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Inferring entropy production in anharmonic Brownian gyrators
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A nonvanishing entropy production rate is one of the defining characteristics of any nonequilibrium system,
and several techniques exist to determine this quantity directly from experimental data. The short-time inference
scheme, derived from the thermodynamic uncertainty relation, is a recent addition to the list of these techniques.
Here we apply this scheme to quantify the entropy production rate in a class of microscopic heat engine models
called Brownian gyrators. In particular, we consider models with anharmonic confining potentials. In these cases,
the dynamical equations are indelibly nonlinear, and the exact dependencies of the entropy production rate on
the model parameters are unknown. Our results demonstrate that the short-time inference scheme can efficiently
determine these dependencies from a moderate amount of trajectory data. Furthermore, the results show that the
nonequilibrium properties of the gyrator model with anharmonic confining potentials are considerably different
from its harmonic counterpart; especially in setups leading to a nonequilibrium dynamics and the resulting
gyration patterns.
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I. INTRODUCTION

Two main characteristics distinguish nonequilibrium sys-
tems from their equilibrium counterparts. The first one is
the presence of nonvanishing currents in the phase space
between (at least) some pairs of states—a manifestation of
the breaking of the so-called detailed-balance condition [1].
The second one is the positive rate of total entropy production
σ = 〈�Stot〉

t , where t is the time duration of the process [2].
For nonequilibrium systems in a stationary state, σ quantifies
the rate at which heat is dissipated to the environment, and
thus quantifies the thermodynamic cost of maintaining the
process [3].

There is a considerable amount of literature where de-
tecting phase-space currents is used as a model-independent
means to check whether the system is in equilibrium or
not [4]. A notable work in this direction is Ref. [5], which
demonstrated that phase-space currents are signatures of the
nonequilibrium nature of active fluctuations in microscopic
biological systems. Similarly, the nonequilibrium character-
istics in the actin cytoskeleton have been quantified by Seara
et al. in Ref. [6]. In addition, an application to a noise driven
linear electric circuit can be found in Ref. [7]. This approach,
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however, faces challenges when extended to high-dimensional
systems, where large amounts of data will be required for
the convergence of the (high-dimensional) current estimators.
On another note, the entropy production rate σ associates
a numerical value (in units of kBs−1) to a nonequilibrium
system that measures the extent of the nonequilibrium char-
acter. Hence there has been a significant amount of interest,
mainly within the framework of stochastic thermodynamics
[8], to develop accessible techniques which can quantify the
entropy production rate from a moderate amount of phase-
space trajectory data [9–13]. A significant recent addition to
this list is the thermodynamic uncertainty relation [14], which
demonstrated that a lower bound to the entropy production
rate could be obtained in terms of the fluctuations of arbitrary
currents J in the phase space, as has been described in Ref. [9]:

σ �
[

2kB〈J〉2

t Var(J )

]
. (1)

The average and the variance are computed over an ensem-
ble of currents of length t , which can be straightforwardly
constructed from the phase-space trajectories of the system.
More recently, for a large class of nonequilibrium systems
with a continuous-space and continuous-time dynamics, it
was shown that this inequality saturates in the short-time limit,
and an exact estimate of the entropy production rate can be
obtained from [10,12,13]

σ = lim
�t→0

max
J

[
2kB〈J�t 〉2

�t Var(J�t )

]
. (2)

Here J�t is an arbitrary current of length �t constructed from
the trajectory data sampled at an interval �t . The average cur-
rent and variance are computed over an ensemble of currents

2643-1564/2022/4(4)/043080(9) 043080-1 Published by the American Physical Society

https://orcid.org/0000-0002-5426-2730
https://orcid.org/0000-0002-0475-2766
https://orcid.org/0000-0003-2443-9125
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043080&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.1103/PhysRevResearch.4.043080
https://creativecommons.org/licenses/by/4.0/


DAS, MANIKANDAN, AND BANERJEE PHYSICAL REVIEW RESEARCH 4, 043080 (2022)

Short-time Inference

Scheme

Entropy    

Production Rate

Thermodynamic

Force Field

(a) (b) (c)

(d)

P
o
si

ti
o
n
 (

ar
b
. 
u
n
it

s)

FIG. 1. Brownian gyrator with complex potential: (a) Brownian
gyrator model: A Brownian particle is confined in a generic potential
in the presence of two heat baths of different temperatures (T1 and
T2) along two axes. In some cases, the potential needs to be rotated
by an angle θ along with T1 �= T2 to obtain the gyration effect of
the trapped particle. Shapes of the generic potentials of our study:
(b) double-well potential and (c) quartic potential. (d) Short-time
inference technique is used in this study to characterize the nonequi-
librium features of the system through the estimation of entropy
generation rate and the thermodynamic force field from the trajectory
of the trapped particle.

of length �t measured from a single stationary trajectory.
Furthermore, the optimal current J∗ which maximizes the
right-hand side of Eq. (2) is known to be proportional to �Stot ,
and helps determine the thermodynamic force field F(x) in
the phase space [10,12,13]. In recent work, the feasibility
of this inference scheme was tested on experiments with a
colloidal particle in a time-varying potential [15], where it
was shown that the method correctly reproduces the entropy
production rate and the thermodynamic force field known by
other theoretical means.

Here we apply Eq. (2) to quantify the entropy production
rate and to obtain the thermodynamic force field in an in-
teresting class of microscopic nonequilibrium systems called
autonomous Brownian gyrators [16–18]. They consist of a
micrometer-scale colloidal particle in a confining potential,
coupled to two thermal reservoirs in the orthogonal directions
[Fig. 1(a)]. When the temperatures of the reservoirs are dif-
ferent, and for certain forms of the confining potential, the
dynamics of the particle break the detailed-balance condi-
tion, making the system nonequilibrium. However, the exact
dependencies of the phase-space currents or the entropy pro-
duction rate on the parameters of the gyrator are only known
when the confining potential is a quadratic one [16,17,19].
In this work, we consider Brownian gyrators in anharmonic
confining potentials [18] and demonstrate that Eq. (2) can be
used to determine how the entropy production rate depends on
the model parameters. Furthermore, we obtain the nontrivial
thermodynamic force fields and velocity fields in the phase
space, whose characteristics are considerably different from
their harmonic counterparts.

The paper is organized as follows. In Sec. II, we repro-
duce the previously known closed-form expressions for the
entropy production rate as well as the thermodynamic force
field for the Brownian gyrator in a harmonic potential well. In
Sec. III, we briefly describe the short-time inference scheme.
In Sec. IV, we apply this scheme to two examples of anhar-

monic Brownian gyrators [18], to determine how the entropy
production rate depends on the system parameters. We also
obtain the thermodynamic force field and the phase-space
velocity fields in different cases, and discuss their qualitative
features. In all cases, we also discuss how the results compare
with the corresponding ones for the Brownian gyrator in a
quadratic potential. In Sec. V, we conclude with an outlook
towards experimental demonstrations and future work.

II. THEORETICAL MODEL

The dynamics of the Brownian gyrator in the overdamped
limit can be described by the Langevin equations

γ1ẋ1 = −∂U (x1, x2)

∂x1
+

√
2γ1kBT1ξ1(t ). (3)

γ2ẋ2 = −∂U (x1, x2)

∂x2
+

√
2γ2kBT2ξ2(t ). (4)

Here U (x1, x2) is the two-dimensional (2D) confining po-
tential in the x1, x2 plane. x1 and x2 are further coupled to
two different thermal reservoirs at temperatures T1 and T2,
respectively. The corresponding thermal noises are denoted
by ξi(t ), which are both Gaussian noises with 〈ξi(t )〉 = 0 and
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). Here γi is the viscous drag coeffi-
cient of the medium, which is related to the temperature of
the medium through the Einstein relation Diγi = kBTi, where
kB is the Boltzmann constant. For simplicity, in our case we
keep γ1 = γ2 = γ and kB = 1.

Brownian gyrators in quadratic confining potentials
are well-studied both theoretically and experimentally
[16,17,20,21]. In this case, the confining potential has the
form

Uhar (x1, x2) = 1

2
(x1 x2) · R(−θ ) · k · R(θ ) ·

(
x1

x2

)
, (5)

where R(θ ) is the 2D rotation matrix corresponding to the
angle of rotation θ ,

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
. (6)

Note that such quadratic potentials are naturally occurring in
the case of optical traps or tweezers. The matrix k determines
the stiffness of the trapping potential in orthogonal directions,
and has the form

k =
(

k1 0
0 k2

)
. (7)

The resulting dynamics of the system can be described using
a linear diffusion equation of the form

ẋ = −Ax + Bξ, (8)

where x = (x1, x2)T , and

A =
( k1

γ
cos2 θ + k2

γ
sin2 θ

( k2
γ

− k1
γ

)
sin θ cos θ( k2

γ
− k1

γ

)
sin θ cos θ k1

γ
sin2 θ + k2

γ
cos2 θ

)
(9)

and

B =
(√

2kBT1/γ 0
0

√
2kBT2/γ

)
. (10)

043080-2



INFERRING ENTROPY PRODUCTION IN ANHARMONIC … PHYSICAL REVIEW RESEARCH 4, 043080 (2022)

The probability of finding the trapped particle at a position x
at time t can be determined in terms of the probability density
function ρ(x, t ), which obeys a Fokker-Plank equation

∂tρ(x, t ) = −∇ · [−Axρ(x, t ) − D∇ρ(x, t )]

≡ −∇ · J(x, t )
(11)

with D = 1
2 BBT . Here J(x, t ) is the probability current in the

phase space.

In the t → ∞ limit, the system can be shown to reach a
nonequilibrium stationary state with a characteristic distribu-
tion and current given by

ρss(x) = (2π
√

det C)−1e−(1/2)xT C−1x

Jss(x) = (−Ax + DC−1x)ρss(x), (12)

where the covariance matrix C can be written as [17]

C = 1

TrA det A

(
D2A2

12 + D1
(
A2

22 + det A
) −D1A21A22 − D2A11A12

−D1A21A22 − D2A11A12 D1A2
21 + D2

(
A2

11 + det A
)
)

. (13)

In Fig. 2(a), we plot ρss(x) and the phase-space velocity field
V(x) = Jss (x)

ρss (x) for a particular choice of parameters. It can be
noticed that the velocity field faithfully follows the probability
density contours.

Using standard definitions in stochastic thermodynamics,
the entropy production rate in the steady state can then be
obtained as the integral [2,22]

σ =
∫

dx F(x) · Jss(x), (14)

where F(x) is the local conjugate thermodynamic force field
associated with the steady-state current, defined as F(x) =
kBJT

ss(x)D−1/ρss(x). In Fig. 2(b), we show the thermodynamic
force field for the parameter choice in Fig. 2(a).

Since we can individually determine all the terms in the
integrand of Eq. (14), it can be explicitly evaluated, giving

σ = kB
(k1 − k2)2(T1 − T2)2 sin2(2θ )

4(k1 + k2)T1T2γ
(15)

This equation shows that when k1 = k2 (corresponding to an
isotropic harmonic potential) or T1 = T2, or when θ = nπ

2 , the
entropy production rate vanishes, and the system will remain
in an equilibrium state. For other combinations of parameter
values, it is straightforward to notice that σ > 0, consistent
with the second law of thermodynamics.

Note that in a generic setting, where the underlying confin-
ing potential is of degree >2, or in other words, the diffusion
matrix D is dependent on x, a closed-form expression for the

(a) (b)

FIG. 2. (a) Velocity field and (b) thermodynamic force field
of Brownian gyrator with harmonic confining potential are plotted
(streamlines) on top of the steady-state probability (color maps) of
the position of the particle. Parameters used: k1 = 1, k2 = 5, and
θ = 45◦. Ratio of the temperatures along the orthogonal axis is fixed
at α = T2

T1
= 0.1. The closed loops denote the equipotential contours.

integrand in Eq. (14) is not available. Thus, if we consider
the case of anharmonic Brownian gyrators, exact expressions
of the entropy production rate are also not known. In the
following, we describe how these challenges can be overcome
using the short-time inference scheme.

III. THE SHORT-TIME INFERENCE SCHEME

In this paper, we have used the recently discovered short-
time inference scheme to estimate the entropy production
rate and the thermodynamic force field from the time-series
data. This method was first introduced in Ref. [10], rigorously
proved in Refs. [12,13], and recently tested in a colloidal
experimental setup in Ref. [15]. Using this technique, we can
obtain the steady-state entropy production rate as

σ = lim
�t→0

max
J

[ 2kB〈J〉2

�t Var(J )

]
, (16)

where J is a weighted scalar current defined as

J = d
(xi+1 + xi

2

)
· (xi+1 − xi ), (17)

where xi denotes the d-dimensional time discretized trajectory
data in a time interval �t � {τs}, where {τs} is the set of all
relevant timescales in the system. The superscript i denotes
the discrete time labels and 〈·〉 denotes the ensemble average.
In principle, d(x) can be any arbitrary d-dimensional function,
which can be represented in terms of an infinite-dimensional
basis set spanning the function space. However, as usual in
inference problems, we have a finite stochastic trajectory at
hand, from which only a finite amount of information can be
inferred [11]. It is therefore natural to approximate the d(x) as
the linear combination of a finite set of basis functions ψm(x)
as

d(x) =
M∑

m=1

diag(Cm) · ψm(x), (18)

where Cm = [c1
m, c2

m, . . . , cd
m]T ∈ Rd , the notation diag(Cm)

corresponds to a diagonal matrix whose entries are elements
of the vector Cm, and ψm(x) = [ψ1

m(x), ψ2
m(x), . . . , ψd

m(x)]T .
The basis functions then define a set of N = d × M num-

ber of basis currents {φn=(k−1)×M+m} = {∫ �t
0 ψk

m(x) ◦ dxk},
where m = 1, 2, . . . , M and k = 1, 2, . . . , d and the sym-
bol ◦ denotes the Stratanovich convention for the stochastic
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integral. Then the maximization problem in Eq. (16) over the
space of currents straightforwardly translates to a maximiza-
tion problem over the space of N number of coefficients {ck

m}.
Interestingly, for any fixed choice of the basis functions, the
analytical solution to this optimization problem is known [13],
and is given by

σ = 2〈φr〉(�−1)r,s〈φs〉
�t

, (19)

where � is an (N × N )-dimensional correlation matrix,
whose elements are (�)r,s = 〈φrφs〉 − 〈φr〉〈φs〉. The optimal
coefficients can be obtained as

ck∗
m = (�−1)r,s〈φs〉

[〈φr〉(�−1)r,s〈φs〉]
, r = (k − 1) × M + m. (20)

In both Eq. (19) and Eq. (20), the Einstein summation
convention is assumed and repeated indices are summed
over. For the derivation of the proof, please refer to
Sec. II B of Ref. [13]. The corresponding optimal force
field is given by d∗ ≡ ∑M

m=1 diag(C∗
m) · ψm(x), where C∗

m =
[c1∗

m , c2∗
m , . . . , cd∗

m ]T . Furthermore, the thermodynamic force
field F is known to be proportional to d∗, (F = ν d∗), and
the proportionality constant can be determined as ν = Var(J∗ )

2〈J∗〉
[10,12]. This follows from the fact that for overdamped diffu-
sive processes, Var(�Stot )

〈�Stot〉 → 2 as t → 0. See Eqs. (3) and (4) in
Ref. [10] and Eqs. (20)–(29) in Ref. [12] for proofs.

We remark that the basis functions ψm(x) can be chosen
from any complete basis such as polynomials, wavelets, or
Fourier modes [11]. In this work, it is natural to consider
a polynomial basis in two dimensions. As we show later, it
can be verified that a third-order polynomial is sufficient for
inference for the examples we look at.

IV. RESULTS AND DISCUSSIONS

In this section, we apply the short-time inference scheme
to the Brownian gyrator in anharmonic potentials. The gy-
ration characteristics of these systems were studied in great
detail in Ref. [18] using numerical simulations and analyses
based on the Fokker-Planck equation. They observed that the
gyrating patterns in the case of anharmonic confining poten-
tial are significantly distinct from the equiprobable contour
lines of the potential. In contrast, steady-state currents for the
harmonic case faithfully follow the tangent of the equiproba-
bility contour. The paper also discussed the positivity of the
steady-state entropy production rate, but no quantitative char-
acterization, such as how it depends on the system parameters,
was discussed. Here we address this issue using the short-time
inference scheme. In relevant cases, we also compare the
results with the findings in [18].

We first consider the double-well potential [18] [Fig. 1(b)]
given by

Ubs(x
′
1, x′

2) = x′
1

4 − 2bx′
1

2 + 1
2 kx′

2
2
, (21)

where x′
1 and x′

2 are two axes of the potential which is rotated
by an angle θ with respect to the axis of the temperatures
(x1, x2) as (

x′
1

x′
2

)
=

(
cos θ − sin θ

sin θ cos θ

)
×

(
x1

x2

)
. (22)

The parameter b can be used to control the nature of the
bistable part of the potential along x′

1, as the position of the
minima (∼ ± √

b) and the barrier height (∼b2) of the poten-
tial are dependent on it. The harmonic part of the potential
along x′

2 is characterized by the stiffness constant k along that
direction.

There are two natural timescales in this problem. The first
one is the relaxation timescale in the harmonic part of the trap,
and is given by τγ = γ /k. The second one is the inverse of the
Kramers escape rate, which we have determined numerically
in all cases. See the Appendix for details. Further, to apply the
short-time inference scheme, we first generate the stationary
trajectories of the system using first-order Euler integration,
which we proceed to apply to Eqs. (3) and (4) with a time
step of �t = 0.001 s, which is chosen such that it is at least
one order of magnitude less than the two relevant timescales
for all the parameter choices. As initial conditions, we choose
x0, y0 from a Gaussian distribution with mean [0,0] and stan-
dard deviation [

√
D1,

√
D2]. We then run the simulation for a

certain time (∼10 000 s) which is several orders of magnitude
higher than the relevant timescales in the problem, so that the
system reaches its steady-state distribution unambiguously.
The subsequent time-series data of length 10 000 s is used for
applying the short-time inference scheme.

In Fig. 3(a), we show the stationary trajectories of the
system for a particular choice of parameter values. To apply
the short-time inference scheme to such trajectory data, we
choose a polynomial basis of order 3. The corresponding basis
currents are given by

φ1 =
∫ �t

0
1 ◦ dx1,

φ2 =
∫ �t

0
x1 ◦ dx1,

φ3 =
∫ �t

0
x2 ◦ dx1,

φ4 =
∫ �t

0
x2

1 ◦ dx1,

. . .

φ10 =
∫ �t

0
x3

2 ◦ dx1,

φ11 =
∫ �t

0
1 ◦ dx2,

φ12 =
∫ �t

0
x1 ◦ dx2,

φ13 =
∫ �t

0
x2 ◦ dx2,

φ14 =
∫ �t

0
x2

1 ◦ dx2,

. . .

φ20 =
∫ �t

0
x3

2 ◦ dx2. (23)

The notation ◦ stands for the Stratanovich convention, where
the integral is evaluated as in Eq. (17). Using these basis
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(a) (b) (c)

(d)
(e) (f)

FIG. 3. Quantitative analysis of σ corresponding to the Brownian gyrator model with the bistable potential: (a) Particle trajectories in the
2D coordinate space of the bistable potential when the potential is rotated by an angle θ = 45◦. Parameter values: b = 1, k = 2, α = T2

T1
= 0.1.

The displacement of the particle shows jumps along any direction due to the presence of the finite barrier height of the potential (inset).
(b) Entropy production rate (σ ) of the system is quantified as a function of the ratio of temperatures (α = T2/T1) along the two axes in different
conditions of the gyrator indicated by the different values of the parameters mentioned in the legend. σ of each set is normalized by dividing
with the σ value corresponding to α = 0.1 of that particular set. (c) Absolute value of σ is plotted as a function of the angle of rotation (θ ) and
the stiffness constant (k) of the harmonic part of the potential while keeping the value of α = 0.1. (Inset: σ is plotted with θ at fixed k, and
shows ∼ sin2(2θ ) behavior.) (d) σ is quantified as a function of the parameters “k” and “b” with α = 0.1 and θ = 45◦. (e) Thermodynamic
force field and (f) the phase-space velocity field plotted as streamlines. Parameter values: b = 1, k = 2, α = 0.1, θ = 45◦. In (e) and (f), the
color maps represent the steady-state probability distribution of the system, while the black loops denote the equipotential contours. Error bars
are given as the standard deviation over ten independent measurements of the entropy production rate σ for a fixed choice of model parameters.

currents and Eq. (19), we can determine the entropy produc-
tion rate σ for a fixed set of parameters. By changing the
parameters and repeating the same steps, the dependence of
σ on the various parameters of the system can be determined.
Here we follow this procedure, and first determine the depen-
dence of σ of the parameters α(= T2

T1
) and θ .

If the confining potential is harmonic, we know from
Eq. (15), that σ ∝ (T1−T2 )2

T1T2
sin2(2θ ). From the analysis, we

find that σ has exactly the same dependencies on these
parameters in the case of the double well. In Fig. 3(b), we
show the dependence of σ on α for different values of k, b,
θ , and T1. The plots are normalized by the value at α = 0.1.
We see that they fall on top of each other, and agree with the
functional behavior given in Eq. (15). In Fig. 3(c), we plot
σ as a function of θ (and k), which shows the σ ∝ sin2(2θ )
behavior for a fixed k (see the inset). The highest value
of entropy production is obtained when θ = π/4 for all
k. We also find that the entropy estimate is close to 0 in
the cases α = 1 or θ = nπ/2. This is expected, since these
limits correspond to the equilibrium limits of the dynamics.
(When α = 1, the system is in equilibrium with the reservoirs
at temperature T1 = T2 = T . When θ = nπ/2, the two
degrees of freedom are decoupled, and are independently in
equilibrium with the two reservoirs at temperatures T1 and T2.)

We also find that σ depends nonmonotonically on the pa-
rameters b and k. In Fig. 3(c), we show that σ is minimized for
a particular value of k for any value of θ . Similarly, σ has both
minima and maxima in the b − k space as shown in Fig. 3(d).
It is tempting to interpret this observation as the display of a
resonancelike behavior, where certain configurations are able
to maximally (minimally) produce entropy by exploiting the
spatially anisotropic temperature gradient. However, the phys-
ical origin of this behavior remains elusive to us presently,
and merits deeper investigation. It is also clear that this may
have interesting applications in experiments; especially in the
design and optimization of microscopic engines.

Using the short-time inference scheme, we can further
obtain the conjugate thermodynamic force field F(x) using
Eq. (20). It characterizes the spatial dependence of the entropy
production rate, and can be also used to compute the total en-
tropy production (�Stot) along a single stationary trajectory as

�Stot (t ) =
∫ x(t )

x(0)
F(x) ◦ dx. (24)

In Fig. 3(e), we plot F(x) for a particular choice of parameters.
Furthermore, when the matrix D is known (as in our case),
it is possible to obtain the average phase-space velocity
field [V(x)] as V(x) = D · F(x). This is shown in Fig. 3(f).
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

FIG. 4. Quantitative analysis of σ corresponding to the Brownian gyrator model with the quartic potential: (a) Brownian trajectories
of the trapped particle in the isotropic quartic potential with k1 = k2 = 1 and α = 0.1. (b) Stochastic trajectories of the trapped particle in
the anisotropic quartic potential with k1 = 1, k2 = 2, and α = 0.1. (c) Entropy production rate (σ ) of the system with the anisotropic quartic
potential is quantified as a function of the ratio of temperatures (α = T2/T1) along two axes in different conditions of the gyrator indicated by the
different values of the parameters mentioned in the legend. σ of each set is normalised by dividing with the σ value corresponding to α = 0.1
of that particular set. (d) σ is plotted as a function of θ for the anisotropic potential with k1 = 1, k2 = 2. We observe deviation from ∼ sin2(2θ )
as σ �= 0 for θ = 0. (e) Absolute value of σ shows a linear nature with the parameter k for the gyrator system with isotropic quartic potential.
(f) The thermodynamic force field of the system with the isotropic quartic potential (k1 = k2 = 1, α = 0.1). (g) The thermodynamic force field
of the system in the anisotropic quartic potential (k1 = 1, k2 = 2, α = 0.1, θ = 45◦). (h) Velocity field for the system with isotropic quartic
potential (k1 = k2 = 1, α = 0.1). (i) Velocity field for the system with the anisotropic quartic potential (k1 = 1, k2 = 2, α = 0.1, θ = 45◦).
In (f)–(i) color maps represent the steady-state probability distribution of the system while the black loops denote the equipotential contours.
Error bars are given as the standard deviation over ten independent measurements of the entropy production rate σ for a fixed choice of model
parameters.

Notably, the velocity field lines do not circulate about the
equiprobability contours of the particle. This feature is in
agreement with the findings of Chang et al. about the gyrating
characteristics of probability currents [18].

As the second example, we consider a Brownian gyrator
model with a quartic potential [Fig. 1(c)] given by

Uqu(x′
1, x′

2) = (
k1x′

1
2 + k2x′

2
2)2

, (25)

where x′
1 and x′

2 are the axes of the potential rotated by
an angle θ with respect to the coordinate frame (x1, x2).

The potential can be categorized as isotropic (k1 = k2) and
anisotropic (k1 �= k2) depending on the values of the stiff-
ness constants (k1 and k2) along the axis of the potential.
Relaxation timescales corresponding to the stiffness con-
stants are the natural timescales (τi = γ /ki, i = {1, 2}) for
this potential. To apply the short-time inference scheme, the
stationary trajectories for this confining potential are gener-
ated in the exact same way as discussed for the previous
potential, using the Euler integration scheme with a time step
�t = 0.001 s which is at least one order of magnitude less
than τi.
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Length of Trajectory (N) Sampling interval (Δt) [s] Order of Polynomial

(a) (b) (c)
/

/ /

FIG. 5. Effect of hyperparameters on the inference of entropy production rate (σ ): σ is plotted as a function of (a) length of the trajectory,
(b) sampling interval, and (c) order of the polynomial basis for both double-well and quartic confining potential. Error bars are given as the
standard deviation over ten independent measurements of entropy production rate σ for a fixed choices of model parameters. Parameters:
double-well potential: b = 1, k = 2, θ = 45◦, α = 0.1; quartic well potential: k1 = 1, k2 = 2, θ = 45◦, α = 0.1.

The steady-state entropy production rate for different pa-
rameter values can be estimated just as in the previous case.
In Figs. 4(a) and 4(b), we show the stationary trajectories of
the system in an isotropic quartic potential and an anisotropic
quartic potential. In Fig. 4(c), we show the dependence of σ

with α for different values of k1, k2, and θ , which is found
to be slightly deviating from the line corresponding to the σ

of the gyrator with harmonic confining potential. Indeed, even
the error bars are smaller compared to the deviation from the
behavior anticipated in the case of the harmonic confining po-
tential. We believe further investigation with analytical rigor
is required to confirm whether the dependence of the entropy
production rate on the two temperatures is universal across
different potential wells. On the other hand, the dependence
of σ on θ is found to significantly deviate from the previous
cases [∼ sin2(2θ )] as depicted in Fig. 4(d). In particular, σ

is nonzero even when θ = 0◦. This is because, in a quartic
potential, the motion of the particle along the two directions is
coupled even when θ = 0. For the same reason, as opposed to
the Brownian gyrator in an isotropic (k1 = k2 = k) quadratic
potential, the entropy production in an isotropic quartic poten-
tial will be nonzero. For the isotropic potential, σ is estimated
to be monotonically increasing with the stiffness constant (k)
as shown in Fig. 4(e).

In Figs. 4(f) and Fig. 4(g) we plot F(x) for the isotropic
and the anisotropic potential, respectively. Furthermore, the
average phase-space velocity field [V(x)] profiles for these
potentials are also obtained and shown in Fig. 4(h) (isotropic
case) and Fig. 4(i) (anisotropic case). For the isotropic case,
four circulating regions are revealed in the thermodynamic
force field and also in the velocity field. Just as we found in the
previous case, the field lines do not follow the equiprobable
contours. This is again in agreement with the findings in
Ref. [18].

Finally, we look at the effect of the hyperparameters of the
inference problem. These are the length of the trajectory N ,
sampling interval (�t), and the order of the polynomial used
for the inference scheme. In Fig. 5(a), we show the depen-
dence of the inferred entropy production rate on the length
of the trajectory used for inference. The results show that a
trajectory with 104–105 points with sampling interval �t =
0.001 s will be sufficient to give a reliable estimate of the

entropy production rate. Indeed, with more data, the accuracy
of the estimate is found to be better, with less statistical error.
In Fig. 5(b), we demonstrate the dependence of the inferred
value of the entropy production rate on the sampling interval
�t for a fixed number of points in the trajectory. Theoretically,
it is known that the inference scheme is dependent on �t and
gives the closest estimate to the actual entropy production rate
when we take the �t → 0 limit. Our results show that this is
indeed the case, and smaller �t values lead to an increase in
the estimated value of the entropy production rate. However,
if we keep the number of points in the trajectory fixed, as
in Fig. 5(b), we find that smaller �t values lead to higher
statistical errors.

In Fig. 5(c), we look at the effect of the order of the
polynomial used for the inference of the entropy production
rate. For both of the anharmonic gyrator models, the order of
the polynomial that appears in the drift term of the Langevin
equation is three. For the double-well case, we find that no
significant entropy is inferred for order <3. Interestingly, this
implies that the harmonic contribution to the entropy produc-
tion rate is absent in this case. For the quartic well, we find
that a nonzero value of entropy production is inferred already
when an order one polynomial is used, indicating that the
harmonic contribution to entropy production exists. Again, the
inference is seen to saturate at order three. We remark that in
a generic case, where we do not know the actual degree of
the nonlinearity of the problem, an iterative procedure of this
kind can be used to obtain a reliable and close-to-true-value
estimate of the entropy production rate. Similarly, we can
also fix the number of basis functions required to accurately
represent the optimal, thermodynamic force field.

V. CONCLUSIONS

In summary, we have demonstrated that the short-time
inference scheme [Eq. (2)] can be used to characterize the
nonequilibrium character of Brownian gyrators with complex
potential energy landscapes quantitatively. We considered a
double-well and a quartic potential in two dimensions and
determined how the entropy production rate depended on the
parameters of the potentials as well as the temperatures along
orthogonal directions. For specific parameter choices, we also
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obtain the thermodynamic force field and the phase-space ve-
locity field, without resorting to statistical binning techniques.

Our results suggest that the exact dependence of the en-
tropy production rate on the two temperatures is apparently
universal across gyrators with different confining potentials.
However, further theoretical investigations are required to
substantiate whether this is indeed the case. For the Brownian
gyrator in a double-well potential, we find that the entropy
production rate nonmonotonically depends on the parameter
which controls the bistable nature of the potential. We also no-
tice that the contribution to entropy production entirely comes
from the cubic nonlinearity of the driving forces in the system
since a linear or second-order basis used for inference cap-
tures no significant entropy generation from the trajectories.
In the case of the Brownian gyrator with a quartic confining
potential, this is not the case, and we find that a significant
contribution to entropy production comes from a first-order
truncation of the basis functions. Such considerations will be
crucial for practical applications of the inference scheme to
complex nonequilibrium systems such as biological systems,
where anharmonic energy landscapes naturally arise [23–26].

It will be interesting to observe if our results can be
tested in experimental realizations of anharmonic Brownian
gyrators, which can be set up using higher-order, structured
Gaussian beams [27,28] or with feedback optical tweezer
systems [29]. We hope to explore these aspects in future work.
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APPENDIX: DETERMINING THE KRAMERS RATES

For symmetric double-well potentials, the Kramers es-
cape rate corresponds to the rate at which transitions take
place from one well to the other. Except in a limited num-
ber of cases, the exact analytic dependence of the Kramers
escape rate on the parameters of the model is unknown.
See [30] for a comprehensive analytic treatment of the
one-dimensional Kramers problem for particles in a one-
dimensional double-well potential, in contact with a thermal
reservoir at temperature T . In contrast, the gyrator setup we
consider in this work is much harder to treat analytically, as
it is a two-dimensional system which is in contact with two
thermal reservoirs along orthogonal directions. However, it is
much more straightforward to track this problem numerically.
To this end, we closely follow the discussion in Sec. III of
[30].

We first classify all the states with y > x cot(θ ) to be in
state |+〉 and the rest to be in state |−〉. Then we initialize an

FIG. 6. Kramers rates for double-well potential: The quantity
1/2 − p+(t ) [30] is plotted for all configurations of the double-well
potential we study.

ensemble of particles at the point (x, y) = ( − cos(θ ), sin(θ )),
θ ∈ [0, π/2]. The quantity we intend to estimate analytically
is the escape rate ω characterizing the decline of the popula-
tion in the left well [p−(t )], or the increase of the population
in the right well [p+(t )]. Due to the symmetry of the potential
well, the rate of transition from state |+〉 to state |−〉 will be
the same as the rate of transition from state |−〉 to state |+〉.
We can therefore follow the exact same derivation as given in
[30] and obtain

p±(t ) = 1
2 ∓ 1

2 exp(−2ωt ). (A1)

In Fig. 6, we plot 1/2 − p+(t ) for all the parameters we
studied (thin lines). We find that the curves are well bounded
by curves of the form Eq. (A1) with ω = 1/4 s−1 and ω =
5 s−1. This means the minimum Kramers timescale for our
parameter choices is >1/5 = 0.2 s, and the maximum
Kramers timescale is <4 s.

The other relevent timescale in the problem is the relax-
ation timescale in the optical trap, which is given by τγ = γ

k ,
where k is the stiffness of the trap. For the particular parame-
ters we have chosen, we have 0.08 s � τγ � 1 s. Considering
these, for our numerical simulations, we have chosen a time
step �t = 0.001 s, which is an order of magnitude less than
all the relevant timescales. Similarly, after initializing the
system in an arbitrary Gaussian distribution, we discard tra-
jectory data of length 10 000 s, several orders of magnitude
higher than the relevant timescales, to make sure that the
analysis is performed on a stationary time series. Afterwards,
we continue the simulation for another ∼10000 s and used this
trajectory to infer σ .
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