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Quantifying fermionic nonlinearity of quantum circuits
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Variational quantum algorithms (VQAs) have been proposed as one of the most promising approaches to
demonstrate quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, it has been
unclear whether VQAs can maintain quantum advantage under the intrinsic noise of the NISQ devices, which
deteriorates the quantumness. Here we propose a measure, called fermionic nonlinearity, to quantify the classical
simulatability of quantum circuits designed for simulating fermionic Hamiltonians. Specifically, we construct a
Monte Carlo type classical algorithm based on the classical simulatability of fermionic linear optics, whose
sampling overhead is characterized by the fermionic nonlinearity. As a demonstration of these techniques, we
calculate the upper bound of the fermionic nonlinearity of a rotation gate generated by four fermionic modes
under the dephasing noise. Moreover, we estimate the sampling costs of the unitary coupled cluster singles and
doubles quantum circuits for hydrogen chains subject to the dephasing noise. We find that, depending on the
error probability and atomic spacing, there are regions where the fermionic nonlinearity becomes very small or
unity, and hence the circuits are classically simulatable. We believe that our method and results help to design
quantum circuits for fermionic systems with potential quantum advantages.
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I. INTRODUCTION

Quantum computers have attracted much attention because
of their capability to solve classically intractable problems
[1–3]. Among them, the first industrial application is expected
to be a quantum chemistry calculation, which uses quantum
computers for simulating fermionic many-body systems. It
has been predicted that a fault-tolerant quantum computer
with about a million physical qubits can simulate both Fermi-
Hubbard and molecular electronic structure Hamiltonians
beyond classical approaches [4]. The application has also
been anticipated for noisy intermediate-scale quantum (NISQ)
devices through the variational quantum eigensolver (VQE)
[5–12].

It is essential to predict at what scale quantum computers
can have advantages over classical ones for those applica-
tions. One way is to estimate the computational cost required
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for fault-tolerant quantum computers to simulate fermionic
systems that are well beyond the reach of classical supercom-
puters [4,13,14]. However, this approach highly depends both
on the objective system and algorithms employed in classical
or quantum computers. As another approach, we can ask a
question the other way around; given a quantum circuit that
simulates a fermionic system, what is the cost of classical
computation to simulate that circuit? If there exists a quantum
advantage, at least such a quantum circuit has to be hard for a
classical computer to be simulated.

One way to evaluate the classical simulatability of quan-
tum circuits is to quantify the simulation cost of a specific
quasiprobability-based simulator [15–20]. The central idea of
quasiprobability simulators is to decompose a complex oper-
ator (operation) A over a discrete set of classically tractable
operators (operations) {Bi}, i.e., A = ∑

i qiBi. The examples
of the classically tractable operators {Bi} are pure stabilizer
states [16,19] and Pauli operators [18]. The coefficients of the
decomposition {qi} are called “quasiprobability distribution,”
and the L1 norm of the quasiprobability distribution

∑
i |qi|

determines a sampling cost. Any set of operations that can be
efficiently simulated by classical computers can be used as
operators {Bi} in a quasiprobability-based simulator. Over the
past years, Clifford circuits have become a popular class of
such channels [16,17,19,20].

Here, we consider another popular class of classically
simulatable circuits: fermionic linear optics (FLO) and match-
gates [21–24]. These classes represent the dynamics of free
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fermions, generated by quadratic fermionic Hamiltonians. It
represents a restricted class of quantum circuits in the sense
that, in general, natural fermionic interactions are described
by not only two but also four fermionic modes. For example,
the four fermionic modes appear in quantum circuits tailored
to simulate fermionic systems, such as unitary coupled clus-
ter (UCC) [5,25] and Hamiltonian variational Ansätze [8,26].
Such four fermionic modes make the quantum dynamics or
variational circuit Ansätze hard to be simulated on classical
computers, which provides a potential advantage of using
quantum computers. However, the required amount of the
four fermionic modes is limited in a certain (but common)
situation where the Hartree-Fock calculation provides a good
approximation. Hence, one may be able to classically simulate
quantum circuits for such systems.

This paper presents a quasiprobability-based simulator ex-
ploiting FLO and the corresponding measure that quantifies
the sampling cost. This simulator decomposes a fermionic
non-Gaussian operation, such as four fermionic modes, over
all possible free operations of FLO. The simulation cost is
characterized by “fermionic nonlinearity,” defined as the min-
imum of the L1 norm of the quasiprobability distribution. We
calculate the upper bound of fermionic nonlinearity of four
fermionic modes under stochastic Pauli noise as an example,
thereby estimating the sampling cost to simulate famous VQE
Ansätzes for fermionic Hamiltonian. More specifically, we
estimate the sampling cost of the noisy unitary coupled cluster
singles and doubles (UCCSD) quantum circuits for the hydro-
gen chain up to H8 with several spacings using the optimized
variational parameters obtained by full-vector simulations. A
rough extrapolation from the results shows us that the noisy
UCCSD quantum circuits for the hydrogen chain with the
spacing of 0.8 at the error rate of the two-qubit dephasing
noise p = 0.02 can be simulated up to H22 within a reasonable
sampling cost. Furthermore, if p = 0.03, the noisy UCCSD
quantum circuit for the arbitrary-length hydrogen chain can
be simulated because of vanishing fermionic nonlinearity. We
also study the overhead of a quantum error mitigation method
when applying it to noisy UCCSD quantum circuits and com-
pare the overheads with the sampling costs of simulating
error-free UCCSD quantum circuits by our proposed method.
We believe that our method and results are helpful to design
quantum circuits that simulate fermionic systems for potential
quantum supremacy or quantum advantages.

II. FERMIONIC NONLINEARITY
OF QUANTUM CIRCUITS

A. Definition of fermionic nonlinearity

Here we briefly review the efficient simulatability of FLO
before explaining the quasiprobability method to simulate
general fermionic interactions through FLO. We define {ĉi}2n

i=1
as the Majorana fermion operators that satisfy

〈ĉiĉ j〉 = 2δi j,

ĉ†
i = ĉi,

ĉ2
i = I.

The fermionic covariance matrix of a (unnormalized) mixed
state ρ is defined as

Mi j = i

2

Tr(ρ[ĉi]ĉ j )

Tr(ρ)
.

We call ρ a fermionic Gaussian state (FGS) iff its covariance
matrix M satisfies MMT = I . An FGS is fully specified by
the covariance matrix and the norm � = Tr(ρ). An operator
G is called a fermionic Gaussian operator (FGO) iff it maps
an FGS to an FGS by conjugation. An arbitrary FGO can
be written in the form of exp

∑
i< j gi j ĉiĉ j . It is known that

the evolution of an FGS under an FGO can be efficiently
simulated on classical computers. See Refs. [23,27] for the
details.

We now describe a quasiprobability-based simulation
method of general fermionic interactions via FLO. Let Si be a
map defined as follows:

Si(ρ) := UiρV †
i ,

where Ui and Vi are trace-preserving FGOs, and let {Si} be a
set of all possible Si. Given a fermionic non-Gaussian com-
pletely positive trace-preserving (CPTP) channel E , we seek
to express E as

E =
∑

i

qiSi =
∑

i

pi||q||1eiθiSi, (1)

where

||q||1 =
∑

i

|qi|,

pi := |qi|
||q||1 ,

eiθi = qi

|qi| .

pi is a probability distribution because pi is non-negative and
sum to unity. If this decomposition can be made, we can simu-
late the E by sampling a Si with probability pi and multiplying
the coefficient ||q||1eiθi to the results afterwards. The square
of the L1 norm ||q||1 quantifies the classical simulation cost
of this Monte Carlo type simulation.

To be more concrete, let us consider the expectation value
of a two-body fermionic interaction ĉμĉν with respect to E (ρ)
for an FGS state ρ and a fermionic non-Gaussian CPTP chan-
nel E . The desired quantity can be written as

〈ĉμĉν〉 = Tr[E (ρ)ĉμĉν]

=
∑

i

pi||q||1Re{eiθi〈ĉμĉν〉Si}, (2)

where

〈ĉμĉν〉Si
:= Tr[Si(ρ)ĉμĉν],

and 〈ĉμĉν〉Si is complex in general. From Eq. (2),
we can calculate the desired quantity 〈ĉμĉν〉 by sam-
pling an index i with probability pi and calculating
||q||1Re{eiθi〈ĉμĉν〉Si} efficiently. 〈ĉμĉν〉Si can be calculated
efficiently if ρ can be written by a combination of pure FGOs,
i.e., ρ = ∑

i λi|ψFGS i〉〈ψFGS i|. This is because 〈ĉμĉν〉Si =∑
i λi〈ψFGS i|V †

i ĉμĉνUi|ψFGS i〉, where FLO can simulate
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Ui|ψFGS i〉 and Vi|ψFGS i〉 classically efficiently. Let N be the
number of samples. Then, ||q||1Re{eiθi〈ĉμĉν〉Si} is an unbiased
estimator of the desired quantity 〈ĉμĉν〉. ||q||1Re{eiθi〈ĉμĉν〉Si}
is bounded in the interval [−||q||1, ||q||1], and thus the Ho-
effding inequality [28] shows that to estimate 〈ĉμĉν〉 within
additive error at most ε with probability at least 1 − δ, we
must set the number of samples such that

N � 2||q||21
1

ε2
ln

2

δ
.

Note that the expectation value of higher-order correlation
function can be estimated in a similar way exploiting Wick’s
theorem.

Having seen that ||q||1 determines the sampling cost for
simulations, we define the fermionic nonlinearity of a quan-
tum channel E as follows:

W (E ) := min
{qi}

{
||q||1|E =

∑
i

qiSi

}
. (3)

W (E ) quantifies the minimum number of samples to execute
the Monte Carlo type simulation of a quantum circuit with
FLO. Moreover, fermionic nonlinearity is submultiplicative
under composition, i.e., W (E )2 ◦ E1 � W (E )2W (E )1. This
property helps to estimate the upper bound of the sampling
cost of an n-mode fermionic quantum channel when n is too
large to calculate the fermionic nonlinearity directly. We prove
the submultiplicativity in Appendix A.

B. Concrete decomposition for four fermionic modes

So far, we have assumed that there exists a decom-
position of non-FGO in the form of Eq. (1). Here we
consider how to explicitly calculate the decomposition and the
fermionic nonlinearity of four fermionic modes in the form of
exp(iθ ĉiĉ j ĉk ĉl ). This type of operation appears in the simula-
tion of interacting fermions and in VQE Ansätze such as the
UCC Ansatz [5], and its variant, Jastrow-type Ansatz [7,29],
or Hamiltonian variational Ansatz (HVA) [8,26]. Without loss
of generality, we consider the decomposition of the following
operator:

Erot = [exp(−iθ ĉ1ĉ2ĉ3ĉ4)],

where [A]ρ := AρA†. This is because we can always perform
transformations ĉi → ĉ1, ĉ j → ĉ2, ĉk → ĉ3, and ĉl → ĉ4 by
FGOs for mutually distinct indices i, j, k, and l . The four
fermionic modes ĉ1ĉ2ĉ3ĉ4 can be mapped to a Pauli operator
by the Jordan-Wigner transformation. It maps ĉk as follows:

ĉ2k−1 = Xk

∏
j<k

Z j,

ĉ2k = Yk

∏
j<k

Z j .

Hence, the fermionic interaction Erot can be rewritten as

Erot = [exp(iθZ ⊗ Z )].

Theoretically, the fermionic nonlinearity should be calculated
using all possible FGOs. However, in practice, it is difficult to
calculate the fermionic nonlinearity using all possible FGOs
because the number of all possible FGOs is infinite. Therefore,

here we calculate the upper bound of the fermionic nonlinear-
ity using a discrete set of the FGOs. Below, we will omit the
term “upper bound” if there is no risk of confusion. Further-
more, for simplicity, we use Si satisfying Ui = Vi. Under this
condition, the estimator is simplified to ||q||1〈ĉμĉν〉Si where
〈ĉμĉν〉Si is real.

We adopt the following trace-preserving fermionic Gaus-
sian channels as the basis channels to decompose Erot:

{[e±i π
4 Z ], [I], [Z]}⊗2 ∪ {K1,α,K2,α|α = ±1}

∪ {[e±i π
4 G]|G ∈ {XX,YY, XY,Y X }}, (4)

where

K1,α :=
[

I + Z

2
⊗ eiα π

4 Z

]
+

[
I − Z

2
⊗ e−iα π

4 Z

]
,

K2,α :=
[

eiα π
4 Z ⊗ I + Z

2

]
+

[
e−iα π

4 Z ⊗ I − Z

2

]
.

The sets of the channels in Eq. (4), {[e±i π
4 Z ], [I], [Z]}⊗2 and

{K1,α,K2,α}, are adopted from Ref. [30], where the authors
provided the way to simulate a two-qubit gate, such as Erot,
by sampling a single-qubit operation. Aside from them, we
add exp(±iπ/4G) because they are the generators of FGOs
and may be used for the decomposition. All of the elements
in Eq. (4) are FGOs. Indeed, IZ , XX , XY , Y X , YY , ZI can be
rewritten as

IkZk+1 = −iĉ2k+1ĉ2k+2, XkXk+1 = −iĉ2k ĉ2k+1,

XkYk+1 = −iĉ2k ĉ2k+2, YkXk+1 = iĉ2k−1ĉ2k+1,

YkYk+1 = iĉ2k−1ĉ2k+2, ZkIk+1 = −iĉ2k−1ĉ2k .

Thus, the exponentials of these operators in Eq. (4) are FGOs.
Moreover, the projective measurements in Ki,α (i = 1, 2) are
FGOs [23]. We calculate the fermionic nonlinearity of Erot

by solving the minimization problem in Eq. (3) using the
basis channels in Eq. (4). To calculate fermionic nonlinearity,
we use a convex-optimization solver CVXPY [31,32]. The
results are shown in Fig. 1. Also, the fermionic nonlinearity
using the decomposition in Ref. [30] is shown in Fig. 1 to
compare with our results. According to Fig. 1, the fermionic
nonlinearity is the same as when one uses the decomposition
in Ref. [30]. Also, we have confirmed that the generators
exp(±iπ/4G) for G ∈ {XX, XY,Y X,YY } do not contribute
to the decomposition by examining the coefficients of the
decomposition. Moreover, we have numerically checked that
the fermionic nonlinearity does not decrease even if we add
the basis channels whose rotation angles are changed from
π/4 to π/8, or π/16 in Eq. (4). Therefore, a measurement of
a qubit in Z basis, ±π/2 rotations around the Z axis, and Pauli
Z contribute significantly to the fermionic nonlinearity.

C. Fermionic nonlinearity of noisy channels and
application to the VQE simulation

We consider the fermionic nonlinearity of Erot being sub-
ject to noise:

Enoisy rot := Ndep ◦ Erot,
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FIG. 1. Fermionic nonlinearity of Erot = [eiθ ĉ1 ĉ2 ĉ3 ĉ4 ] as a function
of the angle θ . The horizontal axis shows the angle θ . The vertical
axis shows the fermionic nonlinearity. The blue circle illustrates the
fermionic nonlinearity obtained by the basis channels in Eq. (4).
The orange triangle shows the fermionic nonlinearity obtained by
the decomposition in Ref. [30].

where Ndep is the two-qubit dephasing noise

Ndep := (1 − p)[I⊗2] + p

3
([IZ] + [ZI] + [ZZ]),

where p is the error rate of the dephasing noise. Figure 2
shows the fermionic nonlinearity of Enoisy rot as a function
of the angle of Erot and the error rate of Ndep. We see that
the fermionic nonlinearity decreases as the error rate of Ndep

increases. In addition, the smaller the rotation angle, the more
easily the noise makes the fermionic nonlinearity unity, that
is, such a noisy fermionic interaction becomes a probabilis-
tic mixture of FGOs. One implication of these results is as

FIG. 2. Fermionic nonlinearity of Enoisy rot := Ndep ◦ Erot as a
function of the angle θ of Erot and the error rate p of the two-qubit
dephasing noise Ndep. The horizontal axis shows the angle θ of
Erot. The vertical axis shows the fermionic nonlinearity. The basis
channels decomposing Enoisy rot are shown in Eq. (4). The legend
shows the error rate p of Ndep.

follows. For VQEs of fermionic problems, if the Hartree-
Fock approach is a good first-order approximation and hence
fermionic nonlinearity of the ansatz stays small even after the
optimization, such a quantum circuit is fragile against noise in
the sense that it readily becomes simulatable by the proposed
sampling method.

To analyze more practical cases, we estimate the sampling
cost of VQE that aims to obtain the ground state of the
electronic Hamiltonian of the hydrogen chain Hm. Such a
Hamiltonian is often used to benchmark the performance of
classical quantum chemistry simulations [33–41] and VQE
[42] numerically. This is because it exhibits rich phenomena,
including metal-insulator transitions, and one can benchmark
methods in both strong and weak correlation regimes. In par-
ticular, the Hamiltonian of the hydrogen chain with the use
of the STO-3G basis set has a connection with the Hubbard
model; the large spacing of the hydrogen chain corresponds
to the Hubbard model in the large coupling limit, and vice
versa. As for VQE, the authors of Ref. [43] have demonstrated
that their quantum computer can prepare the Hartree-Fock
state of H12 using VQE, although their variational ansatz cir-
cuit is classically efficiently simulatable by FLO because the
quantum circuit consists of two-body fermionic interactions.
In the following numerical simulation, the Hamiltonians are
generated by OPENFERMION [44] and PYSCF [45,46] with the
use of the STO-3G basis set, and then the Jordan-Wigner
transformation maps them to qubit Hamiltonians, resulting in
2m-qubit Hamiltonian for an m-hydrogen chain Hm. We take
the Hartree-Fock (HF) state |HF〉 as the reference state for the
VQE.

We consider the UCC Ansatz [47–52], which is a chem-
ically inspired Ansatz and often used in VQEs [5,25]. In
particular, we consider the UCCSD Ansatz that only includes
single and double excitations. The UCCSD Ansatz is defined
as

U = e(T1−T †
1 )+(T2−T †

2 ),

T1 :=
∑

a∈virt,i∈occ

taiâ
†
aâi,

T2 :=
∑

a,b∈virt,i, j∈occ

tabi j â
†
aâ†

bâiâ j,

where occ and virt represent the sets of occupied and virtual
orbitals, respectively, and tai and tabi j are variational parame-
ters. Usually, the UCCSD is implemented as a quantum circuit
by Trotter expansion of U :

Ũ =
[ ∏

a∈virt,i∈occ

exp

(
tai

NTrot
(â†

aâi − â†
i âa)

)

×
∏

a,b∈virt,i, j∈occ

exp

(
tabi j

NTrot
(â†

aâ†
bâiâ j − â†

j â
†
i âbâa)

)⎤
⎦

NTrot

.

In the following, we consider the UCCSD Ansatz with NTrot =
1. Note that the fermion operator âi is associated with the
Majorana fermion operators ĉ2i−1, ĉ2i as follows:

ĉ2i−1 = âi + â†
i ,

ĉ2i = −i(âi − â†
i ).
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Using this relation, four fermionic modes constituting Ũ can
be rewritten by the Majorana fermion operators as follows:

etabi j (â†
aâ†

bâi â j−â†
j â

†
i âbâa )

= e−i
tabi j

8 ĉ2a−1 ĉ2b−1 ĉ2i−1 ĉ2 j e−i
tabi j

8 ĉ2a−1 ĉ2b−1 ĉ2i ĉ2 j−1

× e−i
tabi j

8 ĉ2a−1 ĉ2bĉ2i−1 ĉ2 j−1 ei
tabi j

8 ĉ2a−1 ĉ2bĉ2i ĉ2 j

× e−i
tabi j

8 ĉ2aĉ2b−1 ĉ2i−1 ĉ2 j−1 ei
tabi j

8 ĉ2aĉ2b−1 ĉ2i ĉ2 j

× ei
tabi j

8 ĉ2aĉ2bĉ2i−1 ĉ2 j ei
tabi j

8 ĉ2aĉ2bĉ2i ĉ2 j−1 . (5)

We consider the sampling cost for simulating UCCSD circuits
when each of the Majorana rotation gates in Eq. (5) are sub-
jected to dephasing noise.

The sampling cost of a UCCSD quantum circuit can be
given by the upper bound of the fermionic nonlinearity, which
can be calculated by the product of the fermionic nonlinearity
of the four fermionic modes. Note that, as mentioned before,
the HF states used as the reference states are FGSs; therefore,
there are no sampling costs due to the input states. We use
the optimized variational parameters of error-free UCCSD
quantum circuits, calculated by the full-vector simulations
performed with QULACS [53]. Figure 3 shows the upper bound
of fermionic nonlinearity of the UCCSD quantum circuit as a
function of the length m of the hydrogen chains Hm and the
error rate of the dephasing noise at different spacings of the
hydrogen atoms. In the case of 0.5 and 0.8Å, the Hamiltonian
for the hydrogen chain embodies a weakly correlated elec-
tronic system. In contrast, the Hamiltonian in the case of 1.5
provides a strongly correlated electronic system. From Fig. 3,
we find that the fermionic nonlinearity is smaller when the
spacing of the hydrogen chain is smaller. This reflects that an
HF state is a good approximation of the ground state when
the spacing is small. Note that the upper bounds may be over-
estimated since we use the submultiplicativity of fermionic
nonlinearity.

Next, we discuss the size of the hydrogen chain that can
be simulated within one day using 106 CPU cores. Sup-
pose that we want to estimate the expectation value of the
Hamiltonian H for the hydrogen chain within an additive
error ε = ||H ||op10−3, with a success probability of at least
1 − δ = 1 − 10−2, where ||A||op is the operator norm of A.
Assuming that each core takes at most 1 ms to calculate one
sample of a quasiprobability distribution, a UCCSD quantum
circuit whose fermionic nonlinearity is upper bounded by
3 × 103 could be simulated within one day. We estimate the
fermionic nonlinearity for m > 8 using the geometrical mean
of fermionic nonlinearity of Enoisy rot in the noisy UCCSD
quantum circuit at m = 8, W (E )noisy rotm=8. Let N4 be the total
number of four fermionic modes in T̂2 − T̂ †

2 . We estimate the
upper bound of fermionic nonlinearity of Hm (m > 8) by[

W (E )noisy rotm=8

]N4
.

At p = 0.02 and the spacing of 0.8, W (E )noisy rotm=8 is
1.000 12. Therefore, we estimate the UCCSD circuits for
hydrogen chains under such conditions can be simulated up
to m = 22 if this mean stays at the same level at larger m.
Furthermore, we find W (E )noisy rotm=8 = 1 if p � 0.03 and the

FIG. 3. Upper bound of the fermionic nonlinearity of the
UCCSD quantum circuit for the hydrogen chain up to H8 at different
spacings, 0.5, 0.8, and 1.5. The horizontal axis shows the length
of the hydrogen chain. The vertical axis shows the upper bound of
the fermionic nonlinearity. The legend shows the error rate p of the
dephasing noise Ndep.

spacing is less than 0.8, or if p � 0.07 and the spacing is
1.5. We hence expect that the UCCSD circuits under such
conditions can be simulated for arbitrary m.

Note that the energy expectation value obtained from sim-
ulations of noisy UCCSD circuits is slightly biased from the
true value 〈HF|U †HU |HF〉. If we allow such a bias, we can
take an alternative approach; we can utilize the classical cou-
pled cluster (CC) theory to simulate UCC circuits. It is known
that the CC theory can simulate up to large UCC systems with
a small perturbative error when tabi j (and tai) are small (i.e.,
small rotation angles θ ). The conventional CC can be solved
in polynomial time using a nonvariational projection method,
assuming the Hartree-Fock state to be a good reference wave
function. If this assumption holds, the accuracy of the non-
variational CC is almost as good as that of variational UCC
[54,55]. An established way to diagnose the correctness of
the premise is by examining the magnitude of the parameters
of the CC wave function [56–61]. According to the rule of
thumb in the classical CC, the maximum tabi j is about 0.1 or
less in the region where nonvariational CC works well [61].
Besides, in systems where classical CC fails, the maximum
tabi j tends to be larger than 0.15 [61]. Our UCC calculations
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show that for m = 8, the maximum tabi j is about 0.08 when the
distance between the hydrogens is 0.8 and about 0.18 when
the distance is 1.5. Therefore, our results are in line with the
empirical trend in classical computing.

D. Comparison with the overhead of probabilistic
error cancellation

Not only the classical simulatability of quantum circuits,
but also whether the outputs of noisy quantum computers
are accurate is important for practical applications. Quan-
tum error mitigation techniques are designed to reduce the
bias of the outputs from noisy quantum devices [9,62–67].
One of the notable examples of quantum error mitigation is
the probabilistic error cancellation (PEC) [62,63], which is a
quasiprobability method. It mitigates the effect of noise using
quasiprobability at the cost of required samples to ensure a
specific accuracy. Here we compare the sampling cost of the
PEC applied to noisy UCCSD quantum circuits with classical
sampling costs of error-free UCCSD quantum circuits. The
central idea of PEC is that an ideal unitary U is represented
by a linear combination of noisy implementable operations
Vi, i.e., U = ∑

i ciVi, where ci satisfies
∑

i ci = 1, and ci is
real but can be negative. Then, we can estimate an expectation
value of an observable 〈A〉 by sampling Vi with probability
|ci|/

∑
i |ci| and calculating γ sign(ci )Tr[Vi(ρ)A] many times,

where γ := ||c||1 = ∑
i |ci|. The Hoeffding inequality shows

that to estimate 〈A〉 within additive error at most ε with prob-
ability at least 1 − δ, we must set the required samples NPEC

such that

NPEC � 2γ 2 1

ε2
ln

2

δ
.

Thus, γ characterizes the overhead of PEC.
Let us consider the total sampling cost of PEC for a noisy

UCCSD circuit being subject to the two-qubit dephasing noise
Ntot PEC. For simplicity, we assume that the total number of
the two-qubit dephasing noise equals the total number of four
fermionic mode rotations N4. Under this assumption, Ntot PEC

can be given by

Ntot PEC = 2[γdep]2N4
1

ε2
ln

2

δ
, (6)

where γdep is the L1 norm of the coefficients of the decompo-
sition of the PEC for two-qubit dephasing noise. On the other
hand, the classical sampling cost of the error-free UCCSD
quantum circuits for H8, Ntot classical, is given by

Ntot classical = 2[W (Erot )m=8]2N4
1

ε2
ln

2

δ
. (7)

From Eqs. (6) and (7), we obtain

Ntot PEC

Ntot classical
=

[
γdep

W (E )rotm=8

]2N4

.

Thus, we can compare the sampling costs of the PEC with that
of the error-free UCCSD quantum circuits by calculating γdep

and W (E )rotm=8. γdep can be given as

γdep = 3 + 2p

3 − 4p
,

FIG. 4. Overhead of the PEC of the two-qubit dephasing noise as
a function of the error rate. The horizontal axis shows the error rate of
the two-qubit dephasing noise. The vertical axis shows the overhead
of the PEC for the two-qubit dephasing noise γdep. To compare the
overhead with classical sampling costs of error-free UCCSD quan-
tum circuits, we also plot W (E )rotm=8 of UCCSD quantum circuits
for H8 at different spacings 0.5, 0.8, and 1.5 as violet, red, and orange
horizontal lines, respectively.

which we explain in detail in Appendix B. Figure 4 shows
the overhead of the PEC for the two-qubit dephasing noise
γdep as a function of the error rate of the noise p. We also
plot the geometrical means of the upper bounds of fermionic
nonlinearity W (E )rot of UCCSD quantum circuits for H8 at
the different spacings 0.5, 0.8, and 1.5 as horizontal lines. We
observe that there are crossovers between the overhead of the
PEC and the upper bounds of the fermionic nonlinearity. At
the spacing of 0.5, the crossover appears around p = 0.0021.
In the case of the spacing of 1.5, the crossover appears around
p = 0.017. Above these threshold error rates, the PEC over-
heads are greater than the upper bounds of the fermionic
nonlinearity, and thus noisy quantum devices with the PEC
would be useless. Otherwise, i.e., in the small error regime, the
PEC overheads are less than the upper bounds of the fermionic
nonlinearity, and thus noisy quantum devices with PEC would
be preferred to simulate noisy UCCSD quantum circuits.

Our results indicate that, to demonstrate the quantum
supremacy or quantum advantages with the UCCSD Ansatz,
one has to choose target Hamiltonians that exhibit strong
electronic correlations and execute the quantum circuits with
sufficiently low error rates. Note that even if the gate error of a
device is 1%, the effective physical error rate of the two-qubit
dephasing noise in Enoisy rot would be much higher because, in
general, the noise on the entangling gates to simulate nonlocal
two or four fermionic mode rotations by physically allowed
operations accumulates.

We note that we have discussed the classical simulatability
of noisy UCCSD Ansatz using the optimized variational pa-
rameters obtained by the error-free simulations and found that,
under certain circumstances, they become classically simu-
latable. In such cases, even if sophisticated error mitigation
and optimization strategies allowed us to perform the VQE
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successfully, we cannot achieve a quantum advantage because
the resulting circuit can be simulated classically.

III. CONCLUSION

In this work, we propose a quasiprobability-based simu-
lation algorithm using FLO and quantify its simulation cost
by establishing the corresponding measure, fermionic nonlin-
earity W (E ). The sampling cost of the quasiprobability-based
simulator is proportional to W (E )2. As an example, we cal-
culate the upper bound of fermionic nonlinearity of the noisy
rotation gate generated by four fermionic modes, which often
appear in the parametrized quantum circuits in VQE. We
find that the fermionic nonlinearity increases as the rotation
angle becomes larger and decreases as the error rate of the
dephasing noise increases. Based on the above observation,
we discuss the simulatability of the quantum circuits for quan-
tum chemistry with our proposed method. We estimate the
sampling costs of the noisy UCCSD quantum circuits for the
hydrogen chain, and discuss whether they can be simulated
within one day when 106 CPU cores are available. We find that
the UCCSD circuits with the dephasing error rate p = 0.02 for
hydrogen chains with the spacing of 0.8 Å can be simulated up
to H22. Furthermore, if p � 0.03, the noisy UCCSD circuits
for hydrogen chain of arbitrary length with the same spacing
can be simulated. Aside from the classical simulatability of
quantum circuits, the accuracy of quantum computation is
also crucial. We compare the overhead of the PEC for the
two-qubit dephasing noise with that of simulating error-free
UCCSD quantum circuits for the hydrogen chain classically.
We find that the noisy UCCSD quantum circuits for hydrogen
chain at 0.5 Å cost more overhead than classical computers
if p � 0.0021. This analysis reveals the quantum advantage
regime more clearly. Although this numerical result is pes-
simistic, it stimulates to investigate or design another VQE
Ansatz that retains quantumness against noise with the use of
our results and method.

Our work leaves several open questions. Although we use
the basis channels based on Ref. [30] to decompose the four
fermionic modes, there may exist more optimal basis chan-
nels. It is an interesting and nontrivial problem to choose the
optimal discrete set of FGOs to decompose a given non-FGO.
We also expect that one could give lower bounds for fermionic
nonlinearity using the technique to derive the lower bounds of
PEC in Ref. [68] and find the exact fermionic nonlinearity
of a specific quantum channel. Although we only consider
UCCSD quantum circuits as a practical case in our paper,
it would be interesting to analyze the classical simulatability
of another VQE Ansatz (e.g., Hamiltonian variational Ansatz)
or a dynamics of a fermionic Hamiltonian by our proposed
method. We formulate the classical simulatability of a quan-
tum circuit for fermionic Hamiltonians in the channel picture,
but it is also of great interest to establish such a formulation in
the state picture, which should be compatible with the results
shown in Ref. [69].
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APPENDIX A: SUBMULTIPLICATIVITY
OF FERMIONOIC NONLINEARITY

Let us prove the submultiplicativity of fermionic non-
linearity: W (E1 ◦ E2) � W (E1)W (E2). Let E1 and E2 have
decompositions over elements of {Si}:

E1 =
∑

i

xiSi,

E2 =
∑

j

y jS j .

We consider the composition of both channels

E1 ◦ E2 =
∑
i, j

xiy jSi ◦ S j .

Since the composition of FGOs is also an FGO, this gives a
decomposition of E1 ◦ E2 over elements of {Si}. Taking the
absolute sum, we have

∑
i, j

|xiy j | �
(∑

i

|xi|
)(∑

j

|y j |
)

= W (E )1W (E )2.

Therefore, W (E1 ◦ E2) � W (E1)W (E2).

APPENDIX B: OVERHEAD OF PROBABILISTIC ERROR
CANCELLATION FOR TWO-QUBIT DEPHASING NOISE

Here we give a decomposition of an ideal two-qubit unitary
U for the two-qubit dephasing noise Ndep, thereby showing
the overhead of the probabilistic error cancellation for the
two-qubit dephasing noise. With reference to Ref. [68], we
consider a specific decomposition of the identity map I in-
volving Ndep:

I = 3 − p

3 − 4p
Ndep ◦ I − p

3 − 4p
Ndep ◦ ([IZ] + [ZI] + [ZZ]).

By applying U to both sides from the right, we obtain

U = 3 − p

3 − 4p
Ndep ◦ U − p

3 − 4p
Ndep

◦ ([IZ] + [ZI] + [ZZ]) ◦ U . (B1)

From Eq. (B1), for any two-qubit unitary gate U and 0 � p �
3
4 , the overhead of PEC for Ndep is characterized by

γdep = 3 + 2p

3 − 4p
.

Note that there may exist a more improved decomposition
than that shown in Eq. (B1).
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