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Ultracold atoms in optical lattices are pristine model systems with a tunability and flexibility that goes beyond
solid-state analogies, e.g., dynamical lattice-geometry changes allow tuning a graphene lattice into a boron-
nitride lattice. However, a fast change of the lattice geometry remains intrinsically difficult. Here we introduce a
multifrequency lattice for fast and flexible lattice-geometry control and demonstrate it for a three-beam lattice,
realizing the full dynamical tunability between honeycomb lattice, boron-nitride lattice, and triangular lattice on
the microsecond scale, i.e., fast compared to the relevant energy scales. At the same time, the scheme ensures
intrinsically high stability of the lattice geometry. We introduce the concept of a geometry phase as the parameter
that fully controls the geometry and observe its signature as a staggered flux in a momentum space lattice. Tuning
the geometry phase allows us to dynamically control the sublattice offset in the boron-nitride lattice. We use
a fast sweep of the offset to transfer atoms into higher Bloch bands and perform a new type of Bloch band
spectroscopy by modulating the sublattice offset. Finally, we generalize the geometry phase concept and the
multifrequency lattice to three-dimensional optical lattices and quasiperiodic potentials. This scheme will allow
further applications such as novel Floquet and quench protocols to create and probe, e.g., topological properties.

DOI: 10.1103/PhysRevResearch.4.043083

I. INTRODUCTION

Cold atoms in optical lattices have emerged as a prolific
platform to study quantum phases of, e.g., solid-state mod-
els [1] with their great advantage of dynamic tunability. Of
particular current interest are nonseparable and bipartite lat-
tices [2] such as superlattices [3,4], checkerboard lattices [5],
triangular lattices [6,7], honeycomb lattices [6,8,9], Lieb lat-
tices [10], Kagome lattices [11] or quasicrystal lattices [12].
As the lattice potential is created artificially with interfer-
ing light beams, dynamical changes between those different
lattice types or specific lattice geometries are in principle
possible and allow for fascinating scenarios, far beyond con-
densed matter options, e.g., adiabatic or fast tuning from
one lattice geometry to another. However a tuning possibility
technologically typically contrasts with the lattice stability,
necessary to avoid heating of the atoms.

In general, in d dimensions, d + 1 laser beams result in
an intrinsically stable lattice geometry [13], which is, how-
ever, also intrinsically static, i.e., nontunable. More precisely
the lattice-beam polarization determines the lattice geome-
try [6,9,14,15] but can typically only be changed slowly. More
laser beams or frequencies allow for a tunable lattice geome-
try [3,4,8,16–19] but so far require phase locks for control and
stability.
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Here, we introduce the concept of the multifrequency lat-
tice, which allows us to combine both, stability and tunability,
and which can be realized in different configurations in two
or three dimensions. We introduce the geometry phase for
description of optical lattices and quasicrystal lattices in any
dimension and show how this quantity can be controlled via
the multifrequency scheme. This makes a vital contribution
to the general understanding of the tunability of optical lat-
tices. Next to the fast and stable control of hexagonal lattices,
which we demonstrate experimentally, we also discuss how to
realize similar control in three-dimensional (3D) lattices and
quasicrystal lattices for the first time. These concepts will be
crucial for fully exploiting the potential of optical lattices in-
cluding quench and Floquet protocols in nonstandard lattices.

II. GEOMETRY PHASE IN THREE-BEAM LATTICES

We start our explanation of the multifrequency optical lat-
tice by a general consideration which applies to three-beam
lattices. This leads us to introduce as a new concept a ge-
ometry phase that fully determines the lattice geometry as
explained below. This concept is then extended to general
3D lattices in Appendix A and to quasicrystal lattices in Ap-
pendix B. Each 2D optical lattice formed by three interfering
lattice beams with wave vectors ki (i = 1, 2, 3) can be written,
without loss of generality, as a sum of three 1D lattices (see
Appendix C):

Vpot (r) = V0 + 2
3∑

i=1

Vi cos(bi · r + φi ), (1)
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where V0 is an energy offset, bi are the reciprocal lattice
vectors (defined as bi = ki − ki+1, with k4 = k1), and φi

are referred to as the phases of the three 1D lattices, which
are determined by the relative phases and polarization of the
lattice beams. Vi is the lattice depth of the corresponding
1D lattice and in the symmetric case, V1 = V2 = V3 = V we
denote V as the lattice depth. It can be shown that for a fixed
triple Vi, the three-dimensional space spanned by the φi can
be decomposed into two degrees of freedom associated with
the lattice position in the 2D plane and one degree of freedom
which determines the geometry of the lattice, i.e., the choice
of a honeycomb, boron-nitride or triangular lattice in the case
of a hexagonal lattice. We demonstrate (see Appendix C) that
the relevant parameter is given by

φg =
3∑

i=1

φi, (2)

which we refer to as the geometry phase. φg cannot be
changed by phase shifts applied on the laser beams, as these
only change the lattice position. A geometry phase can be de-
fined for higher numbers of 1D lattices forming the potential,
and it can be in general a higher-dimensional object, e.g., the
geometry phase for a 3D lattice formed by interference of four
beams is described by a three-vector (Appendix A). Note that
the geometry phase is a parameter characterizing the lattice
potential and should not be confused with geometric phases
acquired by the wave function under adiabatic changes, such
as Berry’s phase.

III. THE MULTIFREQUENCY LATTICE

Based on the insight that a full control of the geometry
phase φg demands for an independent control over the indi-
vidual phases φi of the 1D lattices, we develop a new, tunable
lattice scheme. It is realized by establishing pairwise inter-
ference at different frequencies via sidebands modulated onto
appropriately detuned laser beams (Fig. 1). We realize this by
inserting an electro-optical modulator (EOM) in every one of
the lattice beams and choose the modulation frequencies as
multiples of 1.11 MHz, which is much higher than the typical
energy scales of the atoms in the lattice. For a more detailed
description of our implementation see Appendix E.

The individual phases φi of the 1D lattices depend on the
relative phase of the two interfering frequency components
in a beam pair. In the multifrequency lattice, as well as in
a conventional three-beam lattice in 2D [13], phase fluctu-
ations in one beam change the φi of the two associated 1D
lattices by the same amount but with an opposite sign. Hence,
such fluctuations keep the geometry phase, as the sum of the
φi, invariant, and as a result only translate the lattice in the
2D plane. The lattice so formed thus inherits the geometry
stability of 2D lattices made up by three lattice beams and
allows dynamic control of the lattice geometry via the relative
phase of the radio-frequency (RF) sidebands, which can be
controlled with high precision.

Our implementation of this multifrequency lattice features
a tunability on the microsecond scale and a high passive
stability of the geometry phase with only very slow drifts
characterized by a standard deviation of δφ0

rf = 0.17◦ (see Ap-

FIG. 1. Realization of a hexagonal lattice with tunable and stable
geometry as multifrequency lattice. (a) In the multifrequency design
a hexagonal lattice is realized by superimposing three 1D lattices
of different laser frequencies indicated as yellow (νa), green (νb),
and blue (νc). Bold arrows represent carriers, thin arrows represent
sidebands of the three lattice beams with wave vectors k1, k2, and k3.
(b) The beam configuration in panel (a) can be obtained by appropri-
ate sidebands (να , νβ , νγ ) imprinted on the laser beams together with
suitable detunings between the beams. (c) The resulting lattice can
be freely tuned between a honeycomb lattice (center), boron-nitride
lattices, and triangular lattice (edges). The numbers below the plots
indicate the corresponding geometry phase, the hexagons show a unit
cell. (d) Clouds of 30 000 87Rb atoms in different lattice potentials
[φg/(2π ) = 0, 0.005, 0.03, from left to right].

pendices F and G). Our new lattice scheme allows us to tune
the lattice geometry between a honeycomb-(graphene)-lattice,
a boron-nitride lattice and a triangular lattice as demon-
strated by single-site-resolved images of 87Rb atoms in the
lattice via the recently introduced quantum gas magnifier [20]
[Fig. 1(d)].

The implementation of the multifrequency lattice only re-
quires additional EOMs and a change of the frequencies of
the acousto-optical modulators (AOM) on top of conventional
setups of hexagonal optical lattices. It can therefore be a
feasible way to achieve stable and tunable lattices in many
experimental setups.

IV. STAGGERED FLUX IN MOMENTUM-SPACE LATTICE

To further demonstrate the relevance of the geometry phase
concept, we experimentally study its effect in a momentum-
space lattice [21,22], using our ability to tune it via the
multifrequency lattice. The geometry phase appears in the
triangular momentum-space lattice formed by all momenta
differing by reciprocal lattice vectors. The Bragg scattering
of two lattice beams imprints their relative phase, i.e., the
phase φi of the respective 1D lattice in Eq. (1). This yields
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Peierls phases φi + π [Fig. 2(b)], where the shift by π stems
from the convention of a minus sign in tight-binding lattice
Hamiltonians. We consider the staggered flux through the
triangular plaquettes 	, i.e., the sum of the Peierls phases
along a plaquette, which is given by

	 =
3∑
i

(π + φi ) = π + φg. (3)

This shows that while the Peierls phases depend on the choice
of the origin, the staggered flux is independent of this choice,
because it is only determined by the geometry phase.

We realize a continuous-time quantum walk in the trian-
gular momentum space lattice [21] to probe this staggered
flux [Figs. 2(a) and 2(b)]. The quantum walk is realized by
pulsing on the lattice as Kapitza-Dirac scattering and measur-
ing the occupation of the different momentum modes (Bragg
peaks) after time-of-flight expansion (Appendix H). We ob-
serve the presence of a flux manifested in the breaking of
inversion symmetry for values of φg different from φg = 0
(honeycomb lattice) or φg = π (triangular lattice) [Fig. 2(c)].
The symmetry breaking can be understood to arise from the
alternating pattern of currents, which favor movement into
three of the six neighboring modes [Fig. 2(b)]. This interpre-
tation of a staggered flux in momentum space also provides
a physical picture for earlier measurements of Kapitza-Dirac
scattering in honeycomb lattices [23,24]. While the real-space
densities are sensitive to the geometry phase around φg = 0
[Fig. 1(d)], these momentum-space measurements allow us
to sensitively probe the geometry phase in its entire range.
A similar observation was made in a triangular lattice from
circular polarized beams, which is effectively triangular in real
space, but shows pronounced symmetry breaking in Kapitza-
Dirac scattering [25].

The tunable staggered flux appears naturally in the
momentum-space lattice, while it was actively created via Flo-
quet engineering in a real-space triangular lattice [7]. While
such real-space lattices allow exploring interacting systems in
the ground state, which can additionally lead to spontaneous
symmetry breaking at 	 = π [26], momentum-space lattices
are ideally suited to study dynamics, e.g., starting from a
single site.

Our setup differs from previous realizations of a momen-
tum space lattice as artificial dimension [21,22], where the
transitions between the momentum modes are coupled via
individual frequency components of the laser beams allowing
to compensate for the increasing kinetic energy of the higher
momentum modes. In our case of global frequencies, the
increasing energy mismatch leads to an effective harmonic
trap in momentum space [Fig. 2(a)]. Setups with individual
frequency components also allow creating rectified magnetic
fluxes as demonstrated for momentum-space flux ladders [27]
and proposed for triangular spin-momentum lattices [28]. In
contrast, our experiment allows making a connection to the
Bloch coefficients of the real-space optical lattice, which dic-
tate the occupations of the momentum modes of the ground
state. The difference of the Bloch coefficients of a honeycomb
and triangular lattice, can then be thought of as arising from
the staggered flux 	.

FIG. 2. Quantum walk in a triangular momentum space lattice
with staggered flux showing inversion-symmetry breaking. (a) A 1D
optical lattice couples momentum modes separated by its wave vec-
tor b (red arrows). The coupling becomes increasingly off-resonant
for higher momentum modes (black arrows). (b) The resulting lattice
in momentum space has a staggered flux 	 resulting from the Peierls
phases for the directions indicated by the arrows. The Peierls phases
and the corresponding arrows are displayed in the same color. (c) Im-
balance I = pa−po

pa+po
between the first-order peak populations along

(pa) and opposite (po) to the reciprocal lattice vectors bi as a function
of the geometry phase. The error bars denote the standard deviation
of the mean of the three equivalent pairs. The insets show the raw
images for the points indicated by the arrows. The images were taken
for an effective pulse time of 4.7 μs. (d) Top panel, time evolution of
the root mean square width of the distribution of experimental data
(symbols) and numerics (lines) for φg/2π = 0 (dark blue, circles),
φg/2π = 0.25 (middle blue, triangles), and φg/2π = 0.5 (light blue,
crosses). The external trap leads to halting of the expansion, with
different exact behavior as a function of the staggered flux. Exem-
plary distributions at a pulse time of 16.4 μs (indicated by the arrow)
show the rich dynamics in dependence of the staggered flux (lower
panels). The lines in panels (c) and (d) are numerically calculated
using V = 6.5Erec (Appendix H).
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The effect of the harmonic trap can be clearly observed in
the dynamics: the initial expansion halts and the width of the
distribution oscillates around a plateau of about two momen-
tum modes while forming interesting patterns that depend on
the value of the staggered flux [Fig. 2(d)]. While a rectified
flux would also lead to a spatial confinement of a quantum
walk [29], in our case the halting of the expansion is an effect
of the trap.

V. PREPARATION OF HIGHER BANDS VIA SWEEPS OF
THE GEOMETRY PHASE

The geometry phase provides a unified description of the
transition from honeycomb to triangular lattice with a single
tuning parameter [Fig. 3(c)]. The different order of even and
odd bands between the Bravais lattice and the lattice with two-
atomic basis enforces a series of band crossings as a function
of φg. These crossings produce interesting band structures
with Dirac points and triple crossings between higher bands
[Fig. 3(d)]. At specific values of φg, the band structures con-
tain interesting triple band crossings reminiscent of the Lieb
lattice between the 2nd, 3rd, and 4th band and reminiscent of
the Kagome lattice between the 4th, 5th, and 6th band. Such
relatively simple realizations of these band structures could be
employed to probe the corresponding geometric properties via
wavepacket dynamics [30].

The full dynamic control of the lattice allows the transfer
into higher bands as previously used for checkerboard lat-
tices [5,31–33] and hexagonal lattices [18,34,35]. Here we
prepare the atoms in higher bands by appropriate sweeps of φg

and detect the result via band mapping [Figs. 3(a) and 3(b)].
The precise control of higher bands in hexagonal lattices is
important for accessing exotic higher-band physics [36], such
as the chiral superfluid recently realized [18]. In the future, it
would be interesting to directly image the higher orbitals and
the on-site vortices of the chiral superfluid using a quantum
gas magnifier [20].

VI. SUBLATTICE MODULATION SPECTROSCOPY

Using the dynamical control of the geometry of the lattice,
we have access to an additional method for modulation of the
lattice potential. When modulating the geometry phase, we
realize a modulation of the on-site energy difference between
the sublattices, which we refer to as sublattice modulation
spectroscopy.

We exemplify this sublattice modulation by multiband
spectroscopy of 87Rb atoms in a boron-nitride lattice and
compare it to amplitude modulation [37] and circular lattice
shaking [38,39] (Fig. 4 and Appendices I, J, and K). We find
that sublattice modulation yields cleaner spectra than the other
two modulation types in the sense that it features a broad re-
gion without excitations, which could be used for off-resonant
Floquet protocols [40,41].

Sublattice modulation spectroscopy was so far not real-
ized in optical lattices and extends the possibilities of lattice
modulation. Related phasonic modulation via an incommen-
surate secondary moving lattice was previously found to
efficiently couple via high-order multiphoton transitions [42].
Similar superlattice modulation spectroscopy was predicted

FIG. 3. Preparation of higher bands via sweeps of the geometry
phase. (a) 1D cuts through the potentials before and after the sweeps
inverting the energy offset between the A and B sites 
AB. The
populated orbitals are highlighted in red. The four final situations
correspond to the four panels in (b). (b) Band mapping images for
linear sweeps from φg/(2π ) = −0.048 to final values of φg/(2π ) =
0.048, 0.064, 0.095, and 0.153 within 60 μs (20 μs in the last image)
followed by 500 μs hold time. The atoms are transferred to the 2nd
band, 2nd+3rd+4th bands (at the band touching), 4th band, and
7th band, respectively. Below the Brioullin zones corresponding to
these bands are shown (c) Band structure of the hexagonal lattice as
a function of φg. The band structure is symmetric under reflection
around φg = 0 and φg = π (not shown). The lowest band gap given
by 
AB increases linearly with φg up to about φg

sp, where the en-
ergetically highest s orbital is degenerate with the lowest p orbital
(φg

sp/(2π ) = 0.064 for our lattice depth of V = 6.3 Erec). Via a
series of (avoided) crossings, the bands rearrange from a honeycomb
lattice with two s bands (φg = 0) to a triangular lattice (φg = π ) with
a single s band. Arrows indicate the final values of φg of the sweeps
stated in panels (b). (d) Plots of the band structures at φg/(2π ) = 0,
0.032, 0.064, and 0.134, the latter two featuring triple band crossings.

to be advantageous for probing the bond order wave in the
ionic Hubbard model by accessing both its finite charge and
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FIG. 4. Excitation spectra of a boron-nitride lattice with
φg/(2π ) = 0.024 for different modulation types. Relative population
of the lowest band obtained via band mapping versus spectroscopy
frequency νsp for sublattice modulation (dark blue, circles), ampli-
tude modulation (middle blue, triangles) and circular lattice shaking
(light blue, crosses). The lines are spline interpolations as a guide
to the eye. The modulation indices are 0.02, 0.05, and 600 Hz/νsp,
respectively, chosen to yield good signal at the modulation time
of 10 ms. The red shaded areas indicate the expected transition
frequencies into the stated bands for a lattice depth of Vlatt = 9.3 Erec.
The width of the areas indicates the spectrum of quasimomentum-
preserving transition frequencies starting from a full lowest band.

spin gaps [43]. Further analysis could be done to identify
many-body systems, where sublattice modulation selectively
couples to the quasiparticle excitations.

VII. OUTLOOK

In conclusion, we have proposed and implemented a mul-
tifrequency optical lattice, which combines full dynamic
tunability and high stability of the lattice geometry. We ex-
pect this multifrequency approach to be very useful for a
large range of experiments beyond the applications demon-
strated here. Fast dynamic control is crucial for quenches onto
different lattice geometries, as employed in Bloch state to-
mography for characterizing topological properties [9,44,45]
or for detection protocols of many-body phases [46,47]. The
state tomography could now be realized for a wide variety
of systems, because the sublattice offset after the quench can
be chosen independently of the system under consideration.
Dynamically changing the potential from triangular to honey-
comb lattice could be used to add a second potential well on
each site, making possible an in situ Stern Gerlach separation
for spin-resolved read out [48] also in a triangular lattice.

The direct modulation of the geometry allows novel spec-
troscopy methods as well as Floquet protocols, which make
use of reduced heating rates from reduced coupling to higher
bands or which utilize the inversion-symmetry breaking in-
duced by sublattice modulation to study the influence on
topological phases. Furthermore, the method gives the free-
dom to tune the geometry independently of the lattice beam
polarization allowing to completely avoid vector light shifts
or to employ them at will. The multifrequency design could
be used to extend the fast and tunable control demonstrated
here for 2D lattices also to 3D lattices (Appendix A) or to
quasicrystal lattices (Appendix B), which would enable Flo-
quet engineering of new topological phases [49]. Finally, the

scheme might be used to create a spatially varying lattice
geometry, e.g., for engineering topological interfaces (Ap-
pendix D).
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APPENDIX A: GENERALIZATION TO 3D LATTICES

Three-dimensional nonseparable optical lattices for ultra-
cold atoms have not been realized so far, yet 3D systems
feature Weyl semimetals [50,51], higher-order topological in-
sulators [52,53] and can be used to simulate a wider class of
solid-state materials. We show here how the multifrequency
design can be extended to 3D lattices providing a high degree
of control over the lattice geometry without the technical dif-
ficulties and constraints of the polarization design approach.
Note that in 3D the polarization choice is nontrivial and need,
e.g., polarization optimization algorithms [54]. Additionally,
a 3D multifrequency lattice would also allow for a dynamic
variation of the geometry in Floquet protocols [49].

A 3D lattice can be realized by interference of four non-
coplanar beams with wave vectors ki, with i = 1, 2, 3, 4. The
resulting lattice potential will have spatial Fourier components
at six wave vectors bi, defined as before for i = 1, 2, 3 and
defined as bi = k4 − ki−3 for i = 4, 5, 6. The total potential
can be written as

Vpot (r) = V0 + 2
6∑

i=1

Vi cos(bi · r + φi ). (A1)

The potential is characterized in this case by six degrees of
freedom associated with the phases φi. Three of them are
coupled to the position of the lattice in space, and hence the
remaining three are needed for describing the lattice geometry.
A generic formula for the geometry phase for an arbitrary
number of laser beams and dimensions is given in Appendix C
[Eq. (C12)]; in this case a possible choice of an independent
triple is, e.g.,

φg =

⎡
⎢⎣

φg,1

φg,2

φg,3

⎤
⎥⎦ =

⎡
⎢⎣

φ1 + φ2 + φ3

φ1 + φ4 − φ5

φ2 + φ5 − φ6

⎤
⎥⎦, (A2)

where it can be seen that φg in this case is indeed a geomet-
ric object by noting that φg,1 is the geometry phase for the
2D lattice obtained with beams of wave vectors k1, k2, k3,
φg,2 is the geometry phase for the 2D lattice obtained with
beams of wave vectors k1, k4, k2, and φg,3 is the geometry
phase for the 2D lattice obtained with beams of wave vectors
k2, k4, k3. Equivalently, also φ3 − φ4 + φ6 is the geometry
phase of a 2D lattice, but it is not independent from the others
as it could be obtained as φg,1 − φg,2 − φg,3.
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The implementation of a 3D multifrequency lattice can be
accomplished via suitable sidebands on the laser beams such
that each beam pair creating a 1D lattice shares a common
frequency, not present in the other beams, in analogy to the
2D lattice demonstrated in the main text. All components of
φg could be calibrated then for each of the three corresponding
2D lattices using the methods demonstrated in this article.
Note that to control all six Vi depths, not only the four laser
intensities would have to be changed but also the strength of
the modulation producing the frequency sidebands. A suitable
basis transformation within this 3D parameter space might
be appropriate to develop an understanding of the tunable
geometry of the particular 3D lattice under study.

An overview of all possible geometries obtainable is left
for future work, because the parameter space is huge: with an
appropriate choice of beam wave vectors, all 14 3D Bravais
lattices can be realized [54], and also multiatomic bases such
as the diamond lattice [13,55]. As an example, we present here
a geometry characterized by three local minima in the unit cell
which could be realized in our setup by, e.g., adding a fourth
beam pointing in z direction, with wave vector k4 = 2π

λ
ẑ, with

vector ẑ perpendicular to the xy plane (Fig. 5). An interference
of all beams could be realized, e.g., via in-plane linear polar-
ization of the first three beams and circular polarization of the
fourth beam. It is convenient, for visualization, to write the to-
tal potential as a sum of two terms: Vpot (r) = V13(r) + V46(r),
where

V13(r) = 2V1

3∑
i=1

cos(bi · r + φi ),

V46(r) = 2V4

6∑
i=4

cos(bi · r + φi ), (A3)

assuming V1 = V2 = V3 and V4 = V5 = V6, and leaving out
constant terms.

From V46(r) = 2
∑6

i=4 Vi cos( 2π
λ

z − ki−3 · r + φi ), i.e., the
argument of all the cosines in V46(r) has a linear dependence
on z, it can be seen that horizontal cuts of V46(r) look like a
hexagonal lattice in the xy plane with a geometry phase φg

z

given by φg
z = 3z 2π

λ
. The horizontal cuts of V46(r) possess a

three times bigger unit cell than V13(r), rotated by 30◦.
The lattice vectors of the 3D lattice a1, a2, a3 can be

identified from the distance between the minima of V46(r) as

ai = 2λ

3
sin

(
2π

3
i

)
x̂ + 2λ

3
cos

(
2π

3
i

)
ŷ + λ

3
ẑ, (A4)

where x̂, ŷ, ẑ are the unit vectors of the corresponding di-
rections. The resulting potential can be described as layered
planes with tunnel-coupled trimers, where each lattice site
is only coupled to a site of the neighboring trimer along the
perpendicular direction. Because the 3D lattice is nonsepara-
ble, the trimers are also not trivially coupled between adjacent
planes and tunneling always couples different sublattices.

Furthermore, the lattice parameters are tunable and, e.g.,
offsets between the sublattice sites can be engineered by con-
trol of φg,2 and φg,3 [Fig. 5(c)]. Balanced ratios of tunnel
elements along the different directions can be achieved by
tuning the Vi or via an out of plane component of the three

FIG. 5. Proposal for a tunable 3D lattice of trimers via mul-
tifrequency design. (a) V13(r) and V46(r) for z = 0, λ/6, λ/3, as
defined in the main text. The geometry phase (φg,1/(2π ) = 0.29,
φg,2 = φg,3 = φg,1/3) is chosen such that the minima of V46(r), found
at z = mλ/3 (with m integer), coincide with a maximum of V13(r)
(solid and dashed circle). The relative depth of the two potentials
is given by V4 = 1.8V1. (b) Potential landscape plotted for different
sections parallel to the xy plane of size 2.2λ × 2.2λ. The color map is
cropped to emphasize the relevant potential minima. The lattice has
three sublattices, i.e., trimers in the xy plane, and tunneling along z
couples lattice sites in different sublattices. (c) Potential in the plane
of the trimers with different potential offsets between the sublattices,
engineered by shifting V46(r) with respect to V13(r) in the xy plane
using different choices of the geometry phases φg,2 and φg,3 [compare
Fig. 5(a)]. A balanced situation is achieved without shift (first panel)
and sublattice offsets are reached by shifting along the x direction
(second panel) and the y direction (third panel).

first beams, similar to tetrahedral laser beam configurations
previously explored with thermal atoms [56,57].

Tunable trimers were previously realized [58], but as a
2D optical lattice and without passive stability. The example
discussed here demonstrates that a 3D multifrequency lattice
can realize optical lattices with a basis of more than two sites,
combining tunability and passive stability as in the 2D case
demonstrated in the main text.

APPENDIX B: GEOMETRY PHASE IN QUASIPERIODIC
POTENTIALS

We demonstrate that the geometry phase is a concept
relevant also for the description of quasiperiodic potentials
and show that its effect on the 2D quasiperiodic potential
geometry resembles strikingly the situation in the hexagonal
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FIG. 6. Geometry phase in a quasicrystal lattice. (a) Lattice potential of the form (Eq. (B1)) as a function of φg in an area of 10λ × 10λ. The
lattice potential is normalized to the interval [0,1]. (b) Orientation of the reciprocal lattice wave vectors bi, with |bi| ∼ 1.9 2π

λ
. In momentum

space, pentagonal plaquettes with flux 	 = ±(φg + π ) can be found. (c) Histograms of the values of the normalized potential landscape for
φg/(2π ) = 0, 1/4, 1/2. Orange lines are drawn to mark the slope at the smallest potential values, i.e., in the relevant region for the lowest
lying states. The slope is largest at φg = 0 because of the larger number of lattice sites of similar energy. (d) Zoom in (2.58λ × 2.58λ) on one of
the 10-fold symmetric pattern that can be found for φg = 0, demonstrating the breaking of the symmetry between the odd and the even minima
of the structure for finite values of φg. (e) Normalized quasicrystal potential in a 5λ × 5λ area as a function of a phasonic degree of freedom
p: Vpot (r) = ∑5

i cos(bi · r + p cos( 4π

5 i) + π

3 ), with φg = 5 · π

3 = −π

3 . The potential pattern remains self-similar. This degree of freedom does
not couple to φg and to translations in the physical space. (f) One of the 14-fold symmetric pattern that can be found for φg = 0 in the 7-fold
symmetric configuration with N = 7 (system size 3.8λ × 3.8λ). Here |bi| = 1.95 2π

λ
, as obtainable with seven beams by interference of every

beam pair with ± 6π

7 relative angle.

lattice. Furthermore, we show that the geometry phase can
be tuned also in quasiperiodic potentials via a multifrequency
design.

We consider the fivefold rotationally symmetric potential
of the form

Vpot (r) =
5∑
i

cos(bi · r + φi ), (B1)

where the reciprocal lattice vectors bi and bi+1 have a relative
angle of 2π

5 [Fig. 6(b)].
This potential can be seen as an incommensurate projection

from a 4D periodic potential, because only four of the bi

are incommensurate. This means that the five φi control two
degrees of freedom associated to translations in the physical
dimensions, two degrees of freedom associated to transla-
tions in the not physically accessible dimensions (known as
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phasons), and finally, also a geometry phase of the form

φg =
5∑
i

φi. (B2)

We derive in Appendix C [Eq. (C12)] the general expression
for φg as a function of the φi for any dimension and any
number of 1D lattices making up the potential.

We find that the quasiperiodic geometry indeed depends
on the geometry phase φg, and many qualitative features re-
semble its effect in the honeycomb lattice: for φg ∼ 2mπ ,
with m integer, many shallow minima can be found and for
φg ∼ (2m + 1)π fewer deeper minima can be found (Fig. 6).
The narrower distribution of on-site energies in the case φg =
0 can still be related to the frustration in momentum space,
where a flux of 	 = π + φg arises in a pentagonal plaquette
[Fig. 6(b)].

Also, in the region around the sign change of φg, an emer-
gence of an offset between even and odd local minima in
approximately tenfold symmetric structures can be observed,
reminiscent of the breaking of the inversion symmetry in the
boron-nitride lattice. A similar behavior is observed also for
the sevenfold symmetric quasicrystal lattice [Fig. 6(e)].

The potential of Eq. (B1) could be realized with the mul-
tifrequency lattice, by taking five beams in the xy plane with
wave vectors ki rotated by i × 2π/5. Each beam is modulated
such that it interferes only with the other two beams incoming
with a relative angle ±4π/5. This multifrequency scheme
would allow to tune dynamically φg, as it provides control
over each φi.

In principle with this choice of the lattice beams, letting
each beam pair give rise to interference [59] one gets N = 10
wave vectors and hence a six-dimensional φg (Appendix C).
In that scheme, the six-dimensional geometry phase is de-
termined by the beam polarization, i.e., stable against phase
fluctuations of the laser beams, but difficult to tune. In
contrast, dynamical tuning of this complex object could be
realized with a multifrequency scheme (making use of ten
different frequencies in total), while retaining the intrinsic
stability of the geometry.

The first realization of ultracold atoms in a quasicrystal op-
tical lattice was done in an eightfold symmetric optical lattice
built from four 1D lattice rotated by i × π/4 [12]. From the
considerations in Appendix C, one finds that the dimension
of the geometry phase is zero in this case. The four phases
of the 1D lattices only affect the position of the lattice and
the two phasonic degrees of freedom. The quasicrystal lattice
with multifrequency realization proposed here is therefore the
first scheme for a quasicrystal lattice with a tunable geometry.

While the phasonic degrees of freedom can be controlled
via the laser beam phases [59], as, e.g., used in charge pump
protocols [59–62] or in phasonic spectroscopy [42], a multi-
frequency realization of quasicrystal lattices further increases
the dynamic tuning possibilities with, e.g., quenches of the
lattice geometry [9], or allowing for selective preparation of
excited states via sweeps of φg, as demonstrated in Fig. 3.
Furthermore, theory work for ultracold bosons in quasicrystal
optical lattices found a rich phase diagram strongly dependent
on the local variation in the number of nearest neighbors [63],
suggesting a pronounced dependence on the geometry phase

in the case of the fivefold symmetric quasicrystal lattice pro-
posed here. Finally, the geometry phase controls the width
of the distribution of on-site energies, which is an important
tuning parameter for studies of the Bose glass or many-body
localization [64].

These insights evidence how the geometry phase is a pow-
erful concept for capturing important features of potentials
like level statistics and breaking of local symmetries which
even applies to nonperiodic potentials.

APPENDIX C: DERIVATION OF THE GEOMETRY PHASE

The derivation of Eq. (1) is straightforward. The three
beams in complex field notation shall be given by

E i(r, t ) = E (0)
i ei(kr−ωt ), (C1)

with i = 1, 2, 3 and the complex amplitudes E (0)
i which con-

tain field amplitude, polarization, and phase. The potential
landscape generated by the three beams is proportional to the
intensity of their total electric field and the intensity in turn
is proportional to the absolute value squared of the complex
electrical field resulting in

V (r, t ) = κ

∣∣∣∣∣
3∑

i=1

E i(r, t )

∣∣∣∣∣
2

(C2)

= κ

3∑
i=1

|E i(r, t )|2 + κ

3∑
i=1

2�[E i(r, t )E∗
i+1(r, t )],

(C3)

with proportionality constant κ and E4(r, t ) = E1(r, t ). The
first term is independent of position and time and can be
identified with V0 in Eq. (1). Plugging in Eq. (C1) leads to

V (r, t ) = V0 + κ

3∑
i=1

2�[
E (0)

i E∗(0)
i+1 ei(ki−ki+1 )r] (C4)

= V0 + κ

3∑
i=1

2�[
I (0)
i eiφi ei(ki−ki+1 )r] (C5)

= V0 + κ

3∑
i=1

2I (0)
i cos [(ki − ki+1)r + φi], (C6)

where we introduced I (0)
i eiφi = E (0)

i E∗(0)
i+1 . When defining Vi =

κI (0)
i , Eq. (C6) becomes identical to Eq. (1).
It should be stressed that the phases of the 1D lattices φi

describe the geometry of the resulting lattices independently
of how they arise from the interference of the lattice beams,
which depends on the polarization and detuning of the lat-
tice. As an example, recall that a honeycomb lattice can be
realized by a red-detuned lattice with in-plane polarization or
a blue-detuned lattice with out-of-plane polarization [6] and
both situations are described by the same φi.

Now let us turn to the derivation of the geometry phase
of the hexagonal lattice formed by three beams with 120◦
relative angle. To this end let us consider the effect of a system
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translation r → r + δr. The lattice potential given by Eq. (1)
transforms as

Vpot (r) = V0 + 2
3∑

i=1

Vi cos(bi · r + φi ) (C7)

→ V0 + 2
3∑

i=1

Vi cos(bi · r + bi · δr + φi ), (C8)

revealing that such a displacement is equivalent to a transfor-
mation of the 1D lattice phases given by

φi → φi + bi · δr. (C9)

This is not in general invariant and therefore each 1D lattice
phase changes both position and geometry of the lattice. How-
ever, from dimensionality we know that the choice of origin
of the lattice is only a 2D parameter and as such there must
exist a basis transformation in the space spanned by the 1D
lattice phases such that two linear combinations of phases
correspond to translations of the lattice and one corresponds
to the geometry. The latter can be identified by the condition
that it needs to be invariant under translations of the lattice. A
linear combination of phases transforms as

3∑
i=1

niφi →
3∑

i=1

niφi + δr ·
3∑

i=1

nibi. (C10)

For the discussed beam geometry we have
∑3

i=1 bi = 0 and
hence φg = ∑3

i=1 φi, i.e., n1 = n2 = n3 = 1, is the geometry
phase.

This argument can be extended to any number of 1D lat-
tices N and physical dimensions d . Note that for quasiperiodic
potentials, D > d , where D is the dimension of the periodic
potential whose incommensurate projection on the physical
dimensions generates the quasiperiodic potential. D is given
by D = N − Niis, where Niis is the number of rationally inde-
pendent integer sequences n(c)

i , ..., n(c)
N , with c = 1...Niis, such

that
N∑
i

n(c)
i bi = 0. (C11)

Because there are N degrees of freedom associated to the φi,
and D degrees of freedom associated to generic translations,
the number of components of φg is given by Niis = N − D.
The expression for the cth component of φg, φg,c can be
directly obtained as

φg,c =
N∑

i=1

n(c)
i φi. (C12)

This expression can be verified as before by noting that
φg,c is invariant under a generic translation r′ → r′ + δr′ in
the D-dimensional space:

φg,c → φg,c + δr′ ·
N∑

i=1

n(c)
i b′

i = φg,c, (C13)

and hence must be a geometric object; b′
i are the D-

dimensional wave vectors in the extended space.

Note that if
∑N

i=1 n(c)
i bi = 0, also

∑N
i=1 n(c)

i b′
i = 0. In fact,

only D of the b′
i can be taken to be independent, and the

remaining ones have to be defined as integer sums of the
independent vectors such that Eq. (C11) is satisfied (for every
sequence c). By this construction,

∑N
i=1 n(c)

i b′
i = 0 also in the

not physically accessible dimensions.
An alternative demonstration, which does not use the

higher-dimensional space, can be made by noting that using
the bi, weighted by the respective n(c)

i , a plaquette in momen-
tum space can be constructed with a flux 	 given by

	 =
∑
i=1

n(c)
i (π + φi ) =

∑
i=1

n(c)
i π + φg,c, (C14)

and because the flux is gauge-invariant, φg,c must be related to
the system geometry.

APPENDIX D: SPATIAL VARIATION
OF THE LATTICE GEOMETRY

When the condition
∑

i bi = 0 for the hexagonal lattice
is not exactly met, the geometry phase becomes spatially
dependent with a variation given by φg(r) = φg(0) + ∑

i bi · r
[compare to Eq. (C10)]. In the multifrequency lattice, because
each 1D lattice is characterized by a different frequency,
the corresponding wave vector is slightly different in mag-
nitude from the others, causing

∑
i bi �= 0. In our realization

with frequency differences in the MHz range, |∑i bi| =
0.3 mrad/mm resulting in a negligible variation of φg over
the system size. However, when working with modulation fre-
quencies in the GHz range, one could engineer relevant spatial
variations of the lattice geometry which could be exploited,
e.g., for creating interfaces between system parts character-
ized by different topology [65]. In this scheme, the change
in geometry is smooth in real space, but the topological phase
transition as a function of geometry will result in two domains
in real space (compare Ref. [65]). The sharpness of the inter-
face will depend on the used frequency differences and the
lattice depth.

APPENDIX E: IMPLEMENTATION OF THE
MULTIFREQUENCY LATTICE

Our lattice setup consists of a single laser source at λ =
1064 nm whose light is split into three beams. Each of them
has an EOM (resonant high-Q electro-optic phase modulator
from Qubig), adding sidebands to the laser spectrum at its re-
spective driving frequency (να = 2.22 MHz, νβ = 7.77 MHz,
νγ = 9.99 MHz). The individual beams are shifted via the
+1st order of AOMs driven at frequencies ν0 + νγ , ν0 + νβ

and ν0 = 105.005 MHz, (Fig. 7), ensuring that every pair of
beams has exactly one frequency in common [Fig. 1(b)].

The modulation frequencies να , νβ , νγ where chosen as
multiple of 1.11 MHz to assure that the smallest frequency
difference of all combinations is 1.11 MHz, i.e., higher than
the typical energy scales of the atoms in the lattice. Such
interference patterns form rapidly moving optical lattices that
wash out and allow a description as noninterfering beams.
Furthermore, this choice allows restricting the range of AOM
frequencies to a band of 10 MHz. All interference terms from
higher-order sidebands of the EOMs that give rise to static
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FIG. 7. Implementation of the multifrequency lattice with stable
phases between the frequency components. The laser beam from a
single source is split into three beams using λ/2 waveplates (not
shown) and polarising beam splitters. Each beam has an EOM to
add a sideband and an AOM to shift the frequency appropriately
before coupling into separate optical fibers. The RFs for the EOMs
are derived from a single source and one frequency is derived as the
difference frequency of the other two using a mixer and a low pass
filter. This setup produces the spectra sketched in Fig. 1(b).

lattices are suppressed by at least a factor of 105. The fast-
moving part of the potential needs however to be taken into
account, when calculating the external confinement.

The stability of the geometry phase depends crucially on
the stability of the RF sources used for the EOMs. This can
be seen by writing explicitely the time-dependence of the 1D
lattice phases, as obtained after modulation of the laser beams
with AOMs and EOMs (compare to Fig. 1), and without
further assumptions:

∂tφ1 = (νc − να ) − νb,

∂tφ2 = (νb − νβ ) − νa,

∂tφ3 = (νa + νγ ) − νc.

(E1)

It follows that the time variation of φg is given by

∂tφg =
3∑
i

∂tφi = νγ − να − νβ. (E2)

Hence, φg is constant as long as

να = νγ − νβ. (E3)

To ensure this condition, we derive the RF signals for the
EOMs from the same digital frequency source. Furthermore,
we derive the smallest frequency να as difference frequency
να = νγ − νβ from mixing the outputs of two channels at
frequencies νβ and νγ and using a low pass filter (Fig. 7).
Hence, Eq. (E3) is automatically ensured independently of
the finite frequency resolution of the source, which would
otherwise lead to a phase drift between the frequencies and
affect φg.

The laser beams are overlapped in a plane under 120◦ to
each other at the position of the atoms after passing through
separate optical fibres (Fig. 7). Since the carrier frequency of

each beam is the same as a 1st sideband frequency of another
beam (e.g., beam i and i′), the depth of the resulting 1D
lattices is proportional to J0(ni )J1(ni′ ), where J0, J1 are Bessel
functions of the first kind and ni, ni′ modulation indices of
the corresponding beams. To maximize the depth of all three
1D lattices simultaneously, the modulation index at the EOMs
thus has to be nα = nβ = nγ ≈ 1.08.

We work with out-of-plane laser polarization for maximal
interference. This also avoids any vector light shifts, i.e., mF

dependent potentials, which usually appear for a red-detuned
honeycomb lattice [66]. This choice also avoids possible Ra-
man resonances to other mF states, which are not desired in
this work, as opposed to optical Raman lattices for realizing
spin-orbit coupling [51,67]. We also made sure that the driv-
ing frequencies are not resonant with such transitions.

APPENDIX F: CALIBRATION OF THE LATTICE
GEOMETRY

While we can control the phases of the RF φrf at the
corresponding sources, the phase at the EOMs is shifted due
to delays in the RF setup. We present different options to
calibrate the connection between RF phase at the source φrf

and the lattice geometry, i.e., to find the value of φrf , denoted
φ0

rf , for which one gets a honeycomb lattice (φg = 0). In these
measurements we vary the phase φrf of a single RF signal (να

in Fig. 7), while keeping the others constant.
A coarse calibration can be done by observing the asymme-

try of Bragg peaks after time-of-flight of a BEC from a lattice
with unbalanced lattice beam intensities. The asymmetry has a
broad maximum around the honeycomb configuration (φg =
0) [Fig. 8(a)]. In contrast to the momentum-space quantum
walk of Fig. 2, we adiabatically load into the lattice here and
imbalance the lattice via the intensities of the lattice beams.
Nevertheless, the larger response of the observed asymmetry
for φg = 0 can be understood by the staggered magnetic flux
	 = π + φg introduced above. The unbalancing of the lattice
beam intensities would tend to create larger occupations of
the momentum modes at multiples of one reciprocal lattice
vector b1 in the ground state. This is, however, in competition
with delocalization over the different momenta, i.e., similar
populations of momentum modes at multiples of all three
reciprocal lattice vectors, which lowers the energy. With the
staggered flux around 	 = π in the honeycomb lattice at φg =
0, the system becomes frustrated and the delocalization is less
energetically favorable, leading to the observed asymmetry in
the momentum distribution.

A second calibration method is band spectroscopy around
φg = 0. By performing, e.g., sublattice modulation for a fixed
frequency one gets a double-peaked signal for the relative
population of the 2nd band versus φg. The peaks are in cor-
respondence to the resonance with the sublattice offset 
AB,
and φ0

rf is found in the middle of the resonances [Fig. 8(b)].
A third calibration method is to measure the atomic popu-

lations on A and B sites across the honeycomb configuration
φg = 0, with φg = 0 being at the intersection of the two pop-
ulations. This method is suitable for a precise calibration in
a small region around φg = 0, where both sublattices have a
significant population. This is a quick and precise calibration
method, when single-site resolved imaging is available, e.g.,
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FIG. 8. Different methods for the calibration of the geometry
phase. (a) Relative strengths of imbalanced Bragg-peaks across all
geometries. Around φg = 0 (honeycomb) the Bragg-peak popula-
tions are much more sensitive to the lattice imbalance (see text).
The center is determined by the average of three heuristic Gaussian
fits to the data, resulting in a 68% confidence interval of the fit of
δφ0

rf = 0.00153 × 2π = 9.58 mrad. The symbols correspond to ex-
perimental data, the lines to the fits. The color encodes the direction
in momentum space. (b) Spectroscopy measurement closely around
φg = 0 followed by band mapping, which yields the relative popula-
tion of the 2nd band (symbols). A spectroscopy frequency resonant
to a small AB offset is used, resulting in two distinctive peaks at
opposite sites of φg = 0. The center is determined by a heuristic three
Gaussian fit with forced equal distances to each other (line). The
68% confidence interval of the fit is then δφ0

rf = 0.00016 × 2π =
0.98 mrad. (c) Real-space measurement closely around φg = 0, with
relative A-site (blue symbols) and B-site populations (red symbols).
The error bars denote the standard deviation from two to three itera-
tions. The populations do not add up to one due to finite occupations
attributed to the spaces between the lattice sites. Via a heuristic fit
of two linear curves (lines, valid only up to small offsets) the point
of equal population φg = 0 is determined with a 68% confidence
interval of the fit of δφ0

rf = 0.00012 × 2π = 0.75 mrad.

FIG. 9. Evolution of the geometry phase calibration over four
months. Every point results from a real-space phase calibration as
in Fig. 8(c) with the error bar given by the 68% confidence interval
of the corresponding fit.

via a matter-wave microscope [20] [Fig. 8(c)], and it is used
for the stability analysis below.

After determination of φ0
rf , the calibration of the total lattice

potential is completed by calibrating the depths of the 1D lat-
tices Vi. This is done by standard techniques like, e.g., Kapitza
Dirac scattering or spectroscopy. Throughout the manuscript,
we state the lattice depth in units of the recoil energy Erec =
h2/(2mλ2), where h is Planck’s constant, m is the mass of an
87Rb atom, and λ = 1064 nm is the wavelength of the lattice
beams.

APPENDIX G: STABILITY OF THE GEOMETRY PHASE

We characterize the stability of φ0
rf by repeated calibration

measurements of the geometry phase as in Fig. 8(c) every
26 min. They yield a standard deviation of δφ0

rf = 3 mrad =
0.17◦, which we state as the relevant stability of the geometry
phase. The individual measurements for the calibrations were
taken every 36 s and their standard deviation around the fitted
curves is δφ0

rf = 0.8 mrad = 0.05◦. These fluctuations might
be limited by the 14 bit precision of our digital frequency
source, i.e., a phase resolution of 0.00006 × 2π = 0.02◦.

The long-term stability of the geometry-phase calibration
over four months shows only very slow drifts with a stability
within around 2◦ for 60 days and only isolated jumps in the
calibration (Fig. 9), probably due to changes in the laboratory
conditions such as temperature or humidity. We find that the
temperature stabilization of EOM crystals is important for
ensuring this high passive stability both for the calibration
of the lattice depth and for avoiding phase shifts from a
mismatch of the temperature-dependent resonance condition
of the resonant EOMs. For systems with phase locks, the long
term stability usually requires regular recalibrations.

The geometry phase is given by the phases of the EOM
sidebands alone and we therefore do not expect relevant phase
noise on short timescales as it would arise on the phases of
the laser beams from mechanical couplings. For reference, we
give the phase noise of other setups of superlattices. Passively
stable setups reach rms fluctuations of 25 mrad = 1.4◦ using
different angles through a high-resolution objective [48] or
1.5 mrad = 0.1◦ using a dual-wavelength interferometer [19].
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FIG. 10. Quantum walk in a triangular momentum space lattice. (a) φg = 0, (b) φg = π/2, (c) φg = π . Each subfigure contains 10 different
hold times, starting from 3.9 μs and increasing in steps of 5 μs up to 48.9 μs. The lattice depth is the same as in Fig. 2.

For superlattice designs with active phase stabilization, phase
drifts require a regular recalibration of the geometry. Ad-
ditionally, the lock introduces phase noise, which can be
reduced from 6.8◦ [6] and 5◦ [68] down to 0.5◦ [69] and
0.1◦ [17].

Next to the stability of the lattice geometry, the stability of
the lattice position can also be of interest. Superlattice setups
with phase locks typically control the geometry by keeping
two lattices stable in absolute position. In the multifrequency
lattice, drifts of the lattice position are decoupled from drifts
of the lattice geometry, the latter being only controlled by the
phase of the EOM sidebands. In our setup, where the phases
of the laser beams are not stabilized, we find position drifts

between individual experimental shots [20], while the lattice
geometry remains very stable.

APPENDIX H: IMPLEMENTATION AND MODELING OF
THE QUANTUM WALK

For realizing short evolution times in the μs regime in
a well-controlled lattice depth, we first ramp up the lattice
beams and stabilize their intensity, while detuning the beams
via the AOMs to avoid interference. We then start the pulsed
evolution time in the lattice by setting the AOM frequencies
to resonance and end it by setting the AOM amplitude to zero.
The lattice could alternatively be switched via the EOMs, but
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we keep them always on to avoid thermal phase shifts that
would affect the geometry phase.

Time-resolved data of the quantum walk from Fig. 2 is
shown in Fig. 10. The symmetry breaking observed in Fig. 2
can be captured by the simple calculation of the coherent
dynamics in the lattice.

The numerical simulation shown in Fig. 2 is implemented
as follows. We carry out exact diagonalization of the Hamil-
tonian matrix corresponding to the noninteracting lattice
Hamiltonian in plane wave basis taking into account 11 × 11
reciprocal lattice sites. Using the resulting eigenstates |ψn〉
and energies En we can compute the plane wave occupations
as

nk(t ) =
∣∣∣∣∣
∑

n

〈k|ψn〉 e−iEnt/h̄ 〈ψn|k = 0〉
∣∣∣∣∣
2

, (H1)

assuming the plane wave |k = 0〉 as initial state.

APPENDIX I: IMPLEMENTATION AND DISCUSSION OF
THE SUBLATTICE MODULATION

We modulate the three phases of the sideband frequencies
νa, νb, νc such that the modulation only couples to the lattice
geometry, but not to a spatial translation of the lattice. This is
achieved by symmetric modulation of the three 1D lattices

φa,b,c(t ) = φa,b,c(0) ± δφg

3
sin(ωt ), (I1)

with a negative sign for φc due to the opposite sideband used
for the interference.

The experiments start with a BEC of 87Rb atoms, which
thermally fill up the lowest band after loading into the optical
lattice. We modulate for 10 ms with modulation indices in
the linear response regime. Finally we probe the system via
band mapping (Appendix J) and integrate over the respective
Brillouin zones to determine the band occupations.

For a detailed discussion of the spectra, we plot the oc-
cupations of all the higher bands, allowing to better identify
the excitations (Fig. 11). Additionally the expected transition
frequencies from band structure calculation are shown as red
shaded regions, with the width being given by the minimal
to maximal band gap over the entire Brillouin zone. The
measured transition peaks roughly match with the single parti-
cle band structure calculations, while a complete quantitative
understanding of the spectra would probably also need to
include the complete dynamics during the excitation pulse,
interaction effects, which can be sizable also in a lattice of
tubes [70] as well as distortions in the band structure due to
finite-size effects and the additional harmonical confinement
in the experiment.

The excitation to the 2nd band around 7 kHz can be clearly
identified in all three spectra. The sublattice modulation ad-
ditionally has a two-photon transition to the 2nd band. The
excitations to the connected 3rd and 4th bands around 16 kHz
and to the connected 5th and 6th bands around 22 kHz are
also present in all three spectra. Additionally, there are ex-
citations around 15 kHz for the amplitude modulation and
lattice shaking, which are absent for the sublattice modulation.
We interpret them as two-photon transitions into the seventh
band and assume that the observed smaller signal in the 3rd to

FIG. 11. Band-resolved excitation spectra of a boron-nitride lat-
tice with φg/(2π ) = 0.024. Relative populations of the different
bands (see labels of the panels) versus spectroscopy frequency for
sublattice modulation (dark blue, circles), amplitude modulation
(middle blue, triangles) and circular lattice shaking (light blue,
crosses). The shaded areas indicate the expected transition frequen-
cies into the stated bands for single-photon transitions (red) and
two-photon transitions (light red). The width of the areas indicates
the spectrum of quasimomentum-preserving transition frequencies
starting from a full lowest band. The parameters for the data set are
stated in Fig. 4.

6th bands are due to band decay during the excitation pulse.
Similarly, there are two-photon transitions to the connected
10th and 11th bands around 20 kHz and to the 13th band
around 23 kHz, which explain the broader excitation feature
for amplitude modulation and lattice shaking. We conclude
that the spectra for sublattice modulation are cleaner and
potentially better suited for selective coupling to higher bands
or off-resonant Floquet protocols.

To interpret these observations, we evaluate the matrix
elements of the different perturbations, as relevant for lin-
ear response theory, and integrate them over quasimomentum
(Appendix K). We plot the resulting excitation strengths in-
tegrated over the first Brillouin zone versus band number for
different geometry phases and find clear differences between
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FIG. 12. Resonant excitation strength from the lowest band. Transition matrix elements into higher bands for sublattice modulation (dark
blue, circles), amplitude modulation (middle blue, triangles), and circular lattice shaking (middle blue, triangles) integrated over the first
Brillouin zone plotted on a logarithmic scale. The examined geometries are from left to right: φg/(2π ) = 0, 0.024, 0.5. The modulation
strengths correspond to the experimental values of Fig. 4, i.e., εsm = 0.02 for sublattice modulation, εam = 0.05 for amplitude modulation
and εcs = 0.08 (resonance to 2nd band), 0.035 (resonance to 3rd and 4th bands), 0.028 (resonance to 5th and 6th bands), 0.021 (theoretical
expectation for resonance to 7th band) for circular lattice shaking.

the three modulation types (Fig. 12). From the simple analogy
to a harmonic oscillator, which couples all levels for shaking
but only levels with the same parity for amplitude modulation,
we expect a stronger band dependence for amplitude modu-
lation and sublattice modulation. Indeed, these modulations
have strongly suppressed excitation strengths to the 3rd and
6th band. The excitation strengths to the 2nd band, however,
differ between amplitude modulation and sublattice modula-
tion: in the honeycomb lattice only the sublattice modulation
efficiently couples into the 2nd band.

The experimental observations show similar qualitative be-
havior as this simple consideration. Like previously stated
however, a complete description would need to include, e.g.,
the complete dynamics during the excitation pulse and in-
teraction effects. In particular, the larger ratio between the
excitation strengths to the 2nd and 4th bands for sublattice
modulation compared to amplitude modulation for φg = 0.15
as in the measurements, fits with the experimental observa-
tion. The suppressed excitation strengths into the 3rd and
6th bands (Fig. 12) are not easily resolved in the exper-
iment, because these bands are connected to the 4th and
5th bands, respectively, and one expects significant excita-
tion into the combined bands. Furthermore, the two-photon
resonance to the 2nd band for the sublattice modulation is
in agreement with the higher-order terms that arise in the
expansion of the perturbation for the sublattice modulation
(also compare the analysis of higher-order terms for phasonic
modulation [42]).

APPENDIX J: PCA ANALYSIS OF DISTORTED
BRILLOUIN ZONES

We analyze the band populations via adiabatic band map-
ping [71], i.e., by exponentially ramping down the lattice
depth within 1.5 ms such that the higher bands are mapped
onto the higher Brillouin zones (BZ) of the hexagonal lattice.
The optical confinement from the lattice beams with an es-
timated trapping frequency of 65 Hz is ramped down along

with the lattice depth and the additional magnetic confinement
with trapping frequency of 45 Hz is switched off at the end
of the lattice ramp within 40 μs. In the resulting images,
we find a reproducible distortion of the populated regions
compared to the ideal BZs [example images in Fig. 13(a)].
These distortions are particularly pronounced for higher BZs,
which become rounded and shifted in the direction of gravity,
i.e., toward the bottom in the figure. We expect this to result
from the effect of the external trap, possible misalignment
of the magnetic and optical confinement, and gravity dur-
ing band mapping. Note that in contrast to other setups, the
direction of gravity lies within the 2D lattice plane in our
system.

Because these effects are difficult to simulate numeri-
cally, we extract the distorted BZs from the data itself by
performing a principal component analysis (PCA) on the com-
bined set of measurements from Fig. 4 (147 images in total).
The BZ masks resulting from the analysis explained below
[Fig. 13(b)] are then used for the extraction of the relative
populations in the spectroscopy.

PCA has been previously used in cold atom experi-
ments to extract collective modes, noise patterns, or density
fluctuations of Bose-Einstein condensates in a model-free
way [72–74] as well as for fringe removal algorithms [75,76].
The mathematical protocol can be found, e.g., in Ref. [72].
The eight most relevant principal components (PCs) are
shown in Fig. 13(c). Higher orders only contain noise.

These PCs can be used to identify the distorted BZ and to
derive the corresponding masks. We keep the ideal BZs for the
1st and 2nd bands, because their deformations are very small.
To construct the 3rd to 5th+6th BZ masks, we pick the PC
with the most contrast between the corresponding expected
region and its surroundings. We first determine the 5th+6th
BZ masks using the 2nd PC. By binarizing with the threshold
at the middle of the range of values (white color in the image)
while forcing pixels inside the 1st and 2nd BZs to be zero,
we get a distorted mask, which fits well to the images with
5th+6th bands excitations (see below).
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FIG. 13. PCA analysis of distorted higher BZs. (a) Example band
mapping images of atoms in higher bands indicate distortions relative
to the ideal BZs (black lines). (b) Masks of the first five distorted BZs
obtained by the PCA analysis of the band mapping images. (c) The
first nine ideal BZs sampled with the same pixel size for comparison.
(d) The first nine PCs of the data set of 147 images as in (a) carry
information on the distorted BZs.

From this we also get the combined region of the distorted
3rd and 4th BZs as everything between the 2nd and 5th+6th
BZ masks. At last, we determine the border between the 3rd
and 4th BZs using the 4th and 6th PCs. We use the sum of
both, after normalizing them to span the same range of values,
as we find this to have less fuzzy boundaries, but we get very
similar results for separate analyses of the PCs. After this anal-
ysis, there are still some islets of a few pixels sprinkled in the
oppositely assigned regions, which have sizes larger 50 pixels,
which we flip setting an appropriate threshold. While these BZ
masks are derived from the data set of the spectroscopy, they
also fit reasonably well to the images obtained by sweeping
into higher bands of Fig. 3 considering the differences in
lattice depth.

The 5th+6th BZ masks obtained in this way is almost twice
as large as the other four masks. We conclude that it contains
the 5th and 6th BZs. This is supported by the observation that

these two bands touch [compare Fig. 3(b)] and stay connected
during the lattice ramp down of the band mapping protocol.
It was found in previous work on checkerboard lattices that
the populations of BZs mix even when the bands only touch
briefly during the lattice ramp [5,33]. In our system, this
happens, e.g., between the 2nd and 4th bands, which might
explain the residual population of the 2nd BZ in the third im-
age of Fig. 3(a). The shape of the distorted 5th+6th BZ masks
does indeed contain much of the ideal 6th BZ, even though
other parts of it are missing. It contains almost nothing of the
7th BZ, which fits to the gap between the 6th and 7th bands
down to small lattice depths. For a complete understanding of
the band mapping images, a full numerical calculation of the
lattice ramp including the harmonic trap would be worthwhile
although beyond the scope of this article.

APPENDIX K: CALCULATION OF MATRIX ELEMENTS

We derive the resonant excitation strengths for the three
different types of lattice modulations presented in Fig. 4. In
the case of amplitude modulation every lattice beam intensity
Ii is modulated periodically with equal frequency ω/(2π ),
phase, and strength εam:

Ii(t ) = Ii,0 + εamIi,0 sin (ωt ).

Restricting also to the balanced case (I1,0 = I2,0 = I3,0) this
leads to the total lattice potential

Vam(r, φg, t ) = 2V [1 + εam sin(ωt )]
∑

i

cos
(

bi · r + φg

3

)

= Vpot (r, φg) + sin(ωt )Vpot
′(r, φg). (K1)

with the time-independent perturbation operator Vpot
′(r, φg) =

εamVpot (r, φg).
We calculate the excitation strength of this time-dependent

potential using time-dependent perturbation theory. Accord-
ing to Fermi’s golden rule, the excitation rate �

q,q′
B,B′ from an

initial quasimomentum q in B = 1 to a final quasimomentum
q′ in band B′ is given by

�
qq′
B,B′ ∝

∣∣∣∣
∫

d3rψq
B(r)Vpot

′(r)ψq′∗
B′ (r)

∣∣∣∣
2

. (K2)

The states ψ are eigenstates of the static lattice Hamiltonian
Ĥ , given by periodic Bloch states

ψ
q
B(r) = e−iq·r ∑

u

cq,B
u e−iku·r, (K3)

with Bloch coefficients cq,B
u and ku being integer linear com-

binations of the reciprocal lattice vectors bi. Plugging one
summand of Vpot

′(r), e.g., V ′
1 = εam2V cos(b1r + φg/3) and

Eq. (K3) into Eq. (K2) we get
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∫
d3rψq

BV ′
1ψ

q′∗
B′ = εamV

∫
d3re−i(q−q′ )·r

(∑
u

cq,B
u e−iku·r+ib1·r+iφg/3

)(∑
u′

c∗q′,B′
u′ eiku′ ·r

)

+ εamV
∫

d3re−i(q−q′ )·r
(∑

u

cq,B
u e−iku·r−ib1·r−iφg/3

)(∑
u′

c∗q′,B′
u′ eiku′ ·r

)

= εamV δq,q′
∑
u,u′

(
eiφg/3δku+b1,ku′ + e−iφg/3δku−b1,ku′

)
cq,B

u c∗q′,B′
u′

= εamV δq,q′

[∑
u

c∗q,B′
u

(
cq,B

ku+b1
e−iφg/3 + cq,B

ku−b1
eiφg/3

)]
. (K4)

Doing the analogous for all summands of Vpot
′(r) we get for the rate

�
qq′
B,B′ ∝ δq,q′ε2

amV 2

∣∣∣∣∣
[∑

u

c∗q,B′
u

(
cq,B

u+b1
e−iφg/3 + cq,B

u−b1
eiφg/3

)]

+
[∑

u

c∗q,B′
u

(
cq,B

u+b2
e−iφg/3 + cq,B

u−b2
eiφg/3

)] +
[∑

u

c∗q,B′
u

(
cq,B

u+b3
e−iφg/3 + cq,B

u−b3
eiφg/3

)]∣∣∣∣∣
2

. (K5)

In the case of sublattice modulation, the phase of every 1D lattice is equally periodically modulated with amplitude Asm,
ensuring a fixed lattice position and a change in φg of three times the phase amplitude [Eq. (I1)]. This changes the perturbation
operator with respect to the static lattice Hamiltonian:

Vsm(r, φg, t ) = 2V

{∑
i

cos

[
bi · r + φg

3
+ Asm

3
sin(ωt )

]}

= 2V

{∑
i

cos

(
bi · r + φg

3

)
cos

[
Asm

3
sin(ωt )

]
− sin

(
bi · r + φg

3

)
sin

[
Asm

3
sin(ωt )

]}

≈ 2V

[∑
i

cos

(
bi · r + φg

3

)
+ cos

(
bi · r + φg

3
+ π

2

)
Asm

3
sin(ωt )

]

= Vpot (r, φg) + Vpot (r, φg − π/2)εsm sin(ωt ) = Vpot (r, φg) + sin(ωt )Vpot
′(r, φg − π/2), (K6)

with εsm = Asm
3 . In the third line we only used the first order of the sine and cosine with sin ωt in the argument, as the

perturbation is very small. Higher orders lead to the appearance of terms modulated with multiples of ω. For the excitation
probability this results only in an additional phase and a different prefactor compared to amplitude modulation. Thus, the
excitation rate for sublattice modulation is

�
qq′
B,B′ ∝ δq,q′ε2

smV 2

∣∣∣∣∣
[∑

u

c∗q,B′
u

(
cq,B

u+b1
e−i(φg/3+π/2) + cq,B

u−b1
ei(φg/3+π/2)

)]

+
[∑

u

c∗q,B′
u

(
cq,B

u+b2
e−i(φg/3+π/2) + cq,B

u−b2
ei(φg/3+π/2)

)] +
[∑

u

c∗q,B′
u

(
cq,B

u+b3
e−i(φg/3+π/2) + cq,B

u−b3
ei(φg/3+π/2)

)]∣∣∣∣∣
2

. (K7)

Last, the excitation probability for the circular shaking is determined using our lattice description. Here two of the three lattice
beams are periodically modulated with amplitude 
ν as δν1 = 0, δν2,3 = 2
ν[ ± cos(ωt ) + √

3 sin(ωt )], which is equivalent
to detunings of the sideband frequencies να,β,γ of

δνα = δν1 − δν2 = −2
ν[cos(ωt ) +
√

3 sin(ωt )],

δνβ = δν2 − δν3 = 4
ν cos(ωt ),

δνγ = δν3 − δν1 = −2
ν[cos(ωt ) −
√

3 sin(ωt )]. (K8)

As this gives
∑

i δνi = 0 it indeed only changes the lattice position and not its geometry. From the detuning we get the time
derivative of the phase φ̇ = 2πδνi and thus

φα = Acs[sin(ωt ) −
√

3 cos(ωt )], φβ = 2Acs sin(ωt ),

φγ = Acs[sin(ωt ) +
√

3 cos(ωt )], (K9)
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with Acs = 4π
ν/ω. The time-dependent potential for circular shaking then is

Vcs(r, φg, t ) = 2V

(
cos

{
b1 · r + φg

3
− Acs[sin(ωt ) −

√
3 cos(ωt )]

}
+ cos

[
b2 · r + φg

3
+ 2Acs sin(ωt )

]

+ cos

{
b3 · r + φg

3
− Acs[sin(ωt ) +

√
3 cos(ωt )]

})

≈ 2V

{
cos

(
b1 · r + φg

3

)
+ cos

(
b1 · r + φg

3
− π

2

)
Acs[sin(ωt ) −

√
3 cos(ωt )]

+ cos

(
b2 · r + φg

3

)
+ cos

(
b2 · r + φg

3
+ π

2

)
2Acs sin(ωt )

+ cos

(
b3 · r + φg

3

)
+ cos

(
b3 · r + φg

3
− π

2

)
Acs[sin(ωt ) +

√
3 cos(ωt )]

}

= Vcs(r, φg) + εcs2V

{
1

2
cos

(
β1 − π

2

)[
sin(ωt ) −

√
3 cos(ωt )

] + cos

(
β2 + π

2

)
sin(ωt )

+ 1

2
cos

(
β3 − π

2

)
[sin(ωt ) +

√
3 cos(ωt )]

}
, (K10)

with εcs = 2Acs. In the end we used βi = bi · r + φg

3 and again sine and cosine with sin(ωt ) in the argument are approximated to
first order. Plugging the modulated part of Vcs(r, φg, t ) into Eq. (K2) we get

�
qq′
B,B′ ∝ δq,q′ε2

smV 2

∣∣∣∣∣
(

1

2
+ i

√
3

2

)[∑
u

c∗q,B′
u

(
cq,B

u+b1
e−i(φg/3−π/2) + cq,B

u−b1
ei(φg/3−π/2)

)]

+
[∑

u

c∗q,B′
u

(
cq,B

u+b2
e−i(φg/3+π/2) + cq,B

u−b2
ei(φg/3+π/2)

)] +
(

1

2
− i

√
3

2

)[∑
u

c∗q,B′
u

(
cq,B

u+b3
e−i(φg/3−π/2) + cq,B

u−b3
ei(φg/3−π/2)

)]∣∣∣∣∣
2

.
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