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Origin and evolution of the multiply quantized vortex instability
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We show that the dynamical instability of quantum vortices with more than a single unit of circulation results
from a superradiant bound state inside the vortex core. We then reveal a striking behavior of the system in
the nonlinear regime. Counter to the expectation that the instability should produce well-separated vortices, the
system evolves into a bound state of corotating singularities orbiting within a few healing lengths of each other,
undergoing modulations in separation. During these modulations, kinetic energy is traded back and forth between
sound waves and vortical degrees of freedom.

DOI: 10.1103/PhysRevResearch.4.043104

I. INTRODUCTION

A striking property of quantum fluids (superfluid helium,
atomic Bose-Einstein condensates, polariton condensates,
etc.) is that the circulation of the velocity v around a closed
path C is quantized [1] in units of κ = 2π h̄/M,∮

C
v · dr = �κ, (1)

where M is the boson’s mass, h̄ is the reduced Planck’s con-
stant, and the integer � is called the winding number. In most
regions of fluid the circulation will be zero, but there may
be points [two-dimensional (2D)] or lines [three-dimensional
(3D)] where the wave function � vanishes; hence, its phase
is not defined, and � �= 0. Such topological defects (singu-
larities), normally surrounded by circular (2D) or tubular
(3D) regions of depleted density, are called quantum vor-
tices. The topological nature of these vortices deeply affects
the possible flow patterns (vortex lattices, turbulence, etc.
[2–4]).

Experiments [5–7] show that a multiply quantized vortex
(MQV), i.e., a vortex with � > 1, will spontaneously decay
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into a cluster of singly quantized vortices (SQVs), each with
� = 1. This tendency is usually justified since, for a given
circulation, a cluster of SQVs is energetically favorable com-
pared with a MQV [8]. Hence, in a dissipative system which
relaxes into the lowest energy state, an MQV will naturally
evolve into a cluster of SQVs. In nondissipative systems, how-
ever, the decay can still occur due to a dynamical instability
[9] arising from the coupling of the MQV to surrounding
phonons.

The instability of MQVs acquires additional significance
if we note that, under certain conditions, there are analogies
between vortices and rotating black holes [10]. It has recently
been argued [11] that the dynamical instability is related to
the existence of an ergoregion, a notion from black hole
physics which implies superradiant amplification of waves
in a particular frequency range [12]. Superradiance arises
not only around rotating black holes but in a wide range of
systems, e.g., draining vortices [13] and optical vortex beams
[14]. However, unbounded growth can occur if there is a
mechanism for trapping superradiant modes in the system,
eventually driving it into the nonlinear regime, e.g., black hole
bomb instabilities [15].

In this paper we study the evolution of an � = 2 MQVs in a
bucket trap. Our analytic Wentzel-Kramers-Brillouin (WKB)
prediction confirms the superradiant character of the dynami-
cal instability in the initial linear regime [11]. By solving the
full nonlinear equations, we also reveal a remarkable recur-
rent behavior of the instability at later times: a modulation
in which incompressible and compressible kinetic energies
are periodically exchanged and the two phase singularities
move in and out while rotating in close proximity. This time-
dependent state is the limiting configuration of two parallel
quantum vortices at close distances comparable to the healing
length.
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FIG. 1. Left: Oscillation frequencies and the associated eigenmodes as a function of radius. Horizontal lines are the real part of the
eigenvalues Re[ω], and the superimposed thick lines are the relative density eigenmodes δρ/ρ = u+ + u−, which are solutions of the BdG
(5) for m = � = 2. The solid vertical line represents the trap size rB = 6.5. The dashed black curves ω± separate the gray (positive norm),
white (evanescent), and pink (negative norm) regions. Modes with N > 0 (N < 0) are colored black (red). Middle: The same for rB = 8. The
unstable mode, whose real (imaginary) part is shown by a solid (dashed) green line, results from the coupling of two nearby modes in the left
panel. The complex conjugate of this mode (not shown) is a decaying solution. Also indicated are the turning points ri. Right: The eigenvalues
ω as a function of rB, with the real (imaginary) part in the top (bottom) panel. BdG solutions are shown as thick lines and follow the same
color scheme as in the previous panels. Solutions to the WKB condition (7) are shown in gray in the background and, for high frequencies,
are indistinguishable from the BdG results. WKB misses the precise location of the stability windows since the cavity mode frequency is
consistently underestimated due to ρ varying quickly in the core.

II. VORTEX STATES

We consider the dimensionless two-dimensional Gross-
Pitaevskii equation (GPE) for the mean-field condensate wave
function �,

i∂t� = [ − 1
2∇2 + V (x) − 1 + |�|2]�, (2)

where lengths are measured in units of ξ ≡ h̄/
√

Mμ (the
healing length), time is in units of τ ≡ h̄/μ, and density |�|2
is in units of μ/g. Note that the healing is sometimes defined
with a factor of

√
2 on the denominator; however, this only

rescales our spatial coordinate axis and does not affect the
results. Here, μ is the chemical potential, M is the atomic
mass, and g > 0 is the 2D interaction strength. We work in
polar coordinates x = (r, θ ). The condensate is confined by a
circular bucket potential of the form

V (r) = V0

1 + (V0 − 1)ea(rB−r)
, (3)

where rB is the trap size and V0 and a determine the steepness
of the bucket wall at rB. We choose a = V0 = 5, although our
results are essentially independent of this choice provided the
wall at rB is steep.

Using the Madelung representation � = √
ρei
, the sta-

tionary GPE has vortex solutions with velocity v ≡ ∇
 =
�/r �eθ , where ∇ is the 2D gradient operator. Here we focus
on the doubly winded vortex with � = 2. The corresponding
density ρ can then be obtained by substituting 
 = �θ in (2)
and solving numerically.

III. LINEAR DYNAMICS

Since V (x) is independent of t and θ , linear fluctuations
δψ of the condensate wave function can be decomposed into

frequency ω and azimuthal m components,(
δψ

δψ∗

)
=

∫ ∞

−∞

dω

2π

∞∑
m=−∞

eimθ−iωt

(
u+e+i�θ−it

u−e−i�θ+it

)
, (4)

where we write u± = u±(ω, m, r) for brevity. The fluctuations
can then be described by |U 〉 = (u+, u−)T, which obeys the
Bogoliubov–de Gennes (BdG) equation [16],

L̂|U 〉 = ω|U 〉, L̂ =
(

D+ ρ

−ρ −D−

)
,

D± = −1

2

[
∂2

r + 1

r
∂r − (m ± �)2

r2

]
+ V (r) + 2ρ − 1.

(5)

The BdG conserves the norm,

N =
∫

d2x(|u+|2 − |u−|2), (6)

which is related to the mode energy by a factor of ω. Solutions
to (5) are obtained by diagonalizing L̂ to obtain the eigenval-
ues ω and eigenfunctions |U 〉. In Fig. 1, we show examples
of the m = 2 relative density eigenfunctions δρ/ρ = u+ + u−
for rB = 6.5 (left panel) and rB = 8 (middle panel). In the
right panel we display the spectrum of eigenvalues ω as a
function of rB, indicating with color the sign of N . The
instability (a zero-norm solution) results from the coupling
of a positive-norm mode to a negative-norm one, which (for
� = 2) occurs only for m = 2. For particular system sizes, this
coupling is suppressed, and the instability is absent. In the
limit that rB → ∞, the density of N > 0 states becomes a
continuum, and the coupling always occurs [11]. Note that
the unstable growing mode (Im[ω] > 0) is accompanied by
its complex conjugate, which corresponds to a stable decaying
mode (Im[ω] < 0).
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FIG. 2. The splitting of the initial MQV into two singularities. (a) and (b) show the phase 
 for rB = 25 at t0 = 50 and t1 = 904,
respectively. (c) and (d) display the density ρ at the same times; white lines are surfaces of ρ = 1/10. (e) displays the difference between
ρ at t0 in (c) and the density at t1 in (d): there is a dominant m = 2 mode whose troughs coincide with the locations of the phase singularities
x1 and x2. The x and y ranges are [−5, 5] for (a)–(d), and the y range is doubled for (e). The separation s = |x1 − x2| between the two phase
singularities is shown to oscillate with t in (f) for three different values of the trap size rB. Finally, (g) shows the time evolution of the m = 2
mode amplitude inside the cavity. The initial growth rates agree with the prediction of our linear analysis (dotted lines). Note that the blue and
green dotted lines are essentially overlapping since the growth rates are the same. During the nonlinear evolution (t � 1000) the amplitude is
modulated in a trap-size-dependent manner.

Further insight into the spectrum can be obtained using
the WKB method [17], wherein fluctuations are assumed to
behave locally like plane waves on a smoothly varying back-
ground. The method (elucidated in our companion paper [18])
defines two curves ω±(r) which separate the (r, ω) space into
regions of positive and negative norm density, as shown in
the left and middle panels of Fig. 1. Since the total norm
is conserved, superradiant amplification occurs when a given
ω mode tunnels from a region of positive norm to one with
negative norm, i.e., from above ω+ to below ω−. Instabilities
arise when superradiant modes become trapped. This occurs
for vortices since there is reflection at the vortex axis r = 0
and, in the presence of a trapping potential, also at r = rB. In
the WKB approximation, the eigenvalue equation for modes
which tunnel from above ω+ to below ω− is

4 cot(S01) cot(S2B + π/4) = exp(−2S12). (7)

Si j (ω) = ∫ r j

ri
|p(ω)|dr is the phase integral between the turn-

ing points ri, indicated on Fig. 1. p solves the dispersion
relation �2 = ρk2 + 1

4 k4, with k2 = p2 + (m2 + �2)/r2 +
2(ρ + V − 1) being an effective wave number and � =
ω − m�/r2 being the frequency in the fluid frame (see [18]
for details). Solutions to (7) are shown in light gray in
the right panel of Fig. 1 and clearly capture all the fea-
tures of the spectrum obtained from numerical evaluation of
the BdG.

The condition (7) has three types of solutions. Modes
which occupy the cavity centered around the vortex core
satisfy cot S01 � 0, e.g., the mode with ω > 0 and N < 0
in Fig. 1 (right panel). All the other real eigenvalues in this
plot are phonons in the bulk of the condensate which obey
cot(S2B + π/4) � 0. Complex-conjugate pairs of eigenvalues
(one of which is an instability) occur when the cavity mode
couples to a phonon, such that only the product of the two
cotangent functions is exponentially small. In the limit that

rB → ∞, (7) reduces to

cot S01(Re[ω]) = 0, Im[ω] = − log |R|
2∂ωS01

∣∣∣∣
Re[ω]

, (8)

where |R| = (1 + e−2S12/4)/(1 − e−2S12/4) is the local reflec-
tion coefficient associated with the tunneling between the bulk
and the cavity. The factor in the denominator is negative since
the cavity modes have negative norm density. Hence, we see
that the origin of the instability is superradiant amplification,
namely, |R| > 1 [12].

IV. NONLINEAR DYNAMICS

To investigate the nonlinear evolution of the instability,
we numerically evolve the GPE (2) for an � = 2 vortex (see
Appendix A for details). We observe that the initial � = 2
phase singularity splits into two � = 1 singularities, as shown
in Figs. 2(a)–2(d) for rB = 25, each guided by a trough of
the unstable m = 2 mode [Fig. 2(e)]. The separation between
the two singularities varies in accordance with the amplitude
of the m = 2 mode, as illustrated in Figs. 2(f) and 2(g) for
three different rB. Figure 2(g) also shows that the instability
predicted by the linear analysis agrees with the full numerics
for t � 1000 [19] online.

Surprisingly, we find that once the separation between
the singularities reaches approximately two or three healing
lengths, they begin to spiral back inwards. Since both sin-
gularities occupy the same region of depleted density, they
cannot be referred to as separate vortices, as this would imply
a singularity embedded in its own low-density region (the
vortex core). During the inward stage, the m = 2 wave form
matches that of the linear decaying mode (which is the com-
plex conjugate of the unstable mode). This mode describes
the reabsorption of a phonon by the pair of singularities.
Eventually, growth resumes, causing a modulation of the pair
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FIG. 3. Time evolution of the compressible (green line) and in-
compressible (red line) kinetic energies associated with phonons and
phase singularities, respectively. The correlation between increases
(decreases) in compressible (incompressible) kinetic energy supports
our interpretation that the observed modulations are driven by an
energy exchange between singularities and phonons. The inset shows
the energies, i.e., H+ (green line) and H− (red line), of our simple
oscillator model described in Appendix C for � = 1, σ = 1/50,
g = 1/200, c+ = 0, and c− = 2. This captures the behavior seen in
our simulations.

separation. This cycle repeats, in a manner sensitive to the trap
size, for the duration of our simulations [see Fig. 2(f)]. These
modulations are driven by the exchange of energy between
phonons and phase singularities. Indeed, in Fig. 3 we display
the compressible (phonon) and incompressible (containing
the singularities) kinetic energies [20], finding that when the
former increases, the latter decreases.

In Appendix C we describe a simple dynamical system
consisting of two oscillators X± with opposite-sign energies
H± = ±( 1

2 Ẋ2
± + V±), which describes the essential interac-

tion between phonons and phase singularities. The potential
and interaction energies are V± = 1

2 (�2 ± σ )X2
± − 1

4 c±X4
±

and Vint = gX+ · X−. We show how this system can be solved
in the limit of large � to reveal the signature switch between
exponential growth and decay seen in our simulations, as
shown in the inset of Fig. 3. The characteristic feature which
allows this is that the negative-energy cavity mode (which
results in the formation of two singularities) couples only to a
single phonon in the bulk, and couplings to all other phonons
are considered negligible.

The physical mechanism underpinning this behavior is
captured by the following argument. While the instability is
growing, the nonlinearity in the GPE reduces the frequency of
the cavity mode until it can no longer couple to the phonon
that rendered it unstable. After decoupling, the phonon will
oscillate faster than the cavity mode, and the phase difference
between the two will change. Upon recoupling, this accumu-
lated phase difference results in the complex conjugate of the
unstable mode, i.e., the decaying mode. For this argument to
hold, the density of phonon states in Fig. 1 must be sufficiently
low that the cavity mode cannot couple to any phonons of
lower frequency as it evolves. Hence, we would not expect

modulations of the pair separation to occur in a very large
system where the density of phonon states is effectively con-
tinuous. This being said, we have found that modulations can
persist for trap sizes up to at least rB = 47.

In addition to the two singularities remaining confined
inside the same region of suppressed density, as shown in
Fig. 2(d), the maximum value of the density perturbation |δ�|
during the evolution is only about 0.2. This suggests that the
full nonlinear dynamics can, indeed, be described perturba-
tively about the original � = 2 vortex background, in contrast
to the expectation that a MQV should decay nonperturbatively
into a cluster of well-separated SQVs. One might assume that
this behavior is highly sensitive to initial conditions and that
any small perturbation might be enough to destroy the effect.
While this seems to be the case when the vortex is placed
far from the center of the trap [7], we have found that our
modulations persist even if the vortex is displaced from the
origin by a few healing lengths. We have also checked what
happens when damping is added to the dynamics. Energy is
then slowly removed from the system, forcing the singularities
to eventually separate into vortices which obey Hamiltonian
vortex dynamics [21]. Before this, however, the cavity mode
(whose frequency decreases monotonically) will couple to
any available lower-frequency phonons, causing modulations
of the vortex separation as the singularities gradually drift
apart (see Appendix B for an example). Hence, we expect
the modulations will have observable consequences in real
experiments where dissipation is important.

V. CONCLUSION

We have studied the instability of a doubly quantized � = 2
vortex using three distinct methods: a linear BdG stability
analysis, a WKB approximation, and a fully nonlinear nu-
merical simulation of the GPE. The WKB method allowed
us to identify the cause of the instability as a superradiant
bound state inside the vortex core. We then confirmed that the
instability predicted in the linear equations was also present
in the full GPE dynamics. Quite unexpectedly, we found
that, while the instability is present at early times (and will
cause the singularities to separate), the nonlinearity in the
GPE pushes the two phase singularities back together once
they reach a critical separation, resulting in a modulation of
their separation. While it was already predicted that insta-
bilities can be suppressed in certain trap geometries (e.g.,
[7,11]), it was not known that an unstable vortex state could
do something besides decay into a well-separated pair of
SQVs. The observed behavior exhibits qualitative similarities
with sound reabsorption by solitons [22] and vortices [23],
sound-mediated energy exchange between vortices in adjacent
traps [24], and soliton trainlike behavior in superconductors
following a quench [25,26].

The observed modulations of the separation between sin-
gularities are suggestive that, under the right conditions,
corotating vortex pairs may be able to form metastable
bound states. This surprising observation is reminiscent of the
Berezinskii-Kosterlitz-Thouless phase transition [27], where
vortices of opposite polarity form bound states below a critical
temperature, although in our case the binding is a conse-
quence of the trap geometry rather than the temperature. A

043104-4



ORIGIN AND EVOLUTION OF THE MULTIPLY … PHYSICAL REVIEW RESEARCH 4, 043104 (2022)

consequence is that our system never enters the regime where
one can apply Hamiltonian vortex dynamics [21] since this
requires that the vortex separation be much larger than the
healing length. It would be interesting to see whether this
behavior extends to more general scenarios, e.g., clusters of
vortices. Although the resulting dynamics may be more com-
plicated since there are more instabilities in the system (e.g.,
for � = 3 there are instabilities in the m = 2, 3, 4 modes [18]),
we also expect these modulations to persist for higher winding
numbers.
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APPENDIX A: SIMULATIONS

The numerical simulations of vortex decay presented in
Fig. 2 are performed in three steps: (1) preparation of the
initial state, (2) time evolution using the GPE (2), and (3)
mode extraction.

For a given trap potential V (r) of the form (3), the initial
state is prepared by first estimating the lowest-energy config-
uration for a central � = 2 vortex. This is done by fixing the
phase � ≡ √

ρei�θ and evolving the modulus
√

ρ in imagi-

nary time τ ≡ it , i.e.,

∂τ

√
ρ =

(
1

2
∂2

r + 1

2r
∂r − �2

2r2
− V (r) + 1 − ρ

)√
ρ. (A1)

The resulting density ρ is inserted into a finite-difference
matrix formulation of the BdG equation (5). Numerically
solving for the eigenmodes and selecting the solution |U 〉 =
(u+, u−)T with the largest imaginary part allows for the con-
struction of the initial state,

�0 = ei�θ [
√

ρ(r) + εu+(r)eimθ + εu∗
−(r)e−imθ ]. (A2)

Here ε 
 1 is the initial amplitude of the unstable mode. For
the data presented in Fig. 2, the values used are ε = 10−3,
m = 2, and � = 2.

The state �0 serves as the initial state for the full GPE
simulation. Here the Cartesian plane is discretized into an
N × N linearly spaced mesh of pixels with separation of �l in
each dimension. The time evolution proceeds in discrete time
steps of duration �t using a Fourier split operator method (see
[28] for further details), which amounts to

�(r, t + �t ) � e
i�t
2 ∇2

e−i�t (V −1+|�|2 )�(r, t ). (A3)

Provided that the boundary x, y = ± 1
2 (N − 1)�l of the sim-

ulation domain is well outside the potential boundary rB, the
wave function � is sufficiently periodic for a Fourier-spectral
evaluation of the exponentiated Laplacian in (A3). In the sim-
ulation presented in Fig. 2, the values N = 768, �l = 1/10,
and �t = 10−3 were used along with a potential of the form
(2.2) with a = 5, V0 = 5, and rB = 25. Using the initial state
and the discretization scheme outlined above, we perform
8 192 000 = 16 384 × 500 time steps, of which every 500th
frame is stored for later processing. The result is a collection
�(xi, y j, tk ) ∈ CN2×Nt .

To extract the evolution of the unstable mode, the wave
function �(xi, y j, tk ) is transformed to polar coordinates
�(ri, θ j, tk ) and Fourier transformed in the azimuthal direc-
tion to give �(ri, mj, tk ), where mj is the jth azimuthal
component. The imaginary part Im[ω] of the frequency of
the unstable mode is found by performing a log-linear fit to
|�(ri, mj, tk )| at ri = 1.5 and mj = 2. The real part Re[ω]
is computed (at the same points) using a temporal Fourier
transform.

The energy

E =
∫

d2x

⎛
⎜⎜⎝1

2
|∇√

ρ|2︸ ︷︷ ︸
Eqnt

+ 1

2
|√ρ∇
|2︸ ︷︷ ︸

Ekin

+ V ρ︸︷︷︸
Epot

+ 1

2
ρ2︸︷︷︸

Eint

⎞
⎟⎟⎠
(A4)

associated with a state � = √
ρei
 in the GPE may be de-

composed into a quantum energy Eqnt, kinetic energy Ekin,
trap energy Epot, and interaction energy Eint. As first proposed
by Nore et al. [20,29], the kinetic energy Ekin may be fur-
ther split into a compressible part Ec

kin and an incompressible
part Ei

kin. Defining u ≡ √
ρ∇
 and introducing u ≡ uc + ui

with ∇ · ui = 0, the two components of the kinetic energy
take the form Ei

kin = ∫
d2x 1

2 |ui|2 and Ec
kin = ∫

d2x 1
2 |uc|2. Nu-

merically, such a decomposition may be obtained from the
realization that if F denotes a spatial Fourier transform and k
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function of the distance s between them (black line). At small s, the
singularities are protovortices with � corresponding to the frequency
of the unstable cavity mode (blue dashed line). At large s, the singu-
larities are true vortices which obey the expected Hamiltonian point
vortex dynamics (red line). We compare our data to a function used
by Parker [32] (green crosses), who also considered the dynamics of
nearby vortices.

denotes the corresponding wave vector, then uc is nothing but
the projection of u onto k, i.e.,

uc = F−1

[
k(k · Fu)

|k|2
]
, (A5)

where, in the absence of a mean flow, the k = 0 component
may be ignored to avoid zero division.

APPENDIX B: DAMPING

Dissipation is introduced in the GPE by using the phe-
nomenological damping parameter γ [30,31],

i∂t� = (1 − iγ )
[ − 1

2∇2 + V (x) − 1 + |�|2]�. (B1)

The presence of dissipation damps out the oscillations of the
two protovortices, which spiral away from each other and
develop separate core regions. At this point we recover the
well-known configuration of two point vortices of the same
sign, which rotate around each other with an orbital frequency
inversely proportional to the square of the vortex separation s,
as shown in Fig. 4. The fact that the point vortex description
predicts a divergence as s → 0, signaling the breakdown of
the model, is a consequence of the overlapping vortex cores.
In this regime, the system is better described as a perturbation
(cavity mode) on an � = 2 vortex background. This mode
enters the linear regime in the limit s → 0, and we see that
the orbital frequency of the singularities tends to half of the
oscillation frequency of the instability. The half is because two
nearby singularities make a perturbation with m = 2; hence,
it takes twice the time for a given peak of the m = 2 mode to
return to its original position.

Another interesting feature of Fig. 4 is the sudden oscilla-
tions in s as the orbital frequency decreases. This occurs when
the cavity mode reaches the correct frequency to couple to

another phonon in the system. There are two such oscillations
in Fig. 4 because at rB = 25, there are two phonons with lower
frequency than the cavity mode. Hence, for a small system
where the cavity mode initially couples to the lowest phonon,
these sudden additional oscillations would not occur.

In general, for the nonlinear modulations of the singularity
pair to be observable in the presence of damping, the time
taken for the singularities to spiral in and out should be shorter
than the scale set by dissipation. Judging from Fig. 2(g) in
the main text, the vortex spirals occur on a timescale of the
order of Im[ω]−1, where ω is the frequency of the unstable
mode. Hence, the modulations should be observable provided
γ 
 Im[ω] is satisfied.

APPENDIX C: TWO-OSCILLATOR MODEL

The switch from exponential growth to decay observed
in our simulations is characteristic of two oscillators (with
opposite-sign energies) interacting under the influence of a
nonlinearity. We illustrate this using a simplified model with
the following Lagrangian:

L = 1
2 Ẋ2

+ − V+ − 1
2 Ẋ2

− + V− − gX+ · X−,

V± = 1
2 (�2 ± σ )X2

± − 1
4 c±X4

±, (C1)

which describes two particles at X± = (X±,Y±) oscillating
about the coordinate origin with energies H± = ±( 1

2 Ẋ2
± +

V±), respectively. The interaction energy between the two
particles is gX+ · X−. We set c+ = 0 and c− = ε > 0 so that
the nonlinearity affects only the particle located at X−.

To show that this model captures the essential features of
the vortex evolution, we consider two limiting cases. When
g = 0, the two particles oscillate at fixed radii as X± ∼
e−iω±t with frequencies ω+ = {�2 + σ } 1

2 and ω− = {�2 −
σ − εX2

−} 1
2 . Here X− mimics the way the orbital frequency

of two point vortices decreases as the distance between them
grows, while X+ mimics the phonon whose frequency (de-
termined predominantly by the system size) stays nearly
constant. Next, when ε = 0, both particles oscillate about
the origin as a linear superposition of the frequencies ω =
{�2 ±

√
σ 2 − g2} 1

2 . Notice that when the oscillator spacing
is smaller than the coupling, |σ | < |g|, this will have unstable
solutions, mimicking the behavior in Fig. 1 where instabilities
occur if an N > 0 mode comes close to an N < 0 mode in
the ω plane.

The full model with ε and g being nonzero has an elegant
solution in the regime � � σ, g, εX2

− (which is the relevant
one for the vortex where Re[ω] is an order of magnitude larger
than Im[ω]). Defining the complex variable Z± = ei�t (X± +
iY±) and rescaling such that � = 1 and ε = 2, the Lagrangian
becomes

L = Im[Z+Ż∗
+ − Z−Ż∗

−] − 1
2σ (|Z+|2 + |Z−|2)

− gRe[Z+Z∗
−] − 1

2 |Z−|4. (C2)

This has a conserved charge Q = |Z+|2 − |Z−|2 analogous to
N for the vortex. For exponentially growing/decaying modes,
this is conserved only when Q = 0, implying Z± = |Z±|e−iϕ±

with |Z±| = R. In terms of R and the phase difference ϑ =
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FIG. 5. Left: A schematic of the two interacting oscillators described by the Lagrangian (C1), where X+ represents a positive-energy
phonon and X− represents the negative-energy oscillation of the vortex (cavity mode). Middle: In the limit that the central oscillator frequency
� is much larger than other scales in the problem, the dynamics can be reexpressed as a nonlinear oscillator ϑ moving through periodic
potential W with two wells. Right: When ϑ evolves as it rolls along W , the original amplitude R = |X±| switches between exponential growth
and decay, mimicking the observed behavior in our simulations.

ϕ+ − ϕ−, we get

L = R2
(
ϑ̇ − σ − gcos ϑ − 1

2 R2
)
, (C3)

which leads to the following equations of motion:

ϑ̇ = σ + gcos ϑ + R2, Ṙ = 1
2 gR sin ϑ. (C4)

These can then be combined into a single equation for ϑ ,

ϑ̈ + W ′(ϑ ) = 0, W (ϑ ) = − 1
2 (σ + gcos ϑ )2, (C5)

which describes a particle on S1 moving through a potential
W . When the linear equations are unstable, W has two max-
ima, ϑ± = π ± cos−1(σ/g). By considering the phase of the
solutions when ε = 0, one finds that the stationary solutions
ϑ = ϑ− and ϑ = ϑ+ correspond, respectively, to the linearly
growing and decaying modes. However, in the nonlinear case,
(C4) tells us that a nonzero initial amplitude in the instability
means ϑ̇ �= 0, making ϑ roll all the way over the two peaks.

Once ϑ (t ) is known, the amplitude can be found by solving
the equation in (C4) for Ṙ,

R(t ) ∼ exp

(
1

2

∫
g sin ϑ (t )dt

)
, (C6)

which tells us that R switches between exponentially growing
and decaying solutions as ϑ changes by 2π . This behavior is
illustrated in Fig. 5.

The key feature of this model that renders it so simple
is that it contains only two interacting modes. This is what
leads to the periodicity of the modulation in Fig. 5. When
other modes are taken into account (i.e., the other ω and m
modes around the vortex), energy can be dissipated into these
channels, and we would expect these cycles to lose perfect
periodicity. This imperfect periodicity appears to be what we
see in Fig. 2 in the main text.
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