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Hydrodynamic interactions in anomalous rheology of active suspensions
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We explore a mechanism of the anomalous rheology of active suspensions by hydrodynamic simulations
using model pusher swimmers. Our simulations demonstrate that hydrodynamic interactions under shear flow
systematically orient swimmers along the extension direction, which is responsible for determining the global
swimming states and the resulting significant viscosity reduction. The present results indicate the essential role
of hydrodynamic interactions in the elementary processes controlling the rheological properties in active sus-
pensions. Furthermore, such processes may be the substance of the previously proposed scenario for anomalous
rheology based on the interplay between the rotational diffusivities and the external shear flow.
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I. INTRODUCTION

Anomalous rheology observed in the broad class of active
suspensions is one of the most typical phenomena highlight-
ing distinctive differences from passive systems [1–10]. In
particular, for rodlike extensile pusher microswimmers (such
as Escherichia coli), a significant viscosity reduction has been
experimentally observed at lower shear rates and volume frac-
tions [2–6], which frequently leads to a superfluid state with
zero viscosity [4,6]. A seminal study by Hatwalne et al. [1]
predicted that if an orientational order along the extension axis
of the applied flow is somehow realized, the active dipolar
forces intensify the mean flow, reducing the resistive stress
required to drive the external flow and thus the viscosity.
Following that, many theoretical attempts have been made to
predict or explain the anomalous rheology in active suspen-
sions (see papers [11–19] and the references therein).

In dilute suspensions of rodlike particles, the orientational
distribution of particles under shear flow are known to be
enhanced along the extension axis when (thermal or athermal)
random rotational diffusion processes exist [20,21]. By taking
such fluctuation effects into account, the viscosity reduction
was successfully modeled within the framework of continuum
kinetic theory [13,15].

In dilute and semidilute active suspensions, hydrodynamic
interactions (HIs) are expected to play a crucial role in
couplings among constituents [22,23]. In Ref. [16], it is theo-
retically demonstrated that the long-range HIs induce marked
density fluctuations that provide additional sources of the ef-
fective rotational noise, resulting in a decrease in the viscosity.
Indeed, recent experiments [6] indicate a close link between
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collective many-body properties and anomalous rheology.
Nevertheless, due to the highly nonlinear and nonequilib-
rium nature of HIs, our understanding of the extent to which
interactions among swimmers are involved in the rheologi-
cal properties is still lacking beyond the effective one-body
theory.

In this study, we investigate the mechanism of the anoma-
lous viscosity reduction observed in active suspensions by
revisiting the role of HIs. Our analysis, along with a phe-
nomenological explanation, elucidates that swimming along
the extension axis of the applied flow is hydrodynamically
favorable, resulting in a significant reduction of the viscosity.
Furthermore, we argue that in usual swimming bacteria, such
as E. coli, the self-propulsive forces are strong enough that
the induced HIs can compete or dominate other effects like
thermal fluctuations even in dilute suspensions.

II. MODEL SWIMMER SYSTEM

For the present purpose, we perform hydrodynamic simu-
lations of model active suspensions composed of N rodlike
dumbbell swimmers with a prescribed force dipole. Our
model swimmer, schematically shown in Fig. 1(a), is com-
posed of body and flagellum parts. The body part is treated as
a rigid body, while the flagellum part is regarded as a mass-
less “phantom” particle simply following the body’s motions.
This treatment always keeps the relative position of these two
parts unchanged. For the αth swimmer (α = 1, . . . , N), it is
assumed that the force FAn̂α acting on the (front) body is
exerted by the (rear) flagellum and that the flagellum also
exerts the force −FAn̂α directly on the solvent fluid. Here, n̂α

is the direction of the αth swimmer, and these forces compose
a dipolar force (please refer to Appendix A for details). The
present particle-base model is essentially the same as those
proposed in Refs. [24,25] and used in Refs. [13,16,27–29].
Continuum kinetic models of hydrodynamically interacting
rodlike swimmers with prescribed stresses or forces were
also developed [13,16,30–33]. In Refs. [24,26,28–32], it was
demonstrated that nonlinear hydrodynamic effects can lead to
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FIG. 1. (a) Our model swimmer comprises “body” and “flagel-
lum” parts with symmetric shapes. Each parts are constituted by a
superposition of three spheres with radius R. We assume that the
force FAn̂α is exerted on the body, while −FAn̂α is directly exerted on
the solvent through the flagellum part, with n̂α being the orientation
of the αth swimmer. These forces constitute a force dipole with the
magnitude FA�0. Here, �0 is the characteristic swimmer’s length and,
for the present model, is given as the separation distance between the
body and flagellum centers. (b) The periodic boundary conditions are
imposed in the x and y directions with the linear dimension L. The
shear flow is imposed by moving the top and bottom walls in the x
direction at constant velocities V/2 and −V/2, respectively. These
two walls are separated in the z direction by the distance H .

larger-scale correlated motions with marked density fluctua-
tions.

As illustrated in Fig. 1(a), the body and flagellum parts
are assumed to have the same shape and are each de-
scribed by a superposition of three spheres with a common
radius R. The spheres composing the body are located at
the positions R(b)

i,α = R(G)
α + (2 − i)Rn̂α (i = 1, 2, 3), where

R(G)
α is the αth swimmer’s center-of-mass position. Simi-

larly, the spheres composing the flagellum part are located
at R( f )

i,α = R(CF)
α + (2 − i)Rn̂α (i = 1, 2, 3), where R(CF)

α =
R(G)

α − 4.5Rn̂α = R(G)
α − �0n̂α is the position of the center

of the flagellum. The shape of the present model swimmer
shows the head-tail symmetry, and the mid point is thus
given by Rα = (R(G)

α + R(CF)
α )/2. Although arbitrary shapes of

swimmers with an imposed head-tail asymmetry can be com-
posed, we may obtain qualitatively the same results as long as
these swimmers have rodlike forms with the prescribed force
dipoles.

Periodic boundary conditions are imposed in the x and
y directions with the linear dimension L, and the planner
top and bottom walls are placed at z = H/2 and −H/2, re-
spectively. The shear flow is imposed by moving the top
and bottom walls in the x direction at constant velocities
V/2 and −V/2, respectively, whereby the mean shear rate is
γ̇ = V/H . This situation is illustrated in Fig. 1(b). Hydrody-
namic interactions among the swimmers are incorporated by
adopting the smoothed profile method (SPM) [34–36], which
is one of the mesoscopic simulation techniques [37–42]. In
the SPM [34–36], the dynamics of rigid particles and a host
fluid can be considered simultaneously with vastly reducing
numerical costs by replacing particle-fluid boundaries with
smoothed ones and by taking particle rigidity into account
through the body force term in the Navier-Stokes equa-
tion. The details of the simulation methods are presented in
Appendices A and B.

−

FIG. 2. (a) The γ̇ -dependence of the viscosity η for various φ

at H = 128. For smaller γ̇ and larger φ, η becomes smaller. The
inset shows H -dependence of η for two different φ at γ̇ = 10−3.
In the present range of H , η is significantly smaller for larger H .
(b) The φ-dependent viscosity for active and passive rodlike parti-
cles at H = 128 and γ̇ = 10−3. Our preliminary results for passive
(FA = 0) and active-puller (FA = −20) cases show that η increases
with increasing φ; the viscosity enhancement is much stronger in the
active-puller case. In panels (a) and (b), the dashed lines indicate the
solvent viscosity ηs(= 1).

III. RESULTS

A. Steady-state properties: Weak alignment of the swimmers
and the resultant viscosity reduction

First, in Fig. 2, we show the viscosity η for various condi-
tions. In this study, the viscosity is defined as

η = 1

γ̇ L2

∫
dxdy〈�xz(x, y,±H/2)〉, (1)

where �xz(x, y,±H/2) is the xz component of the stress
tensor at the walls and 〈· · · 〉 hereafter denotes taking the
time average in a steady state. Here, the solvent viscosity
is scaled to be 1. At a relatively low shear rate γ̇ , we find
that η takes lower values than the solvent viscosity, which
qualitatively agrees with the experimental results [2–6]. This
behavior strongly depends on H and the volume fraction of
the swimmers defined as φ = NV (b)/L2H with V (b) being the
volume of the body part. The viscosity can be divided into
three parts: η = ηs + �ηp + �ηa, where ηs(= 1 in this study)
is the solvent viscosity, �ηp and �ηa are the passive and
active contributions, respectively (see Appendix A for more
details). In the present framework, �ηa is given as

�ηa = − 1

γ̇ L2H
FA�0

N∑
α=1

〈n̂α,x (t )n̂α,z(t )〉, (2)

where n̂α (t ) is the unit vector representing the αth swimmer’s
orientation at time t , and n̂α,x and n̂α,z are its x and z compo-
nents, respectively. Essentially identical expressions of Eq. (2)
were previously derived (see Refs. [10,13,15], for example).
From Eq. (2), when swimmers tend to align along the ex-
tension direction of the flow field (〈n̂α,xn̂α,z〉 > 0), �ηa < 0.
Since the contribution of �ηp to η is positive in general, a
significant decrease in the viscosity occurs from the negative
�ηa.

To further explore what swimming states are involved
in the viscosity reduction, we investigate the following
steady-state quantities: ρ(z) = ∑N

α=1〈δ[r − Rα (t )]〉, p(z) =∑N
α=1〈n̂α (t )δ[r − Rα (t )]〉, and

↔
W (z) = ∑N

α=1〈[n̂α (t )n̂α (t ) −
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FIG. 3. Panels (a), (c), (e), and (g) represent ρ(z), pz(z)/ρ(z),
px (z)/ρ(z), and Wxz(z)/ρ(z), respectively, for various φ at H = 128
and γ̇ = 10−3, while the results for various H at φ = 0.01 and γ̇ =
10−3 are shown in panels (b), (d), (f), and (h).

↔
δ /3]δ[r − Rα (t )]〉. Here, Rα (t ) is the center of the force
dipole ( �= the center-of-mass position), ρ(z) is the denisty,

and p(z)/ρ(z) and
↔
W (z)/ρ(z) represent the polarization vec-

tor and the nematic order parameter tensor, respectively [8].
These quantities, which depend only on z at steady state, are
shown in Figs. 3(a)–3(h) for various conditions. In Figs. 3(a)
and 3(b), ρ(z) has significant peaks near the boundary walls,
and otherwise, it is almost constant, indicating that the walls
attract swimmers. Such behaviors were already reported and
discussed in the literature (for example, Refs. [22,23,43–50]).
In the present model, without thermal fluctuations, when plac-
ing one swimmer near the wall, it continues to swim along the
wall, which suggests that the force-dipole prescribed to the
swimmer contributes to the wall attraction [43]. However, in
the many-swimmer case, significant disturbances are induced
by interactions among the swimmers. Such disturbances pro-
duce an outgoing flux from the wall to the bulk region.
Meanwhile, self-propulsive motions give incoming flux to the
wall from the bulk. Competition between these two flux terms
should determine the amount of accumulation of swimmers at
the walls [49,50].

FIG. 4. (a) For a swimmer with n̂α,xn̂α,z > 0, the surrounding
velocity gradient is intensified, while away from the swimmer, the
opposite occurs. (b) The net flow is determined by a superposition
of the individual swimmers’ contributions. (c) The x component
of the velocity field averaged over the steady state at φ = 0.032
and H = 256. At the walls, the shear rate is lower than γ̇ as γ̇w =
(η/ηs )γ̇ < γ̇ , in exchange for a greater shear rate in the interior
region. (d) Wxz(z)/ρ(z) at the same condition as panel (c).

Figures 3(c)–3(f) show p(z)/ρ(z). Due to the flow and
geometrical symmetries, py(z) = 0 for all z. For φ � 0.03,
swimmers trapped at the walls tilt their “heads” to the
walls [51–53]. Moreover, the tilting angle is greater for larger
φ, which may be caused by HIs among the swimmers on the
wall. These issues will be studied elsewhere.

In terms of the viscosity reduction, among Figs. 3(a)–
3(h), of particular interest are Figs. 3(g) and 3(h), exhibiting
Wxz(z)/ρ(z). At φ = 0.01 and H = 128, where the viscosity
reduction is absent (see Fig. 2), Wxz(z) � 0 as a whole. For
larger φ and H , in contrast, Wxz(z) > 0 for all z. Within the
present range of φ and H , by increasing these parameters,
the upward convex form of Wxz(z)/ρ(z) tends to grow. Equa-
tion (2) is rewritten as

�ηa = − 1

γ̇ H
FA�0

∫ H/2

−H/2
dzWxz(z), (3)

through which Wxz(z) is directly related to the viscosity
reduction.

The reduced viscosity immediately indicates the reduced
shear rate at the walls. Here, we briefly review this behavior.
For a swimmer with n̂α,xn̂α,z > 0, the active-force reinforces
the applied flow. More specifically, in a small region including
the swimmer, the velocity gradient is intensified, while in
outer regions, the opposite happens. A superposition of such
contributions gives the net effects on the mean flow, and we
observe a lower shear rate at the walls, γ̇w, in exchange for a
greater shear rate in the interior region. These situations are
schematically illustrated in Figs. 4(a) and 4(b). Consequently,
as shown in Fig. 4(c), the shear stress required to maintain the
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FIG. 5. Fourfold classification of (one-swimmer) swimming
states. These four states are further classified into the favorable F
and the unfavorable UF states.

applied shear rate γ̇ = V/H is reduced [1], and the viscosity
is given by

η = ηs
γ̇w

γ̇
, (4)

which is smaller than ηs for γ̇w < γ̇ . Such a modulation of the
velocity field accompanying with the viscosity reduction was
certainly observed in experiments of E. coli suspensions [6].
Notably, in contrast to active (pusher) suspensions, dispersed
particles in the usual passive system suppress the velocity
gradient in the interior region, and the observed viscosity is
increased.

B. Key role of hydrodynamic interactions in determining
the global swimming states

Then, we investigate how such observed global steady
states are realized. To this end, taking the flow and ge-
ometrical symmetries into account, it is useful to classify
one-swimmer states into the following four states (see Fig. 5):
state 1 (n̂α,x > 0, n̂α,z > 0), state 2 (n̂α,x < 0, n̂α,z > 0), state
3 (n̂α,x < 0, n̂α,z < 0), and state 4 (n̂α,x > 0, n̂α,z < 0). States
1(2) and 3(4) are equivalent; that is, they can be converted to
each other by simply rotating the coordinate frame about the
y axis by π . Figures 3(g) and 3(h) with Eq. (3) indicate that,
when �ηa < 0, states 1 and 3 with n̂α,xn̂α,z > 0 are realized
more favorably than states 2 and 4 with n̂α,xn̂α,z < 0. Thus, we
may further classify states 1 and 3 into the favorable F state
and states 2 and 4 into the unfavorable UF state.

Now, the question is why states 1 and 3, which contribute
to Wxz > 0, are more favorable than states 2 and 4. In our
simulations, thermal effects are absent, and excluded volume
effects are almost irrelevant because the suspensions mainly
considered here are dilute. Instead, hydrodynamic effects are
expected to determine the overall swimming states. We ex-
pect swimmer’s motions to be largely disturbed by HIs even
without approaching the contact distance to other swimmers;
we regard such events as hydrodynamic collisions. We sup-
port this perspective by analyzing the transition probabilities
between the swimming states: we pick up a pair of swim-
mers whose separation at time t is less than a certain close
distance d0; then, the transition probabilities are determined
by comparing their states at t − �t and t + �t . In this study,
we set d0 = 0.7�0 and �t = 1.25τ0. Here, τ0 = �0/vs is the
time to travel the distance of the swimmer size (∼�0), with
vs being the average swimming speed. In the present range of

TABLE I. State probabilities Pμ and the transition probabilities
Wμ|ν for various conditions.

(102φ, H, γ̇ ) PF PUF WF |F WF |UF WUF |F WUF |UF

(1, 128, 10−3) 0.51 0.49 0.69 0.31 0.39 0.61
(1, 384, 10−3) 0.6 0.4 0.67 0.33 0.44 0.56
(3.2, 128, 10−3) 0.54 0.46 0.63 0.37 0.44 0.56
(3.2, 128, 3 × 10−4) 0.51 0.49 0.62 0.38 0.41 0.59
(3.2,128,0) 0.51 0.49 0.60 0.40 0.41 0.59

φ, the average distance between neighboring swimmers, lN =
(φ/V (b) )−1/3 is 2 ∼ 3 times larger than d0. Although quanti-
tative evaluations of the transition probabilities significantly
depend on d0 and �t , the qualitative discussion presented
below is not affected as far as d0 and �t are sufficiently
smaller than lN and lN/vs, respectively. In Appendix C, we
discuss how the present definition can capture hydrodynamic
collisions with the settings of d0 and �t .

Table I shows the numerically obtained probability of the
μ state, Pμ, and the transition probability from the μ to ν

states, Wμ|ν , (μ, ν = F,UF ) for various conditions. Here, Pμ

and Wμ|ν are calculated for swimmers in the region −0.3 �
z/H � 0.3. At γ̇ = 0, because the F and UF states are
not distinguished, WF |UF

∼= WUF |F , and PF
∼= PUF . However,

for γ̇ �= 0, we find that WF |UF is significantly smaller than
WUF |F . As H and φ increase (in the dilute regime), the pop-
ulation of the F -state swimmers with n̂α,xn̂α,z > 0 increases,
indicating that an increase in the collision frequency or time
further promotes transitions.

For swimmers trapped at the walls, the hydrodynamic
torques arising from the applied flow weakly align them
along the flow direction because their heads are slightly tilted
against the walls. Thus, for trapped swimmers, the population
of the F state is slightly larger than that of the UF state. Af-
ter longer-term traps, swimmers leave from the bottom (top)
wall by raising (dropping) their heads, which changes their
states (F � UF ). Reflecting such conditions, for swimmers
just after leaving the walls, the population of the UF state is
slightly larger than that of the F state (not shown here). As
swimmers move inward from the boundary walls, transitions
from the UF to F states are gradually promoted by collisions.
Due to the geometrical symmetry, the population of the F state
is maximized at z = 0, leading to the upward convex form of
Wxz(z)/ρ(z). In an ideal bulk system or a system with periodic
boundary conditions without walls, a detailed balance be-
tween the F - and UF states, PFWF |UF = PUFWUF |F , should
be realized. Such a detailed balance may nearly hold at larger
H and φ in the present system, but that was not investigated
in detail.

Tables II and III show the numerically obtained transi-
tion probabilities of a swimmer in states 1 and 2 before a
collision, respectively, at φ = 0.01, H = 384, and γ̇ = 10−3.
Here, w

(ν)
λ|μ represents the transition probability from states λ

to μ through a collision with another swimmer in state ν. Note
that similar results are obtained at different parameters where
negative �ηa is obtained. We find significant differences be-
tween w

(ν)
1|μ and w

(ν)
2|μ. For both cases the majorities are w

(ν)
μ|μ,

whereas a swimmer in state 1 is more likely to retain its state
unchanged by a collision than one in state 2.
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TABLE II. Transition probability from states 1 to μ through a
hydrodynamic collision with another swimmer in state ν, w

(ν )
1|μ, at

φ = 0.01, H = 384, and γ̇ = 10−3.

ν w
(ν )
1|1 w

(ν )
1|2 w

(ν )
1|3 w

(ν )
1|4

1 0.75 0.05 0.01 0.19
2 0.67 0.20 0.03 0.10
3 0.61 0.10 0.07 0.22
4 0.52 0.04 0.02 0.42

We can understand the role of HIs in the elementary
processes of these state transitions through the following phe-
nomenological arguments, which are separately provided for
different cases.

1. Hydrodynamic collisions between two swimmers
in states 1, 2 and 2, 3

Let us first consider that two swimmers in the F and
UF states are approaching. There are essentially two dif-
ferent cases: case (A) where swimmers in states 1 and 2
(equivalently, 3 and 4) are approaching, and case (B) where
swimmers in states 3 and 2 (equivalently, 1 and 4) are ap-
proaching.

For case (A), as schematically shown in Fig. 6(a), HIs
tend to rotate the swimmers in opposite directions [23], while
the externally applied shear flow rotates them in the same
direction. As the swimming directions become parallel to each
other and perpendicular to the flow direction, the torques due
to HIs grow weaker, but those arising from the shear flow grow
stronger. Furthermore, once two swimmers move nearly side
by side [Fig. 6(a)], a hydrodynamic attraction acts on them,
which may make a swimmer in state 1 drag one in state 2
into eventually moving in the same direction in the collision
process. These hydrodynamic effects are expected to promote
the transition from states 2 to 1, responsible for w

(2)
1|2 < w

(1)
2|1

and w
(2)
1|1 > w

(1)
2|2.

In contrast, in case (B), due to similar asymmetry in the net
torques, w(2)

3|2 (not shown here but equivalent to w
(4)
1|4) is slightly

larger than w
(3)
2|3. In this case, the torques both due to HIs

and the shear flow are reduced as their swimming directions
become parallel along with the flow direction [see Fig. 6(b)
for a schematic], and therefore, the difference between w

(2)
3|2

(∼= w
(4)
1|4) and w

(3)
2|3 is less notable than that between w

(2)
1|2 and

w
(1)
2|1: namely, hydrodynamic collisions of case (A) predomi-

nantly contribute to the transition from the UF to F states,
whereas those of case (B) are marginal.

TABLE III. Transition probability from states 2 to μ through a
collision with another swimmer in state ν, w

(ν )
2|μ, at φ = 0.01, H =

384, and γ̇ = 10−3.

ν w
(ν )
2|1 w

(ν )
2|2 w

(ν )
2|3 w

(ν )
2|4

1 0.37 0.51 0.06 0.05
2 0.19 0.66 0.15 0.00
3 0.14 0.46 0.37 0.03
4 0.25 0.51 0.19 0.05

FIG. 6. Schematic illustrations for two approaching swimmers in
the F and UF states: case (A) where the two swimmers are in states
1 and 2 (a), and case (B) where those are in states 2 and 3 (b). The
torques due to HIs and the shear flow are described by the black and
green curved arrows, respectively.

2. Hydrodynamic collisions between two swimmers
in the same states

Here, we consider the following two cases: case (A′) where
two swimmers are both in state 1 (equivalently, both in state
3), and case (B′) where those are both in state 2 (equivalently,
both in state 4). For these cases, schematics are shown in
Figs. 7(a) and 7(b).

For both cases (A′) and (B′), the torques caused by HIs
rotate the swimmers in opposite directions and grow weaker
as the swimmers become parallel to each other. On the other
hand, for the torques caused by the shear flow, in case (A′),
as the collision proceeds, the torque resisting the transition
to state 2 grows stronger, whereas the other torque, which
helps the transition to state 4, grows weaker. In (B′), the
opposite occurs: one torque due to the shear flow promoting
the transition to state 1 grows stronger, while the other one
resisting the transition to state 3 grows weaker. The difference
in how the torques contribute to the transition is expected to be
responsible for the measured difference in the transition prob-
abilities. That is, as shown in Tables II and III, w

(1)
1|2 < w

(2)
2|1

and w
(2)
2|3 � w

(1)
1|4, resulting in w

(1)
1|1 > w

(2)
2|2.

3. Hydrodynamic collisions between two swimmers
in states 1, 3 and 2, 4

When two approaching swimmers are in states 1 and 3,
there are essentially two different cases, (A′′1) and (A′′2),

FIG. 7. Schematic illustrations of the two cases: case (A′) where
the two swimmers are both in state 1 (a) and case (B′) where those
are both in state 2 (b). The torques due to HIs and the shear flow are
described by the black and green curved arrows, respectively.
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FIG. 8. Schematic illustrations of cases (A′′1) and (A′′2), shown
in panels (a) and (c), respectively, where the two swimmers are in
states 1 and 3, and those of cases (B′′1) and (B′′2), shown in panels
(b) and (d), respectively, where the two swimmers are in states 2 and
4. The torques due to HIs and the shear flow are described by the
black and green curved arrows, respectively.

which are illustrated in Figs. 8(a) and 8(c), respectively. As
torques arising from HIs rotate the two swimmers in opposite
directions, the swimming directions become perpendicular
and parallel to the flow in cases (A′′1) and (A′′2), respectively.
In case (A′′1), the torques due to the shear flow, which pre-
vent the swimmers from changing from the F to UF states,
grow stronger. On the other hand, in case (A′′2), such torques
promoting the changes to the UF state grow weaker.

When swimmers in states 2 and 4 are approaching, there
are two different cases, (B′′1) and (B′′2), as schematically
shown in Figs. 8(b) and 8(d), respectively. With similar argu-
ments, in case (B′′1), the torques due to the shear flow, which
promote the transition to the F state, grow stronger, while, in
case (B′′2), those preventing the changes to the F state grow
weaker.

These differences may result in the difference between
w

(3)
1|μ and w

(4)
2|μ. That is, when two swimmers in states 1 and

3 are approaching each other, the swimmers tend to remain
their states unchanged more than when they are in states 2
and 4: w

(3)
1|2 < w

(4)
2|1 and w

(3)
1|4 � w

(4)
2|3, resulting in w

(3)
1|1 > w

(4)
2|2.

Note that hydrodynamic collisions of cases (A′′1) and (B′′1)
predominantly contribute to the transition from the UF to F
states, whereas those of cases (A′′2) and (B′′2) are marginal.

The realistic collision processes are more complicated;
thus, the present arguments are oversimplified. However, they
qualitatively explains why HIs systematically promote the
transition from the UF to F states.

IV. DISCUSSION AND CONCLUDING REMARKS

It has been known that rodlike particles in a shear flow
tend to orientate to the extension direction due to an inter-
play between flow and rotational diffusivities [20,21]: for a
rodlike particle, although the torque due to shear flow be-
comes unidirectional and stronger as its orientation becomes
perpendicular to the flow direction, the torque due to thermal
rotational diffusivities is bidirectional and does not depend
on the rod orientation. By considering such an effect, an
explanation for the viscosity reduction was provided [13,15].
Moreover, it was proposed that the activity-induced HIs pro-
vide a source of random rotations in addition to thermal
fluctuations and tumbling [16]. The present study further il-
luminates the role of HIs: even starting from a random state,
our results suggest that steady global states where the swim-
mers are weakly aligned along the extension axis may form
as self-organization by repeated hydrodynamic collisions. A
study of this issue would be an interesting task for future
studies.

In typical microorganisms systems, the propulsive forces
are sufficiently strong that hydrodynamic effects may dom-
inate over thermal fluctuations. Below, we validate this
condition by considering a typical experimental situation [6]:
an E. coli suspension at a volume fraction φ(= V (b)/l3

N ) =
0.01 at room temperature (∼300 K), for which the av-
erage separation distance is lN ∼ 5 μm and the thermal
rotational diffusion coefficient is DT � 1s−1. Hereafter, we
assume that the swimming speed is vs ∼ 10 μm/s, the mag-
nitude of the force dipole is P ∼ 10−18N m, the cell size is
�0 ∼ 1 μm, the cell volume is V (b) ∼ 1 μm3, and the sol-
vent viscosity is ηs ∼ 10−3 Pa s. For a duration ∼1/DT �
1 s, a swimmer may at least once approach another swim-
mer closer than lc ∼ 2 μm, estimated by π l2

c vs × (1/DT ) ×
(1/lN )3 ∼ 1. The magnitude of the rotational flow field, ω,
induced at a distance r from a swimmer is approximately
given as ω ∼ 0.1P/(ηsr3) [23]. Therefore, at r = lN , ω ∼
1 s−1, while at r = lc, ω ∼ 10 s−1. By such a hydrodynamic
“collision” process, which lasts for approximately �0/vs ∼
0.1 s, swimming motions can be largely affected more than
by thermal fluctuations. In other words, reorientation due
to HIs may be a faster process than thermal rotational
diffusion.

In this study, we have explored a mechanism of the anoma-
lous rheology of active suspensions, focusing on the role of
HIs. Before closing, we present the following remarks. (1) Our
pusher model is transformed into a puller model by simply
changing the sign of the active forces. Our preliminary results
shown in Fig. 2(b) suggest that the viscosity of the puller
model is increased more than that in the passive systems,
which agrees with experimental observations for motile and
immotile puller bacterial suspensions [7]. (2) In Ref. [5],
under Poiseuille flow, lower viscosity is observed for smaller
separation between the walls. This contrasts with the present
result, where the viscosity reduction is enhanced by increasing
H under simple shear. In addition, the viscosity reduction
occurs at larger shear rates than those of the experiments of
Refs. [4,6]. These differences may be attributed to the differ-
ence in the flow geometry. We plan to investigate these issues
further elsewhere.
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APPENDIX A: SIMULATION METHOD

In our simulations, we use the smoothed-profile method
(SPM) [34–36] to accommodate many-body hydrodynamic
interactions (HIs) among the constituent swimmers. In
Ref. [36], it is found that the SPM can quantitatively repro-
duce far-field and intermediate-field aspects of HIs, whereas
the near-field HIs are slightly underestimated at closer dis-
tances. Furthermore, like many other methods, the SPM
cannot also resolve the singular lubrication forces. For more
details of the qualitative evaluations on the SPM, please refer
to Refs. [35,36].

For this purpose, the body and flagellum parts described
above are represented through the field variables, � (b)

α (r) and
�

( f )
α (r), respectively:

� (b)
α (r) =

3∑
i=1

ψ
[
r, R(b)

i,α

] (
for

3∑
i=1

ψ
[
r, R(b)

i,α

]
� 1

)
(A1)

= 1

(
for

3∑
i=1

ψ
[
r, R(b)

i,α

]
> 1

)
. (A2)

and

� ( f )
α (r) = −

3∑
i=1

ψ
[
r, R( f )

i,α

](
for

3∑
i=1

ψ
[
r, R( f )

i,α

]
� 1

)

(A3)

= −1

(
for

3∑
i=1

ψ
[
r, R( f )

i,α

]
> 1

)
. (A4)

In this study, we adopt the following function to ψ as

ψ
[
r, R(μ)

i,α

] = 1

2

{
tanh

[
1

ξ

(
R − ∣∣r − R(μ)

i,α

∣∣)] + 1

}
, (A5)

where μ = b, f , and ξ is the interface thickness controlling
the degree of smoothness. In Fig. 9, we show the cross sec-
tion of the model swimmer described by � (b)

α (r) and �
( f )
α (r)

including both R(G)
α and R(CF)

α in the same plane.
The working equations for the velocity field v(r, t ) are

given as

ρ

(
∂

∂t
+ v · ∇

)
v = ∇ ·

↔
�vis − ∇p + f H + f ( f )

A , (A6)

↔
�vis = ηs[∇v + (∇v)†], (A7)

∇ · v = 0. (A8)

Equation (A6) is the usual Navier-Stokes equation [54]. Here,
↔
�vis given in Eq. (A7) is the viscous stress tensor with ηs

being the solvent viscosity, and the hydrostatic pressure p is
determined by the incompressibility condition, Eq. (A8). In
addition, f H is the body force required to satisfy the rigid

FIG. 9. In this study, to incorporate the present model swim-
mer into the SPM, the body and flagellum parts are represented
through the field variables, � (b)

α (r) and � ( f )
α (r), respectively. We plot

� (b)
α (r) + � ( f )

α (r) in the xy plane, where both R(G)
α = (2.25R, 0, 0)

and R(CF)
α = (−2.25R, 0, 0) are included. The discretized mesh size

h is the same as that used in practical simulations (h = 0.3125R and
ξ = 0.5h). Here, ξ is the interface thickness controlling the degree of
smoothness of � (b)

α (r) and � ( f )
α (r).

body condition, and f ( f )
A is the active force directly exerted

by the flagellum part to the fluid:

f ( f )
A (r) = 1

V ( f )
α

N∑
α=1

� ( f )
α (r)n̂αFA, (A9)

where V ( f )
α = ∫

dr� ( f )
α (r) is the volume of the flagellum part.

In addition, the volume of the body part is give as V (b)
α =∫

dr� (b)
α (r). In this study, because the shapes of the body and

flagellum parts are assumed to be the same, V (b)
α = V ( f )

α .
As described in the main text, the periodic boundary con-

ditions are imposed in the x and y directions with the linear
dimension L, and the planar top and bottom walls are placed
at z = H/2 and −H/2, respectively, with H being the sep-
aration distance. The shear flow is imposed by moving the
top and bottom walls in the x direction at constant velocities
V/2 and −V/2, respectively, whereby the mean shear rate
is given as γ̇ = V/H . We impose no-slip boundary condi-
tions at the top and bottom walls: v(x, y, H/2) = (V/2)x̂ and
v(x, y,−H/2) = −(V/2)x̂.

The equations of motions of the center-of-mass velocity,
V (G)

α , and the angular velocity with respect to the center-of-
mass, �(G)

α , are

Mα

dV (G)
α

dt
= Fα,H + Fα,int + F (b)

α,A + Fα,ex, (A10)

↔
I α · d�(G)

α

dt
= Nα,H + Nα,int + Nα,ex, (A11)

where

Mα = ρV (b)
α (A12)
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and
↔
I α =

∫
drρ� (b)

α (r)[|�rα|2
↔
δ − �rα�rα] (A13)

are the mass and the moment of inertia of the αth swimmer’s
body, respectively. Here, �rα = r − R(G)

α . In this study, the

swimmer’s density is assumed to be the same as the solvent
density. In Eqs. (A10) and (A11), F (G)

α,int and N (G)
α,int are the

force and torque acting on the αth swimmer’s body, respec-
tively, due to the particle-particle and particle-wall potential
interactions:

Fα,int = −
∑
β �=α

∑
i,μ∈α

∑
j,ν∈β

∂

∂R(μ)
iα

U μν
(∣∣R(μ)

iα − R(ν)
jβ

∣∣) −
∑

i,μ∈α

∂

∂R(μ)
iα

[
W μ

(∣∣∣∣z(μ)
iα − H

2

∣∣∣∣
)

+ W μ

(∣∣∣∣z(μ)
iα + H

2

∣∣∣∣
)]

, (A14)

Nα,int = −
∑
β �=α

∑
i,μ∈α

∑
j,ν∈β

(
R(μ)

i,α − R(G)
α

) × ∂

∂R(μ)
iα

U μν
(∣∣R(μ)

iα − R(ν)
jβ

∣∣)

−
∑

i,μ∈α

(
R(μ)

i,α − R(G)
α

) × ∂

∂R(μ)
iα

[
W μ

(∣∣∣∣z(μ)
iα − H

2

∣∣∣∣
)

+ W μ

(∣∣∣∣z(μ)
iα + H

2

∣∣∣∣
)]

, (A15)

where i, j = 1, 2, 3 and μ, ν = b, f . Here, U μν is the interac-
tion potential between two spheres which each comprise the
body or the flagellum part of different swimmers, and W μ is
the interaction potential between such a sphere and the planar
wall. The explicit forms of U μν and W μ are provided below.
In Eqs. (A10) and (A11), Fα,ext and Nα,ext are the force and
torque exerted on the αth swimmer due to the external field,
which are absent in the present study. The active force acting
on the body part, F (b)

α,A, is given as

F (b)
α,A = FAn̂α. (A16)

Equations (A9) and (A16) prescribe a force dipole FA�0n̂α

with �0n̂α = R(G)
α − R(CF)

α [see also Eq. (A19)]. Finally, Fα,H

and Nα,H are the force and torque exerted on the αth swimmer
due to HIs. The explicit forms of Fα,H , Nα,H , and the body
force f H can be given in the discretized equations of motion
as Eqs. (B6), (B7), and (B9), respectively, in the next section.

We assume the following form of the interparticle poten-
tial:

U μν (r) = ε(1 − δμ, f δν, f )

(
2R

r

)12

, (A17)

where ε is a positive energy constant and δμ, f is the Kronecker
δ. This form prevents the body part of a swimmer from over-
lapping on different swimmers but allows overlaps among the
flagellum parts. The wall-particle interaction potential W μ is
introduced to prevent the penetration of particles through the
boundary walls and is assumed to be given as

W μ(z) = ε

(
2R

z

)12

, (A18)

where we assume the same energy constant as that of U μν . In
Eqs. (A17) and (A18), μ, ν = b, f .

In our simulations, we make the equations dimensionless
by measuring space and time in units of h, which is the dis-
cretization mesh size used when solving Eqs. (A6)–(A8), and
t0 = ρh2/ηs, which is the momentum diffusion time across
the unit length. Accordingly, the scaled solvent viscosity is
1, and the units of velocity, stress, force, and energy are
chosen to be h/t0, ρh2/t2

0 , ρh4/t2
0 , and ρh5/t2

0 , respectively.
In our simulations, we set ε = 30 and FA = 20. The parame-
ters determining the swimmer’s shape are set to be R = 3.2,

�0 = |R(G)
α − R(CF)

α | = 4.5R and ξ = 0.5. In this study, the
swimmers’ volume fraction is identified as that of the rigid
body particles given by φ = NV (b)

α /HL2.
In Ref. [35], the general scheme deriving the volume-

average stress tensor,
↔
S , in the framework of the SPM is

provided:
↔
S is divided into the three parts,

↔
s s,

↔
s p, and

↔
s a, due

to the solvent, passive, and active contributions, respectively.
The passive part is further divided into two parts arising from
HIs and the potentials (U μν and W μ). Such sources to the
stress tensor exist without active forces, so we call

↔
s p the

“passive” stress. In this Appendix, according to a similar
procedure given in Ref. [35], we derive an expression of the
active stress as follows:

↔
s a = − 1

L2H

N∑
α=1

FAn̂α

∫
drr

[
�b

α (r)

V (b)
α

− �
f
α (r)

V ( f )
α

]

= − 1

L2H

N∑
α=1

FAn̂α

(
R(G)

α − R(CF)
α

)

= − 1

L2H

N∑
α=1

FA�0n̂αn̂α. (A19)

As usual, we may redefine the active stress by making
↔
s a

traceless by substituting −(1/L2H )
∑N

α=1 FA�0

↔
δ /3.

In the main text, the viscosity is determined as η =
(1/γ̇ L2)

∫
dxdy〈�xz(x, y,±H/2)〉, where �xz(x, y,±H/2) is

the xz component of the stress tensor at the walls located at
z = ±H/2 and 〈· · · 〉 denotes taking the time average in a
steady state. Because the relation 〈Sxz〉 = 〈�xz〉 holds, η =
〈Sxz〉/γ̇ . As denoted above,

↔
S are divided into three parts,

and then, we have η = ηs + 〈sp,xz〉/γ̇ + 〈sa,xz〉/γ̇ . The passive
part < sp,xz > /γ̇ positively contributes to the viscosity, and
therefore, the viscosity reduction is entirely due to (weak)
alignment of the force dipoles along with the extension direc-
tion, 〈n̂α,xn̂α,z〉 > 0. In the main text, we also discuss how such
an alignment of the swimmers in the interior regions reduces
the velocity gradient at the boundaries, which is observed as a
viscosity reduction.
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We may define the swimmer’s Reynolds number as Re =
ρvs�0/ηs with vs being the average swimming speed. In the
present simulations, vs ∼ 0.1, giving Re ∼ 1, which is unre-
alistically large, but may not be problematic for the following
reason. It is known that unless Re is much greater than unity,
the induced flow patterns around a moving particle do not
change enough for the inertia effect to significantly change
the resultant dynamics and transport properties. In Ref. [38],
an excellent discussion is presented for colloidal simulations.
In practice, by using a smaller value of ρ, it is possible to
reduce Re as much as possible. For this treatment, a smaller
time increment is required to ensure the stability of the time
integration of the equations of motion, whereas it leads to
longer simulation times. In our preliminary simulations at
Re ∼ 0.1, which is still unrealistically large, we confirm that
the main results obtained in the present study remain almost
unchanged.

APPENDIX B: EXPLICIT TIME-INTEGRATION
ALGORITHM

Here, following Refs. [34,35], we describe an explicit time-
integration scheme for solving model equations as follows.

The set of physical variables is assumed to be clearly
defined at the discrete time step tn = n�t .

First, we solve Eq. (A6) without including f H as

v∗ = vn + 1

ρ

∫ tn+1

tn

ds
( − ρv · ∇v + ∇ ·

↔
�vis + f ( f )

A

)⊥
,

(B1)

where vn is the velocity field at t = tn and (· · · )⊥ denotes
taking the transverse part.

Second, we update R(G)
α and n̂α as

R(G)
α (tn+1) = R(G)

α (tn) +
∫ tn+1

tn

dsV (G)
α , (B2)

n̂α (tn+1) = n̂α (tn) +
∫ tn+1

tn

ds�(G)
α × n̂α. (B3)

With these updated R(G)
α and n̂α , we also update the variables

that determine the swimmer’s shapes.
Third, the particle velocities and angular velocities are

updated by solving Eqs. (A10) and (A11) as

V (G)
α (tn+1) = V (G)

α (tn) + 1

Mα

∫ tn+1

tn

ds
(
Fα,H + Fα,int + F (b)

α,A + Fα,ex
)
, (B4)

�(G)
α (tn+1) = �(G)

α (tn) +
↔
I

−1

α ·
[∫ tn+1

tn

ds(Nα,H + Nα,int + Nα,ex)

]
. (B5)

Here, the explicit forms of
∫ tn+1

tn
dsFα,H and

∫ tn+1

tn
dsNα,H are given as

∫ tn+1

tn

dsFα,H =
∫

drρ�
(b)
α,n+1

(
v∗ − {

V (G)
α (tn) + �(G)

α (tn) × [
r − R(G)

α (tn+1)
]})

(B6)

and ∫ tn+1

tn

dsNα,H =
∫

drρ�
(b)
α,n+1

[
r − R(G)

α (tn+1)
] × (

v∗ − {
V (G)

α (tn) + �(G)
α (tn) × [

r − R(G)
α (tn+1)

]})
, (B7)

where �
(b)
α,n+1 denotes � (b)

α (r) at t = tn+1.
Finally, we update the velocity field by embedding the rigid body motions in v∗ through the body force f H as

vn+1 = v∗ + 1

ρ

∫ tn+1

tn

ds f ⊥
H . (B8)

The explicit form of
∫ tn+1

tn
ds f H is determined to approximately fulfill the rigid body condition inside the swimmers’ body region,

and it is given by

∫ tn+1

tn

ds f H = −
N∑

α=1

ρ�
(b)
α,n+1

(
v∗ − {

V (G)
α (tn+1) + �(G)

α (tn+1) × [
r − R(G)

α (tn+1)
]})

. (B9)

Equations (B6), (B7), and (B9) enforce the momentum and angular momentum exchanges between solvent and swimmer’s body.
The velocity field at the new time step is

vn+1 = v∗
[

1 −
N∑

α=1

�
(b)
α,n+1

]
+

N∑
α=1

�
(b)
α,n+1

{
V (G)

α (tn+1) + �(G)
α (tn+1) × [

r − R(G)
α (tn+1)

]}
, (B10)
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with

∇ · vn+1 = 0. (B11)

Therefore, within the particle domain (� (b)
α,n+1 = 1) the ve-

locity field coincides with the particle velocity as vn+1 =
V (G)

α (tn+1) + �(G)
α (tn+1) × [r − R(G)

α (tn+1)], while within the
fluid domain (� (b)

α,n+1 = 0) vn+1 = v∗. In the interface domain

(0 < �
(b)
α,n+1 < 1) the particle velocity smoothly matches the

solvent velocity v∗. That is, the fluid is prevented from pene-
trating inside the particle domain.

APPENDIX C: EVALUATION OF THE HYDRODYNAMIC
EFFECTS ON THE COLLISION PROCESS IN OUR

SIMULATIONS

As denoted in the main text, when the separation distance
between two swimmers is less than d0, these swimmers are
assumed to be undergoing a collision; in the present study,
we set d0 = 0.7�0, and the collision time �t is set to be
�t = 1.25�0/vs, where �0 is the swimmer size and vs is
the average swimming speed. This definition of collision is
somewhat arbitrary, but we show below that it (with the above-
presented sets of d0 and �t) can appropriately describe the

hydrodynamic collisions. In the following, we make use of
the parameter values of FA = 20, �0 = 14.4, vs = 0.11, and
V (b) = 355.

The magnitude of the rotational flow field, ω, induced
at a distance r from a swimmer is approximately ω ∼
0.1FA�0/ηsr3 [23]. At the average distance between neighbor-
ing swimmers, r = lN = (V (b)/φ)1/3, ω ∼ (10−1φ) ∼ 10−3

for φ ∼ 0.01: On average, swimming motions are disturbed
by random flows induced by other swimmers at a distance
of ∼lN . However, when approaching a specific swimmer, the
flow field created by those swimmers deterministically influ-
ences their swimming motions. With a similar argument, at
r = d0, ω ∼ 10−2, and therefore during a collision (∼�0/vs ∼
102), the swimmer’s trajectory is largely disturbed by HIs as
(�0/vs) × ω � 1. In a typical situation with γ̇ = 10−3, for a
duration of γ̇ −1, because (πd2

0 vs/γ̇ ) × (1/lN )3 ∼ 102φ � 1
for φ � 0.01, at least one “collision” may occur. Therefore, in
our simulations, the effects of HIs on the swimming motions
surpass (or at least compete with) the mean-flow effects for
γ̇ � 10−3.

We note that because (πd2
0 vs�t ) × (1/lN )3 ∼= 10φ � 1 in

our simulations (φ � 0.05), it is rare that for a duration of
�t , three or more swimmers are at distances closer than d0.
In other words, a hydrodynamic collision can be considered a
single event.
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