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Numerical security proof for the decoy-state BB84 protocol and measurement-device-independent
quantum key distribution resistant against large basis misalignment
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In this work, we incorporate decoy-state analysis into a well-established numerical framework for key rate
calculation, and we apply the numerical framework to decoy-state BB84 and measurement-device-independent
(MDI) QKD protocols as examples. Additionally, we combine with these decoy-state protocols what is called
“fine-grained statistics,” which is a variation of existing QKD protocols that makes use of originally discarded
data to get a better key rate. We show that such variations can grant protocols resilience against any unknown and
slowly changing rotation along one axis, similar to reference-frame-independent QKD, but without the need for
encoding physically in an additional rotation-invariant basis. Such an analysis can easily be applied to existing
systems, or even data already recorded in previous experiments, to gain a significantly higher key rate when
considerable misalignment is present, extending the maximum distance for BB84 and MDI-QKD and reducing
the need for manual alignment in an experiment.
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I. BACKGROUND

Quantum key distribution (QKD) [1] can provide
information-theoretic security between two communicating
parties, Alice and Bob. Until recently, a new proof had to be
derived for each new type of protocol or new side channel
considered.

In Refs. [2,3], a novel numerical framework has been pro-
posed that can take in a universal set of descriptions for a
protocol and the simulated/experimental data from a quan-
tum channel, and numerically bound the key rate with a
streamlined algorithm. Such a numerical framework has the
great advantage of being able to use a common algorithm
to calculate the key rate for various protocols, thus avoiding
specialized approaches that work only for each particular set-
ting. The streamlined approach also makes it easier to apply
finite-size analysis to protocols. The numerical framework
has been successfully applied to various protocols such as
BB84, measurement-device-independent (MDI) QKD, three-
state protocol, discrete-modulated continuous variable (CV)
QKD, and side channels such as unbalanced phase-encoding
and detector efficiency mismatch in BB84 [2–5]. The finite-
size analysis for the framework is demonstrated in Ref. [6],
which can treat both collective attacks and (at the expense of
a looser bound) coherent attacks.

One limitation in the previous works is that the numerical
framework in Refs. [2,3] has not yet been combined with the
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established technique of decoy states. Most of the applica-
tions above consider only signal sources supporting signals
in finite dimensions, such as single photon sources. In that
class falls Ref. [4], which performs discrete-modulated CV
QKD with a finite number of non-phase-randomized coher-
ent states. Additionally, Ref. [5] uses an infinite number of
decoys that perfectly yield the statistics from each photon
number state. For many discrete-variable QKD protocols,
phase-randomized weak coherent pulse (WCP) sources are
often used, and decoy-state analysis is often used to bound
the single-photon contributions. A small number (e.g., two to
three) of decoy intensity settings are often used [7,8].

In this work, we apply the aforementioned numerical
framework to two important protocols, BB84 [1] and MDI-
QKD [9], in the case of using WCP sources and a finite
number of decoy states. The BB84 protocol is widely used
in both fiber-based and free-space QKD experiments [10,11],
and the MDI-QKD protocol enables immunity against all
hacking attacks on the detector, which not only sees multiple
experimental implementations, but has recently been demon-
strated over free-space, too [12,13]. We show that we can
incorporate decoy states into the numerical proof by simply
considering it as a “wrapper” that preprocesses the detection
data and estimates the single-photon contributions to the ex-
pectation values of observables. This allows us to reduce the
problem to a finite-dimensional one, which can then be fed to
the numerical solver, making it useful with practical scenarios
using WCP sources. Importantly, the wrapper approach we
describe is a rather general tool: in principle, any protocol
that can be described in the numerical framework can be
uplifted to a decoy-state protocol. A protocol can be described
in a smaller Hilbert space (e.g., single-photon-based qubits),
which can be mixed with signals from other larger spaces,
while the decoy-state wrapper can preprocess the detection
data and single out the statistics in the Hilbert space of interest
(without modifying the descriptions of the original protocol).
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Note that, in this work, we focus on the asymptotic regime,
while a combination with the approach in Ref. [6] for finite-
size analysis will be subject to future studies.

The second aspect of our work is the use of what is
called “fine-grained statistics” in the numerical framework.
This is a technique where Alice and Bob use the full set of
detector click data, including the cross-basis events where
they chose different bases (which are often discarded) in
the security analysis, to better characterize the channel and
get a higher key rate. This is rather natural for a numerical
approach, because it treats all observed data as constraints
in an optimization problem, and adding more constraints
to the same problem simply helps us get a tighter bound
on the key rate, without requiring any modifications to the
security proof framework. The technique has previously been
applied to BB84 with the numerical framework and combined
with finite-size analysis in Ref. [6]. This idea of using cross-
basis/discarded data has also been discussed in many previous
works, such as, e.g., Refs. [14–17], notably in the application
of reference-frame-independent (RFI) QKD [14]. In a way,
the usage of fine-grain statistics defines a set of modified
QKD protocols based on given QKD protocols, where full
data instead of sifted data are used for security analysis.

In this work, we apply fine-grained statistics to decoy-
state BB84 and MDI-QKD, and we show that the modified
protocols using fine-grained statistics enjoy a much higher
resilience against basis misalignment, because they are able
to make use of more information to effectively characterize
the channel.1

Note that resilience against misalignment is an impor-
tant advantage, because misalignment errors pose a major
challenge to the experimental implementation of both BB84
and MDI-QKD, whether implemented via fiber or free-space
channels. It is especially severe for fiber-based MDI-QKD as
it relies on two-photon interference, which is sensitive to the
misalignment between two incoming signals, and it is also a
problem for free-space QKD as there could be limited time
for alignment and communication. To mitigate misalignment,
one typically implements automatic feedback of polarization,
which increases the complexity of the system and gets more
costly the faster and the more precisely it has to work. There-
fore, gaining resilience against misalignment on the protocol
level is highly desirable.

Like the limitations of RFI-QKD, our approach does still
have some limitations in that it requires that (i) the rotation
angle is slowly drifting (and can be assumed to be constant
throughout one experiment session), and (ii) the rotation is
only along a fixed axis perpendicular to the plane on the
Poincaré sphere on which testing signals are sent, such as the
X-Z plane or the X-Y plane, depending on which bases are
used for testing.

As mentioned above, the RFI protocols [14,15] have been
previously proposed as a solution to large misalignment. Such

1Throughout the text, we will mainly consider polarization-
encoding protocols through optical fiber (where we can model
misalignment as a unitary rotation to an angle), but by a broader
definition, misalignment is also present in other degrees of freedom,
such as phase encoding or time-bin phase encoding.

protocols make use of two bases X and Y to encode testing
data, and they use a third basis Z to encode the key generating
data. The full data (including cross-basis clicks) between X
and Y bases are used to perform a tomography-like analysis,
which estimates the virtual phase error for the Z basis signals.
In a way, this is a special case of applying the fine-grained
statistics idea, except that the data are not directly incorpo-
rated as constraints into the analysis, but are used to first
construct a constant that is invariant under misalignment, and
which is later used to bound the phase-error rate. The RFI
approach has also been applied to MDI-QKD to form RFI-
MDI-QKD protocols. The key point of RFI-QKD is that it is
usually easier to maintain good alignment of one basis, e.g.,
the Z basis (which can correspond to the circular polarization
for polarization encoding, or the time-bin basis for time-bin
phase encoding), while the other two bases can be allowed
to slowly drift, resulting in a unitary rotation of an unknown
angle along only one plane. A limitation to RFI protocols
is that they require the use of an additional encoding basis,
which requires additional physical modification to the systems
to work and increases the complexity.

In comparison, we use the fine-grained statistics directly
as constraints in the numerical framework. We also do not
require any physical modification to the QKD protocol it is
based on (as we are only making use of data that are supposed
to be discarded), which means we can use an existing experi-
mental setup, or even potentially apply the analysis to experi-
mental data acquired from previously completed experiments
and readily obtain a higher key rate due to a refined analysis.

Note that other numerical frameworks such as [18] have
been reported to work with decoy-state MDI-QKD. In this
work, we focus on applying decoy-state analysis to the spe-
cific numerical framework in Refs. [2,3], and we also report
one particular advantage of using the numerical framework
here, which is the resilience against misalignment as a result
of using fine-grained statistics.

In this manuscript, we will introduce our methodology in
Sec. II, where we briefly recapitulate the numerical frame-
work, introduce how we combine decoy state analysis with
the framework, and introduce how to use the fine-grained
statistics. In Sec. III, we introduce the channel model we use
to simulate the statistics. We will then present our simulation
results in Sec. IV and conclude in Sec. V.

II. METHOD

In this section, we introduce the methodology we use to
bound the secure key rate for decoy-state BB84 and MDI-
QKD. We will briefly recapitulate the numerical framework in
Ref. [3], the decoy-state method [19–21], the concept of using
fine-grained statistics, and the channel model we use for our
simulation.

A. Numerical framework

Here in this subsection, we first give a high-level descrip-
tion of the numerical framework we use to calculate the key
rate. The details of the numerical framework can be found in
Ref. [3]. A simple step-by-step description for a protocol has
a typical structure as follows:
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(i) Quantum Phase. In an entanglement-based scheme, a
source sends quantum signals to Alice and Bob, who measure
the incoming signals. In a prepare-and-measure scheme, Alice
prepares a signal and sends it to Bob, who measures it.

(ii) Testing. Alice and Bob announce their detailed mea-
surement outcome (and choice of prepared signal) for a subset
that they selected at random.

(iii) Classical Communication Phase. Alice and Bob per-
form some blockwise postprocessing of data, for example by
announcing some information, such as basis announcements,
publicly.

(iv) Key Map. One party, say Alice, performs a key map,
which is a function of her local data and the information
exchanged in the blockwise postprocessing, to obtain a data
set from which a secret key will be distilled with the next
two steps. Alice applies the key map on the state to obtain
the raw keys. Note that only Alice implements the key map
(and the result is not changed by the next error-correction
step).

(v) Error Correction. Alice and Bob perform error correc-
tion by exchanging classical information. They keep track of
the resulting information leakage from the key map step.

(vi) Privacy Amplification. Alice and Bob perform privacy
amplification, whose parameters are set by the security analy-
sis, based on the observation during the testing phase and the
leaked information during the error-correction step.

The key idea in the numerical framework that provides the
security analysis mentioned in the Privacy Amplification step
above can be fully described by a few formal elements. Note
that the theoretical description of the prepare-and-measure
protocols can be unified using the concept of a thought setup
via the source-replacement scheme [16,22–24].

The physical setup of QKD devices is reflected by the
following:

(i) Measurements performed by Alice and Bob, which
are described by general positive operator valued measures
(POVMs), which are formed by POVM elements that are
represented by matrices {�k}. Here the POVM elements can
be “fine-grained” (containing all raw statistics) or “coarse-
grained” (combined into groups), a process we will describe
in more detail in Sec. II C.

(ii) Expectation values of the measurements (numerical
values {γk}), which correspond to the POVMs described for
the protocol. These expectation values are obtained during
the testing phase of the QKD protocol. (Since we are dealing
with the asymptotic case, the frequency of observed events is
described by the corresponding quantum-mechanical proba-
bilities.)

The POVMs {�k} and the observed statistics {γk} (which
asymptotically correspond to the expectation values of
POVMs) form constraints that bound the possible input states
ρ within a domain S satisfying Tr(�kρ) = γk .

The postprocessing phase is represented by the following:
(i) The Kraus operators {Ki}, which represent measure-

ments, public announcements, and postselection by Alice and
Bob (such as basis choice). The process can be viewed as a
quantum channel acting on the received quantum state that
Alice and Bob share, and it creates also classical registers,
embedded in a quantum state, corresponding to the announce-
ments and the processing.

(ii) The key map operators {Zj}: After announcements and
postselection, Alice performs the key map making use of
locally available information and the publicly communicated
information. This can be thought of as a measurement on
the quantum registers holding the relevant information. This
measurement is mathematically represented by a pinching
quantum channel, corresponding to a partial dephasing along
blocks that are characterized by the key map measurement
results. The operators {Zj} are projects onto the subspaces
corresponding to these blocks.

Based on the Renner framework [25], and using the for-
mulation in Refs. [2,3], the key rate can be lower-bounded by

R = minρ∈S f (ρ) − ppass × leakEC
obs, (1)

where leakEC
obs is the error-correction leakage and ppass is the

probability of a signal being detected (the yield) and passing
the basis sifting. The domain S that bounds possible values of
ρ is

S(�γ ) = {ρ ∈ H+ | Tr(�k ρ) = γk, ∀k}. (2)

Note that for the privacy amplification term, ppass is al-
ready included in f (ρ). This is because information such as
the channel loss and basis choice probabilities are already
included in the statistics γk , which subsequently limit ρ to
only those that have a smaller f (ρ) that corresponds to the
correct amount of channel loss and sifting.

Here f (ρ) is solely determined by the Kraus operators {Ki}
and key map operators {Zj}:

f (ρ) = D(G(ρ)||Z (G(ρ))), (3)

where

G(ρ) =
∑

i

Ki ρ K†
i ,

Z (G(ρ)) =
∑

j

Z j G(ρ) Zj,
(4)

and D(X ||Y ) = Tr(X log2X ) − Tr(X log2Y ) is the quantum
relative entropy (where log is the matrix logarithm).

The problem of minimizing f (ρ) can be broken down to a
two-step approach: in a first step one finds a near-optimal ρ ′,
and in a second step one solves a linearized dual problem at
ρ ′ to find the rigorous lower bound. The details can be found
in Ref. [3].

In this paper, we also compare results to existing works
using the quantum error-correction code approach (using the
Shor-Preskill [26] key rate):

R = 1 − h2
(
eX

1

) − h2
(
eZ

1

)
. (5)

For BB84 using a weak coherent pulse source and
decoy-states [19–21], this becomes the key rate from the
single-photon proportion:2

R = p2
Z p1 Y1 [1 − h2(e1)] − p2

Z Qμ h2(Eμ), (6)

2Here for BB84 and below for MDI-QKD, we assume only the Z
basis is used for generating keys, while in principle both bases can
be used; alternatively, in the asymptotic case it is also possible to
assume pZ ≈ 1 such that there is no loss of key rate from sifting.
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where Qμ is the signal state detection probability (gain), p1

is the probability of a single photon being sent (following a
Poissonian distribution for WCP source), and Y1, e1 are the
single-photon statistics (yield and error rate) estimated from
decoy-state analysis, which will be discussed in more detail in
the next subsection. Or, for MDI-QKD based on the portion of
single-photon pairs from WCP sources [8,9], the key rate is

R = p2
Z p11 Y Z

11

[
1 − h2

(
eX

11

)] − p2
Z QZ

μμ h2
(
EZ

μμ

)
, (7)

where QZ
μμ is the signal state detection probability (gain), p11

is the probability of single photons begin sent by both Alice
and Bob (i.e., p2

1 if they use the same intensity), and Y Z
11, eX

11
are the single-photon statistics estimated from decoy-state
analysis.

B. Decoy-state analysis

The BB84 and MDI-QKD protocols have the best per-
formance if the signals are all single photons. However,
single-photon sources are technologically less mature, and
they are more challenging to protect against side-channel
attacks, as side-channel protection typically introduces loss
elements in the optical path. The associated loss can be easily
compensated by an amplitude adjustment for laser pulses,
but it will invariably result in a performance degradation for
single-photon source based schemes. Despite that, there has
been more recent progress made, e.g., using a quantum dot
single-photon source for QKD [27]. Meanwhile, a mature and
widely used source is the phase-randomized weak coherent
pulses (WCP) source. As observed in Refs. [28,29], dephasing
the coherent source allows the coherent state to be described
as a mixture of Fock states (where Eve’s photon-number-
splitting attack does not affect the single-photon component).
The dephasing method still has limitations, though, such as
in maintaining the phase randomization for sources at high
repetition rates. For a dephased WCP source, the photon num-
bers follow a Poissonian probability distribution (with mean
photon number μi):

pμi (n) = μn
i

n!
e−μi . (8)

From the experiments we will only be able to observe
the statistics from the WCP source (which is a mixture of
statistics from all photon number states). Suppose there is an
observable of interest � (corresponding to a specific detection
pattern).3 We can denote the contribution from n-photon states
to its expectation value as γn, and denote the overall observed
statistics from the WCP source as γμi . We can then write

γμi =
∑

pμi (n) γn. (9)

3Note that if we talk about the actual observable � corresponding
to a detection pattern, it would be infinite-dimensional in the form
of a block-diagonal concatenation for all possible photon-number
spaces in which the incoming signal might dwell. When later solving
for f (ρ ) with the expectation values, we can apply coarse-graining
to combine patterns, and we use a squashing model to limit the
POVM to a qubit subspace and make numerical optimization fea-
sible. Decoy-state analysis can be applied either before or after the
coarse-graining, as we will discuss later in Sec. II E.

The decoy-state analysis proposed in Refs. [19–21] is a
classical postprocessing technique that estimates the statistics
of single photons (i.e., γ1) by combining the data from mul-
tiple different intensities (hence different distributions) and
upper/lower bounding the single-photon contribution among
the data. The key assumption for decoy-state analysis to hold
is that for any given photon number state being sent, the
Eavesdropper cannot tell which decoy intensity choice it came
from. This is a valid assumption because the sampling of a
photon number state from the Poissonian distribution is a
Markov process, i.e., the photon number state does not contain
information of the intensity of the source from which it came.

The process of estimating single-photon contributions can
be formulated numerically as a linear programming problem
[30]. For instance, the linear program constraints for BB84
can be written as

γμi �
∑
n�N

pμ(n) γn +
(

1 −
∑
n�N

pμ(n)

)
,

γμi �
∑
n�N

pμ(n) γn,

(10)

where {γn} are the variables, and constants {γμi} are the
statistics from the set of decoy-state intensities used. Also,
to reduce the infinite number of variables to finite, here we
need to apply a photon-number cutoff N , where variables
with n > N are upper (lower) bounded by 1 (0). A similar
procedure can be applied to MDI-QKD, such that the photon
numbers for Alice and Bob each satisfy the cutoff condition.
These techniques for performing the decoy-state analysis and
solving for single-photon statistics have been well described
in previous works, such as Refs. [7,8,30,31]. More details on
the formulation of the linear programming model can be found
in Appendix B.

In practice, there could be a set of observables of interest
{�k} from Bob’s set of POVMs. We can denote the corre-
sponding observed statistics for them as a vector �γ whose
components are the actual expectation values γk . Using decoy-
state analysis, we can obtain the upper and lower bound for the
single-photon contributions for each expectation value term.
In other words, we find a bound G such that the single-photon
statistics satisfy �γ1 ∈ G, where

G = {
�γ1 ∈ RK | γ1,k ∈ [

γ L
1,k, γ

U
1,k

]
, ∀k

}
(11)

is defined as the set where each component γ1,k of �γ1 satisfies
the bounds γ L

1,k, γ
U
1,k obtained from decoy-state analysis (as-

suming there are a total of K components, i.e., K observables
of interest from Bob).

Now, with the bounds on single-photon statistics known
from decoy-state analysis, we discuss how to incorporate it
into the numerical framework. Importantly, for our numerical
framework here, we will show that the decoy-state analysis
can be considered as classical preprocessing of observed data
acquired from the channel, before the estimated single-photon
contributions are used as a “pseudostatistics” and used to
bound the density matrix and minimize key rate.

Below we include a more rigorous formulation for inte-
grating the decoy-state analysis into the numerical framework.
Here we first recapitulate the results of Ref. [5], which con-
siders a phase-randomized coherent source and an infinite

043097-4



NUMERICAL SECURITY PROOF FOR THE DECOY-STATE … PHYSICAL REVIEW RESEARCH 4, 043097 (2022)

number of decoy settings. It is shown that Alice’s source
can be formulated as a local qubit entangled with a “shield
system” (representing the photon number sent) and the signal
states (which are Fock states containing encoding informa-
tion) being sent, such that, when traced over the shield system,
the output signal state is in a mixed state:

|�〉AAsA′ =
∑

x

√
px|x〉A ⊗

∑
n

√
pn|n〉As

∣∣sx
n

〉
A′ , (12)

where px is the probability of choosing each signal state, and
pn is the Poissonian distribution for sending a photon-number
state. The system A′ is sent through the channel and measured
by Bob. The important point is that, due to the phase random-
ization, the sent state is a mixture of Fock states (of which
we assume the photon number is also known by Eve), and the
final state ρAAsB is a block-diagonal state where the blocks are
defined by the photon number (in the shield system As):

ρAAsB =
∑

n

pn|n〉〈n|As
⊗ ρ

(n)
AB . (13)

Here ρ
(n)
AB is the shared density matrix for systems A and B,

conditional to n photons being sent. From Ref. [5], the key
rate can be written as

R �
[∑

n

pn min
ρ

(n)
AB ∈Sn

f
(
ρ

(n)
AB

)] − ppass × leakEC
obs, (14)

where f (ρ) = D(G(ρ)||Z (G(ρ))) described the amount of
extractable key during privacy amplification (aside from the
error-correction cost) given a density matrix ρ, and pn is
again the Poissonian distribution. Note that, as mentioned
in Sec. II A, the detection probability (yield) and sifting
factor for the privacy amplification term are already con-
tained in f (ρ), since the constraints on ρ contain information
about them. It is shown in Ref. [5] that, due to ρAAsB being
block-diagonal, we can independently calculate the privacy
amplification for each conditional scenario where n photons
are sent, while optimizing each ρ

(n)
AB independently. Note that,

since f is defined only based on the Kraus operators and key
maps (which only involve systems A, B and registers that are
independent of the actual signal sent), it stays in the same form
for all ρ

(n)
AB .

Now, for our scenario, we are only interested in the single-
photon contribution from the source. Here if we consider
polarization-encoding, the multiphoton components are not
going to generate a key rate due to Eve’s ability to perform
photon-number-splitting attacks.4 We can then simply write

R = p(0)
pass + p1 min

ρ
(1)
AB ∈S1

f
(
ρ

(1)
AB

) − ppass × leakEC
obs

� p1 min
ρ

(1)
AB ∈S1

f
(
ρ

(1)
AB

) − ppass × leakEC
obs. (15)

Note that, importantly, as pointed out by Ref. [5], as well as
some earlier works [32–34] on analytical bounds for the key
rate of BB84 and MDI-QKD, here the zero-photon component

4For protocols where multiphotons do contribute to the key rate,
since quantum relative entropy is non-negative (i.e., there is no
negative contribution from any photon-number states), we can still
study the single-photon part, but the first line of Eq. (15) would be
an inequality, too.

actually contributes to the key rate, too, since Eve cannot
know what local state Alice prepared at all with no photon
being sent and all clicks coming from dark counts. The zero-
photon contribution is simply

p0 min
ρ

(0)
AB ∈S0

f
(
ρ

(0)
AB

) = p(0)
pass, (16)

where p(0)
pass is the probability of a zero-photon event being

detected and passing sifting. The zero-photon detection prob-
ability can be obtained again by decoy-state analysis, i.e.,
by solving a linear program with the same constraints but
different target variable γ0,k instead of γ1,k . Nevertheless, to
save computational time and avoid performing an additional
decoy-state analysis, and to compare with known analytical
formulas (since many references to which we compare, such
as Refs. [7,9], omit the zero-photon contribution), here in the
following discussions and the simulations in Sec. IV we will
also omit the zero-photon term, but in principle we can always
choose to use it to get an even higher key rate.

For the single-photon subspace, the bound S1 is defined by
single-photon statistics �γ1:5

S1(�γ1) = {
ρ

(1)
AB ∈ H+

∣∣Tr
(
�k ρ

(1)
AB

) = γ1,k, ∀k}. (17)

For simplicity, we will denote ρ
(1)
AB as ρ from now on.

Since the single-photon statistics are not known when us-
ing a WCP source, we cannot accurately obtain S1. However,
as mentioned above, we know from decoy-state analysis the
bounds for the single-photon statistics �γ1 ∈ G. Each valid �γ1

generates an individual set S1(�γ1). The key rate can be written
as the worst-bound over all possible �γ1:

R � p1 min�γ1∈G[minρ∈S1(�γ1 ) f (ρ)] − ppass × leakEC
obs. (18)

However, we do not need to perform a double optimization
here. Instead, we can define a union set S′

1(G) of all sets S1(�γ1)
for every �γ1 ∈ G, which mathematically takes the simple form
of

S′
1(G) = {

ρ ∈ H+
∣∣γ L

1,k � Tr(�k ρ) � γU
1,k, ∀k

}
, (19)

which we can see is simply Eq. (17) with the equality con-
straints replaced by inequalities (loosened bounds) obtained
from decoy-state analysis. We can rewrite the final key rate as

R � p1 minρ∈S′
1(G) f (ρ) − ppass × leakEC

obs. (20)

The decoy-state analysis functions like a “wrapper” here:
it helps us to first obtain bound G, which is then passed to
the actual optimization as the pseudostatistics in bounding
the key rate. Note that the protocol description is the same,
i.e., f is independent of the decoy-state procedure, and in
principle, any protocol that can be described in our numerical
framework can be uplifted to a decoy-state based protocol by
first applying the wrapper to obtain the bounds on desired
photon number statistics and then calculating the key rate
based on these pseudostatistics.

An additional point is that, while in this work we only
consider the single-photon contribution to the key rate, in

5In fact, here S1 also contains local constraints that characterize the
source, which stay unchanged regardless of the channel, and we have
omitted them for simplicity.
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TABLE I. Format of fine-grained statistics for BB84 with chan-
nel loss considered. ∅ means a failure event. The entries marked in
red are the ones used in the traditional approach with gain and QBER
(coarse-grained data). In our approach, the full table (fine-grained
data) is used.

Bob measures

H V + − ∅

H γHH γHV γH+ γH− γH∅

Alice V γV H γVV γV + γV − γV∅

sends + γ+H γ+V γ++ γ+− γ+∅

− γ−H γ−V γ−+ γ−− γ−∅

principle the technique is also applicable to multiphoton con-
tributions, since for certain protocols (such as the one shown
in Ref. [5]), multiphoton components might contribute to the
key rate.

For multiphoton components, surely it is possible to in-
dependently find the upper/lower bounds on each set of
n-photon statistics �γn such that �γn ∈ Gn, and from each Gn

we can separately optimize the density matrix ρ
(n)
AB in the

subspace for a given photon number sent and calculate the
n-photon contribution to the key rate. However, in this way
we are underestimating the total key rate because the statistics
for multiphotons (�γn) are jointly bound by the same set of
linear constraints, in the form of Eq. (10), and they will not
simultaneously take the worst-case upper/lower bounds, such
as those acquired from independently optimizing each �γn.
However, it requires more substantial computational resources
to solve a problem where all density matrices ρ

(n)
AB are jointly

optimized (subject to the condition that all �γn jointly satisfy
the linear constraints), and such a problem will be a subject of
future studies.

C. Fine-grained statistics

As we discussed in Sec. I, one can use the fine-grained
statistics [6] to incorporate the full set of data including all
cross-basis events for Alice and Bob in bounding Eve’s infor-
mation and acquiring the secure key rate. This is especially
convenient for the numerical approach, since each detection
event (the expectation for a POVM) simply corresponds to a
constraint in the SDP problem. Using such cross-basis data
does not affect the description of a protocol (the Kraus oper-
ators and key maps), but simply introduces more constraints
to the optimization, which potentially can provide a tighter
bound and a better key rate. Below we show how fine-grained
statistics can be used for BB84 and MDI-QKD.

For BB84, the format of data is shown in Table I. Here the
observed statistics is a 4 × 5 matrix, corresponding to four
input states encoded by Alice, and five POVMs correspond-
ing to the four measurement outcomes H,V,+,−, ∅ (with
∅ meaning a failure event, such as obtaining no click, or
registering double clicks from detectors measuring different
bases). Table I shows the format of measurement data that
can be obtained from, e.g., a simulation or an experiment. We
denote the first subscript as the sender’s encoded state, and the
second as the receiver’s POVM. Asymptotically, these entries
correspond to the expectation values of POVMs.

TABLE II. Format of fine-grained statistics for MDI-QKD with
channel loss considered. The first subscript represents Alice and
the second represents Bob, and the superscript represents Charlie’s
detection. There should be three outcomes for Charlie (�+, �−,

fail), although here to save space we have only showed the slice of
data for outcome �+ announced by Charlie as an example. The full
table should be 4 × 4 × 3 in size. Again, coarse-grained data only
use the entries marked in red, while the fine-grained data incorporate
the full table.

Bob sends

H V + −
H γ �+

HH γ �+
HV γ �+

H+ γ �+
H−

Alice V γ �+
V H γ �+

VV γ �+
V + γ �+

V −
sends + γ �+

+H γ �+
+V γ �+

++ γ �+
+−

− γ �+
−H γ �+

−V γ �+
−+ γ �+

−−

To use fine-grained statistics, we use each term (a total
of 20 terms) as a constraint for the numerical solver, while
in the traditional approach using gain and QBER (we can
denote it as “coarse-grained” statistics), we will only make
use of the eight matched-basis events, marked above in red.
We can denote, e.g., γHH + γVV + γHV + γV H as the gain
and γHV + γV H as the QBER (or alternatively we can simply
use the eight terms as constraints). The key point is that, in
the traditional approach, mismatched-basis data are discarded,
while for fine-grained statistics all data are used.

For MDI-QKD, the statistics is a 4 × 4 × 3 matrix, corre-
sponding to four input states each for Alice and Bob, and three
Bell state measurement outcomes �+, �−, ∅ from Charlie’s
detectors. Here �+, �− corresponds to two types of spe-
cific detector patterns signifying successful Bell measurement
outcomes for two of the four Bell states, while every other
pattern is considered a failure event denoted by ∅. Each
4 × 4 slice for a given detector pattern for Charlie looks like
Table II, which includes all possible combinations for Alice’s
and Bob’s encoded bits. Again, only the terms marked in
red are used in the coarse-grained statistics, while the terms
marked in black are cross-basis clicks that were originally
discarded, but now we include them in the security analysis
and use this information to derive a tighter bound on Eve’s
information.

Once we perform decoy-state analysis, and we incorporate
all cross-basis events, we can expect to observe an increase in
the key rate due to a reduced requirement for privacy ampli-
fication, as we have a better knowledge of the misalignment,
i.e., rotation operation, in the channel (similar to the fashion
of performing a tomography).

D. Fine-grained statistics in key generation

A problem to note is that, although incorporating the fine-
grained statistics into the security analysis reduces the effect
of misalignment on privacy amplification, the above technique
does not change the amount of classical leakage caused by
error correction, which directly depends on the misalignment
in the signal state.
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In principle, it is still possible to make use of fine-grained
statistics to reduce the leakage during error correction, too, as
observed in Ref. [35], which shows that giving Bob more re-
fined data to be used in the postprocessing step can potentially
lead to more efficient error correction and a higher key rate.

Here, we propose a simple strategy to alleviate some of
the error-correction leakage: Alice and Bob can try to use
more than the ZZ matching basis to encode the key (e.g., a
combination of ZZ, ZX, XZ, and XX), since a misalignment
angle larger than π/8 but smaller than π/4 simply means
that the Z basis signal sent is now closer to the X basis to
be measured, and the user can swap the data and still gen-
erate the key. We have performed a simple test simulation
in Appendix D, where we observe the effectiveness of such
an approach. Nonetheless, as this is not part of the main
problem (which focuses on how fine-grained statistics affect
the privacy amplification), to simplify the discussion, in the
simulations in this paper we will still use a traditional coding
strategy of choosing matching bases, i.e., a ZZ basis or ZZ
and XX bases.

E. Coarse-graining and decoy states

A point worth noting is that, while in principle all observed
events can be used as constraints in the SDP problem, there are
some situations in which some kind of coarse graining is nec-
essary. One such situation occurs if tools like the squashing
model [36] are used. In that case, a particular coarse graining
is required, depending on the precise measurement setup. An-
other situation is where the analysis of the full fine-grained
situation simply takes too much computational resource to
calculate the key rate, and coarse graining reduces the problem
size.

For instance, for BB84, a squashing model is often used
on Bob’s detection system, which corresponds to a coarse
graining into five outcomes that one would expect from a
single-photon setup (vacuum detection, and for qubit detec-
tion events). Bob’s actual detector patterns, which might also
have multiclick events due to incoming multiphoton signals
or dark counts, would then need to be coarse-grained corre-
spondingly. For MDI-QKD, in principle, Charlie can use all
16 detector patterns and announce the raw statistics publicly,
but to reduce computational complexity, the patterns can be
binned into three POVMs, corresponding to �+, �−, ∅. Note
that such coarse-graining does not affect our ability to charac-
terize the misalignment in the channel (as the cross-basis data
between Alice and Bob are still preserved).

When combining coarse-graining and decoy-state analysis,
we have the freedom to choose between two orders:

(i) Apply decoy-state analysis to the raw patterns first (e.g.,
4 × 16 times for BB84 and 4 × 4 × 16 times for MDI-QKD),
and then apply coarse-graining to the estimated single-photon
statistics and obtain expectations of the POVMs.

(ii) First coarse-grain the raw pattern data obtained from
WCP sources to map into the POVM expectations, and then
apply decoy states on these smaller number of entries (4 × 5
entries for BB84 and 4 × 4 × 3 entries for MDI-QKD).

The above two orders for performing decoy-state analysis
and mapping above are actually theoretically equivalent. The
reason is that, in the decoy-state analysis, we typically use no

FIG. 1. The setup and channel model of BB84 and MDI-QKD.
(a) For BB84, Alice’s signals go through a rotation θ along the Z-X
plane, and they also suffer from channel loss (transmittance η). Here
we show the passive detection scheme for BB84 (while in the active
case, the beamsplitter can be replaced by an optical switch). (b) For
MDI-QKD, Alice’s and Bob’s signals each go through a rotation
of θA, θB (again, along the Z-X plane) with respect to Charlie’s
measurement basis. Here we assume Charlie always measures in the
Z basis. The channel model also includes Alice’s and Bob’s losses,
ηA, ηB. Each detector is assumed to have a dark count rate of pd .

mixing of constraint between different POVM events, so com-
bining variables will not affect the upper and lower bounds. In
more detail, any two target variables γ1,k1 , γ1,k2 (single-photon
statistics) for two given POVMs k1, k2 independently satisfy
two sets of linear constraints constructed from the observed
statistics {γμi,k1}, {γμi,k2} obtained from WCP sources. We
can see that there are no cross-constraints for two variables
γ1,k1 , γ1,k2 simultaneously, since they correspond to differ-
ent POVMs. This means that the optimization processes for
the two variables are independent, so min(γ1,k1 + γ1,k2 ) is
theoretically equal to min(γ1,k1 ) + min(γ1,k2 ), and a similar
conclusion can be reached for max(γ1,k1 + γ1,k2 ).

III. CHANNEL MODEL

In this section, we will describe the channel model we use
for simulating the raw statistics that would have been obtained
from WCP sources for the BB84 and MDI-QKD protocols
(example setups of which are illustrated in Fig. 1). These
statistics are used in the decoy-state analysis to bound the
single photon contribution. Note that all the channel models
are only used to simulate the statistics γ 1,U

k , γ 1,L
k , which are

independent from the protocol descriptions (i.e., POVMs �k ,
and the Kraus operators and key maps). In practice, the raw
statistics can also come from an experiment instead.

A. BB84

For the channel model, first we need to simulate the statis-
tics coming from the WCP source, before combining these
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TABLE III. Amplitudes arriving at Bob’s detectors, for passive and active detection schemes. Here we denote α = π/4 − θ . All terms
should be additionally multiplied by a factor of

√
μη, which represents the source and the channel loss. For a passive detection scheme, pZ , pX

are Bob’s basis choice probability (implemented in the beamsplitter).

Bob’s detectors (passive detection) Bob’s detectors (active detection)

H V + − H V + −
H

√
pZ cos θ

√
pZ sin θ

√
pX cos α

√
pX sin α cos θ sin θ cos α sin α

Alice V −√
pZ sin θ

√
pZ cos θ

√
pX sin α −√

pX cos α − sin θ cos θ sin α − cos α

sends + √
pZ sin α

√
pZ cos α

√
pX cos θ −√

pX sin θ sin α cos α cos θ − sin θ

− √
pZ cos α −√

pZ sin α
√

pX sin θ
√

pX cos θ cos α − sin α sin θ cos θ

statistics in decoy-state analysis and obtaining the single-
photon contribution.

We consider a channel with loss, misalignment, and dark
count rate for detectors. Suppose a single photon is sent, the
misalignment can be considered as a unitary rotation of angle
θ of the incoming polarization mode.

In practice, here we are considering an input coherent state
of given amplitude, and the channel can be described by the
outcome amplitudes arriving at each detector. If we send a
signal state with amplitude

√
μ, and follow the signal through

the lossy and misaligned channel and through the linear optics
setup at the receiver, the arriving amplitudes (as columns)
at the four detectors are listed out in Table III (passive
detection).

Once the amplitude arriving at each detector is
known, we can obtain the click probability for a given
detector:

pclick
j|i = 1 − (1 − pd ) × e−|α j|i|2 , (21)

where α j|i is the amplitude for detector j given that Alice
prepared state i, and pd is the detector dark count rate. The
click probabilities can be further combined into probabilities
for each detection pattern from the set of detectors, which can
be then mapped via coarse-graining into statistics correspond-
ing to Bob’s POVMs. The details of such a mapping can be
found in Appendix C.

B. MDI-QKD

Now, let us describe the channel model we use for the
MDI-QKD protocol with WCP sources. Note that the channel
model for MDI-QKD here have been studied in Refs. [8,37],
and interference of WCP sources have been considered in,
e.g., [38].

We consider a channel model as in Fig. 1, where Alice and
Bob’s signals each have a rotated polarization of θA, θB, with
respect to Charlie’s measurement basis, which is in Z basis
only here. The angles θA, θB include the effect of both polar-
ization encoding and polarization misalignment, for instance
for input HV the angles would be (0 + θe, π/2 + θe), where
θe is the misalignment angle (we can define misalignment by
its induced error rate ed = sin θ2

e ). The channels each have
ηA, ηB transmittances, and Charlie’s detectors have dark count
rate pd for each detector.

As H and V are different modes, we can simply consider
the input as having, e.g.,

√
μA cos θA amplitude in H mode

and
√

μA sin θA amplitude in V mode (and similarly for Bob).

Before we apply the phase randomization, we can denote the
phase difference between the pulses as φ. In this case, the
amplitudes at the detectors can be calculated by [38]

α
φ

3H =
√

μA ηA cos θA/2 + i
√

μB ηB cos θB/2 eiφ,

α
φ

4H = i
√

μA ηA cos θA/2 +
√

μB ηB cos θB/2 eiφ,

α
φ

3V =
√

μA ηA sin θA/2 + i
√

μB ηB sin θB/2 eiφ,

α
φ

4V = i
√

μA ηA sin θA/2 +
√

μB ηB sin θB/2 eiφ,

(22)

where the output ports are denoted 3,4 and the polarization
H,V , as shown in Fig. 1. Each detector’s clicking probability
(including the effect of dark counts) can be written as

pclick,φ

k|i j = 1 − (1 − pd ) × e−|αφ

k|i j |2 , (23)

where α
φ

k|i j is the amplitude at a given detector k, for a given
set i, j of input from Alice and Bob (representing a combi-
nation of θA, θB), and conditional to relative phase φ between
incoming signals. Again, it is possible to combine click proba-
bilities for each detector into the probability for each detection
pattern pφ

pattern|i j(details are included in Appendix C).
Importantly, for MDI-QKD, (as is observed in

Refs. [8,37,38]), the two incoming coherent states are
both phase-randomized, which means the relative phase φ

between two incoming signals must be integrated between 0
and 2π :

ppattern|i j = 1/2π

∫ 2π

0
pφ

pattern|i j dφ. (24)

Afterwards, the detection pattern data can be coarse-grained
into statistics that correspond to the POVMs (in this case,
Charlie’s three classical announcements corresponding to two
Bell states and failure event).

Up to here we have obtained the sets of raw statistics,
which can be used in the decoy-state analysis. Again, as
discussed in Sec. II E, the order of coarse-graining and decoy-
state statistics is arbitrary. The details of the coarse-graining
and some example data can be found in Appendix C.

IV. SIMULATED KEY RATE RESULTS

In this section, we have performed simulations of the key
rate versus distance and key rate versus misalignment angle,
for BB84 and MDI-QKD respectively, using the parameters
from Table IV.

In Fig. 2, we plot the key rate of the numerical ap-
proach with fine-grained statistics and compare it with using
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TABLE IV. Simulation parameters including dark count rate,
fiber loss per km, and error-correction efficiency. For simplicity,
detector efficiency is included in the total loss η, and error-correction
efficiency is assumed to be perfect (equal to 1). Here we have used a
set of fixed weak+vacuum decoy intensities ν, ω, along with a strong
decoy intensity μ (which can be either fixed or optimized). The ω

intensity setting is set to a nonzero value since in practice an intensity
modulator will have a finite extinction ratio.

pd α f ν ω

1 × 10−6 0.2 dB/km 1 0.02 0.001

coarse-graining (which uses analytical key rate formula),
in the presence of strong misalignment ed = 8.7%. As we
can see, using the full-statistics demonstrates a considerable
advantage over using traditional analytical approaches for
decoy-state BB84, both providing a higher key rate and toler-
ating higher levels of misalignment angle. We also plot the key
rate versus misalignment angle in Fig. 3, and we can see that
at, e.g., LAB = 100 km, decoy-state BB84 can now tolerate up
to 0.48 rad of misalignment angle (equivalent to ed = 21%).
In comparison, using coarse-graining and analytical approach,
one can only tolerate around only 0.3 rad of misalignment
angle, which is only 60% that of the case with fine-graining.

We also plot the key rate for MDI-QKD against both
distance and misalignment angle for the numerical approach
with fine-grained statistics, and we compare it to the ana-
lytical approach with coarse-graining. From Figs. 4 and 5,
we can see similar behavior to the BB84. Again we can see
that here the fine-graining provides higher resilience against
misalignment, allowing larger tolerable misalignment angles

FIG. 2. Simulation results for decoy-state BB84 key rate vs
distance, generated for our numerical approach with fine-grained
statistics vs a prior art analytical approach in Ref. [7]. The plots are
generated at a considerable level of misalignment between Alice and
Bob of θ = 0.3 (corresponding to ed = 8.7%), and the strong decoy
intensity μ is optimized (ranging from approximately 0.2 to 0.4),
and ν, ω are fixed as shown in Table IV. The new approach is shown
to have a consistently higher key rate than the analytical approach.
Also, the upper/lower bounds are shown to be very tight (mostly
overlapping in the plot).

FIG. 3. Simulation results for decoy-state BB84 for the key rate
vs various misalignment angles at LAB = 100 km, pd = 10−6, gen-
erated for our numerical approach with fine-grained statistics vs the
analytical approach [7]. As can be seen, the maximum tolerable angle
has greatly increased, e.g., for R = 10−5 the tolerable misalignment
(note that ed = sin2 θ ) increases from approximately 8.7% to almost
21%. Note that for the numerical approach with fine-grained data,
the key rate will still decrease with misalignment, but it is only
due to error-correction leakage and no longer from Eve’s correlation
with the quantum signals. Note that, when the misalignment angle
is larger than π/8 (marked as a dotted vertical line) and if Alice
and Bob are able to know this, it is possible for them to simply use
a different basis combination for key generation, since the arriving
signals originally sent in the Z basis are now closer to the X basis.
This would affect both fine-grained and coarse-grained analytical
approaches. More details on better error-correction strategies can be
found in Appendix C 5.

and enabling longer maximum communication distance when
misalignment is large.

V. CONCLUSION AND DISCUSSIONS

In this work, we have utilized a well-established nu-
merical framework and applied it to decoy-state BB84 and
MDI-QKD, which extends the practical scenarios to which
the framework can be applied. We show that decoy-state
analysis can be incorporated into the framework as a pre-
processing wrapper to generate pseudostatistics used for
key rate calculation, which in principle allows any protocol
that can be described in the framework to be uplifted to a
decoy-state based protocol. Additionally, we show that using
full fine-grained statistics including cross-basis events, we
can gain higher performance and acquire reference-frame-
independence in the privacy amplification and gain a higher
key rate. Importantly, this allows us to directly apply the
new analysis to existing systems and even existing data, and
readily gain a better key rate. Our method can simplify the ex-
perimental design as it reduces the need for manual alignment,
and it can even potentially extend the maximum distance the
QKD protocol can achieve.

Note that for this approach, there are two important limita-
tions so far: (i) Similar to RFI-QKD, here we have to assume
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FIG. 4. Simulation results for the decoy-state MDI-QKD key
rate vs total distance, generated for our numerical approach with fine-
grained statistics vs the analytical approach in Ref. [9]. Alice’s and
Bob’s misalignment is set to a considerable level of θA = 0.15, θB =
−0.15 (which is equivalent to about 8.7% misalignment between
Alice and Bob). For MDI-QKD, solving for the key rate is signifi-
cantly more computationally intensive, so here we have used fixed
μA = μB = 0.25 instead of performing an optimization. We can see
that we consistently have a higher key rate across all distances. Note
that at long distances, due to the small values of observed statistics,
numerical noises start to show for the SDP solver, which makes the
lower bound less tight.

FIG. 5. Simulation results for the decoy-state MDI-QKD key
rate vs various misalignment angles at LAB = 100 km, pd = 10−6,
generated for our numerical approach with fine-grained statistics vs
the analytical approach [9]. Here we are scanning θA while keeping
θB = 0. As can be seen, the maximum tolerable angle has increased
considerably, e.g., for R = 10−5.5 the tolerable misalignment in-
creases from approximately 4% to 5.6%. Note that for the numerical
approach, the key rate will still decrease with misalignment, but it
is only due to error-correction leakage and no longer from privacy
amplification.

that the misalignment angle is only slowly drifting and not
quickly changing with time (such that a constant rotation an-
gle can be assumed); (ii) the analysis in this work can only be
used for the asymptotic (infinite data) regime, and combining
decoy states with the finite-size analysis [6] (which works
for both collective and coherent attacks, albeit the latter with
looser bound) in the numerical framework will be the subject
of future works.
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APPENDIX A: PROTOCOL DESCRIPTIONS

1. BB84

The BB84 description is the same as in the model of
Ref. [3]. Note that to model a threshold detector, we should
consider a qubit squashing model, and assign five POVM
elements (four BB84 states and a failure case representing
more than one click or no click). In the description, we should
specify the POVM operators, Kraus operators, and key maps.

In the protocol, Alice encodes in a local four-dimensional
qudit entangled with the flying qubit sent to Bob:

|ψ〉AA′ = (|0〉|H〉 + |1〉|V 〉 + |2〉|+〉 + |3〉|−〉)/2. (A1)

Bob measures with a qubit squashing model [36], which
maps all input into a three-dimensional POVM (single-photon
and vacuum subspace),

PB
1 = pZ

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠,

PB
2 = pZ

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠,

PB
3 = 1

2
pX

⎛
⎝0 0 0

0 1 1
0 1 1

⎞
⎠,

PB
4 = 1

2
pX

⎛
⎝0 0 0

0 1 −1
0 −1 1

⎞
⎠,

PB
5 =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠.

(A2)

The overall POVM acting on the density matrix between
Alice and Bob should be the Kronecker product of above five
operators and Alice’s four local qubit bases.
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There are also some additional deterministic constraints in
the form

|i〉〈 j|A ⊗ IdimB , (A3)

where i, j are each combination of states for system A. The
constraints trace over Alice’s local qubit and characterize our

knowledge of the source, i.e., we know exactly that Alice sent
|ψ〉AA′ .

Alice and Bob perform sifting to keep the cases where
they used the same basis. Consider four systems: Alice’s local
register storing the basis, Alice’s qudit, Bob’s qubit, and the
register storing the announcement. The Kraus operators are

KZ =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

1
0

0
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
1

0
0

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pZ

⎛
⎝0

1
1

⎞
⎠ ⊗

(
1
0

)
,

KX =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

0
0

1
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
0

0
1

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pX

⎛
⎝0

1
1

⎞
⎠ ⊗

(
0
1

)
,

(A4)

while the key maps are

Z1 =
(

1 0
0 0

)
⊗ IdimA×dimB×2, Z2 =

(
0 0
0 1

)
⊗ IdimA×dimB×2, (A5)

where the dimensions are dimA = 4, dimB = 3 here, and Ix is an identity matrix of x × x.

2. MDI-QKD description

The MDI-QKD description is the same as in the model of Ref. [3]. In this setup, Alice (Bob) keeps a local qubit system A
(B), and sends an entangled system a (b). The two systems a,b are received by Charles, who performs a Bell state measurement
(BSM) and publicly announces the results.

In MDI-QKD, Charles can only distinguish two out of the four Bell states |�±〉 = (|HV 〉 ± |V H〉)/
√

2. More than two
clicks, wrong click patterns, and no clicks are all considered inconclusive. There are therefore three POVM operators for
Charles:

PC
1 = |�+〉ab〈�+|ab, PC

2 = |�−〉ab〈�−|ab, PC
3 = 1 − PC

1 − PC
2 . (A6)

Here we can construct the experimental observables (which are Kronecker’s product between Alice’s and Bob’s local
measurements and Charles’ BSM):

�i jk = PA
i ⊗ PB

j ⊗ PC
k . (A7)

Again, we also include the deterministic constraints (partial traces over Alice’s and Bob’s systems only),

|i〉〈 j|A ⊗ |k〉〈l|B ⊗ IdimC , (A8)

to characterize our knowledge of the source. If we perform a decoy state and limit ourselves to only the single-photon subspace,
the expectation values for these deterministic constraints would correspond to that of a single-photon source.

Next, the Kraus operators are

KZ =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

1
0

0
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
1

0
0

⎞
⎟⎠

⎤
⎥⎦ ⊗

⎛
⎜⎝

1
1

0
0

⎞
⎟⎠ ⊗

⎛
⎝1

1
0

⎞
⎠ ⊗

(
1
0

)
,

KX =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

0
0

1
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
0

0
1

⎞
⎟⎠

⎤
⎥⎦ ⊗

⎛
⎜⎝

0
0

1
1

⎞
⎟⎠ ⊗

⎛
⎝1

1
0

⎞
⎠ ⊗

(
0
1

)
,

(A9)

while the key maps are

Z1 =
(

1 0
0 0

)
⊗ IdimA×dimB×dimC×2,

Z2 =
(

0 0
0 1

)
⊗ IdimA×dimB×dimC×2. (A10)
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Here dimA = 4, dimB = 4, dimC = 3, where the first two are
dimensions of Alice’s and Bob’s local qubits, and dimC is the
number of Charles’ POVM outcomes.

APPENDIX B: DETAILS ON IMPLEMENTING
DECOY-STATE ANALYSIS WITH LINEAR

PROGRAMMING

This Appendix is a brief recapitulation of the techniques
for performing decoy-state analysis, e.g., in Refs. [7,8],
or the review paper Ref. [31]. As mentioned in the main
text, the problem of solving for upper/lower bounds on a
single-photon contribution can be formulated as a linear pro-
gramming problem. Suppose the observable of interest is �.
We can denote the single-photon contribution to its expec-
tation value as γ1, while overall observed statistics from the
WCP source is γμ. Then we can write

γμi =
∑

pμi (n) γn. (B1)

pμi (n) is the Poissonian distribution,

pμi (n) = μi
n

n!
e−μi . (B2)

The above set variables γn are bounded by a set of linear
equations (the number of equations corresponds to the number
of decoy intensities {μi}). The set of equations constitutes
a linear programming problem, and any of the expectation
values such as γ1 can be upper-bounded and lower-bounded
to obtain γ L

1 , γU
1 . Note that the key observation here is that

an eavesdropper cannot tell apart the pulses coming from
decoy states, hence γn is the same variable in all equations,
independent of the intensity μi.

Decoy-state analysis for MDI-QKD is similar, as described
in [9]. The difference is that there are two sources, hence two
Poissonian distributions:

pμAi (nA) = μAi
nA

nA!
e−μAi ,

pμB j (nB) = μB j
nB

nB!
e−μB j . (B3)

The linear constraints then become

γμAi,μB j =
∑

nA

∑
nB

pμAi (nA) pμB j (nB) γnA,nB , (B4)

where Alice and Bob, respectively, choose their decoy intensi-
ties μAi, μB j from the available sets. For instance, if Alice and
Bob each chooses from three intensities, here we will have
nine equations from the decoy-state data, which can be used in
the linear program. The terms of interest are the single-photon
pair contribution Y1,1.

When there are infinite levels of decoys (i.e., an infinite
number of equations), we can perfectly bound any variable.
In practice, however, usually three decoys (say μ, ν, ω) for
Alice (BB84) or for each of Alice and Bob (MDI-QKD) are
sufficient to tightly bound the single-photon contribution Y1 or
Y1,1. Also, as we cannot model an infinite number of variables
in the actual computation, a cutoff (say S = 10) needs to be
implemented, and all higher-photon-number terms are upper-
bounded by 1 and lower-bounded by 0. For instance, the linear

program constraints for BB84 can be rewritten as

γμi �
∑
n�S

pμ(n) γn +
(

1 −
∑
n�S

pμ(n)

)
,

γμi �
∑
n�S

pμ(n) γn (B5)

[which is Eq. (10) in the main text].
A similar procedure can be applied to MDI-QKD, such that

the photon numbers for Alice and Bob satisfy some cutoff
region. For instance, if we allow them to each independently
satisfy the cutoff condition, the constraints will be

γμi �
∑
nA�S

∑
nB�S

pμAi (nA) pμB j (nB) γnA,nB

+
(

1 −
∑
nA�S

∑
nB�S

pμAi (nA) pμB j (nB)

)
,

γμi �
∑
n�S

pμAi (nA) pμB j (nB) γnA,nB .

(B6)

Once formulated, the problem can be passed to an external
linear program solver (such as Gurobi) to solve efficiently.
Alternative to the linear program, it is also possible to derive
an analytical bound for the single-photon statistics, such as in
Refs. [8,39].

APPENDIX C: PROCESSING OF DETECTION DATA
FOR BB84 AND MDI-QKD

In this Appendix, we describe how to simulate the raw
detection data and how they can be coarse-grained into the
POVM expectations used for the key rate calculation.

1. Simulating detection data for BB84

In the main text (Sec. III), we derived the amplitudes of
coherent light arriving at each detector. For each detector, the
click probability is

pclick
j|i = 1 − (1 − pd ) × e−|α j|i|2 . (C1)

There are a total of four detectors, but with the possibility
of multicounts, leading to a total of 16 possible detection
patterns. The probabilities for each detection pattern b1b2b3b4

(b j = 0 if no click, and b j = 1 if a click) can be generated by

pb1b2b3b4|i = � j=1,2,3,4
{
b j + pclick

j|i (−1)b j
}
, (C2)

where b j is the bit flip of b j (such that the term in curly
brackets is pclick for b j = 1, and 1 − pclick for b j = 0). As
an example, for the pattern 1100 (H and V detectors double-
clicked and the two other detectors did not click), the pattern
probability p1100|i = pclick

1|i pclick
2|i (1 − pclick

3|i ) (1 − pclick
4|i ).

Note that in the above model, we have assumed a passive
detection setup (where basis choice is performed by a beam-
splitter), which is also what we will use in the simulations in
this paper. For reference, for active detection, the amplitudes
arriving at the detectors for each given signal state can also be
found in Table III, where there is no beamsplitter that splits
the intensity. The basis choice is actively performed, and the

043097-12



NUMERICAL SECURITY PROOF FOR THE DECOY-STATE … PHYSICAL REVIEW RESEARCH 4, 043097 (2022)

expectation value is the sum of the expectations from the two
choices,

pclick
basis, j|i = bbasis, j

[
1 − (1 − pd ) × e−|α j|i|2],

pZ
b1b2b3b4|i = � j=1,2,3,4

{
b j + pclick

Z, j|i(−1)b j
}
,

pX
b1b2b3b4|i = � j=1,2,3,4

{
b j + pclick

X, j|i(−1)b j
}
,

pb1b2b3b4|i = pZ pZ
b1b2b3b4|i + pX pX

b1b2b3b4|i,

(C3)

where again b j is the bit flip of b j , and the logical bit for
basis choice bZ, j is 1 for j = 1, 2 (and 0 otherwise), and
bX, j is 1 for j = 3, 4 (and 0 otherwise), which represents the
activation/deactivation of detectors depending on the basis.
The terms inside curly brackets behave in the same way as
in the passive detection scenario, taking a value of pclick

basis, j|i
if the bit in the detection pattern b j = 1, and (1 − pclick

basis, j|i )
otherwise. The only difference is that an additional logical
bit bbasis, j turns off all X basis detectors (hence suppressing
all patterns where X basis detectors click) when measur-
ing in the Z basis, and vice versa, such that there are no
cross-clicks on two bases simultaneously. The final click
probability is the weighted average between X and Z basis
statistics.

After we calculate all 4 × 16 entries of pb1b2b3b4|i, we
have all the raw detection statistics for the given decoy
intensity setting, which we can denote as Praw,μ. The full
simulation/experiment involves collecting all sets of decoys.
For instance, if Alice uses three decoy intensities {μ, ν, ω},
the statistics would be Praw,μ, Praw,ν , Praw,ω.

The above statistics can be used in the decoy-state anal-
ysis to obtain single-photon contributions. As mentioned in
Sec. II E, we can perform the coarse-graining and decoy-state
analysis in arbitrary order. The details of the coarse-graining
process and example data can be found in the next subsection.

2. Coarse-graining map for BB84

For BB84, Alice sends for signal states, and Bob detects
with four detectors. The raw data containing click/no-click
events would constitute 16 different patterns for the four
detectors. A total of 4 × 16 entries for each intensity set-
ting chosen can be recorded from the simulation/experiment.
This matrix can be mapped back to a five-entry qubit-based
statistics corresponding to the POVMs, by applying a map-
ping matrix M. The mapping rules are as follows: double
clicks in the same basis are assigned randomly to a bit,
while clicks simultaneously in different bases are discarded
for passive detection (for active detection there are no such
clicks, since only detectors in one basis are activated at a
time),

MH = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0.5, 0, 0, 0],

MV = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0],

M+ = [0, 0, 1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

M− = [0, 1, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

M∅ = [1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],

M = [
MT

H , MT
V , MT

+, MT
−, MT

∅

]
,

(C4)

where the elements are binary-encoded (i.e., j = 8b1 + 4b2 +
2b3 + b4). The single-photon statistics can be obtained by
simply applying the mapping M on the raw statistics pfull,μ:

Pμ = Praw,μ × M. (C5)

We can apply the mapping to the raw detection data for
each intensity setting, to obtain a 4 × 5 matrix for each inten-
sity setting, for instance three sets of Pμ, Pν, Pω, if three decoy
settings {μ, ν, ω} are used.

Then, for each entry γk in the matrix (k corresponds
to an entry in the matrix where a given signal is sent by
Alice and a given event is detected by Bob, for instance
HH), we have three entries γμ,k, γν,k, γω,k from the ma-
trices Pμ, Pν, Pω, with which we can perform decoy-state
analysis, and we obtain the upper and lower bounds for the
single-photon component γ L

1,k, γ
U
1,k for the event k. Performing

decoy-state analysis 20 times for each event, we can obtain
two matrices PL

1 , PU
1 , which are the full single-photon statis-

tics (corresponding to Table I) that can be fed into the SDP
solver.

Example illustrations for the raw detection pattern statistics
and the single-photon statistics obtained from decoy states can
be seen in Figs. 6 and 7.

3. Simulation of detection data for MDI-QKD

From the main text (Sec. III), we have already obtained the
amplitudes arriving at each detector, which are functions of
the phase difference φ between incoming signals. Our goal
is to convert them to a detection pattern probability (which is
still a function of φ), and lastly integrate it over φ ∈ [0, 2π ) to
obtain the statistics for two independently phase-randomized
sources.

Again, given the amplitude and the phase difference φ, the
click probability for a given detector is

pclick,φ

k|i j = 1 − (1 − pd ) × e−|αφ

k|i j |2 . (C6)

The probability of observing a given detector pattern b1b2b3b4

(0 or 1 representing no click versus click), just like for the four
detectors for BB84 in the previous subsections, is

pφ

b1b2b3b4|i j =
∏

k=1,2,3,4

{
bk + pclick

k|i j (−1)bk
}
, (C7)

where again we denote bk as the bit flip of bk (whose effect is
to calculate pclick for bk = 1, and 1 − pclick for bk = 0).

Note that the detector pattern probability above pφ

b1b2b3b4|i j
is for a given phase difference between incoming pulses, φ.
To take into account the phase randomization and calculate
the average statistics, pφ

b1b2b3b4|i j needs to be integrated over
all φ,

pb1b2b3b4|i j = 1/2π

∫ 2π

0
pφ

b1b2b3b4|i j dφ. (C8)

At this point, we have a set of pb1b2b3b4|i j for each input i, j
and each pair of given intensities μA, μB, which is a matrix of
4 × 4 × 16 patterns in total. We can denote such a matrix as
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FIG. 6. Example BB84 raw detection patterns, generated at η = 1 and θ = 0.3, pd = 10−6, for the strong decoy states μ = 0.25. The
mapping M is then applied to the raw patterns to obtain a 5-POVM qubit squashing model. Note that after the mapping, the obtained 4 × 5
matrix is the statistics for a given decoy state (e.g., μ), for which further decoy-state analysis is needed to obtain the actual single-photon
contribution. Here we only show one set of data for μ, but, e.g., two more sets from ν, ω are also needed for decoy-state analysis.

Praw,μAμB . For instance, if Alice and Bob each use a set of three
decoy intensities {μ, ν, ω}, there would be a total of nine sets

FIG. 7. Example BB84 upper and lower bounds for single-
photon statistics obtained from decoy-state analysis and after the
mapping, generated at η = 1 and θ = 0.3, pd = 10−6. Note that the
decoy-state analysis can be done before or after the mapping (i.e.,
on each term of the 4 × 16 raw data, or on each term of the 4 × 5
after mapping). Here for BB84 we choose to do decoy states on the
4 × 5 decoy statistics after the mapping is applied to the raw statistics
above in, e.g., Fig. 6. After the decoy-state analysis, the upper and
lower bounds for the single-photon statistics, including the cross-
basis data, can then be directly used by the numerical framework,
which feeds these statistics into the SDP solver as constraints to solve
for the worst density matrix ρ that lower bounds the key rate.

of statistics for each combination of μAi, μBi:

Praw,μμ, Praw,μν, Praw,μω,

Praw,νμ, Praw,νν, Praw,νω,

Praw,ωμ, Praw,ων, Praw,ωω. (C9)

With these statistics, we can apply decoy-state and optional
coarse-graining to obtain the bounds on single-photon statis-
tics, which can be further used to bound the key rate. We will
discuss the process in more detail in the next subsection.

4. Coarse-graining map for MDI-QKD

For MDI-QKD, Alice and Bob each send four signal states,
and Charlie uses four detectors. The raw data containing
click/no-click events contain 4 × 4 × 16 entries for each in-
tensity setting. The mapping rules are simple: only the four
patterns corresponding to Bell states �+, �− will be kept, and
all other patterns are discarded:

M�− = [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],

M�+ = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

M∅ = 11×16 − M�+ − M�− ,

M = [
MT

�− , MT
�+ , MT

∅

]
,

(C10)

where M�− represents the patterns 1001 and 0110, and M�+

represents the patterns 1100 and 0011, while all other patterns
are binned into failure events, represented by M∅. After defin-
ing the maps, the patterns can be acquired by applying the
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FIG. 8. Example MDI-QKD raw detection patterns (due to limited space, here only the Z basis signals are shown, while X basis and
cross-basis clicks are not shown), generated at η = 1 and θA = 0.2, θB = 0, for the strong decoy states μA = μB = 0.25. For each pattern and
for each Alice and Bob’s sent state (e.g., HH state, pattern 0001), a decoy-state analysis is required to estimate the upper and lower bounds
from single-photon contributions. After obtaining the pattern probabilities for single photons using decoy-state analysis, the mappings are then
applied to the patterns to obtain Bell state event statistics.

maps (used as constraints for the actual solver),

PμAμB = Praw,μAμB × M. (C11)

If Alice and Bob each use three intensity settings, there will
be a set of nine PμAμB . They can perform decoy-state analysis
on each entry of PμAμB to obtain the bounds on the single-
photon statistics P1. Example sets of such statistics before and
after the mapping can be seen in Figs. 8 and 9. The single-
photon statistics P1 (or more precisely, its upper and lower
bounds) can be directly fed into the numerical solver as the
constraints {γk} to lower bound the secure key rate.

Alternatively, one can choose to perform a decoy state
first on Praw,μAμB to obtain Praw,1, where the mapping process
becomes

P1 = Praw,1 × M. (C12)

5. Using cross-basis data in key generation

In this subsection, we propose a better choice of bases to
generate a key in the presence of a large misalignment angle.

Here we look again at the key rate formula:

R = minρ∈S f (ρ) − ppass × leakEC
obs. (C13)

As we have described in the main text, the fine-grained
statistics is able to provide more information to effectively
bound ρ, and cancel out the effect of misalignment in the pri-
vacy amplification term minρ∈S f (ρ) of the key rate. However,
the leakage leakEC

obs is a classical observed value that cannot be
reduced by such methods.

Now, let us first consider a worst-case scenario for BB84,
where the misalignment angle is π/4: the signals sent in the Z
basis by Alice but rotated by the channel would be equivalent
to ones sent in the X basis to begin with. If Bob measured
in the Z basis, he would get completely random results and
could not generate any key. However, if Bob instead mea-
sured in the X basis, he would get perfect statistics, if no
other sources of error are included. This means that, if the
misalignment angle is between 0 and π/4 degrees, then at
least two sets—or even all four sets—among the normally
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FIG. 9. Example MDI-QKD upper and lower bounds for single-photon statistics obtained from decoy-state analysis and after the mapping,
generated at η = 1 and θA = 0.2, θB = 0. The X and Y axes are Alice and Bob’s sent signals. Note that the cross-basis data are not necessarily
symmetric here if θA �= θB. Again, after decoy-state analysis, the single-photon statistics including the cross-basis information can be fed into
the SDP solver as constraints to solve for the worst density matrix ρ that lower bounds the key rate.

sifted bases (sending-receiving in Z-Z and X-X) and the cross
bases (sending-receiving in Z-X and X-Z) would be able
to have a low QBER and generate a key. The worse case
scenario here becomes π/8 instead, at which point both sets

of bases would have 15% QBER (still enough to generate a
key).

We can then rigorously describe it in our framework. The
Kraus operators become

KZZ =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

1
0

0
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
1

0
0

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pZ

⎛
⎝0

1
1

⎞
⎠ ⊗

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠,

KZX =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

1
0

0
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
1

0
0

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pX

⎛
⎝0

1
1

⎞
⎠ ⊗

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

KXZ =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

0
0

1
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
0

0
1

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pZ

⎛
⎝0

1
1

⎞
⎠ ⊗

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠,

KXX =

⎡
⎢⎣(

1
0

)
⊗

⎛
⎜⎝

0
0

1
0

⎞
⎟⎠ +

(
0
1

)
⊗

⎛
⎜⎝

0
0

0
1

⎞
⎟⎠

⎤
⎥⎦ ⊗ √

pX

⎛
⎝0

1
1

⎞
⎠ ⊗

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠,

(C14)

where the systems are, respectively, Alice’s register, Alice’s local qubit, Bob’s POVMs corresponding to a particular basis, and
Alice and Bob’s announcement registers. The key maps are

Z1 =
(

1 0
0 0

)
⊗ IdimA×dimB×4,

Z2 =
(

0 0
0 1

)
⊗ IdimA×dimB×4. (C15)

The leakage term can be written as

leakEC
obs = QZZ h2(EZZ) + QXZ h2(EXZ) + QZX h2(EZX) + QXX h2(EXX ), (C16)

where h2(x) = −x log2 (x) − (1 − x) log2 (1 − x).

043097-16



NUMERICAL SECURITY PROOF FOR THE DECOY-STATE … PHYSICAL REVIEW RESEARCH 4, 043097 (2022)

Recall that f (ρ) is calculated by

f (ρ) = D(G(ρ)||Z (G(ρ))),

G(ρ) =
∑

i

Ki ρ K†
i ,

Z (G(ρ)) =
∑

j

Z j G(ρ) Zj . (C17)

As there are two copies of identical Kraus operators (ex-
cept the public announcement register), we can get a higher
f (ρ) for the same ρ. In the ideal case (e.g., no misalignment
and loss), f (ρ) would return twice the value. Of course, this
comes at the cost of a higher leakage term.

We perform a simple simulation for decoy-state BB84 in
Fig. 10 as a demonstration. As can be seen, using all four
combinations of basis simultaneously can generate a higher
key in some situations with large misalignment angles, while
at low misalignment angles it might be better to only use ZZ
and XX, because signals with ZX and XZ basis combinations
would have large QBER when the misalignment angle is
small, resulting in large penalties from error-correction leak-
age.

Moreover, an alternative strategy, which is potentially bet-
ter, is to simply perform privacy amplification and error
correction independently on each of the portions of signals
with ZZ, ZX, XZ, and XX basis combinations, and dynami-
cally use only the combinations with positive key rates,

R = max(0, RZZ) + max(0, RZX)

+ max(0, RXZ) + max(0, RXX ), (C18)

where Rbib j is defined as the key rate obtained by performing
privacy amplification and error correction only on the signals
where Alice sends in basis bi and Bob measures in basis
b j . The Kraus operator would be Kbib j only, and the leakage
would be Qbib j h2(Ebib j ) only.

Note that while we demonstrate this for BB84, in principle
MDI-QKD protocols can utilize such a setting to reduce error-
correction leakage when the misalignment angle is large.

FIG. 10. Comparison of using all basis combinations simulta-
neously for encoding (dot-dashed blue line) vs using ZZ and XX
(solid blue line), for the decoy-state BB84 key rate plotted against
misalignment angle between Alice and Bob. The coarse-grained key
rate (solid black line) is also included, generated analytically. We also
include the case in which key rates for ZZ, ZX, XZ, and XX bases
are independently generated and only combinations with positive key
rates are taken (shown in blue stars), which as shown here happen to
be the joint upper bound for key rates using ZZ+XX or a key rate
using all basis combinations simultaneously. The parameters used for
simulation are identical to Fig. 3, i.e., from Table IV, and at a 100 km
distance between Alice and Bob. The plot is only generated up to
θ = π/8, because beyond that point, the key rate is symmetrical for
strategies using all bases, while strategies using only matching bases
ZZ+XX can be simply switched to ZX+XZ if the users find out that
θ > π/8.

Potentially, there could also be better strategies than the
ones we propose here. For instance, users may even directly
calculate the entropy based on the 4 × 4 matrix utilizing the
statistics of all input combinations of Alice and Bob (instead
of choosing a specific pair of bases). Such an approach will be
the subject of future studies.
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