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Ab initio electronic stationary states for nuclear projectiles in solids
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The process by which a nuclear projectile is decelerated by the electrons of the condensed matter it traverses
is currently being studied by following the explicit dynamics of projectile and electrons from first principles
in a simulation box with a sample of the host matter in periodic boundary conditions. The approach has been
quite successful for diverse systems even in the strong-coupling regime of maximal dissipation. This technique is
here revisited for periodic solids in light of the Floquet theory of stopping, a time-periodic scattering framework
characterizing the stationary dynamical solutions for a constant velocity projectile in an infinite solid. The effect
of proton projectiles in diamond is studied under that light, using time-dependent density-functional theory
in real time. The Floquet quasienergy-conserving stationary scattering regime, characterized by time-periodic
properties such as particle density and the time derivative of energy, is obtained for a converged system size of
1000 atoms. The validity of the customary calculation of electronic stopping power from the average slope of
the density-functional total energy is discussed. Quasienergy conservation, as well as the implied fundamental
approximations, are critically reviewed.
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I. INTRODUCTION

The quantum dynamical processes established by a swift
nucleus traversing condensed matter give rise to one of the
most canonical problems in nonequilibrium quantum physics.
The projectile slows down when interacting with the degrees
of freedom of the condensed matter host, which effectively
provide a bath for what is, in effect, quite a paradigmatic quan-
tum friction problem. In addition to its fundamental interest,
the problem is of applied interest in the contexts of nuclear
energy [1], space radiation [2], and medical applications such
as radiation poisoning and cancer radiotherapy [3].

There are different regimes mostly depending on the
charge and speed of the projectile [4,5]. For a projectile ve-
locity vp � 1 atomic unit (1 a.u. ≈ c/137, c being the speed
of light in vacuum), the projectile energy is transferred mostly
to the electrons of the host in what is called an electronic
stopping process. The dissipation of projectile kinetic energy
induced by a homogeneous electron liquid (jellium) offers
a very appealing model system for such friction, in some
sense a fermion counterpart to the Caldeira-Leggett quantum
friction paradigm [6]. This theory was initially approached in
the low-velocity limit [7–9], and it proved very successful in
the description of the Stokes friction regime in simple metals.
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It was later extended to finite velocity [10–13] or, still in the
v → 0 limit, to nonhomogeneous metals [14].

The importance of radiation damage in various technolog-
ical contexts has given rise to a demand for estimation of
electronic stopping power (Se, the energy transfer rate from
the projectile to the matter electrons) for materials beyond
simple metals. This need has been addressed by Lindhard’s
linear response formulation for decades [15–18]. It is a gen-
eral approach, allowing, in principle, for any kind of host
matter, and amenable to first-principles computations [19,20].
It is, however, limited by its fundamental assumption of a
weak perturbation.

Such limitation was overcome with the advent of direct
numerical simulations in real time, replicating the dynam-
ical process computationally, where a projectile is placed
within a large simulation box of the host matter, normally
in periodic boundary conditions, and dragged across the box
at a given velocity while propagating the time-dependent
Schrödinger equation in discretized real time, monitoring the
electronic energy, density, and wave functions. This is done
both at an empirical tight-binding level [21,22] and from
first-principles using time-dependent density-functional the-
ory (TDDFT) [23–42], achieving considerable success in the
calculation of electronic stopping power for problems clearly
beyond previous theoretical approaches.

Although convergence with respect to technical approx-
imations has been thoroughly explored [43], including
simulation-box finite-size convergence, the direct simulation
approach rests on the assumption that the stationary regime
expected for an isolated constant-velocity projectile is well
approximated by the seemingly stationary situation obtained
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in the simulations. By stationary, we mean the regime in which
the stopping power and deformation density (among other
quantities) are time periodic as the projectile travels along a
space-periodic trajectory in the host crystal.

Such stroboscopically stationary states have been the direct
object of a Floquet theory of electronic stopping [44,45],
which exploits the underlying discrete translational invariance
in space-time for a single constant-velocity projectile mov-
ing along a space-periodic trajectory in an infinite crystal.
The time-periodic deformation density and stopping power
obtained from the Floquet modes should be reached in the
long-time limit (always assuming constant projectile veloc-
ity). The finite periodic simulation boxes used in the direct
approach cannot aim for the long-time limit, however, since
after some time, the projectile reenters the already excited
box from the back or, more generally, the effect of periodic
replicas of the projectile start to affect each other’s dynamics,
and the simulation is no longer describing what was intended.
The aim is therefore for times long enough to establish a (stro-
boscopically) stationary single-projectile regime, but short
enough that the respective perturbations associated to the each
of the periodic replicas of the projectile do not have the chance
to interact.

It is not known how to determine whether such a regime is
reached for any particular system and velocity. Existing stud-
ies have heuristically assessed the calculations and validated
the achievement of that regime by comparing with the ex-
perimentally obtained electronic stopping power. This paper
aims for a better assessment and characterization of the stro-
boscopically stationary regime in direct simulations of bulk
diamond irradiated with protons along (100), (110), and (111)
high-symmetry channels, with calculations reaching up to a
thousand atoms. After assessing the electronic stopping pro-
cess by validating the electronic stopping power, a discussion
of the Floquet theory interpretation of the results is presented,
and its pertinence is validated by the obtained stationarity
of the relevant quantities. Several key approximations are
implied in both real-time simulations and the Floquet theory
of stopping, such as classical nuclei, and a constant-velocity
projectile. They are well justified in relevant physical regimes
and widely used in the community, as already discussed in
previous literature. Given their relevance to the topic of this
paper, a critical review of the fundamental approximations is
presented in the Appendix. Finally, but importantly, a justi-
fication of the customary way of obtaining Se in real-time
TDDFT simulations as the average slope of the corresponding
DFT energy is presented as well in Sec. III B.

II. METHOD

Electronic excitation characteristics (electronic stopping
power, particle deformation density, and related) for a proton
traveling at constant velocity across bulk diamond are calcu-
lated using TDDFT [46] propagating in discretized real time
[47]. The adiabatic local-density approximation (ALDA) is
used for the exchange-correlation (XC) potential, by which
the potential at any given time is obtained from the particle
density at the time (thereby neglecting memory effects, the
nonlocality of its time dependence), and it is also taken in
its local-density version (LDA) as parametrized by Perdew

FIG. 1. (a) Diamond unit cell, looking down the [001] direction,
showing the initial position of the projectile and the trajectory taken
along the [100] and [110] directions. (b) Diamond unit cell, looking
along the [010] direction, showing the initial heights on the projec-
tiles along the z axis and the initial trajectories.

and Zunger [48]. Comparisons with other XC functionals
have been performed for other systems elsewhere (see, e.g.,
Ref. [31]) and they are of no consequence to this paper.

A proton is located at an initial position within a simulation
box containing a sample of the material in periodic boundary
conditions. A conventional DFT calculation is first performed
to obtain the initial Kohn-Sham wave functions. They are
then propagated in discretized time using a Crank-Nicolson
integration algorithm [47] while the proton is moved at a
constant velocity through the simulation box. The electronic
stopping power Se is then obtained as the average slope of
the LDA energy as the projectile moves along its trajectory
[23–42]. Initial positions and trajectories used are illustrated
in Fig. 1.

The TDDFT implementation [49] of the SIESTA code is
used [50–53]. The publicly available open-source version
of the program was used as in its master branch, com-
mit 6c3c0249 [54]. All technical details and approximations
(double-ζ or DZP basis, norm-conserving pseudopotentials)
are the same as used in Ref. [42], which simulated protons
through graphite. The basis set moving with the atoms (in
this case, the projectile) imposes consideration of an evolv-
ing basis and Hilbert space [55]. The particulars are also as
in Ref. [42]. The simulation box for the diamond sample
is a 5 × 5 × 5 supercell of the conventional cubic diamond
cell of eight atoms, amounting to a cubic box with 1000 C
atoms (plus one H projectile). The lattice parameter used was
3.567 Å.

III. RESULTS AND DISCUSSION

A. Stopping power for protons in diamond

Figures 2 and 3 show the results of the calculation of the
electronic stopping power Se for protons in diamond as a
function of the projectile velocity, obtained as explained in
the Method section, essentially following Refs. [23,42]. In this
paper, we concentrate on velocities below the Bragg peak, a
velocity range already well into the nonadiabatic regime, but
still sensitive to the electronic structure of the host material
(Bragg peak in the sense of the maximum in the Se(v) curve,
instead of the conventional meaning of the maximum of Se

versus penetration; we will use the former meaning, hence-
forth). This is apparent in Fig. 2, where the calculated Se

for diamond (red squares) is compared with the results for
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FIG. 2. Electronic stopping power Se versus proton velocity in
diamond and graphite. Simulation results for the [100] channelling
trajectory in diamond (red squares) are compared with the experi-
mental results of Ref. [56] for diamond (black squares) alongside a
similar comparison for simulation results in graphite (parallel and
perpendicular to graphitic planes, triangles, and rhombi, respec-
tively) from Ref. [42], and corresponding experimental values from
the same experimental paper [56] (circles).

graphite of Ref. [42] (blue and green) and both are compared
with the respective experimental results of Ref. [56] (black
and purple). The anisotropy in graphite gives rise to a wide
band of theoretical values, already discussed in Ref. [42].

FIG. 3. Electronic stopping power Se versus proton velocity
in diamond. Simulation results for channelling trajectories along
[100], [110], and [111] directions (circles, triangles, and rhombi,
respectively), compared with the experimental results of Ref. [56]
(squares).

FIG. 4. Instantaneous electronic stopping power in diamond, for
a proton moving through the simulation box at vp = 0.5 a.u. along
the [100] direction.

However, they still allow us to replicate the experimentally
observed tendency toward larger stopping power for diamond
for vp � 1 a.u.

Furthermore, the theoretical results display a crossover of
the stopping powers where Sdiamond

e < Sgraphite
e at lower ve-

locities. This is a result of the threshold behavior, expected
and apparent for diamond due to its large band gap. This
fact cannot be validated with the available experimental data,
but it does seem plausible given what is known for other
large-band-gap insulators [23,57–59]. The anisotropy in Se

in diamond is less pronounced than in graphite, as shown
in Fig. 3, which is again expected, in spite of the fact that
the channels considered are quite different (in, e.g., electronic
density). Detailed linear-response analysis on the variability
of Se for different allotropes of C and different trajectories
can be found in Ref. [60]. This paper is about stationary states
along channels, and what is shown in Figs. 2 and 3 is sufficient
for supporting the analysis and conclusions of this paper.

The results of Figs. 2 and 3 are obtained by performing
simulations at fixed vp and obtaining the instantaneous stop-
ping power from

Se(t ) = ∂t EALDA(t )/vp, (1)

as displayed in Fig. 4 versus projectile position for a particular
vp value. The Se(t ) profile in the figure includes an initial
interval showing a transient response to the abrupt start of the
projectile, which largely disappears within the first 2 Å, except
for a smaller, more persistent oscillating transient. After the
initial response, the steady state is quickly established. The
steady-state oscillation gives a constant enough average to
allow extracting the Se values for each projectile velocity, as
displayed in Figs. 2 and 3.

The range of velocities for which calculations have been
performed is the one optimizing the likelihood to obtain a
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good characterization of a steady state for the single-projectile
problem, which is the aim of this paper. For larger velocities,
the projectile traverses the cell in too short a time for the
transient to disappear. We have gone up in velocity for our
results to connect with experimental values, for validation, but
not beyond (it represents a substantial computational effort).
In the low velocity limit, the perturbation has time enough
to propagate among periodic replicas, toward saturation (see
Sec. III D).

B. Validity of Se from ∂t EADFT

Extracting the electronic stopping power Se from Eq. (1),
as done in the previous subsection, has been routinely done in
TDDFT simulations of stopping using adiabatic forms of the
exchange and correlation functional (ADFT) [23–42] since
their beginning [23]. It is a sensible approach, which has been
supported by agreement with experiments and by a conser-
vation argument [61]. To our knowledge, however, it has not
been more formally justified so far, which we do here.

It is indeed quite a different approach to the ones in
the pre-existing literature, most prominently, the one based
on scattering theory in jellium [7] and its generalizations
[10–13,44]. There, Se is given essentially by stating the en-
ergy transfer rate for each incoming state i (occupied in the
laboratory frame) as

∂t Ei = ni

∑
o

(εo − εi )|Si→o|2vo (2)

where εi and εo are the respective single-particle energies of
incoming and outgoing waves in the laboratory frame, Si→o

is the scattering amplitude for that process, vo the outgoing
group velocity, and ni the incoming density, all now in the
projectile frame. The stopping power then follows summing
over all scattering processes from all the incoming occupied
states to compatible unoccupied states in the laboratory frame
divided by the projectile velocity for conversion, as Se ∼
(
∑

i ∂t Ei )/vp.
Although perfectly sound and valid for independent elec-

trons, such an expression for Se within a DFT framework
relies on the relation between the total electronic energy and
the single-particle Kohn-Sham eigenvalues. That connection
is made through Janak’s theorem [62], but, as is well known in
the context of the insulator band-gap problem [63], it implies
a further approximation, especially for nonmetals. This is
elegantly shown in Ref. [19], where a correct expression is
presented in the same vein using TDDFT in the frequency do-
main for the low-projectile-velocity limit in metals. A further
many-electron term is there shown to appear for the correct
stopping power expression for a given XC functional.

The Se calculation in real-time TDDFT simulations as ex-
tracted from Eq. (1) is not limited to low-velocity projectiles
or metals. Its justification can be seen as follows. TDDFT with
the exact XC (and with proper account of the initial state)
would give the exact evolving particle density n(r, t ), in addi-
tion to the relevant action [46,64]. TDDFT also states that any
physical property would be expressible as a functional of that
density, although, a priori, the expression of that functional
would not be known in general.

However, the functional for the electronic stopping power
is known. It is nothing but the net force on the projectile
[61,65], suitably averaged along the trajectory (and over dif-
ferent trajectories depending on the experimental conditions).
As long as the potential Vext describing the interaction between
each electron and the nuclei is local, which is a prerequisite for
TDDFT (and DFT in general), the instantaneous force on the
projectile due to the electrons is simply

Fp(t ) = −
∫

d3r n(r, t ) ∇pVext, (3)

where Vext is the single-particle external potential acting on
electrons due to nuclear attractions and other possible external
fields. This expression is obtained very generally for Ehrenfest
dynamics using Newton’s law for the classical evolution of
the nuclei and TDDFT for the quantum evolution of electrons
[66–68]. In our case, for a classical nuclear projectile of con-
stant velocity and other classical nuclei at rest, it is easy to
corroborate, given the evolution of the electronic energy

∂t Ee = ∂t 〈�|H |�〉 = 〈�|∂t H |�〉 = vp · 〈�|∇pH |�〉

= vp ·
∫

d3r n(r, t ) ∇pVext = −vp · Fp (4)

for any vp, and where we have used |�〉 for the exact evolving
electronic state and H for the electronic Hamiltonian, which
fulfill H |�〉 = ih̄∂t |�〉, and the fact that the only explicit
time dependence in the electronic Hamiltonian is given by
the motion of the projectile. Therefore, a trajectory average
of the force in Eq. (3) gives the electronic stopping power
Se within TDDFT and the approximations described so far.
Most of the electronic stopping power evaluations in direct
real-time TDDFT simulations resort to the electronic energy
directly [23,61] by extracting Se from the average slope of the
electronic energy as the projectile progresses, as in Eq. (1).
For the adiabatic functionals they use, the electronic energy is
what is given by the corresponding time-independent density
functional for the instantaneous density, in this case LDA. In
that sense, EADFT = ELDA[n(r, t )] is taken as the functional
of the density for 〈�(t )|H (t )|�(t )〉, using the nomenclature
of Eq. (4). First, it leads to the consistently correct adiabatic
energy in the vp → 0 limit. Second, for any adiabatic time-
dependent XC functional, the XC action can be expressed as

AXC[n(r, t )] =
∫

dt EXC[n(r)](t ),

and then the quantity

Etot = EADFT + TN +
∑
I,J<I

ZI ZJ

RIJ

is shown to be conserved in Ehrenfest dynamics [66,67,69],
where TN stands for the nuclear kinetic energy. From Eq. (4),
it can be seen that the calculation of Se from the slope of
the electronic energy and from the force as in Eq. (3) are
equivalent. Therefore, a calculation of Se based on Eq. (1)
is well supported by TDDFT, and gives the correct value
within the theory defined by the chosen XC, as long as it is an
adiabatic functional. If the nonlocality in time is considered,
Eq. (1) should not be used, but rather Se should be extracted
from the average force on the projectile, Eq. (3).
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C. Steady state

The Floquet theory of electronic stopping [44,45] describes
the stationary state for a single projectile at constant velocity
the approximations and assumptions implied, such as a non-
relativistic classical nuclear projectile and constant velocity,
are critically reviewed in the Appendix, while size effects in
the approach to an apparent stationary state are reviewed in
Ref. [61]). It is a stroboscopically stationary state, meaning
that properties that do not scale with the size of the system are
invariant when looked at times separated by a time period τ =
a/vp, where a is the lattice parameter of the one-dimensional
lattice along the rectilinear projectile trajectory. The particle
density n(r, t ), the force opposing the projectile motion Fp(t ),
and, therefore, the electron energy excitation rate, ∂t Ee =
vpSe, are all stroboscopically stationary quantitites, both in an
exact solution and within our ALDA approach.

Since the time average of ∂t Ee is not zero, the elec-
tronic energy itself steadily grows, and it is therefore not a
stroboscopically stationary property. This is compatible with
Floquet theorem since it is an infinite open system. It is anal-
ogous to a scattering problem in general, and to the stopping
problem in jellium, in particular, which is time independent,
with constant Se and therefore increasing Ee. There are prop-
erties relating to the Kohn-Sham single-particle states that are
also stroboscopically stationary [70], but we concentrate here
on energy, density, and forces.

Figure 4 clearly displays the described expectation for
∂t Ee: after the transient, an oscillatory behavior for, in this
case, the time derivative of the electronic energy, with the ex-
pected period (the lattice parameter along [100] is a = 3.567
Å, the projectile passing close to a C atom every a/4 = 0.89
Å, which perfectly conforms with the observed periodicity).
Figure 5 shows the repetition of the dynamical deformation
density at equivalent proton positions (and corresponding
times) in the diamond crystal, for the projectile moving at
vp = 1 a.u. along the [110] direction. The dynamical defor-
mation density is defined as

δndyn(r, t ) = n(r, t ) − na[r, {RI (t )}];
n(r, t ) being the dynamical electron density and na[r, {RI (t )}]
the corresponding adiabatic electron density, meaning the one
corresponding to the electronic ground state for the nuclei at
their RI positions at time t .

There are depictions in the literature of the wake of the
projectile in terms of maps of the density or the deformation
density (see, e.g., very early sets in Refs. [71,72] for jellium,
and also for metals such as on the cover of the issue for
Ref. [27] and in Refs. [36,61], for example). A comparative
wake analysis for different velocities, directions, and materials
would be of interest. It is, however, beyond the scope of this
paper; our focus is on the stroboscopic stationarity of the
density as key magnitude in first-principles calculations of
these processes. The key comparison is therefore between the
upper and lower panels of Fig. 5. Indeed, the deformation
density pattern is very rich and intricate, and the similarity
under translation is remarkable.

For a more quantitative assessment, Fig. 6 shows the same
deformation density along the projectile path at different

FIG. 5. Electron deformation density in real space at equivalent
projectile positions in consecutive diamond unit cells (upper and
lower panels) along the trajectory for a proton moving at v = 1 a.u.
along the [110] direction. It is depicted in the (001) plane contain-
ing the projectile, the horizontal axis being the [100] direction and
the vertical axis the [010] direction. The color scale is given from
−0.01 e/Bohr (dark blue) to +0.01 e/Bohr (dark red), going through
white for zero. The homogeneous bright red close to the proton
is saturated (scale chosen to show rich pattern in the tail). Beads
indicate atomic positions of selected atoms including the projectile
(light bead) to indicate the equivalence of position under translation.

projectile positions that are crystallographically equivalent,
taking the projectile position as a reference for better com-
parison. It is shown for low (0.1 a.u.) and high (1.0 a.u.)
velocity. It can be seen how the deformation tends to stabilize
in the latter positions, once the projectile has approached the
stationary state. It can be appreciated that the stationarity is
only approximate, with small differences between the last two
points, points 4 and 5 (spiky features in the lower panel relate
to the real-space discretization inherent to the SIESTA method
[52]).
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FIG. 6. Electron deformation density along the path of the pro-
jectile, comparing for projectile positions at five different points in
the simulation box which are crystallographically equivalent, labeled
1–5, the number increasing the more advanced the projectile. Upper
(lower) panel is for vp = 0.1 a.u. (1.0 a.u.).

D. Saturation

For the single-projectile problem, the Floquet stationary
solutions would be reached in the long-time limit (if at all).
It should be noted, however, that in the periodically repeated
projectile simulations described in Secs. II and III A, in the
long-time limit, a different regime is to be expected. It is
also a periodic problem, but one in which, due to its effective
finite size (or finite host size per projectile), Floquet modes
would be expected for which the electronic energy itself (not
its flux) would be periodic and, therefore, the oscillating Se(t )
would average to zero. Physically, since projectile replicas
pump energy into the host electronic system everywhere, the
system should reach a saturated periodic state, as described
for finite Floquet systems (see, for instance, Refs. [73,74]), in
which energy would be transferred back and forth between the
projectile lattice and the electrons. It is not a regime of interest
to the single-projectile problem, but can rather be considered
as a finite-size effect, and the simulation box size is normally

FIG. 7. Instantaneous electronic stopping power in diamond for
a proton moving at vp = 0.1 a.u. along the [100] direction.

increased when hints of saturation appear before a meaningful
description of the intended phenomena is reached. Saturation
will not be characterized here, beyond illustrating its onset in
Fig. 7.

The calculation of Se and characterization of processes of
electronic stopping of projectiles by means of direct computa-
tion in a finite simulation box relies on the system reaching
a regime in which the effect of other projectile replicas is
still not felt by a given projectile (finding a fresh host as it
moves). Each replica hence approximately behaves as a single
projectile and, therefore, could achieve the stationary regime
predicted by the Floquet theory of stopping [44] before the
effect of other projectiles is felt (e.g., by reentering the cell, or
energy irradiation from other replicas reaching the one being
followed).

The sweet spot is therefore in the interval between the end
of the initial transient and the onset of saturation, as illustrated
in Fig. 7. It is so far hard to foretell the duration, and even the
existence, of such a regime. It will depend on the projectile
velocity and kind of host, as well as the type of start (smooth
versus instantaneous). So far, it is addressed as a technical
system-size convergence problem (see a discussion on this in
Ref. [34]) and, so far, this community has been fortunate in
finding most situations amenable to feasible computation.

A more fundamental problem, however, is, once a stable
oscillation is found, to ascertain whether what observed really
corresponds to the actually sought Floquet stationary regime
of the stopping problem. The thermalization of such a system
into the steady nonequilibrium regime does not appear to be
a trivial problem. Some correlated systems are known not to
thermalize to equilibrium while stuck in a many-body local-
ized state [75–77]. In the strongly out-of-equilibrium problem
presented by electronic stopping in various kinds of solids, we
are not aware of any way of ascertaining on reaching the rele-
vant steady state. Helpful here would be the calculation of the
Floquet stationary state directly on a TDDFT implementation
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of the scattering Floquet theory of stopping, analogous to what
accomplished in Ref. [45] for a tight-binding Hamiltonian.
That should be the focus of further work.

IV. CONCLUSIONS

Based on results for the electronic stopping power for
protons in diamond, the results of such simulations are ana-
lyzed in light of the stroboscopic stationary states predicted by
the recent Floquet theory of stopping. The predicted Floquet
solutions for the electronic excitation by a projectile are dis-
tinguished from the ones expected for a lattice of projectiles,
the latter corresponding to the actual supercell calculations,
the former to the physical process of interest.

The intermediate regime between the initial transient be-
havior due to the start of the projectile motion and the onset of
saturation is shown to reflect the stroboscopic stationary state
of the single projectile, and the stationary character is tested
quantitatively. The results for Se and particle density for pro-
tons in diamond display remarkable stroboscopic invariance
of both magnitudes in that regime.

The average of ∂t Ee/vp is shown to give the correct elec-
tronic stopping power Se, within TDDFT, supporting the way
it has been calculated in many electronic stopping studies,
but only for adiabatic time-dependent XC functionals. For
density functionals beyond that approximation (contemplat-
ing the nonlocality of the time dependence), the force on the
projectile should be used instead.
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APPENDIX: REVIEW OF FUNDAMENTAL
APPROXIMATIONS

The technical approximations for the direct simulation of
electronic stopping processes have been studied before [43].
Here we review the more fundamental ones underlying the
mentioned studies and this one. As mentioned, they follow
the electronic dynamics under the time-dependent external
potential originated by the nuclei of both the static host
atoms and the mobile projectile. It is done for a finite box
in periodic boundary conditions. As such, it is a well-defined
time-dependent quantum problem for the electrons, but its
relevance for the real problem relies on several basic approxi-
mations and assumptions, as follows.

1. Nonrelativistic quantum mechanics

The described simulations are based on nonrelativis-
tic quantum mechanics, except for relativistic corrections
possibly included in the pseudopotentials when containing
high-velocity core electrons. A relativistic treatment of stop-
ping is known to be needed in the high velocity regime, well
beyond the Bragg peak [4], but the calculations discussed here
are normally done for projectile velocities up to and around
the Bragg peak. For light projectiles, the Bragg peak is around
2 a.u. of velocity. Considering that the velocity of an electron
out of a collision with the projectile would be ve � 2vp (equal-
ity for a classical head-on collision with a heavy projectile),
taking ve = 4 a.u., gives a kinetic energy of T = 217.6 eV
(with a relativistic correction �T = Trel − Tnr = 140 meV).
That kinetic energy is smaller than the one of a 2p elec-
tron in an aluminium atom (∼270 eV), for which relativistic
corrections are well-known to be quite unnecessary for most
practical purposes of electronic structure.

The assumption should be taken with care for high-charge
projectiles, however. The Bragg peak goes up to and beyond
vp ∼ 10 a.u., and an electron with ve ∼ 20 a.u. has a kinetic
energy of T ∼ 5.5 keV (with �T ∼ 90 eV), comparable to
much deeper core states for which relativistic corrections
are known to be significant. Core states, especially of the
projectile, are known to deform significantly in the stopping
process, away from the free atom reference [41], implying
that explicitly relativistic calculations could be needed when
facing the dynamical problem including those core electrons.
It should be kept in mind that in those cases, the core electrons
significantly perturb from their usual atomic state, rendering
many all-electron approaches, such as the augmented plane-
wave [78] or projector augmented-wave [79] methods, not
suitable for the problem, which demands flexible, nonspher-
ical treatment of the relativistic Dirac problem.

2. Classical nuclei

The approach assumes classical nuclei, which, together
with the quantum electrons define Ehrenfest dynamics. It
is known that beyond-Ehrenfest approaches are needed for
the correct long-time thermalization of the excess energy
accumulated in the host [68,80–82]. Essentially, the sponta-
neous emission of phonons is a thermalization channel that
is closed if the quantum fluctuations of nuclear motion are
not included. They are much less important for the electronic
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energy uptake from the projectile motion in the short
timescale [83,84], which is the focus of this and similar
electronic stopping studies. Simulating beyond Ehrenfest,
including quantum fluctuations for the nuclear motion, is
doable, although considerably more costly computationally.
The most popular approaches are based on the surface-
hopping method and variants thereof [85,86], but they are
generally and better devised for finite systems with well-
separated potential energy surfaces, unlike the continuum of
excitations encountered in the electronic stopping problem.
More suitable would be the coupled-electron-ion dynamics
approach of Ref. [80], and the many-trajectory sampling with
Bohmian dynamics of Refs. [87,88], although the computa-
tional effort is hugely increased. Recent progress in exact
factorization techniques [81,89] also offers interesting possi-
bilities. To our knowledge, a quantitative assessment of such
effects in electronic stopping is still lacking.

3. Constant projectile velocity

In most electronic stopping theory and simulation stud-
ies, the projectile is taken to travel at constant velocity.
It is quite a tradition in the field due to the fact, on one
hand, that it is inherent to prevalent theories, both in lin-
ear response [15,20] and in the nonlinear theory based on
a Galilean transformation to the constant-velocity reference
frame sitting on the projectile [7,9,44]. On the other hand, it
is also handy for its applicability in radiation damage, where
the velocity-dependence of the electronic stopping power is
very generally used. It is, of course, an approximation (see
a general assessment in Ref. [61]), the projectile slowing
down with a net deceleration of magnitude a = Se/mp. The
maximum deceleration would happen for velocities around
the Bragg peak. With Se ∼ 13 eV/Å, for example, for pro-
tons in diamond, it amounts to a = 1.4 × 10−4 a.u. Across
the 33.7 Bohr simulation box in the calculations described
above, within which the steady stopping regime seems to be
well established, an initial velocity of 2 a.u. would diminish
by 4.7 × 10−3 a.u., or 0.24%. Similarly, trajectory deflection
is negligible except for very small impact parameters. This
consideration connects with the trajectory sampling problem,
which has been discussed at length (see, e.g., Ref. [61] and
references therein), including studies with full Ehrenfest dy-
namics, which allow for slowing down and deflection of the
projectile. For the purposes of this paper, however, a con-
stant velocity along high-symmetry channels is considered,
as it is a problem that is particularly suited for the intended
analysis.

4. Electron exchange and correlation

The electron-electron interaction and correlation in direct
electronic stopping simulations is normally considered [61]
within TDDFT [46,64], which is, in principle, exact, except
for the approximate XC potentials used. So far, and to our
knowledge, potentials without history dependence have been
used (local in time), assuming locality in space as well (LDA)
or generalized gradient approximations, such as that in Ref.
[90]. History dependence is included in Ref. [19] via linear-
response TDDFT in the low-velocity regime. There is quite

a scope for improvement on this front, both in the space and
time dependencies of the XC potential, although work so far,
including validation with experiments, does not point to XC
errors as prominent, within the kind of simulations studied
here. The approximation is discussed in some depth for the
electronic stopping problem in Refs. [39,91]. The work in
Refs. [14,19] point in the direction of time-dependent current
density functional theory as a very promising route to capture
the nonlocalities of space and time in a much more physically
meaningful manner. Here we still use the ALDA approxima-
tion and focus on other issues.

5. Conservation

Here it is important to clarify some notions on energy
conservation. Starting from the obvious, the dynamics of the
projectile itself is dissipative under the friction provided by
the degrees of freedom of the host, while the dynamics of
the whole projectile plus host electrons and nuclei conserves
the total energy. As mentioned above, the latter conservation
is kept within Ehrenfest dynamics, with quantum electrons
and classical nuclei. Also obviously, the constant-projectile-
velocity problem is not conservative, the constraining force
acting on the projectile to keep its constant velocity generating
a work that increases the energy of the host.

A change of reference frame modifies the energetics. For
the particular case of a jellium host, a change of reference
frame was central to the jellium nonlinear theory of electronic
stopping [7]. It was changed from the reference in which the
electron liquid is at rest (equilibrium, the laboratory frame) to
the one sitting on the projectile. The Galilean boost transforms
the problem of a projectile through an homogeneous electron
liquid in equilibrium into that of an impurity in the homo-
geneous electron liquid sustaining a current equal to −nvpe,
where e is the charge of the electron and n is the constant
particle density of the liquid. Again the system can be seen
as conservative when following the dynamics of all particles,
but also as dissipative inasmuch the electron scattering off
the impurity transforms part of the energy associated to the
current into heat.

It is important to distinguish the above discussion from
what happens in each one of the single-particle scattering
events or the scattering of each of the auxiliary fermions in
the Kohn-Sham problem in DFT. Still, in the jellium case,
each one of those processes is conservative in the projectile
reference frame: a quantum particle scattering off the static
external potential defined by the impurity. Indeed, the problem
has become time independent and it is the time-independent
Schrödinger equation (or Kohn-Sham) being solved.

When changing to the laboratory frame, however, energy
is transferred in each event from the moving projectile scat-
terer to the scattered electron, making it nonconservative.
This consideration is what gives rise to the stopping power
obtained as derived from Eq. (2). The same discussion is
generalized beyond jellium to a constant velocity projectile
moving along a periodic trajectory in a crystalline solid. The
Kohn-Sham scattering events conserve Floquet quasienergy in
the projectile reference frame [44], and a Galilean boost to the
laboratory frame breaks that conservation, in perfect analogy
to (generalization of) the jellium case.
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