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In this paper, we consider 2D Z, topologically ordered phases (Z, toric code and the modified surface code)
on a simple hyperbolic lattice. Introducing a 2D lattice consisting of the product of a 1D Cayley tree and a 1D
conventional lattice, we investigate two topological quantities of the Z, topologically ordered phases on this
lattice: the ground state degeneracy on a closed surface and the topological entanglement entropy. We find that
both quantities depend on the number of branches and the generation of the Cayley tree. We attribute these results

to a huge number of superselection sectors of anyons.

DOI: 10.1103/PhysRevResearch.4.043099

I. INTRODUCTION

Topologically ordered phases are phases of matter beyond
the paradigm of the standard Ginzburg-Landau theory [1-4].
There are many salient features in these phases, such as non-
trivial ground state degeneracy (GSD) when the systems are
placed on manifolds with nontrivial topology [5] and fraction-
alized quasiparticle excitations (anyons) [6—8]. Topologically
ordered phases have spurred a great deal of interest, involving
different branches of physics. Examples are topological quan-
tum field theories [9,10], quantum error correcting codes [11],
universal quantum computations [12], and the classification
of symmetry-protected topological phases by investigating
anyonic statistics after gauging global symmetry [13-16].

While topologically ordered phases are intensively studied
on Euclidean lattices, less is well understood when they are
placed on non-Euclidean lattices. The motivation of this paper
is to study Z, topologically ordered phases on simple hy-
perbolic lattices, which are negatively curved manifolds, and
explore the interplay between topologically ordered phases
and geometric structures of the lattice. Specifically, we focus
on one simplest example of such lattices, the Cayley tree,'
which has been intensively studied in the context of statistical
mechanics (see, for instance, Ref. [17]).

To investigate how topological properties of the Z, topo-
logically ordered phases on the Cayley tree (Fig. 1) are

'One can intuitively understand this by recalling the fact that there

exists a tessellation of the hyperbolic plane constructed from n gons
with k polygons meeting at each vertex if % + % < %, and taking the
limit n — oo, which gives rise to the Cayley tree with £ branches
(k > 2).
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different from those on the conventional Euclidean lattice, we
focus on two aspects of the topological properties. The first
point is to construct a closed surface and count the GSD. A
crucial property of topologically ordered phases is that when
the theory is placed on a nontrivial manifold, noncontractible
loops of anyons give rise to nontrivial GSD. The second point
is to investigate entanglement entropy in a bipartite system
separated by a cylindrical geometry. In particular, we analyze
the topological entanglement entropy,> which depends only
on universal contributions [20,21]. The hallmark of the lattice
being hyperbolic is that the wave function of an anyon is delo-
calized, giving rise to a huge number of superselection sectors
(i.e., the number of distinct types of anyons), depending on
the coordination number k and the generation M of the Cayley
tree. We find that such dependence can be clearly seen in both
the GSD and the topological entanglement entropy.

Relations between topologically ordered phases and the
hyperbolic lattice have been mainly discussed in the context
of quantum error corrections, trying to find an efficient code
(see, e.g., Refs. [22,23]). There are several works to elucidate
the properties of fracton topological phases, which are types
of phases of matter beyond the conventional topologically or-
dered phases, on hyperbolic geometry in recent years [24,25].
In addition, hyperbolic geometries have been used to study
band structure, quantum computing, and holography in dif-
ferent areas of physics [26-28]. In this paper, we propose a
systematic way to study the superselection sectors and the cor-
responding anyon excitations in the hyperbolic spacetime. To
be more specific, we study the unusual fusion rules and the S
and T matrices characterizing the statistics of the anyons. We
also explore how these excitations contribute to the nonlocal
entanglement entropy that is well-studied in the planar geome-
try. We believe there exist close connections between our work

2To be more precise, we study the nonlocal entanglement entropy
proposed in Refs. [18,19].
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the m anyons and its top view.

and the Bloch wave function and the Berry phase that are for-
mulated in hyperbolic band theories [27]. We hope our model
will provide an interesting playground for further research.

The outline of this paper is as follows. In Sec. II, we
introduce the lattice and Hamiltonian. In Sec. III, we con-
struct a closed surface of the lattice and study GSD. We also
present two types of matrices characterizing the statistics of
excitations and stability argument against local perturbations.
Section IV is devoted to calculating the entanglement en-
tropy of the system and seeing how topological entanglement
entropy characterizes the interplay between quasiparticle ex-
citations and the geometry of the Cayley tree. We further
give a consistency check by imposing boundary terms in the
model, corroborating our quasiparticle interpretations on the
entanglement entropy. Finally, in Sec. V, we give conclusions
and discuss future directions. Details of studies on other Z,
topological phases as well as technical details are relegated to
Appendices.

II. MODEL

Let us start with introducing our lattice model. The model
is defined on a lattice constructed as a tensor product of the
Cayley tree with coordination number k and a 1D chain, which
is referred to as the book-page lattice throughout this paper.
The lattice is constructed as follows: Starting with a ladder lat-
tice, that we call spine, [the middle of Fig. 1(a)], we consider

()

FIG. 1. (a)-(c) Construction of the lattice, which is referred to as the book-page lattice in this paper. Qubits with the same numbers or letters
are identified. (d) When applying a X operator at a single vertical link (red bold line), k m-anyons (red dots) are created. (e), (f) Trajectories of

gluing two new branches (more precisely, lattices consisting
of a tensor product of the branches of the Cayley tree and a
1D lattice), which corresponds to the left- and rightmost of
Fig. 1(a). We dub such branches books. As an example, in the
case of k = 3, each book has two “pages.” After gluing books
to the spine, we have the configuration shown in Fig. 1(b),
forming the book-page lattice up to the first generation.? This
procedure can be iterated to construct the next generation; in
the case of k = 3, we attach four new books, each of which
has two pages, to the end of the first generation, forming
the second generation of the book-page lattice, as depicted in
Fig. 1(c). The lattice model with generic values of branches
(k > 2)* and generation M is similarly constructed.

Having defined the book-page lattice, we put the Z, toric
code [4] on the lattice. Introducing a qubit on each link (black
dots in Fig. 1), we define the Hamiltonian as

H=—J\Y A, —Js Y B,
v P

where A, (vertex term) is defined by the multiplication of
Pauli X operators that act on the links connected with a given

ey

3For the sake of convenience, we slightly modify the notion of the
generation of the book-page lattice in contrast to the one which is
widely used in the Cayley tree.

“The case with k = 2 corresponds to the 2D plane.
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vertex v, and B, (plaquette term) is a product of four Pauli Z
operators on a plaquette. (Here, we define the Pauli operators,
X and Z, by the operators acting on a qubit, subject to relations
X? = 7% =1,XZ = —ZX with I being the identity operator.)
Since we will discuss a closed surface of the book-page lat-
tice in the next section, we introduce only bulk terms of the
Hamiltonian, not boundary terms. In the case of k = 3, one of
A, is shown by A, = X;X>X3X4X;5 in Fig. 1(b). Each plaquette
operator consists of four Z operators [for instance, Z,Z,Z.Z;
and Z,Z,7¢Z, in Fig. 1(b)]. Pictorially, we draw A, defined
at the vertex which has incident edges with indices 1 ~ 5 and
three B,’s which have support on the edge indexed by 1 in
Fig. 1(b) as

AU — 5 Bp e i [ ] E} {:}’
@)

where blue (red) dots represent X (Z) Pauli operators.

It is easy to verify that terms defined in Eq. (1) com-
mute with each other. Assuming the amplitude J4 and Jp is
large, the ground state |y) satisfies A, [Y) = ), B, |¢) =
|¥), VA,, B,. Following Ref. [4], the ground state is the
simultaneous +1 eigenstate of all of the mutually commuting
terms A,, B, and these mutually commuting terms are called
stabilizers.

There are two types of anyons—electronic and magnetic
charges, which we abbreviate as e and m anyons. They are
excitations that are charged under the vertex and plaquette
terms, respectively (i.e., that violate the invariance of the
action under the vertex and plaquette terms). The e anyon
is the same as the one in the toric code in the 2D plane
in a way that it can be created by a pair when acting on
a single Z operator on the ground state and deformable in
the bulk. The m anyon, however, shows unusual behaviours
compared with the case of a toric code on the 2D plane.
Acting on an X operator at one vertical link of the model,
as shown in Fig. 1(d), then k m-anyons are created. This
process is schematically described by I - m@m ® - - - @ m,

k
with I and m representing the vacuum sector and k m-anyonic

excitations created by an X operator acting on a single vertical
link. Furthermore, successive actions of the X operators, the
trajectory of the m anyons exhibits the Cayley tree pattern as
demonstrated in Figs. 1(e) and 1(f). In other words, the wave
fuction of the m anyons is delocalized, spatially spreading
as the generation increases. Due to this unusual behavior
of the m anyon, one naturally wonders whether topological
properties of this model are qualitatively different from the
ones in the case of Z, topologically ordered phases on the
regular plane. In what follows, we confirm this intuition by
investigating topological properties from two perspectives: the
analyses of the GSD and the entanglement entropy. Due to
unusual behavior of m anyons and the hyperbolic geometry,
one would not be able to see fractional statistics between e
and m anyons immediately. In a later section (Sec. III C), we
give more thorough discussions on fractional statistics of these
excitations.

III. GROUND STATES ON A CLOSED SURFACE

When studying a topologically ordered phase, one would
ask what is the GSD when we put it on a closed manifold.
For instance, when a topologically ordered phase is placed
on a torus, the GSD becomes nontrivial and the number of
distinct superselection sectors is equal to the GSD [5]. We
discuss the GSD on a closed book-page lattice and its relation
with distinct anyonic excitations. After having the ground
states, we construct operators acting on these states to extract
fractional statistics between quasiparticle excitations. We also
discuss the stability of the GSD.

A. Counting GSD

We start with the Z, toric code on the book-page lattice
with finite size up to the M generation and height being L
(i.e., the lattice contains L vertical links). Since the geometry
is symmetric with respect to the spine, we can close the lattice
in the horizontal direction by identifying the end points on
the right and those on the left. Further, we also identify the
endpoints of at the top boundary and those at the bottom
boundary. These procedures yield a closed surface which is
referred to as the book-page torus. We portray one example of
the book-page torus in Fig. 2(a).

The GSD is equal to 2%, with N, and N, being the
number of qubits and independent stabilizers, respectively.
The number of qubits in this closed surface is given by

Ny =3L+4L[(k— 1)+ -+ (k= DM ']+ 3Lk — D).
3)
The number of independent stabilizers is equal to the number
of individual stabilizers defined in Eq. (1) subtracted by the
number of constraints that the multiplications of stabilizers
give. It is straightforward to show that the number of individ-
ual stabilizes, A, and B, in Eq. (1), equals the one given in
Eq. (3), as it is in the same way of the toric code on a torus.
As for the constraints, the multiplication of all the ver-
tex terms A, gives the identity, yielding one constraint. The
multiplication of the plaquette terms B, which form a closed
loop along the horizontal direction also gives the identity.
Examples are exhibited in Fig. 2(b). Due to the nature of a
Cayley tree which has k branches at each node, there are a
number of distinct loops in the book-page torus, leading to a
number of constraints involving the plaquette terms. Thus, the
number of such constraints involving plaquette terms depends
on the number of distinct loops in the horizontal direction. Let
us look at simple examples. In the case of M = 1, there are
k — 1 such loops [Fig. 2(b)]. In the case of M = 2, there are
(k — 1)(k — 2) distinct loops involving links which belongs to
only the second generation. [In the case of k = 3, there are two
such loops corresponding to Figs. 2(c)(i) and 2(c)(ii).] Also,
there are k — 1 distinct loops that involve links at all of the
generations. [In the case of k = 3, there are two such loops
corresponding to Figs. 2(c)(ii) and 2(c)(iv).] It is important
to note that all loops in the horizontal direction with M = 2
can be generated by these loops. [As an instance with k = 3,
a loop portrayed in Fig. 2(d) can be generated by those of
(1) and (iii) in Figs. 2(d).] In total, there are (k — 1)(k — 2) +
(k — 1) = (k — 1)? distinct loops in the horizontal direction,
hence, the number of constraint on multiplication of B),’s is
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FIG. 2. (a) Construction of a closed surface of our model (k = 3, L = 3 and M = 1). In the horizontal direction, the links at the end of the
book-page lattice on the right are identified with the ones on the left (purple arrows). The periodic boundary condition is imposed in the vertical
direction, indicated by a green arrow. (b) Top: Constraints on the stabilizers B, in the same geometry as (a) (the same boundary condition is
imposed). The multiplication of plaquette operators in the region marked by red gives identity. There are two such constraints in this case.
Bottom: The top view of the closed surface. The red line corresponds to the top view of trajectory of plaquette terms depicted above. (c) The
top view of closed surface in the case of k = 3 and M = 2. The red lines represent the top view of trajectories of plaquette terms, analogously
to the ones in the bottom of (b). The same boundary condition is imposed as (a) so vertical links with the same alphabet are identified. (d) The
top view of one close surface that can be generated by (i) and (iii) in (c).

also given by (k — 1)?. This line of thought can be generalized
to any number of M. The number of distinct loops in the
horizontal direction, equivalently, the number of constraints
on the plaquette terms, reads

k=" =2+ =DM 2k -2+ +(k—1)
= k-1,

The number of the independent stabilizers then gives

Ny=N,—1—(k—1",

hence’ °

GSD = 2NN — pl+k=1", 4)

SWhen k = 2, the closed surface becomes the regular torus, giving
the GSD = 22, which is consistent with the well-known result of the
Z, toric code on the torus.

The subextensive GSD can be seen in fracton topological phases,
which are topological phases exhibiting unusual GSD dependence
on the UV lattice spacing [29-31]. Here, the result Eq. (4) also
shows the GSD dependence on the system size of the lattice, yet
the subextensive GSD of our model has a qualitatively different
origin from the fracton: While in the fracton topological phases,
mobility constraint on excitation leads to the subextensive GSD, in
our case, the geometric structure of the Cayley tree gives rise to the
subextensive GSD.

B. Explicit form of the ground states

Following the previous discussion on the GSD, in this
subsection we give an alternative interpretation on the result
Eq. (4) by explicitly writing the ground states distinguished
by noncontractible closed loops of anyons. For the sake of the
simplicity of terminology, we refer to such closed loops of
anyons as logical operators, borrowing jargon in the context
of quantum information [4]. To start, let H be the Hilbert
space defined by H = 7—[%’", where H,,, = span{|0), [1)},
i.e., tensor product of spin-1/2 states (|0) / |1) corresponds to
spin-up/-down state in the spin-z basis) on links of the lattice.
Define the following state:

1
W)= —— [] A +8,)1->)®" )

/9N,
2 1<I<N,

with |—) being the diagonal basis of the X operator: |—) =
%500) + (1)) N, is the number of independent plaquettes
in the model and B, denotes the plaquette term at plaquette
p; introduced in Hamiltonian Eq. (1). One can verify that
Eq. (5) satisfies A, |¥) = |W¥), B, |¥) = |¥), VA,, B,. The
2fui ground states are characterized by 27+ pairs of logical
operators Zi, X)) (0<i< Fyx — 1) which satisfy

(X, 2} =0, [Xi, Z] =0 (i # j). (6)

"We have the prefactor in Eq. (5) to normalize the state to ensure
the norm is unit.
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X, =W, 7, = H,’(”]) Zy = Wi Zy =W, X, = U'((,” Xy =W (2) Seerme
N7 4 >

FIG. 3. First to sixth: Logical operators, which are equivalent to flux operators that measure magnetic (blue) and electric (red) charges
threading in the vertical and horizontal direction with k =3 and M = 1. Seventh and eighth: Mutual braiding between ¢® and m®,

corresponding to (3,3) component of the S matrix Eq. (16).

Let us first look at the form of the logical operators Z;,
which correspond to the noncontractible loops of an e anyon.
Logical operators are counted as equivalent if they differ by
stabilizers. In this view, there is only one logical operator Z,
that goes along the vertical direction whereas there are Fys ;, —
1 = (k — 1) distinct logical operators Z; (1 <i < Fyx — 1)
in the horizontal direction, which is in line with the fact that
there are (k — 1) distinct loops in the horizontal direction.
This is contrasted with the case of Z, toric code on the regular
torus, where there is only one logical operator that wraps
around the torus in each direction. Examples are shown in
Fig. 3.

We also consider the form of logical operators X;, which
is in the dual description of what we have discussed in the
previous paragraph. These logical operators correspond to the
noncontractible loops of m anyons. There is only one logical
operator X, that goes along the horizontal direction involving
all the vertical links along the trajectory, forming a membrane
shape (see the first geometry in Fig. 3). Also, there are Fys ; —
1 = (k — 1)M distinct logical operators Z; (1 <i < Fyrx — 1)
in the vertical direction. One can show these logical operators
indeed satisfy Eq. (6) and using these pairs of logical operators
and the stabilized state Eq. (5), the 2/ ground states are
defined by

[T 7w, (7)

0<i<Fyc—1

with ¢; = 0, 1 (mod 2).

C. S and T matrices

After defining the ground states Eq. (7), one can introduce
S and T matrices that map between ground states in the
book-page torus. Similar to the modular S and 7 matrix of
the toric code on the regular torus, these matrices convey any-
onic properties: mutual braiding statistics and self-statistics,
associated with topological spins [32]. In this subsection, we
discuss the case of k =3 and M = 1. The generalization to
the other values of k and M is straightforward and is briefly
mentioned in the end of this subsection.

To proceed, we construct ground states which carry elec-
tronic or magnetic charges threading into either a horizontal
or vertical direction of the book-page torus. These states are
called minimal entangled states, which can be associated with
superselection sectors of a topologically ordered phase [33].

Let us first construct ground states carrying electric or mag-
netic charges threading into the vertical direction. Define flux
operators which are noncontractible loops along the horizon-
tal direction, W,, W1, W2 the first (last two) of which
measures the electric (magnetic) flux threading in the vertical
direction defined by multiplication of X operators (Z opera-
tors), see first three geometries in Fig. 3. It is straightforward

to show that

We |(pa0,(a1,a2)) = (_l)ao I(pao,(al,az)) ) (8)
Wrr(tl) |(pao.(alvd2)> = |(pu0,(a1+l,az)> > ©
A ) =1 ) (10)

m  Pag,(ar,a2) Pag.(ar,ar+1)] -

One can introduce the eigenstates of these flux operators:

1 1
)= 73 D 00@an) - le), = 2 D 101 @an)

ap,a ap,az

. 1 )
)y = 5 D D" 190@0)

ag,az

1
|m(l)m(2))v = E Z(_l)a|+a2 |§9O,(a1,a2)) ’

ap,a

. 1 .
lem®), = 3 D D 01 aran)

ag,az

1 .
lemPm®), = 2 3 (=1 g1 ) . (= 1.2). (1)

ap,a

These eight states exhaust all the ground states which carry
charges in the vertical direction measured by the flux opera-
tors. The meaning of the labels of the states in Eq. (11) is clear
from the context. For instance, the last state is the generalized
dyon, carrying one electric charge and two magnetic charges,
measured by the three operators: W,, WD, W(2).

Similarly, one can construct ground states carrying elec-
tronic and magnetic charges along the horizontal direction.
Introducing flux operators W,,, W1, and W® wrapping
around the vertical direction as shown in the last three ge-
ometries in Fig. 3, their actions on the ground states are given

043099-5
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by
Wm |§0a0,(a1,a2)) = |§0ao+1,(a1,a2)) s (12)
We(l) |(puo,(d1~u2)> = (_l)al |(pao»(dlyaz)> s (13)
W2 |@aaran) = (1) [Qap.(ara) - (14)
Following eight states are eigenstates of these operators:
1
)y =—=

ﬁ“(/)O,(0,0)) =+ l91,00,00],

1

|m), = E[l‘ﬂO,(0.0)) — le1,0,0)1,
1

= E[kﬂo,(l,m) + lon,a,00],
1

= E[lfﬂo,(o,n) + lo1,0,1)],
1

leMe), = E“‘/)O,(l,l)) + lo1,a,1)0],

1
leVm),, = E[kﬂo.(w)) — lo1,a,00],
le®m), = L[|<,00 o)) — lo1,01))]
n \/E s \Uy s\Uy )

leMePm), = L[|<,0o,(1,1)) = lo,a,ml (15)
V2

The states Egs. (11) and (15) correspond to the superselection
sectors in the vertical and horizontal directions. Having intro-
duced these states, one can construct the S matrix that maps
superselection sectors Eq. (11) to the ones Eq. (15):

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

S 1 1 -1 -1 1 1 -1 -1 1

Wer=s.s11r 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

(16)

Here, the column (row) [/] ([v]) denotes the superselection

sectors in the horizontal (vertical) direction described by

[h] = (I, e, e® eDe® m eDm ¢Dm, eDe@m), ([v] =

I, mV, m®, mOm® e, em®, em®, emVm?®)). Similar to

the modular S matrix of the Z, toric code on the regular torus,

the sign of each component of the matrix Eq. (16) charac-

terizes the mutual braiding statistics between superselection

sectors in the different directions. As an example, the sign

of the (3,3) component of this matrix is negative, which is

consistent with the fact that > in the vertical direction has 7

mutual statistics when braided around magnetic charge m® in

the horizontal direction. Visualization of such mutual braiding
is demonstrated in the last two geometries in Fig. 3.

One can also introduce the 7 matrix, another important
matrix characterizing topological spin, corresponding to the
self-statistics of an anyon. The operation of the 7 matrix is
equivalent to the Dehn twist, accomplished by moving logical

( . 4
I~ LA T\Q’T < e
[ @ H I ! l
i 3 \ )4 -
h - }r: : : : ~ & 1
! 7 ] —_ )]
1 1 H A - ~ f‘"
i~~~ il — > < | i :
1 ) 1 L
/A 1 ! ’

! - "/ - ;’ ~ &~

Zo AYAL

FIG. 4. (a) Dehn twist in the book-page torus with k = 3 and
M = 1, corresponding to TV, The boundary condition is imposed in
the same manner as Fig. 2(a). The logical operator Z, moves around
a loop (green arrow). Another Dehn twist, corresponding to 7 is
similarly implemented where Z, moves around the loop marked by
blue arrow. (b) One logical operator X, and four logical operators
Z; going along the horizontal direction in the book-page torus with
k =3 and M = 2. The periodic boundary condition is imposed in
such a way that links with the same alphabet are identified.

operator Z, around a closed loop in the horizontal direction.
Since there are (k — 1) distinct loops in the horizontal direc-
tion, there are (k — 1) T matrices, denoted by T [1 <i <
(k — 1)M]. In the case of k = 3 and M = 1, there are two T
matrices, T and T®; we schematically exhibit the operation
of the TV in Fig. 4(a). These operations acts on the ground
state Eq. (7) as

1
T( ) |‘Pa0,(a|,az)> == |(p(lo,(do+a|,ag)) k]

TP |uy (ar.a0)) = 1Pao(ar,a0+ar)) - a7

Therefore, in the basis of the superselection sector in the
vertical direction,

] = (4, mD, m®, mOm®, e, em®, em®, emDm®),
the 7" matrices are given by

T = diag(1,1,1,1,1, 1,1, —1), (18)

T® = diag(1,1,1,1,1,1, =1, —1). (19)

The generalization to other values of k and M is straight-
forward. In the horizontal direction, there are Fy; different
charges m, e (1 < i < Fyx) with which 274+ superselection
sectors are generated. Likewise, in the vertical direction, there
are Fy . different charges e, m” (1 <i < Fj ), allowing us
to have 2f¥+ superselection sectors. Introducing two vectors
v= (- ,Vp,)and h = (h; --- , hg,, ), where each entry
takes either O or 1, the superselection sectors in the horizontal

043099-6
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and vertical direction are defined by
[y = " (e -
[0) = Je" (m )" (m Py s (20)

. (e(FM,k))hFMAk )

and the § matrix is given by

(=¥, 1)

1
Stor,im = e

There are (k— 1) T matrices, TV (1 < j < Fyx — 1),
whose action on the superselection sectors in the vertical
direction reads

TV v) = (=" o). (22)

D. Stability

As Eq. (4) shows, the GSD grows exponentially with the
generation M of the book-page lattice. In this subsection, we
discuss stability of these ground states under local pertur-
bations. As we mentioned previously, the 2t = 21+G*k=D"
ground states are characterized by Fj, pairs of logical oper-
ators, X;/Z; (0 <i < Fy x — 1) with which one can associate
noncontractible loops of m/e anyons, satisfying {X;, Z;} = 0,
[Xi,Z;1 =0 (i # j). As we have depicted logical operators
in Fig. 3, Xy goes along the horizontal direction, forming a
membrane shape whereas Z, is noncontractible loops of e
anyons going along the vertical direction. Regarding other
pairs, (X;/Z;) (i # 0), X; forms loops of e anyons in the hori-
zontal direction and Z; is a noncontractible loop in the vertical
direction.

For simplicity, in this subsection, we assume that the length
of the book-page torus in the vertical direction is sufficiently
large, i.e., L > 1 so logical operators Zy and X; (i # 0) are
stable against a local perturbation 1X, or AZ, with 1’}—; < 1.
[Here, J represents the amplitude of the vertex and plaquette
terms in Eq. (1), which is therefore of order of energy gap
of the system.] Hence, we concentrate on the stability of
the logical operators X and Z; (i # 0), i.e., logical operators
going along the horizontal direction with small number of
genera ion.

In the case of k =3 and M = 2, the GSD is given by 2°
from Eq. (4). Accordingly, there is one logical operator X
and four logical operators Z;, Z,, Zs, and Z4 going along the
horizontal direction. We show these operators in Fig. 4(b).
The most stable logical operator among them is X;, whose
trajectory contains all the vertical links. As for Z; (1 < i < 4),
it is important to note that Z; and Z, (Z3 and Z,) differ by the
small loop indicated by green (purple) dashed line in Fig. 4(b)
whose perimeter is four. Introducing a local spinl-Ailiip pertur-

bation, which has the form H, = 1) X, with < 1, the

degeneracy between ground states characterized by 7, and Z,
as well as Z3 and Z; is lifted by the fourth-order perturbation

~(§)4. It follows that the GSD is reduced to 2°. Eighth-order

perturbation ~(§ )8 would lift the degeneracy characterized by
7, and Zs, further reducing the GSD to 22, This is in line
with the fact that ground states characterized by Z, and Zs
differ by the bigger loop [orange dashed line in Fig. 4(b)] and
are lifted by the eighth-order perturbation. The remaining 22
GSD coincides with the one of the Z, toric code on the regular

torus. Based on the argument given above, we factorize the 2°
GSD as

2% =2%.21.22 (23)

The first factor of Eq. (23) corresponds to the most stable
ground states, which is the same as the toric code on the
regular torus, whereas the second (third) factor of Eq. (23)
ensures the increase of the GSD due to the presence of
the large (small) loop marked by orange (green and pur-
ple) dashed line which is stable up to the higher order of
perturbation.

As for the general cases, the 2Fk = 21+*=1" GSD can be
factorized into M components:

k=DM _ 52 p(k=2) pk=Dk=2) k=1 (k=2) (24)

The first factor corresponds to the most stable ground states,
and the rth (2 < r < M) component of Eq. (24) corresponds
to the GSD which is stable against perturbation up to the
4(M + 1 — r)th order ~(’})4(M+l_r). As r increases, the loops
are closer to the outer edge of the system, and less stable due
to the shorter perimeter.

IV. ENTANGLEMENT ENTROPY

We turn to the second topological quantity, the topological
entanglement entropy developed in Refs. [18,19]. Topological
entanglement entropy was initially discussed in Refs. [20,21].
It captures universal properties of a topologically ordered
phase. Recently, it was found that by making use of quan-
tum information tools, the topological entanglement entropy
conveys a clearer physical intuition—the number of distinct
anyonic excitations [18,19]. In this section, we resort to the
argument given in Refs. [18,19] to study the interplay between
anyonic excitations and geometric properties of the Cayley
trees. We further present consistency checks of our result by
introducing gapped boundary.

A. Nonlocal entanglement entropy

Before doing so, we briefly review the topological entan-
glement entropy developed in Refs. [18,19]. Entanglement
entropy in various topologically ordered phases has been in-
tensively studied for years. For more detailed introductory
discussions of this subject, readers may consult the litera-
ture [20,21,34]. The basic idea is that conditional mutual
information has an intimate relation with topological entan-
glement entropy if one sets properly the geometry of disjoint
regions.

Let us start by introducing the conditional mutual informa-
tion. For a state p in disjoint regions A, B, C, the conditional
mutual information I(A : C|B) is given by

I(A: C|B)|, = S(pas) + S(psc) — S(ps) — S(pasc), (25)

where S(p,) denotes the von Neumann entanglement entropy
in a subsystem. Physically, this quantity captures the change
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FIG. 5. (a) Four disjoint region ABCD of the Z, toric code on a
2D plane (papcp is a pure state), where anyonic excitation is running
across C from spatially separated D where the end points of the
excitation are located. (b) Two geometries of the four-partite system
ABCD in the book-page lattice model, where A is the complement of
BCD, which is not shown for simplicity. Each subsystem is separated
by a cylinder geometry. (c) Left: Example of the cylinder geometry
CD (red line) of (I) in the previous figure with k = 3, L = 3, and
M = 1. The qubits within the cylinder CD are marked by red dots.
The top view of the same configuration is shown in the bottom. Right:
The side view of the same geometry.

of the correlation between A and B with and without C.% For
another state o, with the properties pap = oap and ppc = opc,
it follows that

I(A:C|B)l, =1(A: C|B)|s + S(oapc) — S(pasc)
2 S(oapc) — S(pagc)- (26)

The last inequality holds due to the positivity of the con-
ditional mutual information (which comes from the strong
subadditivity of the entanglement entropy) and the lower
bound is saturated when /(A : C|B)|, = 0.

While the relation Eq. (26) holds in any quantum state, it
has a particularly suggestive geometric interpretation in the
context of topologically ordered phases. To see this, from now
on we focus on a quantum state in a topologically ordered
phase and specifically set the geometry of A, B, and C in
this phase. As an example, for a given 2D Abelian nonchi-
ral topologically ordered phases (more precisely, an Abelian
topologically ordered phase described by a local commuting
Hamiltonian), such as the toric code on a plane, we introduce
the four-partite system ABCD as portrayed in Fig. 5(a), so D is

8This can be seen by recalling I(A : C|B)|, = I(A: BC)|, — I(A :
B)|,, where I(A : BC)|, is mutual information defined by I(A :
BC)|, = S(pa) + S(psc) — S(pasc)-

the complement of ABC. Setting the state p as the ground state
of this system, the conditional mutual information Eq. (25) is
now written as

I(A : C|B)|, = S(psc) + S(pcp) — S(pg) — S(pp) = §.
(27)

Here we have assumed that pspcp is a pure state. By ap-
propriate unitary operations, one can create an anyon whose
trajectory runs across C from D, with its end points be-
ing located within D, giving an excited state o. Suppose
we have sets of distinct excited states o (I =1,...,N)
such that ojap = pap and o;pc = ppc. Here, being distinct
means oy -0y = 0 (I #J). Introducing a mixed state o' =
> pior (O, pr=1), we substitute this excited state into
Eq. (26) (6 — o) and obtain

§ > S(o4pc) — Slpasc) ==Y _pilnp..  (28)
1

It can be shown that the lower bound of Eq. (26) is sat-
urated when p; = 1/N, in which A and C are conditionally
independent: I(A : C|B)|,» = 0 and the lower bound of the
conditional mutual information of the ground state is given by
S = InN [19]. Furthermore, § is a universal number. In fact,
an explicit calculation shows that § is topological in the sense
of being independent of the area terms [20,21]. Following the
terminology in Ref. [19], we term § the nonlocal entanglement
entropy.

In the case of the Z, toric code on the 2D plane, there
are four types of distinct anyons, represented by n;; =
(e)(m)/ (i, j =0, 1), where e and m denote the electronic
and magnetic anyons. In other words, there are two generators
of Z, excitations, e and m anyons, with which any excitation
can be created, thus there are N = 22 = 4 distinct excitations.
The nonlocal entanglement entropy is saturated and gives
§ =1n2? = 2In2.

One can generalize this argument to an arbitrary nonchiral
Z, topologically ordered phase. In the four-partite system
ABCD, suppose there are n generators of anyons carrying
Z, charge and running across C from D (in the previous
paragraph n = 2 corresponds to one e and one m anyon) with
which any excitation can be created. Therefore, in total there
are N = 2" distinct excited states that run across C from D.
The lower bound of the nonlocal entanglement entropy is
then given by § = nIn2, which coincides with the value of
topological entanglement entropy of the ground state.

One can attribute the coefficient n to the number of distinct
fundamental anyonic excitations that run across C from D.
Indeed, the quantity § was used to analyze the number of
distinct excitations in several models, such as excitations in
fracton topological phases [19], higher-form excitations in the
3D toric code (point or membrane type excitation) [18], and
excitations in various quantum doubles with gapped bound-
ary [35]. In the following, we will claim that the nonlocal
entanglement entropy S is a useful quantity characteriz-
ing the distinct anyonic excitations subject to the geometric
constraint.
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B. Entanglement entropy of the Z, toric code
on book-page lattice

Now we are in a good stage to calculate the nonlocal entan-
glement entropy of the toric code on the book-page lattice. Let
us consider two cases of the four-partite system ABCD in the
book-page lattice separated by cylinder geometry as portrayed
in the geometries in Figs. 5(b)(I) and 5(b)(ID).

We first concentrate on the case of Fig. 5(b)(I). The height
of the cylinder CD and B is given by L, meaning that the
individual 1D vertical line of the book-page lattice within
the cylinder contains L qubits. Also, we set the radius of the
cylinder CD and B is characterized by generation M and N of
the book-page lattice, respectively; namely, in the horizontal
direction, CD/B contains qubits up to M/N generation. Let
us calculate the entanglement entropy of subsystem CD. An
example of such cylinder geometry is shown in Fig. 5(c).
Deferring the details of the calculations to Appendix A, one
finds

Scp = Area(CD) — In2, 29)

where the first term is the area term, Area(CD) = Nj_,In2,
where N;, is the number of vertex operators A, that cross
subsystem CD and its complement. The second term repre-
sents the universal topological entanglement entropy. One can
also find the entanglement entropy in other cylinder geometry
as

Sgc = Area(BC) —In2, Sp = Area(B)— 2(k— 1)In2,
Sp = Area(D) — 2In2. 30)

Therefore, the nonlocal entanglement entropy in the case of
the four-partite system in Fig. 5(b)(I) gives’

Say =20k — HMIn2. 31

A similar line of thought shows that the nonlocal entangle-
ment entropy in the case of Fig. 5(b)(II) yields the same value
as (31)

Sany = 2k — 1HMn2. (32)

C. The number of excitations

The nonlocal entanglement entropy conveys a clear phys-
ical meaning: the number of distinct excitations. The coef-
ficient of Eqgs. (31) and (32) properly counts the number of
distinct anyons running across C from D. Furthermore, even
though the nonlocal entanglement entropy is identical in both
cases of Figs. 5(b)(I) and 5(b)(II), the way it characterizes the
excitations is rather different.

Let us focus on the case with M = 1, where § = 2(k —
1)In2. (Practically, the topological part of the entanglement
entropy, like S, should be discussed in such a way that the
size of the subsystems is longer than the correlation length of
the excitations. However, since the model has zero correlation
length, one can discuss the topological properties of the entan-
glement entropy even in a small system size like the present

°Note that the area terms are suppressed as Area(BC) +
Area(CD) = Area(B) 4+ Area(D).

case.) There are 2(k — 1) — 1 distinct m anyons that go across
C from D. In Fig. 6(a), with k = 3, there are three distinct
m anyons whose trajectory is depicted by the red, blue, and
purple arrows. The crucial point is that these three m anyons
are generators of other m anyons whose trajectories run cross
C. Indeed, the m anyon running along the green arrow in
Fig. 6(a) is generated by two m anyons marked by red and
blue colors. Likewise, the m anyon going along the yellow
arrow in Fig. 6(a) is generated by the ones of the purple arrow
and green arrow, which is constructed by the two m anyons
with blue and red arrows. Thus, there are three m anyons in
total that exhaust all the magnetic excitations going across C
in the vertical direction.

A similar line of argument leads to that there are 2(k —
1)M=1 — 1 distinct m anyons running across C vertically, by
successively using the fact that each vertical link, k m-anyons
are created from vacuum. There is only one distinct e anyon
going vertically in any case of k and M, as it is deformable
without any geometric constraint. In total, there are 2(k —
DM — 1+ 1 =2(k — 1)M distinct anyons running through C
from D, which coincides with the coefficient of Eq. (31).

Now we turn to the four-partite system as portrayed in
Fig. 5(b)(II). In this case, S characterizes the distinct excita-
tions going across C from D in the horizontal direction. In the
case of M = 1, there are three distinct excited states created
by the e anyon. Indeed, we demonstrate three distinct paths
of e anyon that cross C from D in Fig. 6(b). It is emphasized
that even though the e anyon is the same as the toric code on
the regular 2D plane, in the sense that a pair of e anyons are
created from vacuum, due to the nontrivial geometry of the
bipartition between C and D, there are nontrivial numbers of
excited states of the e anyon, each of which contributes to S.
On the contrary, as for the m anyon, there is only one excited
state, forming like a membrane shape as depicted in the right
geometry of Fig. 6(b), which goes across C. We also confirm
that excited states O'IL{BC (1 €1 < 4) with I corresponding to
the three different configurations of the e anyon and one m
anyon, which are created by acting unitary operators on the
ground state, satisfy o/, -0, =0 ( #J) and that I(A :
C|B)ls =0 with 0’ = ; 3", 04,c, implying § is saturated.
For the generic values of k and M, there are 2(k — 1) — 1
distinct excited states coming from the e anyon, whereas there
is only one excited state coming from the m anyon, thus, in
total, there are 2(k — DM — 1 + 1 = 2(k — )™ distinct exci-
tations running through C from D, which again coincides with
the coefficient of Eq. (32).

D. Consistency check—boundary terms

We further corroborate the counting argument of the
distinct excitations which contribute to the nonlocal entan-
glement entropy S by introducing the boundary terms. We
impose the boundary condition on top of the book-page lattice
in analogy to the ones in the planner toric code [36].

In the case of the rough boundary, plaquette terms B), at the
boundary is incomplete in the sense that one link is missing.
Examples of such plaquette terms are given by Z,Z,Z; and
Z1Z47s in Fig. 6(c). In the case of a smooth boundary, the
vertex term A, is incomplete, missing one link. An example
is given by X, X,X.X; in Fig. 6(c). We introduce a cylinder
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FIG. 6. (a) Three distinct m anyons going across C of case (I) in Fig. 5(b) with k = 3. Left: The trajectories of these anyons are marked by
red, blue, and purple arrows. Right: Two m anyons going along the red and blue arrows can be converted into an m anyon which goes along
the green arrow. Likewise, the m anyon going along the yellow arrow is generated by combining the m anyon going along the purple arrow and
the one along the green arrow. (b) Distinct trajectories of e and m anyons going across C (grey line) in Fig. 5(b)(II) with k = 3. Left: Three
trajectories of e anyon which go across C, marked by red, blue, and green lines. The top views of these trajectories are also shown below.
Right: One trajectory of m anyon going across C marked by light blue links. (c) Rough (smooth) boundary of the book-page lattice. (d) Four
disjoint subsystems ABCD (A, which is the complement of BCD is not shown) with boundary condition (either rough or smooth boundary) on

the top.

geometry portrayed in Fig. 6(d) with its top being attached
to the boundary of the book-page lattice. As we explained
in the previous subsection, there are 2(k — 1)” — 1 distinct
excitations of e anyons and only one type of m anyon con-
tributing to §. Therefore, when the cylinder geometry has
the rough (smooth) boundary condition on the top, the elec-
tronic (magnetic) excitation is absorbed. As we learned in
the previous subsection, in the geometrygiven in Fig. 5(b)(II),
there are 2(k — 1) — 1 excited states coming from the e
anyon and one excited state from the m anyon. In the pres-
ence of the boundary, either the e or m anyon is absorbed,
leading to that the nonlocal entanglement entropy is reduced
to S =1n2 or [2(k — ™ — 1]In2. In fact, calculations show
that the nonlocal entanglement entropy with rough boundary
reads

S, = 1n2, (33)

whereas the nonlocal entanglement entropy becomes, in the
presence of the smooth boundary:

S, = [2(k — DM — 1]In2. (34)

These results coincide with the argument of the num-
ber of distinct e and m anyons that contributes to

the nonlocal entanglement entropy; in the case of the
rough boundary, 2[(k — 1) — 1] excited states from the
e anyon is absorbed whereas in the case of the smooth
boundary, one excited state from the m anyon gets
absorbed.

V. DISCUSSION AND CONCLUSION

In this paper, we have highlighted the interplay between
fractional excitations in Z, topologically ordered phases and
the geometric property of the Cayley tree, which is one
of the examples of hyperbolic lattices by investigating two
properties: the GSD counting on a closed surface and the non-
local entanglement entropy. Both quantities characterize how
the geometric structure of the Cayley tree affects the anyon
excitations.

Let us make a brief comment on the generalization to other
topologically ordered phases. We also study the Z, modified
surface code on the book-page lattice [37]. One distinction
from the toric code is that one can design the model such
that both of the e and m anyons are subject to unusual fu-
sion rules. Such a feature can clearly be seen in the form
of the nonlocal entanglement entropy in the presence of the
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boundary. We relegate the details of these arguments to Ap-
pendix B. Also, by introducing a topological defect where
some of the pages of the book-page lattice are removed, a
single isolated Abelian anyon is bound at the dislocation.
A more thorough discussion on this defect and other types
of defects such as twist defect will be discussed in a future
project.

The hallmarks of this hyperbolic lattice are: (i) Unusual
fusion rule of the m anyon, schematically described by
I > m®mQ ---®m with [ and m representing the vacuum

k

sector and k m-anyonic excitations created by an X operator
acting on a single vertical link. As a consequence, iterative
uses of this fusion rule at each vertical link lead to the delocal-
ization of the wave function of the m-anyon as the generation
increases. (ii) Although there is only one type of e anyon
which is the same as the one of the planar toric code, in the
horizontal direction, there are huge numbers of distinct paths
for the e anyon to move, giving rise to a large number of the
GSD or the nonlocal entanglement entropy. As we discussed
in Sec. III D, some of the distinct paths differ by a small
loop, thus the GSD is reduced by perturbation whose order
equals the perimeter of the small loop. (iii) In the vertical
direction, which is in the dual description of (ii), there are a
large number of distinct m anyons. Such m anyons contribute
to a large number of the GSD or the nonlocal entanglement
entropy.

In addition to the previous discussion, there are some future
directions that we would pursue. First, it would be inter-
esting to see whether one can have a K-matrix description
of Abelian topologically ordered phases on the book-page
lattice. Note that the generalized K-matrix theory on the book-
page lattice would be quite different from that on the plane
because of the inequivalence between electric and magnetic
excitations. In the planar 2D toric code, we can introduce the
K matrix K = 20, for the effective field theory description.
In contrast, on the book-page lattice, there could be more
geometric structures encoded in the K matrix. There is an
attempt [38] to construct a discretized K-matrix description of
the Chern-Simon theory on nontrivial discrete lattices, such
as tetrahedron, where the information about the geometry is
given in the form of couplings between gauge fields and the
ones between gauge field and flux. To investigate whether it is
possible to establish the generalized K-matrix description of
the topologically ordered phases on the book-page lattice in a
similar vein could be an useful approach. Second, it would
be intriguing to explore non-Abelian topologically ordered
phases on the book-page lattice. A simple step is to put pairs
of twist defects in the book-page lattice and study the fusion
rules with the defects [39]. It could also be an important issue
to see how the non-Abelian anyon is delocalized on the book-
page lattice. Third, it is known that there is an intimate relation
between gauge symmetry in a theory in (d + 1)-dimension
and the global symmetry in d-dimension holographically. For
instance, the e-m duality in the 2D toric code is closely re-
lated to the Kramers-Wannier duality in the transverse Ising
model on its 1D boundary [40]. Studying the transverse Ising
model on the 1D Cayley tree would help us to better under-
stand the bulk-edge correspondence. We will report our results
elsewhere.

ACKNOWLEDGMENTS

We thank Hillel Aharony, Bishwarup Ash, Erez Berg,
David Mross, Yuval Oreg, Ananda Roy, and Ady Stern for
discussions. We also thank Vijay B. Shenoy for answering our
questions on his work [24] and David Mross for comments on
the paper. This paper is partly supported by Koshland postdoc
fellowship (B.H.).

APPENDIX A: CALCULATION OF ENTANGLEMENT
ENTROPY

1. Stabilizer formalism

In this Appendix, we present a way to calculate the entan-
glement entropy of the Z, toric code on the book-page lattice,
based on Ref. [41]. (See also Refs. [18,42].)

The basic idea behind Ref. [41] to calculate entanglement
entropy of subsystem A, Sy, is that for stabilizers {G;} that
cross A and its complement A (i.e., that acts on both of A and
A), we introduce stabilizers, G;, which have the local support
of G; on A. In this Appendix, we call such stabilizers restricted
stabilizers. Among these restricted stabilizers G;, one can
construct a canonical form in such a way that {G»;_1, G} =0
with other commutation relations being trivial. In other words,
the canonical form is constructed such that each restricted sta-
bilizer anticommutes with only one restricted stabilizer while
commuting with other ones. The entanglement entropy S, is
given by S4 = NIn2, where N represents the number of pairs
of the canonical form.

Let us apply this logic to our model. For simplicity, we
focus on calculating the entanglement entropy of a bipartite
subsystem CD separated by a cylinder geometry in the Z,
toric code on the book-page lattice with k = 3. The diameter
and height of the cylinder is set to be M =1 and L = 3, as
demonstrated in Fig. 7(a). There are 12 vertex terms A, and
14 plaquette terms B, that have nontrivial actions on both CD
and CD. Accordingly, there are 12 and 14 restricted stabilizers
A, and B, .

It is useful to introduce a diagram that represents the com-
mutation relation between restricted stabilizers. The diagram
is drawn as follows: the restricted stabilizer A,, corresponding
to the vertex term A, anticommutes with three restricted
stabilizers, B,,, B,,, and B,,, and commutes with other re-
stricted stabilizers. Denoting black dots (white squares) as the
restricted stabilizers of the vertex term (the three plaquette
terms), we connect lines between the black dot and the white
squares, indicating these restricted stabilizers anticommute,
giving the right corner of the diagram in the left of Fig. 7(b).
More precisely, the three lines between dots and squares
represent the three relations {AUI,EPX} =0(s=1,2,3). An-
ticommutation relations between other restricted stabilizers
are similarly discussed, yielding the reminder of the diagram
portrayed in the left of Fig. 7(b).

With this diagram, we construct canonical forms. To this
end, we simplify the diagram. Noticing that there is a closed
loop in the diagram,

B, — A, — B,, > A,, —> B,, > A,, > B,, > A,

- B[’S - AU7 - B[’lo - Av9 - BPIZ g Avn g BP|4

— Ay, > By,
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FIG. 7. (a) Subsystem of the book-page lattice separated by a cylinder geometry (red line). The qubits which are located within the
cylinder are marked by red dots. Plaquette and vertex terms that cross the cylinder and its complement are denoted by p; (1 < i < 14) and
v; (1 < j < 12) (some of index are not shown for the sake of clarity). The side view of this geometry is also exhibited on the right. (b) The
diagram indicating anticommutation relations between the restricted stabilizers. Restricted stabilizers which anticommute with each other are

connected by a line.

one can redefine B,, as
By, new = (Bp, Bp,Bp, By Bp By, Bp,, Jolas

where we have introduced subscripts new and old to em-
phasize that B, is redefined, and verify that this newly
defined B,, commutes with any restricted stabilizer, allowing
us to omit the white square corresponding to B,,. A similar
procedure can be done when we find a closed loop in the
diagram, and it is straightforward to show that one restricted
stabilizer is omitted per closing loop. In the present case, two
more squares, corresponding to B,, and B, are dropped,
giving the middle diagram of Fig. 7(b).

In the middle of the diagram in Fig. 7(b), focusing on the
subdiagram along the line, A,, — B,, — A,, —> B,, — A,,,
we redefine the restricted stabilizers as

Avf,,new = (AUGAU4AU2 )old7 Alm,new = (Av4Av2 )old- (Al)

With these redefined stabilizers, one can show that

(A2)

indicating the two pairs, AM, E,,G and sz, B », are in canonical
form, which allows us to detach the line B,, — A,, — B,, —
A,, from the diagram. A similar consideration and redefining
stabilizers in a similar fashion as Eqs. (Al) enables us to

detach the subdiagrams along the line B,, — A,; — B, —
A,, and B, , — A,, — B,, — A,,, and obtain four pairs of
restricted stabilizers each of which is in canonical form, giving
the right diagram in Fig. 7(b). We are left with a diagram
which is in a line shape. Similarly to Egs. (A1), redefining
restricted stabilizers such that

Avl,new = (Alevle AngwAv(,)olda

V10

Vi2,New = (AvlevangwAvﬁ )Old

A
Aulo,new = (AUIUAUSAU7AU6 )Olda Aus,new = (A‘UBA‘U’]A‘Uﬁ)Old’
Aw,new = (AU7AU(, )Oldv

one can verify that five pairs (A,,, By, ), (Ay,, By, ), (Ayg, Bp,)),
(Av0, Byyy), and (4,,,, B,,) are in canonical form. Together
with the six pairs that we have obtained previously, there are
11 pairs of restricted stabilizers which are in canonical form.
Therefore, the entanglement entropy Scp is given by

SCD = 111n2.

Recalling the number of vertex terms that cross CD and CD is
12, one can rewrite this result as Scp = 12In2 — In2. The first
term denotes the area term, corresponding to the number of
vertex terms that have nontrivial actions on both CD and CD,
whereas the second one denotes topological entanglement
entropy [20,21], a hallmark of topologically ordered phases.
By the same token, we can obtain the entanglement entropy
of a cylindrical subsystem CD with its center being located
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along the spine of the book-page lattice for generic values of
k,L,and M,

Scp = Nyg,In2 — In2, (A3)

where the first term corresponds to the area term, reading
Ny, =4+ 2(k — DM(L — 1). Evaluation of the entangle-
ment entropy for other geometries, BC, B, and D can be
similarly discussed, leading to Eq. (30).

2. Alternative approach

There is an alternative approach to calculate the entan-
glement entropy given in Ref. [34], which we briefly review
here. We will resort to this approach in the later section. Let
H be the Hilbert space given by H = ’H%, where H,» =
span{|0), |1)}, i.e., tensor product of spin-1/2 states (|0) / |1)
corresponds to the spin-up (-down) state in the spin-z ba-
sis). We are interested in stabilized states |y) € H such that
Us |¢¥) = ) for a given set of Z, stabilizers {U;} (Ux2 =1),
which are mutually commuting operators acting on . Intro-
ducing G = S% with Sy, = {I, X} (X: the Pauli matrix), we
define the ground state as

[Yo) = g10). (A4)
>
Here, |0) = |0)®" and Ny = |G|. Obviously, this state is the

stabilized state.

The density matrix of the ground states has the form p =
2%0 Zg’geGg |0) (0] g¢. In a bipartite system AB, factorizing
the stabilizers g (¢') as g4 @ g5 (g, ® &), Which acts on the
factorized Hilbert space Ha ® Hp, the reduced density matrix
in A is calculated to be [34]

pa = Trp(p)

1
:TI'B —

Do 84104 (04l gagls

8.8 €A ®gp

x ®gg |08) (0] g5¢'5

1 /
= 5% Z 84 104) (04l 8484+ (A5)

geG
g€Ga

where Gy4,p represents a set of stabilizers containing X op-
erators that act only on A/B. From the second to the last
equation, one obtains the constraint g = I when tracing
over B, which forces ¢ to be the form ¢ = g4 ® gp € Gy,
arriving at the last equation. In the last equation in Eq. (AS5),
we sum over g € G = g4 ® gp. Since B is already traced out,
one rewrite this summation via Y. = 2% 3" /¢, With dp
being the number of stabilizers that acts withing B, allowing

us to rewrite Eq. (A5) as
2d

= (A6)

pa=5c > galOa) (04l gag)

8€G/Gg

g€Gy
To get the entanglement entropy, square Eq. (A6) to find (da:
the number of stabilizers that act within A),

2d/\+d3
pa = pa (A7)
A ZNU )
from which the entanglement entropy is given by [34]
a n
S(pa) = — a—nTr(pA) = (No —dy —dg)In2.  (A8)
n=1

Applying to this formula to our model yields (30), as it should.

APPENDIX B: DETAILS OF THE Z, SURFACE CODE
ON THE BOOK-PAGE LATTICE

We consider putting a different Z, topologically or-
dered phase on the book-page lattice, namely, Z, surface
code [37,43] on the book-page lattice. A distinction from the
case of the toric code is that one can design the model in such
a way that an e anyon is also subject to the unusual fusion rule
as well as the m anyons.

1. Model

Let us start with the construction of the lattice, which
quite resembles the one discussed in Sec. II except the fact
that qubits are located at each node, not link. An example is
shown in Fig. 8(a). To define the Hamiltonian, we introduce
four types of terms, X /Z-plaquette terms and X /Z-book terms.
Each X/Z-plaquette term is defined by multiplication of four
X/Z operators at the corner of a plaquette. In the case of
k =3, examples of X-plaquette terms are O;(l = X1 X2X3Xy
and 01’52 = X1 X,X5X¢ in Fig. 8(b). In a subsystem consisting
of kK — 1 plaquettes connected to a vertical link, the X/Z-
book term is given by multiplication of 2k X/Z operators.
An example of an X-book term is 02‘1 = X Xp X Xa XXy in
Fig. 8(b). We also introduce two types of columns, P and B,
in an alternating pattern along which plaquette terms and book
terms are introduced.'” Furthermore, we mark the system by
two colors, grey and white in zigzag pattern, analogously to
the Z, surface code on the 2D plane [37,43]. According to
the types of columns and colors, we introduce X- and Z-
plaquette or book terms. In Fig. 8(a), along the first column on
the top (P), depending on the color, Z- or X-plaquette terms
are introduced. Examples are XrXSXkXI, Z]ZszZ], Z@Z7Zkzl,
X1 X,X11X17, and X X,X14X;5. Analogously, along the second
column (B) in Fig. 8(a), X- or Z-book terms are introduced.
Examples are X1X4X2X3X7X8 and 2223212213214215.

10At the spine, there is no difference between plaquette and books
terms. Both of them are defined by multiplication of four X or Z
operators, depending on the grey or white color.
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FIG. 8. (a) Modified Z, surface code on the book-page lattice with k = 3 up to the first generation. Two colors, white and grey, are
introduced marked in a zigzag pattern. Furthermore, we introduce two types of columns P and B in an alternating pattern. (b) Examples of two
X -plaquette terms (left) and an X -book term (right). Examples of trajectories of e (m) anyons which violate X - (Z-) plaquette or book terms,
marked by red (light blue) line with its top view being demonstrated below.

The Hamiltonian is defined by

H=-Y 0l - Y 0i-Y ol - Y o

PEP; peP, beB, beB,,

(BI)

where sets of plaquettes with grey (white) color are repre-
sented by P,(P,,) and sets of subsystems, where the book term
is introduced, with grey (white) color by B,(B,,). Also, X-
(Z-) plaquette term is described by OX(07%) as well as the
X- (Z-)book term by OX(O%). One can show each term in
Hamiltonian Eq. (B1) commutes with each other. The ground
states satisfy O, [¢) = O7 , |¢) = |¢) Vp,b.

As for excitations, similarly to the main text, anyons which
are charged by X (Z)-plaquette or book terms are referred to
as e (m) anyons. As opposed to the case of the toric code, in
the present case, the e and m anyons show the Cayley tree
pattern, as demonstrated in Fig. 8(c).

2. Entanglement entropy

If the periodic boundary condition is imposed, some of
the terms in Eq. (B1) anticommute. Thus, the GSD counting
in a closed surface, which relies on the stabilizer formal-
ism, does not work to characterize the superselection sectors
and geometric properties of the model in the present case.
However, one can still argue the nonlocal entanglement en-
tropy, which we now turn to in this subsection, properly
characterizes the distinct anyonic excitations in the book-
page lattice. To calculate the nonlocal entanglement entropy,
one could do the same trick as the one in Appendix A 1
by introducing diagrams, which is now complected to draw.
Instead of doing this, in this subsection, we try a different ap-
proach outlined in Appendix A 2 to calculate the entanglement
entropy.

Let us consider a subsystem A defined by qubits within
a cylinder geometry. The height of the cylinder is L qubits
and its radius is the first generation as shown in Fig. 9(a).
For simplicity, we take L to be an odd integer. However, the
analysis works equally well for even L. We also portray the
side view of this cylinder in Fig. 9(b). Recalling the formula
Eq. (A8) by replacing B with the complement of A, i.e., A, the
entanglement entropy of the cylinder geometry A consists of
three terms: the total number of X-book and plaquette terms
Ny, and the number of X-book and plaquette terms that act
within A/A, d, /i~ One has to carefully count dy/dy since,
depending on the topology of the bipartite geometry, multi-
plication of X -book and plaquette terms may yield stabilizers
that acts trivially on A or A.

(1) (2) (3)
| | | | | | | | B
° e | | o @ |®FP
n m| | m m| B
L [J u e P
u L m (N B
] e |m| |op
21 012 2 1 0 12 2 1 0 12
(b)

FIG. 9. (a) Subsystem of the book-page lattice separated by a
cylinder geometry with k = 3. (b) The side view of book-page lattice
and the cylinder marked by red rectangle. The numbers below each
figure indicate the generation of the book-page lattice. The index
“B” and “P” stand for the two types of column that was explained
above (B1).
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Assuming the total number of plaquette and book terms
with grey color in the entire system is given by Py + By,
we have Ny = Py + By. The number of X -plaquette and book
terms that act within A is given by

n L—-1
2 27

(B2)

where the first term corresponds to the X -plaquette terms at
the spine and the second to book terms at the first gener-
ation. As for dz, which is the number of X-plaquette and
book terms that act within A, naively one would think it is
given by subtraction the total number of the X -plaquette and
book terms from ds and the ones that act across A and A,
namely,

. L+1
LR+ By —dy— o X2k = 1P 1-2 (BY)

However, Eq. (B3) is incorrect; it turns out that multiplication
of the X-plaquette and book terms gives stabilizers that act
only on A, which has to also be added to dy. Indeed, for
subsets of plaquettes and books with grey color, p € Fg CP,
and b € B, C B,, we have

[10;0 =i ® Gy (B4)
p.b

with Gz being a nontrivial stabilizer acting on A. To evaluate
d properly, one has to count the number of ways of setting
such subsets p € P, and b € B, to realize Eq. (B4). Suppose
such a multiplication contains one X-plaquette term at the
spine within the cylinder [black dot in the first geometry of
Fig. 9(b)]. Since the product [left-hand side of Eq. (B4)] acts
trivially on four qubits on each corner of the X plaquette,
four X-book terms in the first generation connect to the four
qubits also have to be included in the product. Then other
X -plaquette terms in the spine which share the same qubits
as the four X-book terms also have to be included in the
product. This line of thought can be iterated to find that
once we assume the product contains one X-plaquette term
at the spine within the cylinder, other X-plaquette terms at
the spine and X-book terms at the first generation acting on
qubits inside the cylinder also have to be included in the
product for the product to trivially act on qubits between the
spine and first generation inside the cylinder [corresponding
to the black squares in the second geometry of Fig. 9(b)].
Furthermore, for the product to act trivially on qubits at the
interface between the first and second generations inside the
cylinder, X -plaquette terms at the second generation have to
be included in the product. Focusing on (k — 1)? X-plaquette
terms on the right top of the second geometry of Fig. 9(b)
(green dashed line), there are (k — 1)(k — 2) ways for the
multiplication of X-plaquette terms to enter in the product.
Other X -plaquette terms at the second generation can be sim-
ilarly discussed. In total, there are 1+ (L + 1)(k — 1)(k —

2) ways to set the product so it satisfies Eq. (B4). When
calculating dz, this number has to be added to Eq. (B3),
giving
L+1
dy=Py+By—d —% x2k—1P—-1-=2

+[1+ L+ Dk — 1)k —2)].
We therefore arrive at

Sy = [No — dy — d5]In2 = [2 + (L + 1)(k — 1)]In2
=[1424+ L+ Dk —1)*]In2
—[1 4 (L + D)k — 1)(k —2)]In2.

(B5)

(B6)

In the last equation, we have decomposed the result into two.
The first term corresponds to the area terms whereas the
second term does to the number of ways to set the product
of X-books and plaquette terms so it acts trivially on A.
Generally, this number indicates the topological property of
excitations, independent of the local geometry of the system.'!
Nevertheless, in the present case, the second term does de-
pend on the height of the cylinder L (and generation M if
one thinks about a larger cylinder). As we will see below,
such L dependence cancels out when calculating the nonlo-
cal entanglement entropy, S. The argument presented here is
straightforwardly generalized to the case of any radius of the
cylinder.

Now we are in a good place to study the nonlocal
entanglement entropy of the Z, surface code on the book-
page lattice. Similarly to the main text, we envisage the
same two geometries of four-partite system ABCD whose
side view is demonstrated in Fig. 10(a) (A is comple-
ment of BCD). One can calculate S defined in Eq. (27)
following the similar logic presented in the previous para-
graph. For two geometries, Figs. 10(a)(I) and 10(a)(II), S is
given by

Say = Sany = 2k — HMIn2. (B7)

3. Anyonic excitation interpretation

We can interpret the result Eq. (B7) as the number of
distinct anyonic excitations that go along C from D. Since
the way we count such excitations closely parallels the one
given in Sec. IV C, we explain how to do it succinctly. Let
us first focus on the nonlocal entanglement entropy in the
geometry in Fig. 10(a)(I) with M = 2. In the case of k = 3,
analogously to the discussion in Sec. IV C, we can explic-
itly draw three distinct m anyons going through C from D
[Figs. 10(b)(1)-10(b)(ii1)]. Other m-anyon excitation, like the
one of Fig. 10(b)(iv) can be generated by combining the three
m anyons. One can also similarly discuss the number of dis-
tinct e anyons. To summarize, denoting D,/ as the number
of distinct e (mm) anyons going through C from D, the result is

"As a sanity check, when we set k = 2, Eq. (B6) becomes S, =
(L + 4)In2 — In2, which is consistent with the form of the entangle-
ment entropy of the Z, surface code on the 2D plane [42], implying
that the second term is topological.
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FIG. 10. (a) Side view of four disjoint subsystems (ABCD, A is not shown) in the book-page lattice. In these geometries, we set M = 2.
(b) Four distinct m anyons that go across C from D (dashed line) in the geometry of Fig. 10(a)(I). Their trajectories are marked by red, blue,
green, and yellow lines. The top view of these excitations are demonstrated below. (c) Five distinct paths for m anyons going across C (dashed
line) from D in the geometry of Fig. 10(a)(II). Their trajectories are marked by red, blue, green, purple, and yellow lines. Top view of these
trajectories are also portrayed. (d) Example of the decorated boundary (X boundary) with k = 3. The qubits with the same number or alphabet
are identified. (e) Side view of four disjoint subsystems (ABCD, A is not shown) in the book-page lattice with decorated boundary on the top.

(including the generic cases of k and M)

b= 120k =20 = D420k = (k= 2) + - +2(k — DM~ (k—2) (M : even)
TV 420k — 2k — 1)+ 2(k — 1Pk —2) + -+ 2(k — DM2(k — 2)(M : odd),

b 120 =)+ 20k = 12k =2) + -+ 2(k = DM2(k —2) (M : even)
MmN 420k —2) £ 2k — 12k —2) + - +2(k — DM~ (k — 2)(M : odd).

In either case of M being odd or even, D, + D,, = 2(k — 1) which is consistent with Eq. (B7).

Now we turn to S in the geometry in Fig. 10(a)(I). In this case, the number of distinct excitations amounts to the number of
distinct path for e or m anyons to cross C from D. As an example, we demonstrate such distinct paths for m anyons in Fig. 10(c).
There are five distinct path for m anyons with k = 3, M = 2 (other paths can be generated by these five paths.). Distinct paths
yield distinct excited states, each of which contributes to the nonlocal entanglement entropy. In the generic cases of k and M, we

have

b [1H20=2) + 20— 120 =2) + -+ +2(k = DY 2(k = 2) (M : even)
CT N +2k —2)+ 2k — D2k —2) + -+ 4+ 2(k — DM (k — 2)(M : odd), °

b [1+200= 20 = 1) 20k = 13k = 2) + -+ 20k = DM~1(k = 2) (M : even)
mEN 420k —2)k— 1) + 20k — 13k —2) + - + 2(k — DM2(k — 2)(M : 0dd),
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which is again consistent with Eq. (B7) since D, + D,, =
2k — 1M,

One can also study the nonlocal entanglement entropy in
the presence of a decorated boundary. Analogously to the
decorated boundary of the planner surface code [37], we in-
troduce boundary terms on the top of the book-page lattice.
Examples of the X boundary are shown in Fig. 10(d) with
k = 3. Up to the second generation, we list such boundary
terms: X1 Xz, X3, X311 X342 (1 < i < 4). We can similarly con-
sider the Z-boundary terms. A nice feature of these decorated
boundaries is that X (Z) boundaries absorb m (e) anyons,

which closely parallels the smooth and rough boundary of the
toric code.

After introducing the decorated boundary, we envisage
the four-partite system ABCD with decorated X boundary as
shown in Fig. 10(e), where m anyons are condensed. Calcu-
lation shows S‘%)dy = D,In2, where D, is given in Eq. (BS).
This is consistent with the fact that the X decorated boundary
absorbs m anyons, and only e anyons can contribute to the
nonlocal entanglement entropy. Similarly, one can study the
nonlocal entanglement entropy with Z decorated boundary to
find 83y, = D,In2 with D,, is given in Eq. (BS).
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