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Many-body coherence and entanglement probed by randomized correlation measurements
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We show how coherences between identical constituents of a many-body quantum state can be interrogated
by suitable correlation functions and identify sufficient conditions under which low-order correlators fully
characterize many-body coherences, as controlled by the constituents’ mutual distinguishability. The comparison
of correlators of different order detects many-body entanglement.
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I. INTRODUCTION

Coherence properties of many-body quantum states are
essential, e.g., for purposes of quantum information [1] or
control [2], as well as in elementary scattering processes [3]
of photons [4], electrons [5,6], or protons [5,7]. For larger
particle numbers, though, they are hard to characterize [8]
due to the unfavorable scaling properties of state space with
the number of constituents. However, many-body interference
(MBI) opens up an entirely new realm of rich, multifacetted
interference phenomena [3,4,9] beyond conventional single-
particle interference probed, e.g., in the center-of-mass degree
of freedom (dof) of composite quantum objects [10]. MBI also
establishes another perspective upon the quantum-classical
transition — here controlled by the constituent identical
particles’ mutual level of distinguishability [4,11–13] rather
than, e.g., by their accumulated mass [10,14] or total num-
ber [15–18]. Experimental tools have now reached a level
of sophistication which allows to prepare and interrogate
many-body states with unprecedented control of the number
of constituents, as well as of their external (acted upon, e.g.,
by optical potential landscapes) and internal (defined, e.g.,
by a single particle’s electronic states) dof [18–29]. In turn,
experiments also clearly witness the enhanced fragility of
many-body coherences with increasing particle number [30],
while a full-fledged theory of many-body (de)coherence is
still in the making.

In this general context, it is necessary to understand which
observables are well suited to distil distinctive target prop-
erties of a given resource state while warranting benign
experimental overhead with respect to scaling with the par-
ticle number. Since, by the very nature of complex quantum
systems, it is also clear that such observables can never
exhaustively characterize a given state’s properties (think,
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e.g., of universal versus system-specific features characterized
by random matrix versus semiclassical theories of chaotic
quantum systems [17,31–34]), we further need a precise un-
derstanding of those potentially relevant system properties
which a given observable is blind to.

A particularly transparent setting to proceed in this direc-
tion is offered by systems of noninteracting identical particles
(such as photons or suitably tuned [35] cold atoms), equipped
with internal dof (such as polarization, arrival time, or an
electronic dof) which allow to tune their level of mutual
distinguishability [4,11,36]. When submitted to a unitary evo-
lution in their (external) motional dof, as mediated, e.g., by
a multimode scatterer, the many-body output will typically
exhibit strong MBI contributions, arising from the many-body
coherence of the initial state. These interferences, however,
will fade away as the particles acquire a finite level of distin-
guishability via preparation in distinct states of their internal
dof.

While specific output event probabilities [9,37] or statis-
tical features of low-order correlations [36,38–44] often are
sensitive probes of MBI, without the necessity to record the
full output statistics, it remains hitherto unclear which specific
properties of the state under scrutiny are probed by these
quantifiers, and in turn, which many-body coherence proper-
ties may go undetected. We close this gap by systematically
identifying orders k = 2, . . . N of many-body coherence in
states of N partially distinguishable (PD) bosons or fermions
that control the MBI contributions to k-particle (kP) measure-
ments. We propose a quantifier of kP coherence and describe
a protocol for its estimation based on an average over k-point
correlation functions, allowing for an order by order charac-
terization of a state’s many-body coherence. By relating kP
coherence to many-body distinguishability and entanglement,
we identify conditions under which low-order correlators con-
vey all essential information.

II. PARTIALLY DISTINGUISHABLE PARTICLES

Many-body states of partially distinguishable particles are
represented in the bosonic or fermionic Fock space F[H]
erected upon a single-particle (1P) Hilbert space describing
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both external and internal dof: H = Hext ⊗ Hint [13,45–47].
In contrast to the first, we assume that the second are neither
affected by the dynamics nor interrogated by measurement,
but only allow to (partially) distinguish the particles. The
distinction between external and internal dof and the asso-
ciated notion of PD and entanglement are not absolute but
determined by the experiment. A basis of many-body states is
provided by Fock states created from the vacuum |0〉 by mul-
tiple application of (bosonic or fermionic) creation operators
â†

pα , where the Latin (Greek) indices p ∈ Bext (α ∈ Bint ) label
orthogonal external (internal) basis modes. For simplicity,
we take Hext and Hint to be finite-dimensional and set d =
dim Hext. For a chosen basis Bext, Fock space F[H] can be
decomposed into the tensor product of Fock spaces built upon
the internal dof, each associated with one of the orthogonal
external modes p ∈ Bext: F[H] � ⊗

p∈Bext
Fp[Hint]. A state

is separable in those external modes, in short externally sepa-
rable, if it is separable according to this partition. Otherwise,
it is called externally entangled [48].

The external number operator N̂p = ∑
α∈Bint

â†
pα âpα counts

the number of particles in mode p ∈ Bext, irrespective of
their internal states. In the following, we assume that the
N-particle (NP) state ρ whose coherence we want to char-
acterize, e.g., the state generated by a many-particle source
in a MBI experiment, can be prepared such that Np ∈ {0, 1},
while imposing no condition on the structure of the many-
particle state in its internal dof, which we would like to
assess. Such a setting allows for a particularly transparent
analysis of the interdependence of PD, coherence, and entan-
glement [49], and further, has come into reach of experiment,
on diverse platforms. Pure, externally separable states with
Np ∈ {0, 1} are precisely those states where each particle oc-
cupies a distinct external mode pi and carries an individual,
arbitrary, pure internal state |φi〉 = ∑

α φα
i |α〉 ∈ Hint, i =

1, . . . , N [49]. Note, however, that many-particle sources,
based, e.g., on spontaneous parametric down-conversion or
quantum dots, can also be used to generate externally entan-
gled states.

III. MODE CORRELATIONS AND REDUCED STATES

For an NP input state ρ, we consider noninteracting
dynamics in the external modes (e.g., a linear interferome-
ter), such that the evolution operator U acts as U†â†

pαU =∑
m∈Bext

Upmâ†
mα , with U a unitary transformation on Hext.

MBI in the external modes is assessed through measurements
of many-body observables that are blind to the internal dof
[50]. Typical examples are density correlation measurements
between k � N modes

tr[ρ U†N̂p1 . . . N̂pkU ]

=
∑

m,n∈Bk
ext

k∏
i=1

UpimiU
∗
pini

∑

α∈Bk
int

tr[ρ â†
mαânα], (1)

with orthogonal pi ∈ Bext, â†
mα = â†

m1α1
. . . â†

mkαk
, and

âmα = (â†
mα)†, for multi-indices m = (m1, . . . mk ) ∈

Bk
ext, α = (α1, . . . αk ) ∈ Bk

int. The external kth-order
correlation functions

∑
α∈Bk

int
tr[ρ â†

mαânα] appeared already
in [51] in the study of coherence in many-body systems.

They can be identified [49] with the matrix elements
〈n|ρ (k)

ext|m〉 = ∑
α∈Bk

int
tr[ρ â†

mαânα](N − k)!/N! of the external

kP reduced density operator ρ
(k)
ext in the unsymmetrized (first

quantization) product basis |m〉 = |m1〉 ⊗ · · · ⊗ |mk〉 of H⊗k
ext .

Here, ρ
(k)
ext is obtained from ρ by embedding the NP Fock

sector into H⊗N � H⊗N
ext ⊗ H⊗N

int and performing the partial

trace operations H⊗N
ext ⊗ H⊗N

int
trint−→ H⊗N

ext

tr(N−k)−→ H⊗k
ext . Note that

these traces commute [49,52]. The k-point correlator (1)
therefore only accesses the kP marginal ρ

(k)
ext of the initial

many-body state ρ, and discards information collectively
carried by larger numbers of particles.

The off-diagonal elements 〈n|ρ (k)
ext|m〉 , m 	= n, are the kP

coherences. In Eq. (1), these come with weights defined by
the specific unitary U . We show below that randomly chosen
unitaries U , in combination with a suitable truncation scheme
of the observable, realize (on average) an unbiased sampling
of the 〈n|ρ (k)

ext|m〉. This gives direct experimental access to the
coherence of the initial state, and therefore of its capacity to
display MBI, as quantified by the cumulative measures

W (k) =
∑

m,n∈Bk
ext

〈n|ρ (k)
ext|m〉 , (2)

which we baptize the kP mean coherence. Hermiticity and
positivity of ρ

(k)
ext ensure that W (k) is real and positive.

IV. EXTERNAL SEPARABILITY AND COHERENCE

For pure externally separable states, the nonzero matrix
elements of ρ

(k)
ext stem from multi-indices m, n that are con-

nected via a unique permutation π ∈ Sk in the symmetric
group of k elements: (m1, . . . , mk ) = (nπ−1(1), . . . , nπ−1(k) ).
They are given by products of overlaps of internal 1P states
〈n|ρ (k)

ext|m〉 ∝ sgn(π )
∏k

i=1 〈φmi |φni〉, with sgn(π ) the signa-
ture of π for fermions, and one for bosons.

In the classical limit [53] of perfectly distinguishable parti-
cles in mutually orthogonal internal states, the reduced density
matrices ρ

(k)
ext are diagonal, with W (k) = trρ (k)

ext = 1 at any
order k. Hence, in Eq. (1) only diagonal terms (m = n) con-
tribute and the measurement does not show any many-body
interference signal. In turn, any deviation of W (k) from one
signals the existence of coherences in ρ

(k)
ext, giving rise to

kP interference contributions in Eq. (1). This extends the
conventional interpretation of interference to the many-body
setting. Indistinguishable bosons exhibit the maximum value
of W (k) = k! because all nonvanishing matrix elements of ρ

(k)
ext

are positive and equal. For indistinguishable fermions, each
matrix element contributing to W (k) is canceled by another
one [due to the factor sgn(π )], resulting in W (k) = 0.

Since 2P coherences are given by 〈m, n|ρ (k)
ext|n, m〉 ∝

±| 〈φm|φn〉 |2 (+ for bosons and − for fermions), W (2) has a
direct physical interpretation in terms of the particles’ distin-
guishability, controlled by the overlaps of their internal states.
Numerical analysis shows that, for externally separable states,
higher-order mean coherences W (k) are, in good approxima-
tion, given by monotonically increasing functions of W (2).
In Fig. 1, we present scatterplots of W (k), k > 2, against
W (2), for states of seven particles in seven external modes,
each with a randomly sampled (pure) internal state |φi〉 ∈
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FIG. 1. Correlation between W (k) (log scale) and W (2) from
Eq. (2), k = 3, . . . 7, for each of 1000 fermionic and bosonic ex-
ternally separable 7P states on seven external modes, with each
particle in a random internal pure state |φ j〉 (the detailed sampling
procedure is described in the appendix).On average, W (k) depends
strictly monotonically on W (2) over the entire range from indis-
tinguishable fermions, W (2) = 0 to bosons W (2) = 2. All measures
unambiguously discriminate fermions W (k) < 1, distinguishable par-
ticles W (k) = 1, and bosons W (k) > 1. The inset shows the data in a
double logarithmic plot. In the limit of indistinguishable fermions
(W (2) → 0) we empirically identify a power-law relation with expo-
nent k − 1.

Hint, i = 1, . . . , 7, such as to cover the range of W (2) ∈ [0, 2]
as uniformly as possible (cf. Appendix). For k = 3, . . . , 7, the
simulation indicates that all W (k), k = 2, . . . , 7, map out es-
sentially the same transition from indistinguishable fermions
(W (k) = 0) to indistinguishable bosons (W (k) = k!) via dis-
tinguishable particles (W (k) = 1). On a log-log scale, we
observe a power-law behavior in the limit of indistinguishable
fermions with an exponent k − 1 (see inset of Fig. 1), which
remains to be elucidated.

Note that, since the W (k) are linear in the density matrix,
the same, strictly monotonic relationship between the W (k)

holds for mixed externally separable states. Moreover, the
convex structure of mixed states will typically reduce the
scatter since deviations (if uncorrelated) will cancel out on
average. For externally separable states, W (k) thus faithfully
reflects the involved particles’ PD, over the entire range
from indistinguishable fermions to indistinguishable bosons
via the intermediate case of distinguishable particles. This
generalizes the intimate connection between coherence and
indistinguishability of single-particle paths [54] to many-body
systems.

Various quantities already considered in the literature fall
within the framework of the kP coherence measures defined
in Eq. (2), albeit only for the extreme cases k = 2 and k = N .
The degree of indistinguishability I, introduced in [50,55]
to quantify PD of bosonic Fock states, is proportional to
W (2) − 1, see Appendix. The witness of genuine N-photon
indistinguishability, as considered in [40–42], is based on
pairwise overlaps of the particles’ internal states and can
be rephrased in terms of W (2) (see Appendix): Violation of
W (2) � 2 − 2/N implies genuine N-photon indistinguisha-
bility in the above sense. The J matrix of [56,57] is, in
essence, our density matrix ρext, but accounts in addition
for possibly imperfect particle detection. In [13], sums over
all matrix-elements of the full external NP state ρext, as in
W (N ), were considered as a measure of PD, but their absolute

value (squared) is taken, which has the effect of erasing the
difference between bosonic and fermionic statistics. Finally,
W (N ) ∏

m∈Bext
Nm!/N! measures the projection of ρext on the

symmetric subspace of H⊗N
ext , a quantity considered in [13,58],

which also coincides with the degree of interference of [59].
Our proposed definition of W (k) links all these quantities to
the coherence of the reduced states ρ

(k)
ext and allows for a direct

interpretation in terms of various orders of kP interference
processes.

V. CONNECTED CORRELATORS AND RANDOM MATRIX
AVERAGE

We now turn to the estimation of the W (k) for a general,
i.e., possibly externally entangled, input state ρ. Since low-
order interference terms in Eq. (1) typically dominate the
expectation value, we enhance higher-order contributions by
employing the connected, or truncated, k-point correlators,
recursively defined as

C (k)
p = tr[ρ U†N̂p1 . . . N̂pkU ] −

∑
P�p

∏
q∈P

C (|q|)
q , (3)

where the sum runs over all nontrivial partitions P � p of
modes p = {p1, . . . , pk} into disjoint subsets q of length
|q|, each being associated with a possible factorization of
the correlator. For example, for k = 2, C (2)

p1 p2
= 〈N̂p1 N̂p2〉 −

〈N̂p1〉 〈N̂p2〉 is the covariance. Connected correlators are com-
monly used in various fields of physics (notably also in the
theoretical analysis of many-body quantum systems [24]) and
mathematics, where they are also known as joint cumulants.

By choosing U at random from the Haar measure [60] on
the unitary group U (d ), we perform a correlation measure-
ment in randomly chosen external modes. Integration of (3)
over the unitary group returns the average connected correla-
tor, with the help of (for orthogonal pi) [61]

k∏
i=1

UpimiU ∗
pini

=
∑
π∈Sk

Wgd (π )
k∏

i=1

δmπ (i),ni . (4)

The overline indicates the Haar integration and Wgd is the
Weingarten function [61,62], which only depends on the
cyclic structure of the permutation π ∈ Sk and on the external
dimension d . For k = 2, 3 and unit filling factor, i.e., N = d ,
the truncation (3) of the correlators and the Haar average (4)
cooperate in exactly the right way to ensure that all matrix
elements of ρ

(k)
ext are uniformly weighted [49]

C (2)
p1 p2 = − W (2)

N + 1
, C (3)

p1 p2 p3 = 2W (3)

(N + 1)(N + 2)
. (5)

Note that this result holds also for externally entangled states.
However, the interpretation of W (k) as a PD measure is only
valid in the case of externally separable input states, as dis-
cussed above. Relaxing the assumption N = d leads to similar
expressions, where the various matrix elements of ρ

(k)
ext acquire

different weights depending on d and N , as we will show in
detail elsewhere.

The linear relations (5) do not exactly hold at higher corre-
lation orders. However, as we show by numerical simulations,
uniform sampling of the matrix elements of ρ

(k)
ext in the input
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FIG. 2. Connected correlators C (k)
p1 ...pk

, Eq. (3), vs. W (k), Eq. (2),
with k = 4 (top) and k = 5 (bottom) for six particles in six modes,
averaged, for a given instance of a random Haar unitary, over all
choices of k out of N output modes (colored dots — each color
represents another random unitary), compared to the random matrix
prediction (blue crosses) obtained by integration over the Haar mea-
sure. The transition between indistinguishable fermions and bosons
was covered by sampling random internal states |φ j〉 for each particle
(as for Fig. 1). Bottom panels in each plot show the deviation of the
data from a linear dependence of the averaged C (k)

p1 ...pk
on W (k), from

indistinguishable fermions (W (k) = 0) to bosons (W (k) = k!). The
logarithmic x-scale resolves the fermionic range (0 < W (k) < 1) in
more detail.

basis—through the introduced scheme of truncated random-
ized correlations—is observed, to very good approximation,
also for k > 3. In Fig. 2, we show that for 6P input states (sam-
pled according to the same procedure as for Fig. 1 (described

in the Appendix)), a tight relation persists between C (k)
p1...pk and

W (k) [cf. Eqs. (2) and (3)] for k = 4, 5. Indeed, we observe an
almost linear relationship between the two quantities over the
entire range between indistinguishable fermions and bosons,
garnished by small, but systematic, deviations from linearity.
Averaging k-point correlators over randomly sampled uni-
taries U thus yields a valid estimate for the corresponding
W (k). This approach is especially promising in reconfigurable
linear optical networks [25–27]. Furthermore, Fig. 2 shows
that replacing the random matrix integration by an average
over all connected correlators C (k)

p1,...,pk
of k out of d output

modes for a single random unitary leads to a similar linear
relation. Note, in this case, that while the resulting slope of
C (k)

p versus W (k) depends on the specific unitary, deviations
from linearity are centered on the predictions from the Haar

integration. Indeed, the equivalence of mode average and ran-
dom matrix prediction is reasonable for large systems: Then,
the matrix elements of a (submatrix of a) random unitary
U are approximately i.i.d. Gaussian, and the mode average
realizes a sample mean of the true distribution, which, hence,
converges for large samples, by the law of large numbers.
This allows to estimate W (k) in experimental situations where
sampling many random Haar unitaries is not possible.

In [36,38,63,64] a statistical analysis of the moments of
the distribution of connected two-point correlators (3) was
suggested as a certification tool for MBI. Based on this
observation, two-point correlations were also put forward
to witness nonclassicality [39] or indistinguishability [43].
Similar in spirit, the characterization of N-photon coherence
by the pair-wise overlaps of the particles’ internal states in
[40–42,44] addresses only two-particle correlations. It is clear
from Eqs. (1) and (5) that such protocols only yield marginal
2P information contained in ρ

(2)
ext . However, Fig. 1 shows that,

for externally separable states, as mostly considered in the
literature, higher-order coherence depends monotonically on
W (2).

VI. EXTERNAL ENTANGLEMENT

For externally entangled states, however, 2P coherences do
not convey unambiguous information on higher-order coher-
ence, as we now demonstrate by example: Take orthogonal
external and internal modes p, q, r and α, β, γ , respectively.
The entangled 2P state

|ψ2〉 = 1√
2

(â†
pα â†

qβ − â†
pβ â†

qα ) |0〉 (6)

has W (2) = 0 for bosons and W (2) = 2 for fermions, i.e., the
exact opposite of what is obtained for an externally separable
state of indistinguishable particles (recall Fig. 2). Such swap-
ping of quantum statistics induced by entanglement has, e.g.,
been discussed in [28,29,65]. A further example is given by
the entangled 3P state

|ψ3〉 = â†
pα â†

qβ â†
rγ + â†

pγ â†
qα â†

rβ + â†
pβ â†

qγ â†
rα√

3
|0〉 , (7)

with W (2) = 1, but W (3) = 3, for both bosons and fermions,
which contradicts the strict monotonic dependence between
mean coherences of different orders for externally separable
states displayed in Fig. 1. Nonclassical correlations as those
inscribed into |ψ3〉 result in pure 3P interference: All 2P
coherences 〈m, n| ρ (2)

ext |n, m〉 , m 	= n, vanish, such that any
two-point correlation, in fact any 2P observable as defined
in [50,55], must yield a classical result, while an arbitrary
three-point correlator will unveil the coherences of |ψ3〉.
States displaying pure kP interference can be obtained by
a suitable generalization |ψ3〉. In these states, coherence is
exclusively concentrated on the highest order, such that the
system behaves like classical particles in all measurements
of order k < N . This is in contrast to the states introduced
in [66], which carry an NP phase visible only in highest
order (N-point) correlation measurements, but also display
lower-order coherence. Note that states with a cyclic structure
similar to Eq. (7) are employed in [67] to define the notion of
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genuine k-partite indistinguishability. Such a phenomenology
is realizable only through entanglement and is reminiscent of
that of Greenberger-Horne-Zeilinger (GHZ) states [68].

VII. CONCLUSION

The kP mean coherence W (k) of a possibly entangled NP
state ρ is experimentally directly accessible through the pro-
tocol of randomized correlation measurements, see Fig. 2.
For externally separable states, W (2), inferred from two-point
correlation measurements, contains already all relevant infor-
mation about the full state’s mean coherence, as shown by
the narrow monotonic dependence of W (k), k > 2, on W (2) in
Fig. 1. Any significant deviation of W (k) from this provides
a strong indication of external entanglement. The estima-
tion of W (
), 
 � k, involves

(d
k

) ∼ dk randomized k-point
correlation measurements. Although the necessary number
resolution is experimentally challenging to implement, our
protocol shows a tremendous advantage over estimating the
full output counting statistics, which scales exponentially in
N and promises diagnostic power to assess the multipartite
entanglement properties of the input state in its external dof.
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APPENDIX A: RELATION OF THE MEAN COHERENCE
TO QUANTITIES DEFINED IN THE LITERATURE

For Fock states (i.e., eigenstates of all number operators
N̂pα = â†

pα âpα), the degree of indistinguishability

I =
∑

m 	=n∈Bext

∑
α∈Bext

NmαNnα

/ ∑
m 	=n∈Bext

NmNn (A1)

was introduced in [50,55] to quantify partial distinguishabil-
ity in multicomponent bosonic systems. In particular, I was
shown to correlate with the time average of the density vari-
ances 〈N2

m(t )〉 − 〈Nm(t )〉2, which probes the 2P reduced state
evolving from the initial Fock state. The degree of indistin-
guishability is related to the 2P mean coherence for arbitrary
definite external mode occupations Np ∈ N, by

I = N (N − 1)(W (2) − 1)
/ ∑

m 	=n∈Bext

NmNn. (A2)

In [40] a notion of genuine N-photon indistinguishability,
as well as a corresponding witness based on the internal states’
overlaps of all pairs of particles, was defined. This witness is
further investigated experimentally in [41,42]. Note that the
therein considered class of states is contained in the class
of externally separable states with Np ∈ {0, 1}, i.e., mixtures
of states where each particle can be associated with a well-
defined internal state. The witness is derived by noting that
for a set of internal states |φi〉 , i = 1, . . . , N with at least two
orthogonal states

N∑
i=1

∑
j 	=i

| 〈φi|φ j〉 |2 � (N − 1)(N − 2) (A3)

From this inequality we directly obtain an inequality

W (2) � 2 − 2

N
(A4)

that holds for all states of [40] that do not describe genuine
N-photon indistinguishable photons. This witness is also ex-
perimentally accessible, through our introduced framework of
randomized two-point correlation measurements [Eq. (5) and
subsequent discussion in the main text].

For an NP state ρ, the reduced external state ρext = ρ
(N )
ext

coincides with 1/N! times the J matrix introduced in [56,57]
if ideal detectors are assumed. Actually, the author of [56]
wrote “Note that quantum coherence of photon paths is re-
flected in the J matrix in a way very similar as in the usual
density matrix of a quantum system” but does not push the
connection further. One can measure the bosonic character
of the external reduced state ρext by its projection onto the
symmetric subspace [13,57]

ps = tr(ρextPS ),

where PS = 1
N!

∑
π∈SN

π is the symmetrizer and π acts on

m ∈ H(N )
ext as π |m〉 = |mπ−1(1), . . . , mπ−1(N )〉. This quantity is

proportional to the NP mean coherence, with

ps = W (N )
∏

m∈Bext

Np!/N!.

For particles with individual pure internal states |φi〉, this is
also equal to 1/N! times the permanent of the distinguishabil-
ity matrix S = (〈φi|φ j〉)i, j introduced in [59].

APPENDIX B: SAMPLING OF INTERNAL STATES

To map out the full transition from indistinguishable
fermions to bosons via the intermediate case of distinguish-
able particles, in terms of the kP mean coherences W (k) as
uniformly as possible, we use the following two-step sampling
procedure of pure internal states for each of the particles (the
dimension of the internal Hilbert space has to be larger or
equal to the number of particles). To sample the neighborhood
of indistinguishable particles, we start from a unit vector |e〉 ∈
Hint and add a perturbation | fi〉, with the real and imaginary
parts of the components of | fi〉 drawn from a normal distribu-
tion with zero mean and variance ε. By choosing ε sufficiently
small, the resulting internal states |φi〉 = |e〉 + | fi〉, after nor-
malization, are almost parallel. The larger ε gets, the smaller
the relative contribution of the constant vector |e〉 becomes,
after renormalization, and we sample the unit sphere in Hint

almost uniformly. As a second step, we sample the neigh-
borhood of perfectly distinguishable particles by choosing
N orthogonal unit vectors |ei〉 ∈ Hint (one for each particle)
perturbed by vectors | fi〉 sampled as before with normally
distributed components in C, followed by renormalization. As
before, for large ε the contributions from the constant vec-
tors |ei〉 in |φi〉 = |ei〉 + | fi〉 are negligible and we approach
uniform sampling of the unit sphere in Hint. For sufficiently
small ε, we generate states |φi〉 in the vicinity of perfect dis-
tinguishability. This procedure is followed for fermionic and
bosonic particles. In both cases the limits of distinguishable
particles coincide, with W (k) = 1 for all k � N .
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