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Anomalous transport regime in a non-Hermitian Anderson-localized hybrid system
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In a disordered environment, the average transmission of a propagating wave falls with increasing disorder.
Beyond a crossover, transport is arrested because the wave is trapped in the bulk of the sample with expo-
nentially decaying coupling to the boundaries due to Anderson localization. Here, we report the experimental
demonstration of anomalous transport of hybrid particles under localizing disorder in a non-Hermitian setting.
We create hybrid polariton-photon states in a one-dimensional copper sample with a comb-shaped periodic
microstructure designed for microwave frequencies. Non-Hermiticity arises from multiple loss channels existing
in the real experimental sample. Disorder is introduced by deliberate alterations of the periodic microstructure.
Direct measurement of wave functions was achieved by a near-field probe. At a particular disorder, we observe
the onset of Anderson localization of the hybrid states attested to by the exponential tails of the wave function.
However, at stronger disorder and under conditions that support localization, an unexpected enhancement in
the transmission was facilitated by an emergent miniband. The transmission was traced to the hopping of the
hybrid particle over multiple coexisting localized resonances that exchange energy due to the nonorthogonality.
These emergent states are manifested in all configurations under strong disorder, suggesting a novel transport
regime. This is verified by measuring the averaged conductance which indicates an anomalous transport regime
in the hybrid, non-Hermitian environment under strong disorder. These experimental observations open up new
unexplored avenues in the ambit of disorder under non-Hermitian conditions.
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One of the most exotic phenomena in mesoscopic physics
of disorder is Anderson localization (AL), which is syn-
onymous to quasiparticle trapping facilitated by destructive
self-interference of quantum waves associated with the quasi-
particle. AL occurs at the limit of strongest disorder with
subsidiary regimes of transport, such as weakly localized,
diffusive, quasiballistic, and ballistic manifesting with sys-
tematic reduction in disorder. Regardless of whether the
quasiparticle is electronic [1,2], photonic [3–15], phononic
[16], or of quantum matter [17], the degree of disorder places
the transport in one of the above regimes. Of late, however,
novel and unexpected behavior has been reported from non-
Hermitian photonic systems that fails to justify the underlying
strength of disorder [18,19].

The advent of deliberate non-Hermiticity has led to promi-
nent developments in photonics in recent years. Engineered
non-Hermitian structures have revealed a plethora of excit-
ing photonic behaviors, such as the striking revelation of
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exceptional points associated with patity-time symmetry im-
plemented through simultaneous loss and gain [20–22]. In
the domain of complex systems, random lasers were the first
non-Hermitian systems [23–26], although non-Hermiticity
was not invoked in the physics thereof. Deliberate non-
Hermiticity introduced theoretically in topological disordered
lattices exhibited a gapless energy spectrum in the metal-
lic phase, in stark contrast to the gapped spectrum in the
Hermitian case [27]. Furthermore, in two-dimensional lat-
tices, non-Hermiticity was shown to modify the level-spacing
statistics [28], although it preserves the Anderson transition
in three-dimensional lattices [29]. Apart from inclusion of
gain (negative imaginary refractive index), systems with pure
dissipation also exhibit interesting transport behavior. For
instance, measurements have been carried out on diffusive
and localized transport in open systems [30–32]. Such open
samples have helped in identifying specific effects caused by
non-Hermiticity, namely, increased eigenfunction correlation
accompanied by strong modal anticorrelation that facilitates
normalized transport [33]. Furthermore, the presence of non-
Hermiticity erases the equivalence among total excited energy,
dwell time, and density of states (DoS) that, otherwise, exists
in the Hermitian system [34]. Recently, a surprising develop-
ment was reported in which a localized system was shown
to exhibit transport by a novel mechanism through sudden
jumps between distant sites [33], a result which has also
been experimentally verified [35]. Overall, one can expect
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non-Hermiticity to continue unraveling novel effects in quasi-
particle transport in mesoscopic systems.

On a parallel note, ongoing studies in mesoscopic transport
are exploring an entity of particular interest, namely, com-
posite or hybrid quasiparticles. These particles are created
in systems wherein strong interactions between two forms of
energy are induced by the underlying structure. They react to
a disordered environment with novel emergent behavior. For
instance, novel topological phases were discovered in photon-
phonon composites in cavity optomechanical systems [36],
which were further shown to exhibit a nontrivial frequency
dependence of localization length in a disordered environment
[37]. Interestingly, Anderson localization was demonstrated
to be a potential resource to enhance the coupling between
phononic and photonic components to manifest strongly hy-
bridized composites [38]. The challenges in colocalization of
the two components has been overcome in cleverly designed
GaAs/AlAs random superlattices [39].

Given the intricacies that non-Hermiticity and hybridiza-
tion bring to mesoscopic transport, one can expect exciting
consequences of simultaneous presence of both. Precisely
such a scenario is addressed in this paper. We experimen-
tally unravel a novel anomalous transport regime at localizing
disorder in a hybrid non-Hermitian system. Spoof surface
plasmon polaritons (SSPPs) [40] realized in a corrugated
metal structure were employed as the composite particles. The
SSPPs are generated due to the hybridization of the cavity
resonant mode with the polariton mode. We have confirmed
the occurrence of the anomalous transport regime (ATR) by
measuring the generalized conductance in the disordered sys-
tem. In corroboration of our earlier theoretical work, we find
that the transport is effected via the manifestation of necklace
states [41–49] as identified from direct measurements of phase
jumps occurring in an emergent miniband at high disorder.
Concomitant simulations reveal the constituent localized res-
onances in the measured necklace states. A statistical study of
the necklace states reveals the high probability of their occur-
rence and, hence, the certainty of the ATR in such systems.

Our experimental samples comprise the well-established
SSPP structures in the form of one-dimensional arrays of
microwave resonators cast into comb-shaped corrugated metal
strips as shown in Fig. 1(a). In a single unit cell of periodicity
d = 6 mm, the groove depth and width are denoted by h and
a, respectively, and the strip width and thickness are m and t ,
respectively Fig. 1(b). The structure is sculpted, using a com-
mercial circuit board milling machine, onto an FR4 dielectric
substrate (a commercial printed circuit board) with εr = 4.4
and total thickness of 1.45 mm. Several periodic samples
of metallic corrugated strips with varying h were fabricated
using the milling machine and experimentally tested at desig-
nated microwave frequencies. The dissipation in our system
exists due to multiple reasons. First, the metal and substrate
(FR4) offer material dissipation at the relevant frequencies.
Next, the input and output ports make this an open system.
And finally, the unavoidable fabrication limitations create
out-of-plane scattering. Although our setup does not directly
measure the out-of-plane scattering, the fact that the resolution
of the circuit board milling machine is limited implies that
the subresolution corrugations will channel the electromag-
netic energy into free space. The collective dissipation can

FIG. 1. Experimental setup and SSPP structure. (a) Schematic of
the near-field microwave experimental setup comprising the SSPP
sample and a vector network analyzer for the source and detection.
(b) Unit cell of the SSPP structure with dimensions d = 6 mm (lattice
constant); m = 2 mm (metal corrugation width); h = 7 mm (height),
and t = 35 μm (metal film thickness). (c) Images of the fabricated
samples using standard printed circuit board (PCB) fabrication tech-
nique: periodic (top) and disordered (bottom).

be quantified by the diminishing amplitude of the intensity
distribution in the periodic system. Our samples exhibited a
loss length of ∼1.84Lsys. See Supplemental Material (Sec. S2)
[50] for the measurements.

Disorder is introduced into the system by randomly
displacing the position of each resonator by an amount de-
termined by a uniformly distributed random variate � ∈
[−δa/2, δa/2], where 0 � δ � 1 represents the disorder
strength. Multiple configurations of disordered samples with
δ = 0.3, 0.5 (referred to as moderate disorder, hereafter) and
0.7 and 0.9 (strong disorder) were fabricated. Figure 1(c)
shows a fabricated periodic and a disordered sample. We built
impedance-matching structures at the output and input ends
of the array to ensure efficient launch of the microwave signal
into the sample. This was accomplished by constructing metal
teeth with gradually increasing heights over a few unit cells
at the two ends [51]. The experimental setup consisted of an
Agilent E5071C Vector Network Analyzer (VNA), an SMA
connector to input the microwave signal at one end and a
monopole antenna that acts as the detector. The other end was
terminated with a 50-� resistor. The detector, attached onto an
XY translation stage, is numerically controlled by a stepper
motor. The sample was mounted taut horizontally such that
the probe distance from the surface of the sample remained
∼1.5 mm at any point along the X axis (axis of translation).
The scanning step was 1 mm to obtain high-resolution images.
The probe picked up the complex Ez field during the scan,
which was recorded by the VNA. In support of the experimen-
tal measurements, finite-element computations were carried
out using the rf module of COMSOL MULTIPHYSICS software.
Eigenmode analysis was carried out in the simulation for the
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FIG. 2. Measured spatial intensity distribution I(x) maps for three structures. (a) Periodic (δ = 0.0), (b) moderate disorder (δ = 0.5), and
(c) high disorders (δ = 0.7). An isolated localized mode is seen in (b) around 4.0 GHz, a high-transmission mode close to 4.5 GHz seen in (c).

same structures as in the experiments, as well as transmission
profiles were calculated by implementing a lumped port as a
source of excitation.

The experimentally measured spatial distribution of in-
tensity I (x) is shown in Fig. 2. Image Fig. 2(a) represents
the intensity in the periodic structure. Figures 2(b) and 2(c)
show the spatial intensity for two particular configurations at
moderate disorder (δ = 0.5) and high disorder (δ = 0.7), re-
spectively. The sample is excited from one end at x/Lsys = 0,
where Lsys is the total system length. The spectrally resolved
field is recorded at each x position at which the source signal
is swept through a frequency range of 3.5 to 6 GHz. For the
periodic system Fig. (2a), extended modes are formed across
the system for all frequencies up to the band edge at 4.77 GHz.
The band gap (beyond 4.77 GHz) is completely devoid of
modes. These frequencies were in excellent agreement with
the finite-element calculations as elaborated in Supplemental
Material S1 [50]. Figure 2(b) shows an isolated localized
mode with exponentially decaying tails on both sides at inter-
mediate disorder δ = 0.5 around ∼4 GHz. The decay length
of the mode was measured to be ∼0.34Lsys. Image Fig. 2(c)
depicts the behavior at high disorder δ = 0.7. Beyond 4 GHz,
the transport decays substantially due to the strong disorder.
Nonetheless, extended modes are observed around the fre-
quency of 4.5 GHz despite the strong disorder, leading to high
transmission. That these extended modes were of the character
of necklace states was directly inferred from two diagnostics,
namely, the experimentally measured phase characteristics
and the computed eigenmode analysis.

The hybridization occurring in this system is a con-
sequence of the interaction between the cavity resonant
frequency ( fc = 5.35 GHz, dashed gray line) of the resonant
cavity and the polariton line (gray solid line) as shown in
Fig. 3(a). The avoided crossing due to this interaction also
results in an upper branch (not shown here) of the disper-
sion curve which is radiative as it lies above the light line.
The bound lower branch corresponds to the SSPP dispersion
which occurs at a much lower frequency range compared
to SPP dispersion, which in the case of copper, occurs in
the petahertz range. The hybridization was experimentally
verified by measuring the dispersion diagram of the finite-
sized periodic and disordered structures and comparing it
with the expected resonance characteristics. Figures 3(a)–
3(c) show the said dispersion. The white dotted curve in
Fig. 3(a) illustrates the dispersion behavior computed using
the eigenmode solver of COMSOL MULTRPHYSICS after apply-

ing periodic boundary conditions. The experimental modes
are in excellent agreement with the computed dispersion,
confirming successful excitation of SSPPs formed over the
structured metal surface. The band edge lays at 4.77 GHz. The
cyan arrows indicate the width �k at any frequency, which
is inversely proportional to the spatial extent of the mode
at the frequency. Figures 3(b) and 3(c) show the measured
dispersion of two particular configurations at high disorder
δ = 0.7 and 0.9, respectively. Disorder clearly broadens the
�k at a few frequencies as labeled by the arrows, reflecting
the spatial localization of modes. The violet arrows represent
localized modes as inferred from the spatial studies (discussed
further), whereas the cyan arrows indicate persisting extended
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FIG. 3. (a) Theoretically computed dispersion for SSPP struc-
tures(red curve) and SPP curve for copper(blue curve). Gray dashed
line marks the cavity resonant frequency( fc = 5.35 GHz) and the
blue solid line is the plasma frequency of copper ( fp ∼ PHz). The
break in the Y axis signifies the very low frequency of SSPP in
comparison to the surface plasmon. (b) Experimentally measured
dispersion for the finite SSPP structures. Dashed cyan line: Nondis-
persive resonant mode (5.35 GHz) for an infinite sample. Dotted
white curve: Hybrid mode at the band edge ∼4.77 GHz. Measured
experimental results (Viridis color map) show the hybrid band in
excellent agreement with the predicted band. Arrows demarcate the
FWHM of the k-space peaks. Highly disordered structures: (c) δ =
0.7 and (d) δ = 0.9. (e) �k as a function of frequency, measured at
the three values of disorder. The band-edge region (vertical purple
band) shows a drop in �k.
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FIG. 4. Probability distribution of eigenfrequencies for an en-
semble of highly disordered configurations showing eigenfrequency
condensation around the band edge (∼4.7 GHz). (b) Measured DoS
as a function of frequency. The band-edge region (shaded pink)
shows an enhanced DoS, a consequence of frequency pinning in
hybrid systems.

states in the structure even under strong disorder. The coex-
istence of localized and extended states is revealed in subplot
of Fig. 3(d), which illustrates the systematic variation of �k
with frequency. Blue circles represent the periodic structure,
with narrow and almost uniform �k across the frequency
axis. Orange and green circles (δ = 0.7 and 0.9, respectively)
illustrate a rise in the �k at frequencies where localization
sets in. Both curves show a fall in the shaded frequency region
where the extended states manifest.

Unlike conventional dielectric systems, in a hybrid plas-
monic system under high disorder, the eigenvalues cannot
migrate deep into the band gap. They tend to accumulate in
the vicinity of the band edge and the hybridization region.
Our simulations detected this behavior in the eigenvalues as
discussed in Fig. 4, which shows the frequency pinning in
hybrid plasmonic systems [18]. Interestingly, we note that a
similar phenomenon called “eigenvalue condensation” was
theoretically observed for strong randomness in imaginary
potentials [33]. The non-Hermiticity lifts the orthogonality
of the pinned eigenmodes and enables energy transport be-
tween them. In this scenario, whenever multiple localized
eigenmodes overlap even minimally in the tails, the energy
can be transmitted through the chain of eigenmodes, that is,
the so-formed necklace states (see Supplemental Material S5)
[50]. Theoretically, it is expected that these extended states
formed by the pinning lie in an emergent miniband. In the
experimental data, as illustrated in (b), such a miniband can
be directly inferred from the increased DoS shown in the
same frequency (shaded) region. In the weak disorder limit
(δ = 0.0, 0.3), the DoS shows a typical behavior where it
consistently increases up to the band edge. The miniband
manifests at δ = 0.7 and is strongly conspicuous at δ = 0.9.

The necklace states, essentially coupled localized reso-
nances, can be analyzed by observing the phase jumps in the
constituent phase profile [45] measured from complex field at
the output end of the samples. Every component resonance ef-
fects a phase shift of π . Figure 5 discusses the phase behavior
of a particular necklace state observed in a sample with high
disorder. The green curve depicts the measured transmission
spectrum (left Y axis). The peak at around 3.7 GHz repre-
sents the photonic bands wherein localization has not yet set
in. The drop in transmission at ∼4 GHz represents incipient
localization. Next, a broad anomalous peak is seen in the

FIG. 5. Measurement of phase and necklace state order in sam-
ples with high disorder. (a) Experimentally measured transmission
spectrum (green solid line) and the corresponding extracted phase
(pink solid line) for a single configuration at high disorder. A drop in
phase by a magnitude of 4π endorses a fourth order necklace state.
The simulated transmission spectrum (shaded green) is in excellent
agreement with the experimental measurements and indeed reveal
four resonances in the necklace (see Supplemental Material S3) [50].
(c) shows the necklace order m distribution measured over 49 modes.
(c) Spatial intensity distributions measured for different orders of
necklace states.

vicinity of the band edge at around 4.5 GHz which represents
the miniband formed due to the coalescence of eigenvalues.
The peak at ∼4.2 GHz is not a consequence of the structure,
as ascertained from various configurations. The phase, as ex-
tracted from the complex Ez measurement, is shown in the
pink curve (right Y axis). A clear jump of 4π is observed
over the frequency range pertinent to the miniband. Corre-
sponding simulations for this particular disorder configuration
provided the theoretical transmission spectrum shown by the
overlapping shaded green region. Eigenvalue analysis of this
spectrum clearly revealed four constituent coupled resonances
creating the necklace state. See Supplemental Material S3 [50]
for details. Over the measured 49 states in 21 samples, the
distribution of localized modes and necklace states is shown
in the bar graph in Fig. 5(b). The measured phase jump of
4π endorses this coupling. Several such necklace states of
various orders were observed, and a few representative states
are shown in Fig. 5(c). The top panel shows an order 1,
i.e, essentially a conventional Anderson localized mode [see
Fig. 2(b)] with a localization length ξ/Lsys = 0.3. The lower
panels exhibit necklace states with orders 2–4, respectively,
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FIG. 6. Effect of disorder on generalized conductance. The inset:
Measured 〈g′〉 from intensity distributions averaged over 21 config-
urations as a function of frequency. The pink shaded regime up to
〈g′〉 = 1 demarcates localization regime. Main plot: P(g′) measured
at two regions as marked by pink and orange rectangles in (a): (I)
localized region (〈g′〉 < 1): long-tailed distribution, best fit with a
log-normal function (solid line) with mean 〈g′〉 = 0.6 and width
σg = 0.07. (II) Anomalous transmission regime (〈g′〉 � 1): The dis-
tribution exhibits a Gaussian profile with mean 〈g′〉 = 1.2 and width
σg = 0.2.

as characterized by the measured phase jumps. As seen, al-
most 50% localized states couple to form necklace states of
some order. This fact distinguishes the hybrid non-Hermitian
system from conventional systems wherein the necklace states
are statistically rare and do not contribute to average transport.
In contrast, the high probability of necklace states in this sys-
tem induces anomalous transport. It is interesting to note how
dissipation acts differently in coupled eigenmodes in localized
and diffusive systems. In a diffusive system, the transport
occurs due to weak quasimodes that are already strongly cou-
pled [52]. The weakness of the quasimodes arises from the
coupling to the boundaries. In this situation, any absorption
merely reduces the amplitude of all quasimodes and, hence,
the overall transmission. In contrast, in the localizing system,
the native quasimodes are quite strong and are weakly coupled
to each other. Here, the dissipation succeeds in coupling the
quasimodes and enhancing transmission, although the associ-
ated decay in amplitude also exists in this case.

The average transmission in disordered systems can be
characterized by a parameter known as the generalized con-
ductance g′, derived from the intensity fluctuations. The g′ can
faithfully characterize localization even in dissipative systems
[7]. When a sample is in the localized regime, the value of
g′ turns out to be below unity. Our samples are designed to
be in the localized regime, and yet we see extended states
therein, which indicates a novel regime of transport. In or-
der to confirm the regime of transport uncovered in this
best, we calculate the generalized conductance of the samples
in the presence of the necklace states as shown in Fig. 6.
The g′ is provided by 2/3var(I ), where I is either the nor-
malized total transmission, or in-plane spatial intensity in a
one-dimensional sample [7,53]. We extracted the generalized
conductance 〈g′〉 over 21 highly disordered configurations.
Figure 6(a) shows the average generalized conductance 〈g′〉 vs
frequency, with 〈g′〉 = 1 delimiting the onset of the Anderson

localized regime. In the vicinity of 4.5 GHz, the 〈g′〉 is clearly
seen to rise above 1, endorsing the anomalous transport. The
error bars indicate the standard deviation of the g′ values
indicating that the majority of the samples were close to, or in
the anomalous transport regime. For lower frequencies, 〈g′〉 <

1 for the localized regime. The distribution of conductance
P(g′) follows a stipulated behavior in disordered systems. The
rectangles (I) and (II) in the inset of six demarcate the regions
over which g′ values were chosen to create the P(g′), shown
in the main Fig. 6. In the localized regime [magenta dots from
rectangle (I)], the distribution is asymmetric and long-tailed,
and nicely fit by a log-normal function with mean 0.6 as seen
from solid the magenta curve. That conductances in the local-
ized regime are distributed log-normally is a well-established
fact also confirmed experimentally [8,14,15]. On the other
hand, in the ATR [green squares, data from rectangle (II)], the
distribution is symmetric albeit with a longer tail. The data are
excellently fit by a Gaussian distribution as is expected in the
metallic regime. The mean 〈g′〉 = 1.2 from the Gaussian fit.

These data lie at the boundary of localization-
delocalization. For this regime, we apply the theory
established in Ref. [54], where the authors theoretically
examine the conductance distributions in one-dimensional
disordered systems. In a particular situation where
localized and extended states coexist, the P(g′) for the
metallic states is shown to follow a Gaussian function
P(g′) ∝ exp [− 15

2 (g′ − 〈g′〉)2]. Clearly, the experimental data
in Fig. 6 shows an excellent fit to this equation, which provides
a value of 〈g′〉 = 1.16, whereas the experimental value was
measured to be 1.2, once again in excellent agreement. These
data conclusively endorse the existence of the system in a
properly conducting regime, despite insulating disorder. The
insulating nature of disorder is certified by the fact that, at
frequencies away from the band edge where necklaces are not
yet forged, the conductances are consistently subunity. The
probability distributions [P(I/〈I〉)] of normalized intensity
measured at localized, and the necklace state regimes are
provided in Supplemental Material S4 [50]. We note here that
very similar behavior was reported earlier in conventional
localizing samples wherein the crossover (g′ ∼ 1) was
achieved by weakening the disorder [8]. In our samples, the
crossover occurred at the same strong disorder, aided by the
necklace states.

In conclusion, we have successfully uncovered an anoma-
lous transport regime in hybrid non-Hermitian systems.
One-dimensional structures supporting spoof surface plasmon
polaritons were investigated for the same. Conventional An-
derson localization leading to arrested transport was observed
at moderate disorders. However, at high disorder, an enhance-
ment in transmission is facilitated by formation of necklace
states. The hitherto reported necklace states in localizing sys-
tems are rare [2]. In contrast, in the hybrid non-Hermitian
system, the necklace states manifest persistently for all config-
urations at high disorder. The anomalous transmission man-
ifests in the vicinity of the band-edge frequency where fre-
quency pinning of modes occurs due to constrained migration.
The resulting emergent miniband has been experimentally
demonstrated in our experiments. Direct mode mapping using
a near-field spatial probe allowed us to image the necklace
states as well as identify the order thereof via phase jumps.
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The latter provided a direct measure of the component local-
ized modes within the state, which was in excellent agreement
with our numerical calculations on the various configurations.
The transport regime is labeled via the measurement of gen-
eralized conductance 〈g′〉, which was consistently above 1,
endorsing high transmission even under localizing conditions.
Comparing the distribution of g′ with theoretical expressions
for one-dimensional disordered systems close to the local-
ization transition, we found that our system was indeed in a
“metallic” state despite the strong disorder.
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