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Thermoelectric response in two-dimensional Dirac systems: Role of particle-hole pairs
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Clean two-dimensional Dirac systems have received a great deal of attention for being a prime candidate
to observe hydrodynamical transport behavior in interacting electronic systems. This is mostly due to recent
advances in the preparation of ultrapure samples with sufficiently strong interactions. In this paper we investigate
the role of collective modes in the thermoelectric transport properties of those systems. We find that dynamical
particle-hole pairs, plasmons, make a sizable contribution to the thermal conductivity. While the increase at the
Dirac point is moderate, it becomes large towards larger doping. We suspect that this is a generic feature of
ultraclean two-dimensional electronic systems, also applicable to degenerate systems.
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I. INTRODUCTION

The study of transport in metallic systems has a long and
successful history, going back all the way to Drude transport
theory [1]. Remarkably, a picture of noninteracting electrons
scattering from disorder provides a reasonable description
of transport properties of metals or more specifically Fermi
liquids. In general, however, electrons are interacting and a
question that has been discussed for 70 years is why the
picture of independent electrons diffusing in a disordered
background is so successful [2]. To rephrase the question,
why and how do the long-range correlations between electrons
due to Coulomb interaction become ineffective? Bohm and
Pines argued that there are two components associated with
the Coulomb interaction, short- and long-range parts, and
they play very different roles. The short-range part leads to
a quasiparticle renormalization in the spirit of Landau’s Fermi
liquid theory, leading to “new” almost free electrons. The
primary manifestation of the long-range part is the plasma
oscillations or plasmons [3,4]. In the standard theory of metal-
lic transport, interactions consequently play a minor role in
the low-temperature limit. There are two ways in which they
enter: (i) as a source of inelastic scattering for the electronic
quasiparticles [5] and (ii) as dynamical collective degrees
of freedom like plasmons that make a direct contribution to
transport properties. In conventional three-dimensional Fermi
liquids, neither of the two happens. (i) Inelastic scattering
is subdominant compared to elastic impurity scattering. It is
parametrically small in (T/TF )2, where TF ≈ 103–105 K is
the Fermi temperature of the metallic system. (ii) In a three-
dimensional metal, stable plasmons are gapped, showing a gap
that is even larger than the Fermi energy of the electronic
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system. This implies that they cannot be excited at energy
scales relevant for transport [6,7]. As a consequence, only
electrons are relevant in the low-energy limit and they interact
with each other through the residual short-range component
of the interaction. The primary source of scattering is given
by disorder (note that we do not consider the role of phonons
throughout this work [8]). One of the consequences of this is
the famous Wiedemann-Franz law, which goes back to 1853
[9]. It states that at lowest temperatures in metals the ratio

lim
T →0

κ

T σ
= L0 (1)

is constant and independent of details of the system. In Eq. (1)
T is the temperature, σ is the electrical conductivity, κ is
the heat conductivity, and L0 = (π2/3)/(kB/e)2 is the Lorenz
number (kB is the Boltzmann constant and e the electron
charge). One way to rationalize this finding is that at the
lowest energies only electrons carry charge and heat and both
transport channels undergo the same scattering mechanisms
from disorder. This leads to the same scattering time for
both charge and heat transport. The question whether inelastic
scattering can be the dominant scattering mechanism in de-
generate Fermi systems was discussed in the 1960s [10,11]
but recently gained more momentum [12–14]. The general
expectation is that one should then observe hydrodynamic
transport phenomena.

Other variants of conducting and interacting electronic sys-
tems are Dirac and Weyl metals [15]. Their defining feature is
a linear band crossing in isolated points in the Brillouin zone
which strongly suppresses the density of states. These systems
are semimetals or nondegenerate. The most famous example
is graphene, which has been at the forefront of research for
almost two decades [16,17].

Close to its Dirac point, pristine graphene has properties
that are distinct from normal Fermi liquids. One major dif-
ference is that at the Dirac point the system is scale-free,
resembling a quantum critical system [18]. Consequently,
temperature T is the only energy scale, contrary to a degener-
ate fermionic system which possesses the Fermi temperature
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TF . While this modifies thermodynamic properties, it also has
consequences on the interaction properties: Inelastic interac-
tion scattering cannot be suppressed by the smallness of T/TF

(also in the vicinity of the Dirac point T/TF remains large);
it can even dominate elastic scattering from disorder. There-
fore, in sufficiently clean samples, it is theoretically expected
that one finds hydrodynamic transport behavior [19–25]. In
addition, it is known that decreasing dimensionality increases
the effect of long-range interactions in electronic systems.
That not only increases inelastic scattering, it also makes the
effect of collective modes more prominent. It is known that
plasmons in a one-dimensional conductor contribute signifi-
cantly to thermal transport. This begs the question about two
dimensions. In two dimensions, contrary to three dimensions,
plasmons are massless [26,27] and follow a square root dis-
persion, i.e., ω ∝ √

q. Consequently, they are easily excited
under nonequilibrium conditions and can therefore be relevant
to the transport phenomena, especially thermal transport. It
is important to note that the second point is not exclusive to
Dirac systems but is also true for two-dimensional degenerate
systems.

In recent years, suspended samples or samples sandwiched
in between boron-nitride structures [28–33] have allowed the
suppression of disorder levels sufficiently to access the hy-
drodynamic regime. With the new ultrapure samples, it is
thus possible to ask quantitative questions that could not be
addressed before. In this paper we reinvestigate thermoelectric
transport theory in ultraclean Dirac systems. Our special focus
is on the role of Coulomb interactions and their unscreened
long-range nature in thermoelectric transport.

As explained above, we expect the Coulomb interaction
to be responsible for mainly two effects in regard to trans-
port phenomena: (i) Charge carriers scatter from each other
leading to an effective inelastic transport time or mean free
path and (ii) collective excitations, such as plasmons, that
possess their own dynamics. Consequently, they make a direct
contribution to the heat current.

The thermoelectric response involves two types of cur-
rents: the electrical current Je and the heat current Q = JE −
μ/eJe, where JE is the energy current. The Onsager relation
states that [34]( �Je

�Q
)

=
(

σ̂ α̂

T α̂ κ̂

)( �E
−�∇T

)
. (2)

The thermal conductivity κ̂ is defined as the heat current
response to a thermal gradient −�∇T in the absence of an
electrical current (electrically isolated boundaries), given by
κ̂ = κ̂ − T α̂σ̂−1α̂. In the following we drop the circumflex
and explicitly discuss only the diagonal response σ and κ .
The Wiedemann-Franz ratio κ/T σ assumes the value L0 =
(π2/3)(kB/e)2 (L0 is the Lorenz number) in a Fermi liquid [9]
[see Eq. (1)]. This is sometimes considered the hallmark of
a Fermi liquid and it was argued before that it breaks down
in the vicinity of the Dirac point [22,23,30,35]. The main
reason for this breakdown is that there are two completely
independent hydrodynamic modes that are subject to different
scattering mechanisms. Instead of concentrating on two types
of degrees of freedom, electrons and holes, we additionally
consider plasmons. The situations are sketched in Fig. 1 for

FIG. 1. Electrons and holes react oppositely to an applied voltage
drop. Plasmons do not couple directly to the voltage difference;
however, they experience drag and serve as a source of inelastic
scattering.

electrical transport and in Fig. 2 for heat transport. The po-
tential drop in Fig. 1 acts on electrons and holes oppositely,
but not on the plasmons: The plasmons experience no direct
force, but they are subject to drag effects. Being neutral quasi-
particles, they do not contribute to the charge current. In the
case of a temperature gradient (see Fig. 2), all particles expe-
rience a force in the same direction and there is an additional
direct contribution to the current through the plasmons. On a
technical level, we derive and solve three coupled Boltzmann
equations for electrons, holes, and plasmons, which include
relaxational processes and the respective streaming terms.

Main result. We find that the plasmon contribution to the
heat conductivity is sizable and cannot be neglected either at
the Dirac point or in the degenerate limit.

II. MODEL

We study a model of Dirac fermions coupled through
Coulomb interaction and subject to potential disorder

H =
∫

d2�r �
†
i (�r )[−ivF �∂ · �σ + Vdis(�r )]�i (�r )

+ 1

2

∫
d2�r d2�r ′�†

i (�r )�i (�r )V (�r − �r′ )�†
j (�r′ )� j (�r ′),

(3)

where �i(�r ) is the two-component wave function, i is the
flavor index in the range i = 1, . . . , N (for graphene N =

FIG. 2. Electrons, holes, and plasmons react to a temperature
gradient in the same manner. Plasmons make a direct contribution
to the heat current.
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4 counting spin and valley), vF is the Fermi velocity, and
V (�r − �r ′) = α vF

|�r−�r ′| is the Coulomb interaction (note that
double indices are summed over). The dimensionless fine-
structure constant sets the strength of interaction and is given
by α = e2/4πε0εrvF . The disorder potential Vdis(�r ) can be
used to describe a variety of disorder types specified by the
disorder correlation function. We only consider δ-correlated
disorder, i.e., 〈Vdis(�r )Vdis(�r ′)〉 = 4πγ 2δ(�r − �r ′), but general-
izations are straightforward. Consequently, the parameters of
our theory are α and γ . Equation (3) does not provide a con-
venient starting point for the study of the thermal conductivity
due to the nonlocal Coulomb interaction.

A corresponding local field theory that easily lends itself to
an interpretation in terms of plasmons can be derived using a
Hubbard-Stratonovich transformation. It reads

L = −ε0εr

2
φ(�r, z, t )

(�∂ 2 + ∂2
z

)
φ(�r, z, t )

− e�†
α (�r, t )�α (�r, t )φ(�r, z, t )δ(z)

+�†
α (�r, t )[i∂t − ivF �∂ · �σ + Vdis(�r)]δ(z)�α (�r, t ), (4)

where φ(�r, z, t ) is the real-valued plasmon field. Importantly,
the mapping between Eqs. (3) and (4) is exact.

A. Current operators

The electrical charge current is only carried by electrons
and holes and its density is given by

je(�r, t ) = −evF �†
α (�r, t )�σ�α (�r, t ). (5)

The heat current density is given by Q = jE − μ/eje, where
the energy current density reads

jE (�r, z.t ) = −ivF �†
α (�r, t )�σ∂t�α (�r, t )

+ε0εr �∂φ(�r, z, t )∂tφ(�r, z, t ). (6)

This expression explicitly includes the plasmon contribution,
which is the main different aspect of this work.

B. Plasmon dynamics

Integrating out the photon modes outside the graphene
sheet leads to an effective two-dimensional theory
S
 = 1

2

∫
dt dt ′d2�r d2�r ′
(�r, t )D−1

0 (�r, �r ′, t, t ′)
(�r ′, t ′) with


(�r, t ) = φ(�r, z = 0, t ) and D−1
0 (�k, ω) = α(2πvF )/e2k

with k = |�k|. The dynamics is generated from within the
fermionic system and corresponds to particle-hole pairs.
We use the standard random-phase approximation (RPA),
formally justified in the limit of a large number N of
flavors. The boson self-energy is approximated through
e2�(�r, �r ′, t, t ′), where �(�r, �r ′, t, t ′) is the polarization
function. The polarization function of two-dimensional Dirac
systems has a closed analytical form at zero temperature
[26]. The finite-temperature properties at arbitrary chemical
potential were studied numerically in Ref. [27]. In the
long-wavelength limit, important for the plasmon dynamics,
the retarded polarization function can be approximated as

�r (�q, ω, μ, T ) ≈ Nq2T

4πω2
ln

[
2 + 2 cosh

(μ

T

)]

− i
Nq2

32ω
f (μ,ω, T ), (7)

with f (μ,ω, T ) = tanh( μ

2T − ω
4T ) − tanh( μ

2T + ω
4T ). We ob-

tain the plasmon dispersion from the poles of the retarded
plasmon propagator

Dr (�q, ω) = Dr
0(�q, ω)

1 − e2Dr
0(�q, ω)�r (�q, ω, μ, T )

, (8)

where Dr
0(�q, ω) = 1/2ε0εrq, with ε0 the vacuum permittiv-

ity and εr the relative permittivity. Using the approximate
polarization function (7), we can approximate the plasmon
propagator as

Dr (�q, ω) ≈ 1

2ε0εr

ω2

q

1

(ω + i0+)2 − [ωp(�q ) + iγp(�q )]2
, (9)

with the plasmon dispersion ωp(�q ) and damping γp(�q ) given
by

ωp(�q ) =
√

α
N

2
kBT vF q ln

[
2 + 2 cosh

( μ

kBT

)]
,

γp(�q ) = −πωp(�q )2

16T

f (μ,ωp(�q ), T )
ln[2 + 2 cosh( μ

T )]
. (10)

There are two possible momentum cutoffs for the plasmons of
Eq. (10): either when they cease to be well-defined quasiparti-
cles, i.e., ωp(�qc) ≈ γp(�qc), or when the square-root dispersion
breaks down, i.e., qc = αNT/2vF ln[2 + 2 cosh(μ/T )]. Nu-
merically, we always choose the lower of the two. In practice,
it turns out that it is always the latter. For all practical
calculations in this paper, we assume the plasmons to be well-
defined quasiparticles with the reasoning given above. It turns
out that below qc plasmons are very stable against a single
particle-hole decay channel. Therefore, the leading relaxation
mechanisms might be from either the plasmon decay into two
electron-hole pairs [36] or phonon-assisted Landau damping
[37]. Both are neglected in this work for different reasons. The
former channel is of higher order in perturbation theory and
beyond the RPA, while the latter is forbidden in the electron
hydrodynamic window. It will however become important at
higher densities, which is left for future studies. It is important
to note that there is also a linear plasmon beyond the cutoff
scale which is subleading and consequently negligible in our
analysis.

C. Boltzmann equation

We leave a systematic derivation of the Boltzmann equa-
tion starting from the Schwinger-Keldysh formalism (see,
for instance, Ref. [38]) for Appendices A–D. The key steps
of the derivation are (i) a conserving approximation of the
fermion and boson self-energies to the lowest nontrivial order
in α and γ , (ii) a lowest nontrivial order gradient expan-
sion starting from the Wigner transform, (iii) an integration
over the fermion and boson spectral functions, equivalent
to an on-shell quasiparticle approximation, and (iv) a pro-
jection into the quasiparticle basis. In the last step we
consider only the diagonal parts and neglect Berry phase
(these terms are second order in the gradient expansion) and
zitterbewegung terms (see Ref. [20,21]). Eventually, we find
three coupled Boltzmann equations for electrons, holes, and
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plasmons,

e �E∂�k fλ(�k) − λvF �̂kσz �∇T ∂T fλ(�k) = Iλ
coll[ fλ, b],

2
�k

k2
�∇T ωp(�k)∂T b

ωp(�k)(�k) = Ĩcoll[ fλ, b]. (11)

Here fλ and b are the distribution functions of the electrons
and holes (λ = ±) and the plasmons, respectively.

D. Sources of current relaxation

The collision integral for the Dirac fermions consists of
two independent parts

Iλ
coll =

∫
d2q

(2π )2

∑
λ′=±

C inel
λλ′ (�k, �q){ fλ(�k)[1 − fλ′ (�k + �q )]

− b
ελ(�k)−ελ′ (�k+�q )(�q )[ fλ′ (�k + �q ) − fλ(�k)]}

+
∫

d2q

(2π )2
Cel

λ (�k, �q )[ fλ(�k) − fλ(�k + �q )]. (12)

The first term accounts for inelastic scattering of electrons
from plasmons, denoted by C inel

λλ′ . In this process, both energy
and momentum are transferred between the fermions and the
plasmons. Additionally, there is elastic scattering from disor-
der, encoded in Cel

λ . This term breaks momentum conservation
and is important to relax the heat current. The collision inte-
gral for the plasmons reads

Ĩcoll =
∫

d2q

(2π )2

∑
λ,λ′=±

C̃ inel
λλ′ { fλ′ (�k + �q )[ fλ(�q ) − 1]

−b
ελ′ (�k+�q )−ελ(�q )(�k)[ fλ′ (�k + �q ) − fλ(�q )]}. (13)

It contains an inelastic part describing scattering from
fermions, C̃ inel

λλ′ (the role of inelastic scattering from disorder
is beyond the scope of the present work). In the absence of
disorder, the combined electron-plasmon system conserves
momentum. The precise form of C inel

λλ′ , Cel
λ , and C̃ inel

λλ′ can be
found in Appendix D. It is important to note, however, that
momentum excited in the plasmon sector can be relaxed in
the fermion sector from disorder.

E. Linearized Boltzmann equation

In equilibrium, the collision integrals are nullified by the
thermal Fermi-Dirac and Bose-Einstein distributions f 0

λ (�k) =
(e[ελ(�k)−μ]/T + 1)−1 and b0

ω(�k) = (eωp(�k)/T − 1)−1, respec-
tively. In the presence of driving terms due to a potential
gradient or a thermal gradient or both, the distribution func-
tions deviate from their equilibrium form. Importantly, even
though an electric field does not couple directly to the plas-
mons, away from the Dirac point they are still driven out
of equilibrium by a drag effect.1 Since we are interested in
linear response transport properties, we linearize the Boltz-
mann equations in �E and �∇T . This enforces the following

1At the Dirac point the underlying particle-hole symmetry forbids
drag [39].

parametrizations for the fermions and boson distribution func-
tions:

fλ(�k) = f 0
λ (�k) + 1/T 2 f 0

λ (�k)
[
1 − f 0

λ (�k)
]
λvF �̂k

·[e �EχE
λ (k) + �∇T χT

λ (k)
]
,

b
ωp(�k)(�k) = b0

ωp(�k)
(�k) + 1/T 2b0

ωp(�k)
(�k)

[
1 + b0

ωp(�k)
(�k)

]
vF �̂k

·[e �EφE (k) + �∇T φT (k)]. (14)

As mentioned before, an electric field applied to the fermions
“drags” the plasmons out of equilibrium, which is why we
have to introduce φE . The functions χT,E

λ and φT,E have to
be determined numerically and give access to the respective
currents and related response functions. In terms of their
parametrizations, we find the set of equations

−λe
vF

T
�̂k · �E f 0

λ (�k)
[
1 − f 0

λ (�k)
]

−λ
vF

T
�̂k �∇T

ελ(�k) − μ

T
f 0
λ (�k)

[
1 − f 0

λ (�k)
]

= I lin
inel[χT , χE , φT , φE ] + I lin

el [χE , χT ],

�k
k2

�∇T
ω2

p(�k)

T 2
b0

ωp(�k)
(�k)

[
1 + b0

ωp(�k)
(�k)

]
= Ĩ lin

inel[χT , χE , φT , φE ] + Ĩel
inel[φT , φE ], (15)

with details to be found in Appendix E. In the absence of
disorder, the combined system of fermions and plasmons
possesses a zero mode associated with momentum conserva-
tion, meaning the combination Cinel

λλ′ and C̃inel
λλ′ together with

the appropriate mode cannot relax momentum (we explicitly
checked this point numerically). The intuition behind this
is that momentum can always be transferred between the
fermion and plasmon sector without being dissipated. This
implies that disorder scattering is vital as a source of momen-
tum relaxation for the total system and it plays an important
role in the choice of modes, explained below (see Ref. [8] for
a related discussion in the electron-phonon problem without
umklapp scattering).

F. Choice of modes

The above parametrization allows for a very transparent
identification of the slow hydrodynamic modes of the prob-
lem. In the solution of the fermion-only problem (3), it was
pointed out that in order to study thermoelectric transport
in the vicinity of the Dirac point all the way to the Fermi
liquid regime, it suffices to study two types of modes for elec-
trons and holes χT,E

λ (k) = aT,E
0,λ + λaT,E

1,λ k, respectively [22].

The mode associated with aT,E
0,λ is called the chiral mode,

whereas the one associated with aT,E
1,λ corresponds to the mo-

mentum mode. For the plasmons, the equivalent ansatz reads
φT,E (k) = bE ,T

0 + bT,E
1 k. We can convert the problem of solv-

ing the Boltzmann equation into a linear algebra problem by
projecting the scattering integral onto the respective modes
(see the discussion in Appendix E).
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FIG. 3. Electrical conductivity as a function of chemical po-
tential. The curve was obtained as the solution of the Boltzmann
equation with α = 0.36 and 4πγ 2 = 0.5 at T = 75 K

III. RESULTS

We have solved the coupled Boltzmann equations (15) at
and away from the Dirac point. This allows us to access both
the electrical and the heat conductivity and consequently the
Wiedemann-Franz ratio. In the following we present two types
of plots: (a) the conductivities as a function of the chem-
ical potential (Figs. 3–5) and more experimentally relevant
(b) the conductivities as a function of the electronic density
(Figs. 6–8). In all plots we have fixed the temperature to be
T = 75 K and the fine-structure constant α to be α = 0.36.
For disorder, we made the assumption that it is short ranged
and 4πγ 2 = 0.5. In graphene, it is generally believed that
disorder is long ranged, but here we are concerned with only a
generic mechanism and aim to keep the number of parameters
small. We have checked that the general conclusion does not
change upon using a more realistic and complicated disorder
potential. In all plots, we plot the total conductivity including
the plasmon contribution in blue and the electronic contri-

FIG. 4. Thermal conductivity of graphene as a function of the
chemical potential. The curves are calculated using the same set
of parameters used in Fig. 3. The blue curve is the full response
including the plasmons, while the red curve only shows the electronic
contribution. There is a slight plasmon enhancement close to the
Dirac point and a massive one with increasing chemical potential.

FIG. 5. Wiedemann-Franz ratio as a function of the chemical po-
tential. We observe two regions with enhancement: the well-known
hydrodynamic regime in the vicinity of the Dirac point and at higher
doping.

bution only in red. Since the plasmons cannot make a direct
contribution to the electrical conductivity, there is only a blue
line in Figs. 3 and 6.

It should be mentioned that this work is consistent with the
previous work by one of the authors and collaborators [21].
In [21] the electrical conductivity at the Dirac point is given
by σ = e2

h
0.76
α2 . The prefactor 0.76 is what the Boltzmann

equation solution determines. The fine-structure constant α is
renormalized as a function of temperature and follows α =

α0
1+(α0/4) ln(�/T ) . For a realistic cutoff of � = 3 eV, the chosen
value of α0 = 0.36 and T = 75 K give the renormalized fine-
structure constant α ≈ 0.23 and σ = 14.37e2/h ≈ 0.6 k�−1.
Additionally, there is an additional source of scattering: disor-
der. While this is subdominant, it still makes a correction and
reduces σ approximately to 0.4 k�−1, as shown in Fig. 3.

We observe that there is an enhancement of the thermal
conductivity close to the Dirac point. This enhancement in-
creases the expected violation of the Wiedemann-Franz law at
the Dirac point. A bit more surprisingly, however, there is a
sizable and increasing enhancement of the thermal conductiv-
ity towards the Fermi liquid regime, i.e., μ � T . The reason
is that plasmons are more stable at higher electronic densities.
This simple argument can be checked in the relaxation time

FIG. 6. Electrical conductivity as a function of carrier density.
The curve was obtained as the solution of the Boltzmann equa-
tion with α = 0.36 and 4πγ 2 = 0.5 at T = 75 K.
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FIG. 7. Thermal conductivity of graphene as a function of the
charge carrier density. The curves are calculated using the same set
of parameters used in Fig. 6. The blue curve is the full response
including the plasmons, while the red curve only shows the electronic
contribution. There is a slight plasmon enhancement close to the
Dirac point and a massive one with increasing chemical potential.

approximation, which we have done in [40,41] and found
that this qualitatively reproduces the full numerical solution
presented here.

It is tempting to attribute the growth of the plasmon
contribution to its dispersion relation (10), which is

√
μ

for μ/T � 1. However, this is not the sole reason for
the increase: Phenomenologically, one expects the ther-
mal conductivity to follow a Drude-type expression κ ∝∫

d2q ωp(�q )�v 2
p(�q )(− ∂b

∂ωp(�q) )τp(�q, μ), where τp(�q, μ) is a
scattering time that comes from the solution of the Boltz-
mann equation. If we assume that τp(�q, μ) is constant as a
function of �q in the relevant momentum window, we end
up with κ ∝ μ0τp(0, μ). Consequently, the effect appears to
strongly depend on the scattering time, which is born out
by an analysis of the scattering integral. To summarize, the
main observation is the growing enhancement of the thermal
conductivity due to plasmons in the region of μ/T > 1. It is
important to note that the relaxation of the plasmons is due
to the disorder in the fermionic sector. Momentum that is
excited in the plasmon sector through the thermal gradient is

FIG. 8. Wiedemann-Franz ratio as a function of the charge
carrier density. We observe two regions with enhancement: the well-
known hydrodynamic regime in the vicinity of the Dirac point and at
higher doping.

transferred to the fermionic subsystem via inelastic scattering.
There it is relaxed from the momentum-conservation-breaking
disorder. It is worthwhile noting that around μ/T ≈ 2 there is
a suppression of the Lorenz ratio below 1. This seems to be a
feature that is also encountered in experiments [42].

IV. CONCLUSION AND OUTLOOK

In this work we have analyzed the thermoelectric response
of interacting two-dimensional Dirac systems at and away
from the Dirac point. We have done so by deriving and solving
coupled linearized Boltzmann equations for electrons, holes,
and plasmons. At the Dirac point we find a moderate enhance-
ment of the thermal conductivity due to plasmons, compared
to the electronic contribution. However, away from the Dirac
point, we find a strong enhancement of thermal transport due
to plasmons. Compared to a conventional three-dimensional
metal, this is made possible by the undamped gapless na-
ture of plasmons which have a square-root dispersion, i.e.,
ω ∝ √

q. Consequently, this effect is special to two dimen-
sions and is not expected to exist in three dimensions, in line
with very early works [3,4]. The plasmon contribution to the
heat conductivity and, connected to that, the violation of the
Wiedemann-Franz law increases as we tune into the Fermi liq-
uid regime of a Dirac system. This suggests that the observed
effect should also be observable in conventional degenerate
two-dimensional metallic systems. While we do not expect
a similar effect in three-dimensional metals, we also expect
enhancement close to the Dirac point of three-dimensional
Dirac and Weyl systems.

The results presented here immediately provoke a series of
questions: (i) How can the results be connected to the known
results for the disordered two-dimensional Fermi liquid [43]?
(ii) How can we model relaxation processes, such as disorder,
for plasmons? (iii) Can this effect be observed in experiments?
(iv) Can we find a unified hydrodynamic description in which
all degrees of freedom enter on equal footing? The answers to
some of the above questions are left for future study.
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APPENDIX A: KELDYSH EQUATIONS

In the following we set up the Keldysh equations for de-
scribing transport phenomena in the coupled fermion-plasmon
system. The procedure is akin to a system of fermions coupled
to phonons where drag effects have to be taken into account.
Following standard procedure, we parametrize the fermionic
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and bosonic Keldysh components as

GK = Gr ◦ F − F ◦ Ga,

DK = Dr ◦ B − B ◦ Da, (A1)

where F and B are Hermitian matrices and ◦ de-
notes matrix multiplication in real space and time
where C = A ◦ B corresponds to C(�x1, t1, �x2, t2) =∫

d�x ′dt ′A(�x1, t1, �x ′, t ′)B(�x ′, t ′, �x2, t2). Both F and B are,
in thermal equilibrium, related to the standard distribution
function, where F = 1 − 2 f and B = 1 + 2b, with f the
Fermi-Dirac distribution and b the Bose-Einstein distribution.
They obey the kinetic equation according to[

F, G−1
0

]◦
− = �K − (�r ◦ F − F ◦ �a),

[B, D−1
0 ]◦− = e2[�K − (�r ◦ B − B ◦ �a)], (A2)

where the left-hand sides are commutators involving the bare
Green’s functions G0 of the Dirac fermions and D0 of the
plasmons and the right-hand sides are the so-called collision
integral. We assume that e2� is the self-energy of the bosons,
whereas � is the self-energy of the fermions which we leave
unspecified for the moment. We are now going through a
series of approximations which will eventually lead us to the
Boltzmann equation. We start with a gradient expansion

[F, G−1
0 ]�− = [�K − (�r � F − F � �a)],

[B, D−1
0 ]�− = e2[�K − (�r � B − B � �a)], (A3)

where we have introduced the Moyal product. It has to be
interpreted in the following way: There are center-of-mass
coordinates X = (x1 + x2)/2 and T̃ = (t1 + t2)/2 as well as
relative coordinates x = x1 − x2 and t = t1 − t2 (note that we
introduce the denotation T̃ here to later distinguish it from the
temperature T ). Furthermore, we perform a Fourier transfor-
mation with respect to the relative coordinates, leading to �k
and ω. The Moyal product then reads

C(X, T̃ , �k, ω) = A(X, T̃ , �k, ω) � B(X, T̃ , �k, ω), (A4)

with

� = exp
[ i

2
(
←−
∂ �X

−→
∂ �k − ←−

∂ T̃
−→
∂ ω − ←−

∂ �k
−→
∂ �X + ←−

∂ ω

−→
∂ T̃ )

]
.

(A5)

We perform a leading-order expansion of both the left- and
right-hand sides of Eq. (A3),

i
(
∂ �X F∂�kḠ−1 − ∂�kF∂ �X Ḡ−1 − ∂T̃ F∂ωḠ−1 + ∂ωF∂T̃ Ḡ−1

)
= �K − F (�r − �a),

i
(
∂ �X B∂�kD̄−1 − ∂�kB∂ �X D̄−1 − ∂T̃ B∂ωD̄−1 + ∂ωB∂T̃ D̄−1

)
= e2�K − e2B(�r − �a), (A6)

where Ḡ−1 = G−1
0 − Re�r and D̄−1 = D−1

0 − e2Re�r .
These two coupled equations constitute the basis of all

further investigations. The next step towards the Boltzmann
equation is to replace the functions F = 1 − 2 f and B =
1 + 2b with the respective distribution functions leading to

i2
(
∂�k f ∂ �X G−1

0 − ∂ �X f ∂�kG−1
0 + ∂T̃ f ∂ωG−1

0 − ∂ω f ∂T̃ G−1
0

)
= �K − (1 − 2 f )(�r − �a),

i2
(
∂ �X b∂�kD−1

0 − ∂�kb∂ �X D−1
0 − ∂T̃ b∂ωD−1

0 + ∂ωb∂T̃ D−1
0

)
= e2�K − e2(1 + 2b)(�r − �a). (A7)

In this paper we concentrate on heat and charge transport.
For the left-hand sides of the kinetic equations this implies

∂�k f ∂ �X G−1
0 − ∂ �X f ∂�kG−1

0 + ∂T̃ f ∂ωG−1
0 − ∂ω f ∂T̃ G−1

0

= e �E∂�k f − vF �σ∂ �X f = e �E∂�k f − vF �σ · ∂ �X T ∂T f ,

∂ �X b∂�kD−1
0 − ∂�kb∂ �X D−1

0 − ∂T̃ b∂ωD−1
0 + ∂ωb∂T̃ D−1

0

= 2ε0εr

�k
|�k|∂ �X b = 2ε0εr

�k
|�k| · ∂ �X T ∂T b, (A8)

where T is the temperature. The next step to convert this into
a Boltzmann-type equation is to perform the quasiparticle ap-
proximation. This is achieved by integrating over the spectral
function. To that end we solve the Dyson equation to access
the retarded Green’s functions Gr and Dr . For Gr it suffices to
state that the electrons of holes of graphene are well defined
and we thus work with Gr

0, thereby disregarding correc-
tions to infinitely-long-lived quasiparticles. For the plasmons,
we use

Dr (�q, ω) ≈ 1

2ε0εr

ω2

q

1

(ω + i0+)2 − ωp(�q )2
(A9)

with the plasmon dispersion

ωp(�q ) ≈
√

α
N

2
kBT vF q ln

[
2 + 2 cosh

( μ

kBT

)]
, (A10)

as derived in the main text.

APPENDIX B: SOURCES OF RELAXATION

The self-energy of the Dirac fermion consists of two parts:
One is due to interactions with the plasmons and the other
one, due to scattering from impurities, to lowest order, is
approximated as

�r (ω, �k) − �a(ω, �k) = −2e2
∫

dν

2π

∫
d2q

(2π )2
[ImGr (ω + ν, �k + �q )DK (−ν,−�q ) + GK (ω + ν, �k + �q )ImDr (−ν,−�q )]

+γ 2
0

2

∫
d2q

(2π )2
f̂ (−�q )[Gr (ω, �k + �q ) − Ga(ω, �k + �q )],

�K (ω, �k) = ie2
∫

dν

2π

∫
d2q

(2π )2
[GK (ω + ν, �k + �q )DK (−ν,−�q ) − 4 ImGr (ω + ν, �k + �q )ImDr (−ν,−�q )]
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+γ 2
0

2

∫
d2q

(2π )2
f̂ (−�q )GK (ω, �k + �q ), (B1)

where the first line in both cases accounts for scattering of plasmons whereas the second line accounts for disorder scattering.
For the plasmons we have

�r (ω, �k) − �a(ω, �k) = N
∫

dν

2π

∫
d2q

(2π )2
tr[ImGr (ω + ν, �k + �q )GK (ν, �q ) − GK (ω + ν, �k + �q )ImGr (ν, �q )],

�K (ω, �k) = − i

2
N

∫
dν

2π

∫
d2q

(2π )2
tr[GK (ω + ν, �k + �q )GK (ν, �q ) + 4 ImGr (ω + ν, �k + �q )ImGr (ν, �q )]. (B2)

APPENDIX C: QUASIPARTICLE BASIS

In order to arrive at the final Boltzmann equation we have
to project the kinetic equations into the quasiparticle basis.
This is straightforward for the plasmons; for the fermions we
need a momentum-dependent rotation. To that end we con-
sider the retarded part of the noninteracting fermionic Green’s
function

(Gr )−1(ω, �k) = (ω + μ)1 − vF kxσx − vF kyσy. (C1)

In order to project this onto the quasiparticle basis we need
to diagonalize the Green’s function (or inverse Green’s func-
tion). The corresponding unitary transformation reads

U −1
�k = 1√

2k

(
kx − iky −kx + iky

k k

)
,

U�k = 1√
2k

(
kx + iky k

−kx − iky k

)
, (C2)

with

(gr )−1(ω, �k) = U�k (Gr )−1(ω, �k)U −1
�k

= (ω + μ)1 + vF kσz. (C3)

APPENDIX D: COUPLED BOLTZMANN EQUATIONS

After having derived the Keldysh equations and specified
the collision integral, the last missing pieces towards the
Boltzmann equation are a projection into the quasiparticle
basis followed by an integration over the spectral functions.
To that end we need the retarded part of the Dyson equation.
For the plasmons, as discussed before, this reads

(Dr )−1(ω, �k) = (
Dr

0

)−1
(ω, �k) − e2�r (ω, �k)

≈ 2ε0εrk

ω2

[
ω2 − ω2

p(�k)
]
, (D1)

whereas for the fermions we resort to the unperturbed propa-
gator. We furthermore define the form factors

Mλλ′

�q,�k+�q = (
U�q U −1

�k+�q
)
λλ′ = 1

2

(
1 + λλ′ Q(K� + Q�)

q|�k + �q |

)
,

T λλ′

�q,�k+�q = Mλλ′

�q,�k+�qMλ′λ
�k+�q,�q = 1

4

∣∣∣∣
(

1 + λλ′ Q(K� + Q�)

q|�k + �q |

)∣∣∣∣
2

.

(D2)
The poles of the Green’s function determine the dispersion
ελ(�k) = λvF k. This allows us to write the coupled Boltzmann
equations as

e �E∂�k fλ(�k)δλλ̄ − vF (�̂kσz − �̂k × êzσy)λλ̄
�∇T ∂T fλ(�k)

= 4πvF α

∫
d2q

(2π )2

∑
λ′=±

Mλλ′
�k,�k+�qMλ′λ̄

�k+�q,�k[δ(ελ′ (�k + �q ) − ελ(�k) + ωp(�q )) + δ(ελ′ (�k + �q ) − ελ(�k) − ωp(�q ))]

×ελ′ (�k + �q ) − ελ(�k)

q
{ fλ(�k)[1 − fλ′ (�k + �q )] − b

ελ(�k)−ελ′ (�k+�q )(�q )[ fλ′ (�k + �q ) − fλ(�k)]}

+ γ 2
0

2π

∫
d2q

(2π )2
f̂ (−�q )T λλ

�k,�k+�q δλλ′δ(ελ(�k) − ελ(�k + �q ))[ fλ(�k) − fλ(�k + �q )]

�k
k2

�∇T ωp(�k)[∂T b
ωp(�k)(�k) − ∂T b−ωp(�k)(�k)]

= 4NπvF α
∑

λ,λ′=±

∫
d2q

(2π )2
Mλλ′

�q,�k+�q Mλ′λ
�k+�q,�q[δ(ελ′ (�k + �q ) − ελ(�q ) + ωp(�k)] + δ(ελ′ (�k + �q ) − ελ(�q ) − ωp(�k))]

×ελ′ (�k + �q ) − ελ(�q )

k
{ fλ′ (�k + �q )[ fλ(�q ) − 1] − b

ελ′ (�k+�q )−ελ(�q )(�k)[ fλ′ (�k + �q ) − fλ(�q )]}. (D3)

In equilibrium we have

f 0
λ (�k) = 1

e(ελ(�k)−μ)/T + 1
, b0

ω(�k) = 1

eω/T − 1
. (D4)
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The second term on the left-hand side of the first line corresponds to the Berry phase term which comes from the adiabatic
projection into the quasiparticle basis. The fourth term is the thermal analog of the zitterbewegung. These terms makes no
regular contribution in our calculation and are subsequently omitted.

APPENDIX E: LINEARIZED BOLTZMANN EQUATION

We then proceed to linearize the Boltzmann equations. To that end we introduce the parametrization

fλ(�k) = f 0
λ (�k) + 1

T 2
f 0
λ (�k)

[
1 − f 0

λ (�k)
]
λvF �̂k[

e �EχE
λ (k) + �∇T χT

λ (k)
]
,

b
ωp(�k)(�k) = b0

ωp(�k)
(�k) + 1

T 2
b0

ωp(�k)
(�k)

[
1 + b0

ωp(�k)
(�k)

]
vF �̂k[e �EφE (k) + �∇T φT (k)]. (E1)

Using the linearization and neglecting the Berry phase as well as the off-diagonal contribution, we obtain

−λe
vF

T
�̂k · �E f 0

λ (�k)(1 − f 0
λ (�k)) − λ

vF

T
�̂k �∇T

ελ(�k) − μ

T
f 0
λ (�k)[1 − f 0

λ (�k)]

= α
4πv2

F

T 2

∫
d2q

(2π )2

∑
λ′=±

Mλλ′
�k,�k+�q Mλ′λ

�k+�q,�k[δ(ελ′ (�k + �q ) − ελ(�k) + ωp(�q )) + δ(ελ′ (�k + �q ) − ελ(�k) − ωp(�q ))]

×ελ′ (�k + �q) − ελ(�k)

q
f 0
λ (�k)[1 − f 0

λ (�k)][1 − f 0
λ′ (�k + �q ) + b0

ελ(�k)−ελ′ (�k+�q )
(�q )]

×
[

e �E
(

λ
�k
k
χE

λ − λ′ �k + �q
|�k + �q |χ

E
λ′ (|�k + �q |) + �q

q
φE (q)

)
+ �∇T

(
λ

�k
k
χT

λ − λ′ �k + �q
|�k + �q |χ

T
λ′ (|�k + �q |) + �q

q
φT (q)

)]

+ γ 2
0 vF

2πT 2

∫
d2q

(2π )2
f̂ (−�q )T λλ

�k,�k+�q δλλ′δ(ελ(�k) − ελ(�k + �q )) f 0
λ (�k)[1 − f 0

λ (�k)]

×
[

e �E
(

λ
�k
k
χE

λ − λ′ �k + �q
|�k + �q |χ

E
λ′ (|�k + �q |)

)
+ �∇T

(
λ

�k
k
χT

λ − λ′ �k + �q
|�k + �q |χ

T
λ′ (|�k + �q |)

)]
,

�k
k2

�∇T
ω2

p(�k)

T 2
b0

ωp(�k)
(�k)[1 + b0

ωp(�k)
(�k)]

= α4Nπ
v2

F

T 2

∑
λ,λ′=±

∫
d2q

(2π )2
Mλλ′

�q,�k+�q Mλ′λ
�k+�q,�q [δ(ελ′ (�k + �q ) − ελ(�q ) + ωp(�k)) + δ(ελ′ (�k + �q ) − ελ(�q ) − ωp(�k))]

×ελ′ (�k + �q) − ελ(�q )

k
f 0
λ (�q )[1 − f 0

λ (�q )][ f 0
λ′ (�k + �q ) + b0

ελ′ (�k+�q )−ελ(�q )
(�k)]

×
[

e �E
(

λ
�q
q
χE

λ − λ′ �k + �q
|�k + �q |χ

E
λ′ (|�k + �q |) + �k

k
φE (k)

)
+ �∇T

(
λ

�q
q
χT

λ − λ′ �k + �q
|�k + �q |χ

T
λ′ (|�k + �q |) + �k

k
φT (k)

)]
. (E2)

Our ansatz for the deviation from equilibrium reads

χE
λ (k) = aE

0,λ + aE
1,λk = aE

0,λ|E , 0, λ〉 + aE
1,λ|E , 1, λ〉,

χT
λ (k) = aT

0,λ + aT
1,λk = aT

0,λ|T, 0, λ〉 + aT
1,λ|T, 1, λ〉,

φE (k) = bE
0 + bE

1 k = bE
0 |E , 0〉 + bE

1 |E , 1〉,
φT (k) = bT

0 + bT
1 k = bT

0 |T, 0〉 + bT
1 |T, 1〉. (E3)

One can rewrite the Boltzmann equations in a more compact form as

|D f , E , λ〉 + |D f , T, λ〉 = |Icoll, E〉 + |Icoll, T 〉,
|Db, T 〉 = |Ĩcoll, E〉 + |Ĩcoll, T 〉. (E4)

To determine the expansion coefficients in Eq. (E4) we define a scalar product according to

〈 f |g〉 =
∫

d2k

(2π )2
f (k)

�k
k

g(�k). (E5)

This allows us to convert the linearized Boltzmann equations into a linear algebra problem which we can solve for aE ,T
0,1,λ and

bE ,T
0,1 .
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