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Skyrmion nucleation on the surface of a topological insulator
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Skyrmion nucleation induced by spin-transfer torques at an interface of a topological insulator and a fer-
romagnetic insulator is investigated. Due to strong spin-orbit coupling on a surface of topological insulators,
which enhances the effect of spin torques, efficient manipulation of skyrmions is expected, and therefore,
topological insulators could provide the ideal platform to achieve high-performance skyrmionic devices. Using
micromagnetic simulations and energetics, we evaluate properties of the skyrmion nucleation on a surface of
topological insulators, such as nucleation time, critical electric field, and skyrmion numbers. We show that the
nucleation time is inversely proportional to the applied electric field. We also identify the Gilbert damping
and temperature dependencies of the critical field. Furthermore, we analytically evaluate the effect of the
Dzyaloshinskii-Moriya interaction and demonstrate that the temperature dependence can be explained by the
reduction of a magnon excitation gap due to the self-energy corrections.

DOI: 10.1103/PhysRevResearch.4.043105

I. INTRODUCTION

A magnetic skyrmion is a real-space topological object
defined by its non-coplanar spin texture [1–7]. Because of
their topological spin structure, skyrmions exhibit unique
dynamics [8,9] and transport properties associated with a
nontrivial quantum Berry phase resulting in emergent elec-
tromagnetic fields [10–12]. On the one hand, a topological
insulator (TI) is a momentum-space topological object char-
acterized by its nontrivial band structure [13,14]. Due to
this topologically nontrivial structure, transport phenomena
related to the momentum-space Berry curvature, such as the
quantum spin Hall effect [15–17] and the quantum anomalous
Hall effect [18–20], are realized and experimentally observed.
Another consequence of the nontrivial bands is the appearance
of metallic gapless surface states. The surface Dirac elec-
trons mediate strong correlations between spin and current as
their spin and momentum have a one-to-one correspondence,
known as spin-momentum locking. Although both TIs and
skyrmions separately have been recent emergent topics in
condensed matter physics, a combination of them could be an
ideal platform to study the interplay of real- and momentum-
space topology.

Recently, in a heterostructure consisting of a TI and a mag-
netic insulator, the ferromagnetic (FM) skyrmion formation
has been observed by transport measurements [21–23]. In
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addition to the conventional anomalous Hall effect, an extra
Hall signal has been observed, which was attributed to the
topological Hall effect arising from the emergent electromag-
netic field of skyrmions. Beyond that, a real-space observation
by a scanning transmission x-ray microscopy has been made
and confirmed the formation of antiferromagnetically coupled
Néel-type skyrmions at a TI interface with a ferrimagnet [24].

Skyrmions on a TI surface are exhilarating not only from
the viewpoint of emerging physics arising from the interplay
of real- and momentum-space topologies but also due to
their prospects for spintronic nanodevices [6,7]. It has been
theoretically proposed that a skyrmion on a TI surface is
accompanied by a nonzero charge density due to the chi-
ral edge states [25–28]. Because of this additional charge
attached to it, a skyrmion can be manipulated by external
electric fields without Ohmic losses from currents. Another
mechanism has been proposed to manipulate skyrmions by
utilizing spin-transfer torques, which are greatly enhanced
due to the spin-momentum locking on the TI surface [29,30].
Consequently, the dynamics of skyrmions is expected to be
faster, which is also highly favorable for memory applications.

Although the skyrmion dynamics on a TI surface has been
intensively investigated, the missing ingredient for successful
applications of skyrmions in TIs is their nucleation studies.
In conventional FMs, skyrmion nucleation has been explored
[31], for example, by employing geometric structures and
local magnetic fluctuations, such as notches, edges, or im-
purity sites [32–38] as well as by utilizing local injection
of charge and spin currents [39–42]. However, the effect of
dissipation on the nucleation process, including the influence
of the Gilbert damping and thermal fluctuations, has not been
understood well and therefore requires further investigation.
Moreover, skyrmion nucleation on a TI surface might be sig-
nificantly different from the one in conventional FMs because
of the spin-momentum locking. With increasing interest in
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skyrmionics with TIs, detailed studies on the skyrmion nu-
cleation process are highly demanded and therefore are the
subject of this paper. We investigate the general properties
of skyrmion nucleation on a TI surface, such as nucleation
time and critical field. We perform micromagnetic simulations
at a finite temperature and demonstrate the Gilbert damping
and temperature dependences of the nucleation process. To
give physical understanding, we describe analytically the ef-
fect of temperature based on a self-energy renormalization.
By treating the Dzyaloshinskii-Moriya interaction (DMI) as
a perturbation within the random-phase approximation, we
succeed in reproducing the temperature dependence obtained
in our micromagnetic simulations.

II. STOCHASTIC MAGNETIZATION DYNAMICS MODEL

Magnetization dynamics at finite temperature is analyzed
with the stochastic Landau-Lifshitz-Gilbert (sLLG) equa-
tion [43,44],

∂n
∂t

= − γ

1 + α2
[n × Be + αn × (n × Be)] + T , (1)

where γ is the gyromagnetic ratio, α is the Gilbert
damping constant, n(r) = M(r)/Ms is the normalized mag-
netization, Ms is the saturation magnetization, Be(r) =
−(1/Ms)δFM/δn(r) + Bth is the effective magnetic field,
Bth is the thermal field, FM is the magnetic free en-
ergy, and T is the spin-transfer torque. On a surface of
TIs, the magnetic free energy FM = Fex + Fani + FZ + FDMI,
where Fex = (2J0S2/la)

∫
dV (∇n)2, Fani = −K

∫
dV (nz )2,

FZ = −Ms
∫

dV Bznz, and FDMI are the exchange, anisotropy,
Zeeman, and DMI energies, respectively. Here J0 is the ex-
change constant between local magnetic moments, la is the
magnetic lattice constant, S is the amplitude of the local
moments, K is the easy-axis anisotropy constant along z
axis, and Bz is the magnetic field perpendicular to the film
[45]. On a TI surface, electrons mediate anisotropic ex-
change interaction, namely the DMI, reflecting an inversion
symmetry breaking. Then the DMI takes the form FDMI =
(D/ξl )

∫
dV [nz(∂xnx + ∂yny) − nx∂xnz − ny∂ynz], where ξl is

the penetration length of a TI surface state into the magnetic
insulator, D = −J2[�(|J| + EF ) − �(|J| − EF )]/(8πvF ) is
the DMI constant mediated by the surface Dirac electrons
[46], where J is the s-d coupling constant between electron’s
spins and local moments, vF is the Fermi velocity, EF is
the Fermi energy, and �(x) is the Heaviside function. The
effective magnetic field is then given by

Be
x,y = 4J0S2

Msla
	nx,y + 2D

Msξl
∂x,ynz + Bth

x,y, (2)

Be
z = 4J0S2

Msla
	nz + Bz − 2D

Msξl
∇ · n + 2K

Ms
nz + Bth

z . (3)

It is known that the spin-transfer torques on a TI surface that
couples to local magnetic moments are substantially modified
due to the strong spin-orbit coupling:

T = − eγ

Msξl
(αex̂ + βeŷ)(∇ · n)Ex, (4)

where αe = τJ3sgn(EF )�(E2
F − J2)/(8πE2

F ) and βe =
τ 2J2(E2

F − J2)sgn(EF )�(E2
F − J2)/(8πE2

F ) are dimension-

less coefficients [29,30]. These specific spin-transfer torques
occur at the TI/magnetic insulator interface or in magnetic TI
thin films. A detailed derivation of the spin-transfer torques
on the TI surface is given in the Appendix. Note that we
neglected the effect of the spin-orbit torques (SOT) on the
magnetization dynamics in Eq. (1). On the TI surface, the
SOT plays an important role in the magnetic dynamics
because of the spin-momentum locking, however, for the
skyrmion nucleation, which requires spatial inhomogeneity,
the SOT does not give rise to any qualitative differences as
the SOT are uniform contribution. Instead, the SOT under
the DC current is equivalent to a static uniform in-plane
magnetic field, therefore reducing the energy barrier between
the uniform FM and skyrmion states and thus contributing to
the reduction of the critical field.

For micromagnetic simulations, we discretize a space
into a square lattice by using relations ∂in(r)|r j ≈ (nj+ei −
nj−ei )/(2la), ∂2

i n(r)|r j ≈ (nj+ei − 2nj + nj−ei )/l2
a , and im-

posing periodic boundary conditions in x and y directions.
To numerically simulate finite temperature, the thermal field
is defined by Bth = η

√
2αkBT/(MsγV 	t ), where η is the

random vector drawn from a standard normal distribution, V
is the average magnetic-ion volume, and 	t is the simulation
time step. As an integration scheme, we have employed the
Heun’s method with the time step 	t ∼ 3 fs. Since these
simulations are all stochastic, all numerical data are obtained
as the statistical average over 50 independent simulations. For
typical parameters of a magnetic TI, we have used values
estimated from the first-principles calculations and experi-
ments: vF = 2.55 eV Å, J = 0.15 eV, J0 = 1.38 × 10−23 J,
K = 7.25 × 10−27 J/Å3, Ms = 1.16 × 104 J/(Tm3), and la =
ξl = 8.1 Å [47,48].

III. SKYRMION NUCLEATION

We first examine the skyrmion nucleation with uniform
currents. Figure 1 shows the magnetic profiles under a uniform
current pulse. Here, we chose the parameters as α = 0.04,
T = 0.2 K, and Ex = 6.5 × 104 V/m. At t = 0 ns, when no
current is applied, the magnetization is along the z axis. After
application of the current pulse, it first develops particlelike
small fluctuations as shown in Fig. 1(b). Eventually, these
particlelike fluctuations grow into Néel skyrmions once their
radius reaches the critical one determined by J , D, and Bz

[49,50], otherwise they collapse back into a uniform state.
Note that, during an early stage of the nucleation, a skyrmion-
antiskyrmion pair is created due to the topological number
conservation [11,51]. However, because our DMI stabilizes
only skyrmions, the antiskyrmions quickly decay into the
uniform state [52]. After the current pulse is switched off,
only the skyrmions survive, see Fig. 1(d). These results clearly
show that skyrmions can be nucleated by uniform current
pulses at TI/FM interfaces [53].

IV. EFFECT OF GILBERT DAMPING

There is always a delay before the first skyrmion is nu-
cleated. To investigate this nucleation time, we first study its
Gilbert damping α dependence. Since α depends on various
factors such as disorder, it is important to understand how
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FIG. 1. Magnetic profile at (a) t = 0 s when no current is applied,
(b) t = 0.2 ns after current pulse is applied, (c) t = 1 ns after current
pulse is applied, and (d) after the current pulse is switched off. The
color code and arrows show the z and in-plane components of magne-
tization, respectively. The parameters are α = 0.04, T = 0.2K, and
Ex = 6.5 × 104 V/m.

it affects the nucleation process. The skyrmion nucleation
time tn for various α is shown in Fig. 2(a) as a function of
applied field Ex. We define the tn as a time before the total
skyrmion number, Nsk = | ∫∫ dxdy n · (∂xn × ∂yn)|/(4π2),
exceeds one. The skyrmion nucleation is absent for small Ex,
i.e., there is a critical field Ec for the nucleation process. In this
regime, the energy dissipation caused by the Gilbert damping
exceeds the energy influx due to the spin-transfer torque [54],
such that the total accumulated energy is insufficient to nucle-
ate a skyrmion.

In terms of the nucleation time, Fig. 2(a) shows diverging
behavior at Ec and monotonically decreases with Ex. This
can be explained based on the energy considerations. Since
the energy influx per unit time to the system is linearly pro-
portional to Ex as the coupling to electrons is treated within
the linear response theory, the total accumulated energy is

FIG. 2. (a) The nucleation time and (b) the skyrmion number as
a function of electric field Ex are plotted for various Gilbert damping
α and T = 1 K. The dots are numerical data and solid lines are
fitting functions. The inset of panel (a) shows the Gilbert damping
dependence of the critical field Ec in the units of 104 V/m.

FIG. 3. (a) The skyrmion number Nsk as a function of time and
electric field Ex , for α = 0.04 and T = 0.2 K. (b), (c) Magnetic
profile at t = 0.5 ns and Ex = 7 × 104 V/m, and (c) t = 0.5 ns and
Ex = 22 × 104 V/m.

Ftot ∝ Ex. The nucleation rate 1/tn is, then, proportional to
the energy difference between the total accumulated energy
Ftot and the nucleation energy of a single skyrmion Fsk, i.e.,
1/tn ∝ Ftot − Fsk ∼ Ex − Ec. Thus, the nucleation time scales
as tn ∝ (Ex − Ec)−1. Indeed, the numerical data is in excellent
agreement with it, see Fig. 2(a), when fitted by,

tn(α) = A[|Ex| − Ec(α)]−1, (5)

where A is a coefficient and Ec(α) is the critical field at the
given α. As shown in the inset of Fig. 2(a), the critical field Ec

is linear in α. This is because the energy dissipation is linear in
α and the energy influx is ∝ Ex. Thus, as the total accumulated
energy is determined as the difference of the energy influx
due to spin-transfer torques and the Gilbert dissipation, the
required energy influx to nucleate a skyrmion should linearly
increase with α.

We also examined the total skyrmion number nucleated
after 1 ns pulse as a function of applied field Ex for several
α. As shown in Fig. 2(b), the nucleated skyrmion number
Nsk linearly increases with Ex in the vicinity of the critical
field. However, as Ex increases further, Nsk deviates from
a linear slope and saturates. The saturation occurs because
skyrmions start overlapping and merging into large domains
as the skyrmion density increases. By further increasing Ex,
skyrmion states are almost destroyed by strong magnon ex-
citations. Time evolution of Nsk at each applied field and
corresponding magnetic profiles are shown in Fig. 3. As seen
from Fig. 3(a), Nsk stays constant after reaching a steady state
for the fields below Ex ∼ 1.5 × 105 m/V. In this regime, all
nucleated skyrmions are well separated, as shown in Fig. 3(b).
On the other hand, for larger Ex corresponding to the tur-
bulence regime in Fig. 3(a), Nsk decreases as Ex increases
and oscillates in time. Figure 3(c) shows a typical magnetic
profile in the strong field regime, swirling magnetic struc-
tures no longer survive [53], and larger magnetic domains
are formed because of strong magnon excitations. Note that
it is a crossover, not a phase transition, between the steady
nucleation and turbulence regimes.
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FIG. 4. The nucleation time as a function of electric field Ex for
various temperatures and α = 0.04. The dots are numerical data,
while the solid curves are fitting functions given by Eq. (5). The inset
shows the temperature dependence of the critical field Ec.

V. EFFECT OF TEMPERATURE

Next, we examine the temperature effects on the nucleation
phenomenon. The nucleation time for various temperatures is
presented in Fig. 4. One can notice that the temperature T
only affects the critical field, see Ec(α) in Eq. (5), whereas
the functional form of Ex is hardly modified. The critical
field linearly decreases with T , as shown in the inset of
Fig. 4. Phenomenologically, the linear dependence on T can
be understood as follows. The thermal fluctuations supply the
energy ∼kBT to the system, where kB is the Boltzmann con-
stant. Due to this additional contribution, the energy required
to create a skyrmion reduces linearly with T . We note that the
critical field vanishes around T ∼ 8 K; above this tempera-
ture, skyrmions are nucleated even without the spin-transfer
torques due to the thermal fluctuations.

Although phenomenological energy considerations explain
the temperature effect on the nucleation process, we move one
step further and try to explain this phenomenon in terms of
ferromagnetic magnon excitations. Introducing the Holstein-
Primakoff representation, the free energy of the system can be
transformed to the magnonic Hamiltonian as

Ĥm =
∑

k

a†
k(Jk + K̃ + B̃ − tk )ak

+
∑
k,q

(
Dqa†

qa†
k−q/2ak+q/2 + D∗

qa†
k+q/2ak−q/2aq

)
, (6)

where ak is the magnon annihilation operator with the wave
number k, Jk = 8J0S2 ∑

i=x,y(1 − cos k j ) is the exchange en-
ergy, K̃ = 2Kl3

a is the easy-axis anisotropy, B̃ = MsBzl3
a is the

Zeeman energy, Dk = 2iDla(sin kx + i sin ky) is the DMI, and
tk = 4eExla(βe sin ky + αe sin kx ) describes the effect of the
spin-transfer torque. Note that we have retained the linear in
Ex term and neglected the higher-order terms. The first term
gives a single-particle magnon dispersion as it already has
the bilinear form in magnon operators. On the other hand,
the DMI in the second line of Eq. (6) contains three-magnon
operators and has to be treated perturbatively.

FIG. 5. The Feynman diagrams contributing to the magnon self-
energy. (a) and (b) show the density-density and the pair correlations,
respectively.

The full Green’s function is given by Gk(D) = 〈φkφ̄k〉 =∫
D(φ̄,φ)φk φ̄ke−S[φ,φ̄]∫

D(φ̄,φ)e−S[φ,φ̄] , where S[φ, φ̄] = ∑
k φ̄k(−iωn)φk +

Hm[φ, φ̄] is the imaginary-time action, φk=(ωn,k) is the
eigenvalue of the magnon operator ak, and Hm is the
Hamiltonian in the magnon coherent states basis. Within
the random phase approximation, the Green’s function
Gk ≈ (−iωn + Jk + K̃ + B̃ − tk − �k )−1, where �k is the
self-energy induced by the DMI. The real part of the
self-energy modifies the magnon dispersion, while the
imaginary part gives a finite lifetime. Therefore, the effective
magnon dispersion including the effect of DMI takes the form

ωeff (k) = Jk + K̃ + B̃ − tk − Re[�k]. (7)

As depicted in Fig. 5, the self-energy has two contributions
�k = �k,d + �k,p with

�k,d = −4|Dk|2
∑

q

fB(ωq) − fB(ωk+q)

ωq − ωk+q + i0+
, (8)

�k,p = 4
∑

q

|Dq|2 1 + fB(ωq) + fB(ωk−q)

ωq + ωk−q − i0+
, (9)

where fB is the Bose-Einstein distribution and ωk = Jk + K̃ +
B̃ − tk is the bare magnon dispersion. Equations (8) and (9)
correspond to the magnon density-density response function,
�d , and pair-correlation function, �p. From Eqs. (8) and (9),
one notices that the real part of the self-energy is always
positive, namely, the magnon correlations always reduce the
magnon excitation gap min(ωeff ). As the Bose-Einstein dis-
tribution function can be expanded as fB(ω) ≈ kBT/ω, the
reduction of the gap min(ωeff ) due to the self-energy contri-
butions is linear in temperature. Then, because the magnon
instability is a precursor of the skyrmion nucleation and it oc-
curs when the magnon excitation gap collapses, we conclude
that the critical field linearly decreases with T . Note that this
expansion is valid when a single-particle magnon excitation
gap, ωgap, is smaller than kBT . In typical magnetically doped
TIs, the perpendicular magnetic anisotropy is ∼10−6 eV [48],
which corresponds to ∼0.1 K. Because the condition ωgap <

kBT is always met within the temperature range of our simula-
tions, the linear-T dependence observed in the inset of Fig. 4
can be explained analytically based on the magnon excita-
tions. Note that the instability and the nucleation of magnetic
texture is a highly nonequilibrium process, and equilibrium
analysis based on the self-energy corrections may fail to com-
pletely explain dynamical properties. We also neglected the
magnon excitation due to the electric field, which may affect
the behavior in a low-temperature regime. However, it is still
capable of qualitatively describing statistical properties such
as the average nucleation time and critical field.
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VI. DISCUSSION

Let us review potential candidate materials for magnetic
TIs. In this study, we used material parameters for a typical
magnetic TI, such as Cr- and V-doped (Bi, Sb)2Te3 [47,48].
The Curie temperature of this group of materials, however, is
Tc ≈ 15 ∼ 30 K, and therefore the skyrmion state is only sta-
ble at the cryogenic temperatures, thus hindering some device
applications. In order to overcome this limitation, achieving
high Tc is particularly desirable. In a similar group of ma-
terials, such as MnSb2Te4 [55], a higher Curie temperature
Tc ∼ 50 K is observed. Furthermore, the increase of Tc by
60 K due to the exchange bias effect is observed in a su-
perlattice structure of Dy-doped Bi2Te3 and Cr-doped Sb2Te3

[56]. As another approach to realizing high Tc magnetic TIs,
bilayer systems consisting of a TI and magnetic insulator with
a higher Tc are expected to be more commercially realiz-
able candidates. It is reported that a TI grown on YIG by
molecular-beam epitaxy exhibits the anomalous Hall effect,
i.e., a signature of magnetically-coupled surface states, up to
300 K [57,58]. Thus, with recent advances in nanotechnology,
there is a real prospect that room-temperature magnetic TIs
will be within the reach in the near future.

In conclusion, we have comprehensively studied the
current-induced skyrmion nucleation on a surface of a
topological insulator. As a system, we have considered a het-
erostructure consisting of a TI and an ultrathin ferromagnetic
insulator (applicable to the recent experimental realizations
[21–24]) and employed the specific spin-transfer torque real-
ized on a TI surface coupling to magnetic local moments. By
solving the stochastic LLG equation, we have determined the
critical field Ec for skyrmion nucleation and found that the
nucleation time tn ∝ (Ex − Ec)−1, where Ec has been found
to be proportional to the Gilbert damping α. These results
suggest that with the advances in nanotechnology, when much
cleaner samples with lower damping will be available, faster
skyrmion nucleation with lower fields may be achieved. Fur-
thermore, we have investigated the temperature dependence
of the nucleation and have observed the temperature effects on
the critical field, which linearly decreases as temperature rises.
We have given a quantum microscopic description for this lin-
ear dependence based on magnon excitations. The self-energy
corrections due to the Dzyaloshinskii-Moriya interaction pro-
vide linear in temperature reduction of the magnon excitation
gap and the critical field. Our results give a phenomenological
understanding of the skyrmion nucleation on a surface of a

topological insulator and open doors for developing TI-based
skyrmionic memory and logic nanodevices.
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APPENDIX: SPIN-TRANSFER TORQUE
ON THE SURFACE OF A TI

In the Appendix, we present a detailed derivation of spin-
transfer torques on the surface of a topological insulator. The
Hamiltonian describing the surface states of a topological
insulator is given by

H = H0 − evF

∑
k

ψ
†
k [A(t ) × σ]zψk

− J
∑

r

n(r) · ψ†
r σψr, (A1)

where H0 = ∑
k ψ

†
k [−vF (kxσy − kyσx ) − Jσz]ψk describes a

massive Dirac Fermions with a helical spin texture [47], ψk is
the Fermionic annihilation operator at momentum k, vF is the
Fermi velocity, σ is the Pauli matrix describing real spin de-
grees of freedom, A = (Ax, Ay) is the electromagnetic vector
potential, J is a s-d exchange constant, and n(r) = ẑ + δn(r)
is magnetization of local moments. Here we take the saturated
magnetization direction along ẑ axis and assume δn(r) is a
small magnetic fluctuation around ẑ axis, namely ẑ · δn(r) = 0
and |δn(r)| 	 1.

By treating the electromagnetic field and the magnetic
fluctuation, δn(r), as perturbations, a nonequilibrium spin
accumulation induced by an electric field applied along the
x-direction is evaluated as

〈σ(r, t )〉 = −i Tr [σG<(r, r′; t, t )]|r′→r, (A2)

where G<(r, r; t, t ) = i 〈ψ†
r′ (t ′)ψr(t )〉 is the lesser Green’s

function on the Keldysh contour and the trace is over the
spin indices [59]. Turning into momentum space, the contour
ordered Green’s function obeys the Dyson equation given as

Gk,k′ (t, t ′) = gk(t − t ′)δk,k′ − evF

∑
k

∫
C

dt1 gk(t − t1)Ax(t1)σyGk,k′ (t1, t ′) − J
∑
k,q

∫
C

dt1 gk(t − t1)δn(q) · σGk−q,k′ (t1, t ′),

(A3)

where Gk,k′ = ∑
k,k′ exp(−ik · r + ik′ · r′)G(r, r′) and gk = [i∂t − H0]−1 is an unperturbed Green’s function. By expanding the

contour-ordered Green’s function up to the first order in the external field and the magnetic fluctuation, δn(r), one can obtain
that

Gk,k′ (t, t ′) ≈ −evF Jδk−q,k′
∑
k,q

∫
C

dt1

∫
C

dt2δn(q) · [gk(t − t1)Ax(t1)σygk(t1 − t2)σgk−q(t2 − t ′)

+ gk+q(t − t1)σgk(t1 − t2)Ax(t2)σygk(t2 − t ′)]. (A4)
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Note that, in Eq. (A4), we have neglected the terms irrelevant to the nonequilibrium spin accumulation. By substituting Eq. (A4)
into Eq. (A2), the spin accumulation is given by

〈σα (r, t )〉 = ievF J
∑
k,q

eiq·rAx(t1)δnβ (q)Tr

[∫
C

dt1

∫
C

dt2σαgk(t − t1)σygk(t1 − t2)σβgk−q(t2 − t )

+
∫

C
dt1

∫
C

dt2σαgk+q(t − t2)σβgk(t2 − t1)σygk(t1 − t )

]<

. (A5)

With use of the Langreth theorem,[∫
C

dt1

∫
C

dt2A(t − t1)B(t1 − t2)C(t2 − t ′)
]<

=
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2[Ar (t − t1)Br (t1 − t2)C<(t2 − t ′) + Ar (t − t1)B<(t1 − t2)Ca(t2 − t ′) + A<(t − t1)Ba(t1 − t2)Ca(t2 − t ′)],

(A6)

where superscripts (a, r) denote the advanced and retarded functions, the nonequilibrium spin accumulation is obtained as

〈σα (r, t )〉 =
∑

q

∫
d�

2π
eiq·r−i�t χαβ (q,�)Ax(�)δnβ (q). (A7)

Here χαβ (q,�) is a spin susceptibility defined by

χαβ (q,�) = ievF J
∫

dω

2π

∑
k

Tr[σαgk(ω + �)σygk(ω)σβgk−q(ω) + σαgk+q(ω)σβgk(ω)σygk(ω − �)]<

≈ i�

2π
evF J

∑
k

[
σαgr

kσyga
kσβga

k−q + σαgr
k+qσβgr

kσyga
k

]
, (A8)

where gr,a
k ≡ gr,a

k (ω = 0) = [−H0 ± iη]−1, η is the damping
rate induced by impurity scattering, and we have expanded
the function with respect to the frequency up to the first order.
Here we have considered the small scattering regime (η 	
EF , J ) and only retained the dominant contributions which
include both the retarded and advanced Green’s functions. By
expanding the Green’s function with respect to the external
momentum, q, as gk+q ≈ gk − vF εγρqγ gkσρgk + O(q2), one
can obtain that

χαβ (q,�) ≈ i�

2π
ev2

F J
∑

k

εγρ

[
σαgr

kσyga
kσβga

kσρga
k

−σαgr
kσρgr

kσβgr
kσyga

k

]
qγ . (A9)

Note that we have dropped the O(q0) terms because they
are the uniform contributions, namely corresponding to the
spin-orbit torque, which is well known and there is no need to
reproduce in this Appendix. After momentum integration in
Eq. (A9), the nonequilibrium spin accumulation correspond-
ing to the spin-transfer torques is obtained by

〈σ⊥(r, t )〉 = C(EF )∇ · δn(r)Ex, (A10)

where C(EF ) = eJ
8πE2

F
[τ 2(E2

F − J2)x̂ − τJMzŷ]sgn(EF)�

(E2
F − J2), τ = 1

2η
is the electron scattering lifetime, sgn(x) is

the sign function, and �(x) is the Heaviside function. Finally,
the spin-transfer torques are given by

T = − γ0J

MSξl
ẑ × 〈σ⊥(r, t )〉 , (A11)

Tx = −eγ0αe

MSξl
(∇ · δn)Ex, (A12)

Ty = −eγ0βe

MSξl
(∇ · δn)Ex, (A13)

where αe = τJ3

8πE2
F

sgn(EF )�(E2
F − J2) and βe =

τ 2J2(E2
F −J2 )

8πE2
F

sgn(EF )�(E2
F − J2) are dimensionless coefficients

characterizing the spin-transfer torque mediated by the Dirac
electrons [29,30]. Note that Eq. (A12) and (A13) correspond
to the adiabatic and nonadiabatic torques, respectively. In

FIG. 6. The coefficients characterizing the spin-transfer torques
on the surface of the topological insulator. The material parame-
ters are taken as 1

2τ
= η0|EF |, η0 = 0.1, vF = 2.55 eV Å, and J =

0.03 eV.
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Fig. 6, the Fermi energy dependence of the spin-transfer
torque coefficients, αe and βe, are shown. The results
indicate that the nonadiabatic contribution dominates over the
adiabatic one. It is known that the nonadiabatic contribution

becomes significant when the spin-relaxation is large in
the system [60]. Due to the strong spin-orbit coupling on
a surface of topological insulators, it is reasonable to have
substantial nonadiabatic contributions.
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