for
larger spin-1/2 systems hosting skyrmion lattices, especially
since recently a more efficient gradient-based optimization
has been developed based on automatic differentiation tech-
niques [57,64,65].
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APPENDIX A: MATRIX PRODUCT STATES

Tensor networks provide an important numerical toolbox
in computational physics and have been applied success-
fully to countless interacting and strongly correlated systems
[66–69]. One of the most established algorithms, called
DMRG [70–72], is understood as a sequential variational
optimization of adjacent MPS tensors until convergence is
reached. Our DMRG simulations are mainly based on the Ju-
lia package ITensors [73], and we made available a condensed
version, reproducing Fig. 2(e), on GitHub [26]. Addition-
ally, we cross-checked ITensor with TeNPy simulations [74],
and upload the condensed version for the TeNPy framework
alongside the julia implementation [26].

A generic state consisting of N spin-1/2 sites reads

|ψ〉 =
∑

i1,i2,...,iN =↑,↓

(
N∏

n=1

A(in )
n

)
|i1, i2, . . . , iN 〉 , (A1)

where {|ik〉} forms a canonical basis of the Hilbert space at
site k out of N sites in total. For a finite system with Dirichlet
boundary conditions, the objects A(in )

n are matrices, except for
the two boundary vectors A(i1 )

1 and A(iN )
N , such that the result

of the product is a scalar. The dimension of the matrices M =
maxn dim(A(in )

n ) is called the bond dimension. If M is fixed to
an arbitrary integer, then the MPS representation of quantum
states can be used as a variational ansatz to approximate the
minimum energy eigenstate. The quality of this approxima-
tion is controlled by M. This is particularly transparent in the
so-called Schmidt decomposition |ψ〉 = ∑M

i=1 si |ψA,i〉 |ψB,i〉
in which A and B denotes an arbitrary bipartition of the sys-
tem and |ψα,i〉 ∈ Hα forms a complete basis in the Hilbert
space of the part α ∈ {A, B}. The Schmidt values si are the
roots of the eigenvalues of the reduced density matrix, and
therefore related to the von Neumann entanglement entropy
S = −∑M

i=1 |si|2 ln(|si|2). Consider a truncation M̃ < M, then
states with a small weight in the reduced density matrix are
neglected, and the overlap between the original state with
bond dimension M is reduced.

Similarly to quantum states having an MPS representation,
quantum operators have a matrix product operator (MPO) rep-
resentation. Let MH be the bond dimension of the Hamiltonian
MPO, then the standard DMRG algorithm bears a leading nu-
merical complexity of O(M3MH ) (assuming that M2

H < M2).
For generic many-body states rewritten as MPS, M is an

extensive quantity in the number of sites and diverges in the
thermodynamic limit. If the target state of a one-dimensional
system obeys an area law of the quantum entanglement, then
the von Neumann entropy is guaranteed to be a finite constant
[75]. Consequentially, M remains finite in the thermodynamic
limit, and MPS becomes exact, which explains the success
of DMRG applied to one-dimensional quantum systems. De-
spite its limitations in two dimensions, DMRG is frequently
applied to ladder systems and can even yield reliable re-
sults for strongly correlated lattices, especially in the case of

FIG. 10. Energy extrapolations for the three systems plotted in Figs. 2(d)–2(f). Energy and error of the helical spin spiral states are
displayed in panels (a) and (d), of skyrmion states in panels (b) and (e) and of field-polarized states in panels (c) and (f). The black line
corresponds to a least squares fit, whose energy offset E0 and error is displayed in Table II.
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TABLE II. Least-squares energy fit for the data of Fig. 10.

B/D −0.1 −0.5 −1.0

E�ρ

0 −34.85093(9) −41.024253(4) −53.428962927(1)
E ε

0 −34.85707(4) −41.024009(1) −53.4289732208(1)

quantum spin-1/2 Heisenberg models. We expect MPS to
reliably capture the physics of the quantum skyrmion lattice
phase because the external field polarizes the environment,
and the resulting states carry no entanglement in the paramag-
netic regions, but localized entanglement around the domain
wall of the skyrmion.

We typically start with random MPS initial states of bond
dimensions up to M � 1024, followed by sequential vari-
ational optimizations (“sweeping”) of two adjacent tensors
(two-site DMRG). The two-site DMRG allows us to estimate
the truncation error �ρ = ∑∞

i=M+1 s2
i , which we use in Fig. 10

to extrapolate toward results without numerical errors. To
ensure that we display converged results only, we carefully
monitor local spin expectation values and stop the simulation
if changes in the observables become smaller than δ = 10−10.
Since we use DMRG in two spatial dimensions, convergence
to a spin spiral state may require many sweeps, on the order
of 100–1000. The quality of the approximate ground state
with energy E (M ) = 〈ψ (M )|Ĥ |ψ (M )〉 can be estimated by
the energy variance

ε(M ) = 〈ψ (M ) | (Ĥ − E (M ))2 | ψ (M )〉. (A2)

By construction, ε = 0 for exact eigenstates of the Hamilto-
nian. Since MPS approximates the wave function with a finite
bond dimension M, we have ε(M ) > 0 and limM→∞ ε(M ) =
0 in general. Similarly, limM→∞ E (M ) = E0 converges to the
true eigenstate energy. To estimate the numerical error of our
approximate wave functions, we perform linear extrapolations
of the energy scaled against the truncation error [28] and
the energy variance [43]. The outcomes of this extrapolation
are presented in Fig. 10 and Table II. We want to stress
that the MPS approximations corresponding to skyrmion and

field-polarized states easily reach convergence within a few
dozen sweeps and follow the expected linear trend in the
approximation errors �ρ and ε [26].

Changes in the local spin expectation values beyond M =
128 are invisible to the naked eye when displayed on the scales
used in the main text such that a detailed error extrapolation
is not needed. A word of caution is due in the case of helical
spin spiral states: as we already explained in the main text,
these states are difficult to simulate using MPS due to the
large degeneracy of the ground-state manifold. This leads to
some issues in reaching convergence (up to 1000 sweeps are
needed) which for too small bond dimensions may even cause
DMRG to get stuck in local energy minima corresponding to
excited eigenstates. In the helical phase and for large lattices,
MPS is thus not always reliably converging to approximations
of the global ground state but converges under some circum-
stances to low-lying excited states with less entanglement.

APPENDIX B: MAPPING FROM 2D TO 1D

Before we can apply DMRG to the system at hand, the
2D lattice must be mapped to a 1D chain. The map from a
2D lattice to a 1D chain can be performed by a sequential
numbering of the lattice nodes with major ordering along an
arbitrary axis (zigzag order). We choose the major axis to be
a2. This can be achieved by f (r(n1, n2)) = n2 + ∑

n<n1
l (n),

where l (n) is an auxiliary function that encodes the lattice
open boundary conditions and r(n1, n2) = ∑

i niai.
As a result, the lattice Hamiltonian Ĥ = ∑

〈r,r′〉 Ĥr,r′ +∑
r Ĥr is mapped to a chain Hamiltonian Ĥ =∑
〈r,r′〉 Ĥf (r), f (r′ ) + ∑

r Ĥf (r). To simplify the remaining
discussion, we now assume square or rhomboid boundary
conditions (see Fig. 12), and 1 < ni < Li, such that l (n) = L2.
On-site contributions remain local, nearest-neighbor
interactions along the major axis remain short ranged,
but the interactions along the a1 axis now have an extended
range | f (r) − f (r ± a1)| = L2. This results in a growth of
the dimension of the Hamiltonian matrix product operator
MH ∝ L2. To obtain reasonable computation times for large

FIG. 11. The three distinct ground states of Eq. (1) (spin spiral, skyrmion, field-polarized) obtained by two different 2D → 1D mapping
strategies: zigzag (top row) vs. spiral (bottom row). The polarization is depicted by colors and arrows, and the von Neumann entropy is encoded
by links in gray scale. Whereas the von Neumann entropy is rather small and homogeneously distributed for the zigzag order, it appears not
only larger but also inhomogeneous for the spiral ordered 1D chain.
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FIG. 12. Two distinct mappings of the underlying 2D spin lat-
tices in terms of a 1D MPS representation. Dark blue lines represent
contractions over the auxiliary (bond) dimension of the tensors, while
diagonal lines indicate the physical dimension in.

skyrmion lattice systems, one must therefore restrict the bond
dimension M to significantly smaller values. For the largest
quantum skyrmion lattice system we present in Fig. 8, we
plot the converged results of M = 128. Note that the choice
of our mapping preserves the locality of the interaction in
one direction. In an attempt to remove this bias, we checked
the resulting MPS quality for a different mapping, starting at
the central spin-1/2 site and ordered radially outward (spiral
ordering). Using the spiral ordering, we can confirm using the
von Neumann entropy that the outer rim of the skyrmion is
strongly entangled with its environment, a conclusion we had
also reached based on the concurrence.

Compared to the other proposition, the spiral mapping
results in higher variational energy, likely the result of the
inhomogeneous entanglement distribution (see Fig. 11). Since
entanglement can be created by nonlocal transformations, it is
known that certain mappings from 2D to 1D are beneficial
compared to others, which can be utilized to obtain a substan-
tial improvement of the overall simulation quality [76]. For
the results presented in the main text, we consistently use the
zigzag order. The phase diagram presented in Fig. 9 is entirely
unaffected by this choice.

APPENDIX C: CLASSICAL VS. QUANTUM

A basic understanding of the classical low-energy con-
figurations can be achieved by performing a variational
minimization of the energy functional. In particular, we want
to solve for the minimum energy spin configuration which
satisfies

Emin = min
{Si ∀i=1,...,N}

E (S1, S2, . . . , SN ) (C1)

in which E is the classical energy functional

E = 1

2

∑
〈r,r′〉

[JSr · Sr′ + Dr′−r · (Sr × Sr′ )] +
∑

r

B · Sr (C2)

sharing the same notational conventions with the quantum
Hamiltonian, except the use of classical spins. We imple-
mented a standard variational optimization with the Optim
julia package [77], which is included in our repository [26].
All variational techniques are prone to being trapped in local

FIG. 13. (a) Classical energy and (b) magnetization obtained by
variational optimization (see text). Different colors correspond to
different configurations, which are presented close to their energy
lines in panel (a). In (c), we compare the classical to the quantum
phase diagram as a function of B/D.

minima, which sensibly depends on the initial state. To be
sure that for small 61-spin flakes we obtain samples of a
global minimum energy configuration, we performed the vari-
ational optimization with 1000 different initial states where
the azimuth and polar angles are sampled with a uniform
distribution. The low energy results of the classical setup are
obtained analogously to the quantum case: We analyze the
lowest energy configurations as a response to a changing ex-
ternal Zeeman field, for which we fix the norm of the classical
spins to 1/2. We present a condensed version of the classical
low energy results in Fig. 13.

We find that the spectral energy and magnetization lines of
the different configurations as a function of B/|D| are contin-
uous over a wide range of parameters in the phase diagram.
In particular, the spectral lines show crossings, which we
identify with a phase transition: the first excited states become
ground states and vice versa, causing the sudden jumps in
the magnetization. This simple analysis suggests first-order
Zeeman field induced phase transitions in this model, which
are conjectured to be present in the quantum case as well.

If we compare the ranges of the skyrmion phase be-
tween quantum and classical, then we note that the quantum
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skyrmions are ground states in the regions of the classical
field polarized states, which is in agreement with the results

presented in Ref. [18], namely that quantum fluctuations sta-
bilize skyrmion textures.
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