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Fundamental limits on concentrating and preserving tensorized quantum resources
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Quantum technology offers great advantages in many applications by exploiting quantum resources like
nonclassicality, coherence, and entanglement. In practice, an environmental noise unavoidably affects a quantum
system and it is thus an important issue to protect quantum resources from noise. In this paper, we investigate the
manipulation of quantum resources possessing the so-called tensorization property and identify the fundamental
limitations on concentrating and preserving those quantum resources. We show that if a resource measure
satisfies the tensorization property as well as the monotonicity, it is impossible to concentrate multiple noisy
copies into a single better resource by free operations. Furthermore, we show that quantum resources cannot be
better protected from channel noises by employing correlated input states on joint channels if the channel output
resource exhibits the tensorization property. We address several practical resource measures where our theorems
apply and manifest their physical meanings in quantum resource manipulation.
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I. INTRODUCTION

Quantum technology has rapidly grown providing a variety
of applications such as quantum computation [1], quan-
tum cryptography [2,3], and quantum metrology [4]. Tasks
in quantum information processing take advantages over
their classical counterparts by exploiting quantum resources.
For instance, quantum teleportation makes use of preshared
entanglement between two distant parties [5]. Recently, non-
classicality has also been introduced as a resource enhancing
the metrological power [6–9]. It is generally a crucial issue
to identify quantum resources essential to obtain quantum
advantages. Quantum resource theories (QRTs) [10] provide
a comprehensive framework for quantifying and manipulating
quantum resources of interest. QRTs have been developed for
a diverse range of quantum resources including entanglement
[11], coherence [12–14], nonclassicality [6–9,15], quantum
non-Gaussianity [16–18], etc. In each QRT, one defines free
operations, which do not create resource under consideration.
Then, one of the fundamental problems in QRT is to investi-
gate whether one resource state can be converted into another
by using free operations only.

In a realistic situation, quantum resources are contaminated
with noise due to interaction with environments. To over-
come practical noise, several approaches have been proposed
to protect resources from channel noise and to distill useful
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resources from noisy copies. For example, entanglement dis-
tillation protocol aims to obtain maximally entangled states
from N copies of nonmaximally entangled states using local
operations and classical communications (LOCC) only [19].
Determining conversion rates between resource states has re-
cently been studied as a central problem in QRTs [13,20–24].

A quantum resource may be quantified by a proper
resource measure R, whose properties lead to some fun-
damental rules in manipulating quantum resources. One of
the important properties is the monotonicity, which im-
plies that resources are nonincreasing under free operations.
In this paper, along with the monotonicity, we focus on
the so-called tensorization property, namely R(ρ ⊗ σ ) =
max{R(ρ), R(σ )}. Tensorization property naturally arises in
several studies on quantifying measures, not restricted to the
quantum resource theory. For instance, it has served as a key
tool to find several applications in classical information the-
ory, e.g., noninteractive distribution simulation problem [25],
distributed channel coding problem [26], and also in quantum
information theory, e.g., the distillation of nonlocal correlation
by wiring [27]. By incorporating the monotonicity and the
tensorization property, we explore fundamental limitations in
manipulating quantum resources.

First, we show the limitation on the concentration of quan-
tum resources. While one typically aims at maximal resource
state in the distillation protocol, we are here interested in a
scenario where one aims to produce more resourceful output
by consuming noisy copies, referred to as resource concentra-
tion. This is meaningful as one can obtain quantum advantages
in quantum informational tasks not necessarily employing the
maximally resourceful states. Furthermore, in some resource
theories like those on nonclassicality and non-Gaussianity,
maximally resourceful states are not well defined due to the
infinite dimension of quantum systems. Further, while the
distillation rate is a central problem in the resource distillation,
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we rather focus on the possibility of the resource concentra-
tion. The key idea of our investigation is the tensorization
property of resources, which naturally leads to the limita-
tion on resource concentration. The limitation states that a
number of noisy copies cannot be concentrated into a better
single copy using free operations under a resource measure
satisfying both monotonicity and tensorization properties. The
extent of limitation on resource concentration may depend on
whether the monotonicity holds for deterministic or proba-
bilistic free operations.

Next, we consider a measure that quantifies the resource
of channel output to study the behavior of quantum resources
under channel noise. We investigate the tensorization property
of channel output resource to show the limitation on the re-
source preservability. If the channel-output resource measure
satisfies the tensorization property, we find that employing
correlated input state is not advantageous in protecting quan-
tum resources from noise. We prove that the nonclassicality
depth satisfies such a property and find a strong evidence for
the tensorization property of maximal coherence, which is
an important coherence measure in the problem of coherence
distillation under strictly incoherent operations [23].

This paper is organized as follows. In Sec. II, we briefly
introduce a general framework of QRTs and address the prop-
erties of quantum resource measures. In Sec. III, we show
the limitation on resource concentration under the tensoriza-
tion property and the monotonicity. As examples, we present
several resource measures where our theorem applies, and
especially we investigate two measures of nonclassicality, i.e.,
the nonclassicality depth [28,29] and the metrological power
of nonclassicality [6–8]. In Sec. IV, we investigate the ten-
sorization property of channel output resources and apply it
to the nonclassicality depth and the maximal coherence. We
finally conclude with some remarks in Sec. V.

II. QUANTUM RESOURCE THEORY

Let us begin by briefly introducing the basic formalism
of QRTs. A resource theory is individually determined by
the restrictions imposed on freely available operations, which
defines the set of free operations O. The states that can be
accessible using the free operations in O are considered as
free states, forming a convex set F . All the states other than
free states are considered as resource states. The golden rule
of QRTs is that free operations never create resources. That
is, if ρ ∈ F and � ∈ O, then �(ρ) ∈ F . One might consider
the maximal set of free operations Õ, the collection of all
operations satisfying this golden rule. On the other hand, we
may consider a subset O that does not necessarily contain all
possible free operations, but includes only those free opera-
tions with operational motivation.

Let us take the resource theory of entanglement as an
example. Here entangled states are considered as resources,
while F consists of separable states. The maximal set Õ
must be constructed by all nonentangling operations [30–32],
while LOCC is a physically motivated subset O of nonen-
tangling operations widely used in the study of entanglement
manipulation. Choosing a different set of free operations ex-
hibits a different property of quantum resource. For example,
manipulation of entanglement is irreversible under LOCC,

while it is reversible under all non-entangling operations
[31,33,34] .

Resource can be quantified by a proper resource measure.
In the following, we list the desired properties of a resource
measure R:

(C1a) Vanishing for free states: R(ρ) � 0 with equality if
ρ ∈ F .

(C1b) Faithfulness: R(ρ) = 0 if and only if ρ ∈ F .
(C2a) Monotonicity: R does not increase under trace-

preserving free operations, i.e., R(ρ) � R(�(ρ)).
(C2b) Strong monotonicity: R does not increase on average

under conditional free operations, i.e., R(ρ) �
∑

i piR(σi ),
where pi = tr[�i(ρ)] and σi = �i(ρ)/pi.

(C2c) Monotonicity under postselection of free operations:
R does not increase even under trace non-preserving free
operations, i.e., R(ρ) � R(�i(ρ)/pi ).

(C3) Convexity: R(
∑

i piρi ) �
∑

i piR(ρi ).
The property (C1a) is essential in order to avoid fake

detection of resources. Monotonicity (C2a) is a fundamental
property of resource measure implying that free operations
cannot create or increase resource. Strong monotonicity (C2b)
is a stronger requirement when a map can be decomposed into
sum of free operations as �(·) = ∑

i �i(·) and one has access
to the outcome i individually. It is straightforward to show
that when (C2b) is combined with convexity (C3), (C2a) is
automatically satisfied. The property (C2c) is an even stronger
requirement implying that resource measure is nonincreasing
under each probabilistic free operation. We primarily require
the two properties (C1a) and (C2a) to be satisfied. Then we
may further require a stricter restriction, (C2b) or (C2c), de-
pending on the situation as we shall address below.

We also introduce an important property considered to
derive our main result.

(C4) Tensorization property: R(ρ ⊗ σ ) =
max{R(ρ), R(σ )}

This property is quite different from the other fre-
quently considered property, i.e., additivity R(ρ ⊗ σ ) =
R(ρ) + R(σ ), which is usually obeyed in many resource mea-
sures. While additive measures quantify the total amount
of resources, measures satisfying the tensorization property
tends to estimate the strongest ability in certain tasks. For
example, the metrological power of nonclassicality [6–8] es-
timates the optimal performance of sensing displacement in a
single direction among all possible directions involving mul-
timode fields in phase space.

III. NO-GO THEOREM FOR RESOURCE
CONCENTRATION

The goal of resource concentration is to obtain an output
state with a higher degree of resource from noisy resources.
Suppose one has noisy resource states ρ1, ρ2, · · · , ρN , which
hardly provides advantage in a quantum information task that
exploits the resource quantified by R. If one is able to concen-
trate resources into an output copy σ such that R(σ ) > R(ρ j )
for any j, the output state can perform the task better than any
of ρ j .

In the resource concentration, one may aim at producing a
single output state σ = ∑

i piσi = ∑
i �i(⊗N

j=1ρ j ) using free
operations �(·) = ∑

i �i(·). Let us denote the dimensions of
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input states ρ j and output state σ as d1, d2, · · · , dN and dout,
respectively. When we consider resources in infinite dimen-
sions, we set all di’s and dout to be infinite. On the other
hand, when we deal with resources in finite dimensions, the
dimensions are not necessarily the same as long as free oper-
ations and the resource measure are well defined for different
dimensions. The map � transforms a N-partite state into a
single-party state. This procedure may include measuring or
discarding subsystems other than a desired output subsystem,
which is allowed in free operations.

One can say that concentration is successful if

R(σ ) > max
j

R(ρ j ). (1)

If a resource measure R satisfies both monotonicity (C2a) and
tensorization property (C4), one can readily show that achiev-
ing Eq. (1) is impossible. Furthermore, if R also possesses a
stronger monotonicity, (C2b) or (C2c), we find a stricter no-go
theorem for resource concentration.

Observation 1. (No-go theorem for resource
concentration)

(1) If R satisfies (C2a) and (C4), then resource cannot be
concentrated by the deterministic free operation, i.e.,

R(σ ) � max
j

R(ρ j ). (2)

(2) If R satisfies (C2b) and (C4), then resource cannot be
concentrated on average, i.e.,∑

i

piR(σi ) � max
j

R(ρ j ). (3)

(3) If R satisfies (C2c) and (C4), then resource cannot be
concentrated by a probabilistic free operation, i.e.,

R(σi ) � max
j

R(ρ j ), ∀i. (4)

We here remark that the above no-go theorems hold re-
gardless of the number of input copies n. For example, when
one tries to obtain a target state with resource R(σT) by a
probabilistic concentration, Observation 1(b) implies that the
success probability is bounded by Psucc � max j R(ρ j )/R(σT).
In this case, increasing the number of input states does not in-
crease the success probability. In the following, we introduce
resource measures to which Observation 1 applies and discuss
their physical meanings in quantum information tasks.

A. Nonclassicality depth

In continuous-variable systems, an n-mode state ρ is called
classical if it can be written as a convex mixture of coherent
states, that is,

ρ =
∫

d2nαP(α)|α〉〈α|, P(α) � 0. (5)

Here α = (Re[α1], Im[α1], · · · , Re[αn], Im[αn])T is a 2n-
dimensional vector in phase space and |α〉 = D̂(α)|0〉 repre-
sents n-mode coherent state, where D̂(α) = ⊗n

i=1 exp(αiâ
†
i +

α∗
i âi ) is the multimode displacement operator and âi(â

†
i ) the

annihilation (creation) operator associated with ith mode.
In the resource theory of nonclassicality, the set of free
states includes all classical states (5) having positive Glauber-
Sudarshan P functions [9,35,36].

We adopt the following operations as free operations: (1)
passive linear unitaries and displacements, (2) addition of
classical ancilla modes, (3) classical measurement (projec-
tion onto coherent states), and (4) classical mixing. Passive
linear unitaries are photon-number-conserving unitary oper-
ations implemented with beam splitters and phase shifters.
Any classical measurements can be realized by projection
onto coherent states followed by coarse-graining of measure-
ment outcomes. Our set of free operations does not cover
all classicality-preserving operations [37], however, it covers
physically motivated operations that are deemed easy to im-
plement. Note that slightly different choices of free operations
are considered in the resource theory of nonclassicality [6–8]
as well as in the Gaussian work extraction problem [38].

The nonclassicality depth was first introduced by C. T. Lee
for a single mode [28], generalized also to multimode cases
[29]. An n-mode state ρ can be represented by the so-called
s-parametrized quasiprobability function [39]

Wρ (α; s) =
(

2

π (1 − s)

)n ∫
d2nβPρ (β)e− 2

1−s |β−α|2 , (6)

where Pρ (β) is the Glauber-Sudarshan P function of the state
ρ. When s = −1, Wρ (α; s) corresponds to the Husimi Q func-
tion, which is always non-negative. Substituting s = 1 − 2τ ,
we may rewrite Eq. (6) as

Wρ (α; τ ) =
(

1

πτ

)n ∫
d2nβPρ (β)e− 1

τ
|β−α|2 . (7)

Then the nonclassicality depth is defined by

τm(ρ) = inf {τ |Wρ (α; τ ) is positive}. (8)

Operationally, τm can be interpreted as the minimum amount
of additive thermal noise, which makes ρ classical.

Despite its early origin, the properties of nonclassicality
depth has not been thoroughly studied yet. We here show that
the nonclassicality depth satisfies several desired properties
listed in Sec. II (see Appendix A for proof).

Proposition 1. The nonclassicality depth τm satisfies the
properties (C1a) and (C1b) faithfulness, (C2a)–(C2c) mono-
tonicity under both deterministic and conditional free opera-
tions, and (C4) tensorization property.

As the nonclassicality depth satisfies the mono-
tonicity [(C2a)–C2(c)] and tensorization property (C4),
Observation 1 implies the following no-go theorem.

Theorem 1. The nonclassicality depth τm cannot be con-
centrated by classical operations even probabilistically.

Let us discuss some practical examples. For Gaussian
states, the nonclassicality depth is given by

τm(ρG) = max
{
0, 1

2 − λmin(V )
}
, (9)

where λmin(V ) denotes the minimum eigenvalue of the co-
variance matrix V of ρG, or the minimum variance over
all different quadratures. Note that the nonclassicality depth
is only determined by λmin(V ) representing the degree of
squeezing. Our theorem reproduces the no-go theorem for
Gaussian squeezing distillation developed in [6,40,41], while
different measures for nonclassicality are employed there.

The nonclassicality depth becomes maximal for any pure
non-Gaussian state, that is, τm(|ψNG〉〈ψNG|) = 1 [42]. For a
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lossy single-photon state ρloss = (1 − q)|0〉〈0| + q|1〉〈1|, the
nonclassicality depth becomes τm(ρloss) = q. Our no-go the-
orem not only shows that it is impossible to distill a pure
nonclassical state from lossy single-photon states, but also that
the single-photon fraction cannot be increased by classical
operations. The latter result agrees with the one given in
[43]. We can generalize this result to Fock states |n〉 under a
loss channel with transmissivity t . Because the nonclassicality
depth decreases monotonically as t decreases, it is impossible
to obtain a pure Fock state from lossy Fock states.

B. Metrological power of nonclassicality

Recently, nonclassicality has been studied as a re-
source quantifying the quantum advantage in metrological
tasks [6–8]. The phase space for n-mode bosonic system
is described by 2n quadratures R̂ = (x̂1, p̂1, · · · , x̂n, p̂n)T .
When the state is displaced along the direction μ =
(Re[μ1], Im[μ1], · · · , Re[μn], Im[μn])T , which is a real 2n-
dimensional unit vector, the variance of the estimator is lower
bounded by the quantum Cramér-Rao bound [7,44]

(
θ )2 � 1

4μT Fμ
. (10)

F is the quantum Fischer information (QFI) matrix of which
elements are given by

Fkl = 1

2

∑
i, j

(λi − λ j )2

λi + λ j
〈i|R̂k| j〉〈 j|R̂l |i〉, (11)

where λi and |i〉 are eigenvalues and eigenstates of ρ, respec-
tively. For a later convenience, we use QFI scaled by a factor 1

4
compared to the usual definition, as adopted in [6,8]. Then the
metrological power of nonclassicality is defined as [6,7,45]

F1(ρ) = max
{
λmax(F ) − 1

2 , 0
}
, (12)

where λmax(F ) is the maximum eigenvalue of F. Opera-
tionally, F1 quantifies the maximal advantage in displacement
estimation along a certain direction among all possible direc-
tions in phase space.

For pure states, the metrological power of nonclassical-
ity satisfies (C1b), that is, F1 = 0 only for coherent states.
However, for mixed states, it satisfies only (C1a) but not
(C1b) in general. Nevertheless, F1 is a useful quantifier of
nonclassicality due to its operational interpretation as well as
the monotonic property. The monotonicity (C2a) is proved in
[6,7], respectively, with a slightly different set of free oper-
ations. In [6], it is shown that F1 satisfies (C2a) under the
set of free operations defined similarly to what we employed
in the previous section. On the other hand, Ref. [6] employs
a much broader set of measurements, that is all destructive
measurements where measured systems are discarded. The
tensorization property (C4) is proved in [7] as well. Now
we can apply the Observation 1(a) to obtain the following
theorem.

Theorem 2. The metrological power of nonclassicality
F1 cannot be concentrated under deterministic classical
operations.

A probabilistic concentration of F1 is possible, but the
strong monotonicity (C2b) of F1 is not proved yet. Instead
another form of monotonicity is proved in [6], which states

that piF1(σi ) � F1(⊗N
j=1ρ j ) under classical operations and de-

structive measurements without feedforward. In this form, we
only consider the output state of single measurement outcome
without taking the average over all outcomes as done in (C2b).
Then, using the tensorization property (C4), we formulate
the limitation on probabilistic concentration as piF1(σi ) �
max j F1(ρ j ). When one tries to obtain the target state σT by
probabilistic concentration, the success probability is bounded
by the following theorem.

Theorem 3. In probabilistic concentration of F1, the suc-
cess probability is upper bounded as

Psucc �
max j F1(ρ j )

F1(σT)
. (13)

As noted in Sec. III, the upper bound does not depend on
the number of input copies.

Let us recall the nonclassicality concentration of cat states
|ψc(α)〉 = 1√

Nα
(|α〉 + | − α〉), where Nα is the normaliza-

tion factor, discussed in [6]. One aims to obtain a larger
cat state |ψc(

√
2α)〉 from a pair of cat states |ψc(α)〉⊗2

assuming α 	 1. Performing 50:50 beam splitter interac-
tion followed by vacuum projection on one mode, one
obtains |ψc(

√
2α)〉 at the other mode with probability 1/2.

Since the metrological power of the cat state is given
by F1(|ψc(α)〉) = 2|α|2, this scheme saturates the inequal-
ity Psucc � F1(|ψc(α)〉)/F1(|ψc(

√
2α)〉). Interestingly, while

a single pair of input states is considered in this scheme,
increasing the number of input states will never increase the
success probability. There still remains the possibility that the
cat state is probabilistically amplified from a single copy, but
such protocols have not been reported yet.

One might wonder if the no-go theorems for two differ-
ent measures of nonclassicality contradict each other. The
contradiction does not occur, however, because the nonclas-
sicality depth and the metrological power look into different
aspects of nonclassicality. For example, the nonclassicality
depth of a cat state is always 1 regardless of the ampli-
tude α while the metrological power increases monotonically
with α. Therefore, the probabilistic amplification of cat state
does not violate the no-go theorem for concentration of
the nonclassicality depth. It is also possible to concentrate
the metrological power from a pair of lossy single-photon
state ρ⊗2

loss. Performing beamsplitter interaction followed by
vacuum projection, one obtains the output state σout = 1

P ((1 −
q)2|0〉〈0| + q(1 − q)|1〉〈1| + q2

2 |2〉〈2|) with the probability

P = 1 − q + q2

2 . We show that one can attain the successful
concentration F1(σout) > F1(ρloss) when q � 0.7419 as shown
in Fig. 1(b), while the nonclassicality depth cannot be con-
centrated as shown in Fig. 1(a). In Fig. 1(b), by comparing
F1(σout) and PF1(ρloss), it is observed that the bound (13) is
strictly obeyed and that it is saturated only when q = 1.

It must also be noted that measurements considered as
free operations are different, destructive measurements in
this section and only classical measurements in Sec. III A.
Consider that a two-mode squeezed vacuum is generated by
mixing position- and momentum-squeezed states by 50:50
beamsplitter. One may try to concentrate nonclassicality into
one mode by performing measurement on the other mode.
Classical measurements cannot accomplish this task due to
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FIG. 1. Plot illustrating (a) the nonclassicality depth and (b) the
metrological power. Dashed curves correspond to input lossy single-
photon state ρloss. Red-solid curved correspond to output state
σout after vacuum projection on the other mode. Shaded region in
(b) represents successful concentration. Green-dotted curve repre-
sents PF1(σout ).

the no-go theorem for the nonclassicality depth. On the other
hand, highly nonclassical Fock state can be attained by photon
counting while the success probability is bounded by (13).

C. Gaussian quantum resource theory

The no-go theorem for Gaussian resource distillation was
developed recently [41] in a similar context to our work.
In the Gaussian regime, a state is fully characterized by its
displacement s and covariance matrix V . In Gaussian QRT, the
set of free states is defined as FG = F ∩ G, where G denotes
the set of Gaussian states. For a given covariance matrix V , a
resource measure is defined as

κF (V ) = min {t � 1 | tV ∈ VF }, (14)

where VF denotes the set of covariance matrices correspond-
ing to free states. For example, κF becomes a Gaussian
entanglement measure when F is the set of separable states, or
a Gaussian nonclassicality measure when F is the set of clas-
sical states. It was shown that κF satisfies the monotonicity
(C2a) and the tensorization property (C4). Interestingly, be-
cause any Gaussian measurements on Gaussian states can be
described in a deterministic way [46–48], (C2a) also implies
(C2c). Therefore Observation 1(c) holds for κF . This result
reproduces the no-go theorem for Gaussian squeezing [40]
and the no-go theorem for Gaussian entanglement distillation
[46–48].

D. Maximal coherence

In discrete-variable systems, QRT of coherence has been
extensively investigated [14]. If one considers the maximal set
of incoherent operations Õ, so called maximally incoherent
operations (MIO), conversion of coherence is reversible in the
asymptotic limit [20,33]. However, if one considers a smaller
set of incoherent operations, we can find the irreversible be-
havior of coherence. The set of strictly incoherent operations
(SIO) is a widely employed set of free operations [49,50] due
to their simple structure. An operation is called SIO if each
Kraus operator Ki and its adjoint K†

i are both incoherent. Lami
et al. introduced a measure called the maximal coherence [23],
defined as

η(ρ) = max
i �= j

|ρi j |√
ρiiρ j j

, (15)

FIG. 2. (a) Resources are prepared in a product state and then
undergo independent channel noises. (b) Resources are prepared in a
correlated state before channel noises.

which satisfies the monotonicity (C2c) under SIO. Also
it obeys the tensorization property (C4) so we obtain
Observation 1(c).

Using the property of maximal coherence, Ref. [23] de-
rived important theorems on coherence distillation under SIO.
In the coherence distillation, one aims to convert a number of
copies ρ into an m-dimensional maximally coherent state �m

under a set of free operations O. The fidelity of distillation
characterizes the error in the distillation as

FO(ρ, m) = sup
�∈O

F (�(ρ), �m), (16)

where F (ρ, σ ) = (tr
√√

ρσ
√

ρ )2. The distillable coherence is
the maximal rate of obtaining maximally coherent qubit state
with vanishing error, that is,

Cd,O(ρ) = sup
{

r
∣∣∣ lim
n→∞ FO(ρ⊗n, 2rn) = 1

}
. (17)

We here restate the theorems on SIO coherence distillation.
Theorem 4. (a) [23, Theorem 1] A state ρ is distillable

under SIO, that is, Cd,SIO(ρ) > 0, if and only if η(ρ) = 1 in
Eq. (15).

(b) [23, Theorem 3] The fidelity of asymptotic distillation
is given by

lim
n→∞ FSIO(ρ⊗n, 2) = 1 + η(ρ)

2
. (18)

The condition η(ρ) = 1 means that there exists a submatrix
of the density matrix ρ that corresponds to a pure coherent
state. Note that Theorem 4 is fully described with the quantity
η. This result will be recalled in Sec. IV B where we study the
output coherence of channels.

IV. RESOURCE PRESERVABILITY
OF QUANTUM CHANNELS

In the previous section, we have shown that if we have
noisy resource states in a product state [Output state in
Fig. 2(a)], their resource cannot be concentrated by free opera-
tions. Then, one may wonder whether it is possible to preserve
more resources against noise by initially preparing correlated
resource states as illustrated in Fig. 2(b). To address this
problem, we introduce a measure, which estimates the output
resource of channels, defined as

R̃(�) = max
ρ

{R(�(ρ))}, (19)

where the maximization is over all possible input states.
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We remark on a difference between our measure R̃ and
other measures in channel resource theories. In channel re-
source theories [10,51–53], one is interested in how much
resource channels can create. For example, the resource-
generating power [51,54,55] is one of the widely-studied
channel resource measures. In this approach, free operations
� ∈ O are considered as free channel resources with R(�) =
0. However, when studying the effect of noisy channels, this
approach is not appropriate, because a noisy environment gen-
erally does not create resources. In contrast, we are interested
in how much resource channels can preserve. For example,
the identity channel perfectly preserves resources, while it
is a resource-nongenerating channel belonging to O. Simi-
lar arguments have been made in recent studies of channel
resource theories [56,57]. Particularly, Ref. [56] investigated
the axiomatic properties of resource preservability measures.
In this sense, our measure R̃ is appropriate to study resources
preserved by noisy channels.

Now, by investigating the tensorization property, we have
the following observation.

Observation 2. If a channel measure R̃ satisfies the
tensorization property, that is,

R̃(�1 ⊗ �2) = max {R̃(�1), R̃(�2)}, (20)

employing correlated input states does not preserve more
resources in the output states than employing product input
states.

It is straightforward to show that once the state resource
measure R has the property R(ρ1 ⊗ ρ2) > max{R(ρ1), R(ρ2)},
Eq. (20) for the channel resource R̃ does not hold. The
tensorization property of state resource measure (C4) is a
necessary condition for the tensorization property of channel
output resource measure (20). However, the converse is not
straightforward because the optimization of R̃(�1 ⊗ �2) is
taken in a larger Hilbert space with correlated input states
allowed than the optimization of R̃(�1) and of R̃(�2). We
investigate output resource measures to which Observation
2 may apply and show their physical meaning in resource
preparation.

A. Output nonclassicality depth of channels

Let us consider the output nonclassicality depth of chan-
nels defined as

τ̃m(�) = max
ρ

{τm(�(ρ))}. (21)

Note that a similar measure was employed in the framework
of process output nonclassicality [29]. In what follows, we
prove the tensorization property of τ̃m, which implies that
multiple use of channels with correlated or entangled input
is not helpful to preserve the nonclassicality. We first show
the result in the extreme case where τ̃m(�) = 0.

1. Nonclassicality-breaking channels

Because τm is a faithful measure, τ̃m(�) = 0 implies that
the channel � outputs only classical states. That is, the
channel is nonclassicality breaking. The characterization of
nonclassicality-breaking channels (NBCs) have been stud-
ied for the class of bosonic Gaussian channels [58,59]. In

the following, we investigate general properties of NBC, not
constrained to bosonic Gaussian channels. Note that the prop-
erties of NBC are intrinsic properties of the channel, which
does not rely on the nonclassicality measure.

To investigate the properties of NBC, we use the following
lemma (see Appendix B for proof).

Lemma 1. Any nonclassicality-breaking channel �NB can
be expressed in the form

�NB(ρ) =
∫

d2nαtr[ρMα]|α〉〈α|, (22)

where n is the number of output modes and {Mα}α a set of
POVM operators with

∫
d2nαMα = I .

Using Lemma 1, a multiple use of NBCs, e.g., �1 and �2,
can be expressed as a simple extension of Eq. (22) as

�1 ⊗ �2(ρ) =
∫

d2n1α1d2n2α2tr
[
ρ(Mα1 ⊗ Mα2 )

]
× |α1〉〈α1| ⊗ |α2〉〈α2|. (23)

We then have the following proposition.
Proposition 2. If both �1 and �2 are nonclassicality

breaking, then �1 ⊗ �2 is nonclassicality breaking as well.

2. Tensorization property

Let us introduce a single-mode additive thermal noise
channel Eδ , which can be understood as random displacement
with a Gaussian distribution in phase space. When E⊗n

δ acts
on an n-mode state ρ, it yields the output state as

E⊗n
δ (ρ) = 1

(πδ)n

∫
d2nγe− 1

δ
|γ|2 D̂(γ )ρD̂†(γ ). (24)

The P function is transformed under Eδ accordingly as

PE⊗n
δ (ρ)(α) = 1

(πδ)n

∫
d2nγe− 1

δ
|γ|2 Pρ (α − γ )

= 1

(πδ)n

∫
d2nγ ′e− 1

δ
|γ ′−α|2 Pρ (γ ′)

= Wρ (α; δ). (25)

From Eq. (25) in conjunction with the definition of nonclassi-
cality depth, we readily see that those states with τm(ρ) � δ

become classical after the channel noise E⊗n
δ while states

remain nonclassical if τm > δ. We can make a similar conclu-
sion for the output nonclassicality depth of channels, that is,
E⊗n

δ ◦ � is nonclassicality breaking if and only if τ̃m(�) � δ.
Now we obtain the following theorem.
Theorem 5. The output nonclassicality depth of channels

τ̃m satisfies the tensorization property, that is,

τ̃m(�1 ⊗ �2) = max {τ̃m(�1), τ̃m(�2)}. (26)

Proof. For two channels �1 and �2, which output n1 and
n2 modes respectively, let us assume τ̃m(�1) � τ̃m(�2) and
denote τ ∗ = τ̃m(�1). Then, from Proposition 2,

E⊗(n1+n2 )
δ ◦ (�1 ⊗ �2) = (

En1
δ ◦ �1

) ⊗ (
En2

δ ◦ �2
)

(27)

is nonclassicality breaking if δ � τ ∗. If δ < τ ∗, E⊗n1
δ pre-

serves the nonclassicality of �1(ρ) for the state saturating
τm(�1(ρ)) = τ̃m(�1). Therefore, we have τ̃m(�1 ⊗ �2) =
τ ∗.
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FIG. 3. Numerical calculation of output maximal coherence
through channels. The dimension of the Hilbert space of system,
{dA, dB}, is given by (a){2, 2} and (b){2, 3}, respectively. Straight-red
dotted lines represent the tensorization property (29).

By recalling Observation 2, this theorem implies that using
correlated input states does not preserve more nonclassicality
depth than using separable input states.

B. Output maximal coherence of channels

Now let us consider the maximal coherence discussed in
Sec. III D. We define the output maximal coherence of chan-
nels as

η̃(�) = max
ρ

{η(�(ρ))}. (28)

We here make a conjecture on the tensorization property of η̃.
Conjecture 1. The output maximal coherence of channels

τ̃m satisfies the tensorization property, that is,

η̃(�1 ⊗ �2) = max {η̃(�1), η̃(�2)}. (29)

Whether this conjecture holds true is not straightforward to
see due to the optimization over all input states. However, we
find a strong evidence to support this conjecture by conducting
numerical calculations. For this purpose, we have generated
pairs of random dynamical matrix (Choi matrix) using the
function in QI package for Mathematica [60]. A pair of dy-
namical matrices respectively correspond to channels �A and
�B in the spirit of Choi-Jamiolkowski isomorphism [61,62].
The output maximal coherence is estimated for �A, �B, and
�A ⊗ �B respectively by numerically evaluating Eq. (29). We
plot the obtained data in Fig. 3 with the dimension of Hilbert
space set as {dA, dB} = (a){2, 2}, (b){2, 3}, respectively. Our
data coincides with the diagonal line almost perfectly, which
confirms Conjecture 1.

Recalling Theorem 4, the tensorization property of η̃ would
have important consequences in SIO coherence distillation.

Conjecture 2. (a) If channels η̃(� j ) < 1 for all j =
1, 2, · · · , N , joint use of such channels in parallel outputs only
SIO-nondistillable states.

(b) When a state ρ is prepared under joint channels �1 ⊗
�2 × · · · ⊗ �N , the maximum distillation fidelity under SIO
is given by

lim
n→∞ FSIO(ρ⊗n, 2) = 1 + max j {η̃(� j )}

2
. (30)

This demonstrates that using joint channels with correlated
input states does not improve the performance of SIO coher-
ence distillation of output states compared with using single
channel with the maximum η̃.

V. DISCUSSION

In this paper, we have studied the tensorization property
of quantum resources to find the limitations on manipulating
quantum resources. If a resource measure satisfies the ten-
sorization property as well as the usual monotonicity, it is
impossible to concentrate multiple noisy states to a single
state with a higher degree of resource by free operations.
Furthermore, we have introduced the output resource measure
of channels, which satisfies the tensorization property to show
that joint channels with correlated input states are not help-
ful to preserve quantum resources. We have established our
results in the general framework of QRTs so that it can be ap-
plied to any quantum resources. Numerous resources studied
intensively so far satisfy the tensorization property, as we have
illustrated our results with nonclassicality depth, metrological
power, Gaussian quantum resource, and maximal coherence.

It would be an interesting study to further investigate
whether there can exist certain resource measures, which sat-
isfy the tensorization property in other resource theories such
as quantum non-Gaussianity [16–18] or magic states [63,64].
Another direction of study to pursue is to find operational
resource measures satisfying the tensorization property. As
the metrological power of nonclassicality has a significant
operational meaning in quantum metrology, it may be worth
investigating whether one can find a similar measure in the
resource theory of coherence.

We find a close connection between the tensorization prop-
erty of the state resource measure and that of the channel
resource measure for the case of nonclassicality depth and the
maximal coherence. It is another interesting question whether
there exists a resource measure, which satisfies the tensoriza-
tion property as a state measure but does not as a channel
output measure, which can have an analogy to the additivity
problems of quantum channels.

We hope our paper could provide some useful insight
into what is allowed or prohibited in manipulating quantum
resources under noisy circumstances. Another important con-
tribution has recently been made on the no-go theorem for
resource purification [65]. All of these studies will make a
crucial basis for developing practical protocols to overcome
unavoidable noise in manipulating resources for quantum in-
formational tasks.
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APPENDIX A: PROPERTIES OF
NONCLASSICALITY DEPTH

Faithfulness: Faithfulness (C1b) as well as (C1a) holds by
the definition of the nonclassicality depth.

Tensorization property: Let us assume, without loss of
generality, τm(ρ) � τm(σ ) and τ ∗ ≡ τm(ρ). Observing that

Wρ⊗σ (α; τ ) = Wρ (α1; τ )Wσ (α2; τ ), (A1)

where α denotes the collection of α1 and α2, becomes a pos-
itive probability function if τ = τ ∗, we find τm(ρ ⊗ σ ) � τ ∗.
Further, if τ < τ ∗, Wρ (α1; τ ) must show a negative value, and
thus Eq. (A1) cannot be a positive function. Therefore, we
have the tensoriztaion property (C4) written as

τm(ρ ⊗ σ ) = max{τm(ρ), τm(σ )}. (A2)

Monotonicity: We prove the strictest form of monotonic-
ity (C2c) and then (C2a) and (C2b) automatically follow. A

passive linear unitary operation ÛP can be regarded as a rota-
tion in phase space, which is described by the transformation
WÛPρÛ †

P
(R · α; τ ) = Wρ (α; τ ), where R is an orthogonal matrix

satisfying RT = R−1 and det R = 1. Because the rotation pre-
serves positivity of the function W , the nonclassicality depth
τm is invariant under passive linear unitaries. Similarly, τm is
invariant under displacements D̂(γ ) described by the transfor-
mation WD̂(γ )ρD̂†(γ )(α; τ ) = Wρ (α − γ; τ ). The nonclassicality
depth is also invariant under addition of classical ancilla
modes due to the tensorization property (A2). Let us now con-
sider a classical measurement performed on the last k modes
out of an n-mode state ρ. Projection onto multimode coherent
states is described by M̂ξ ≡ 1

π k |ξ〉〈ξ|, where |ξ〉 represents
k-mode coherent states. After measurement, the state can be
written by the following P representation:

ρ ′ = 1

π k p(ξ|ρ)
〈ξ|ρ|ξ〉

= 1

π k p(ξ|ρ)

∫
d2nα〈ξ|α〉Pρ (α)〈α|ξ〉

≡
∫

d2(n−k)α′Pρ ′ (α′)|α′〉〈α′|, (A3)

where p(ξ|ρ) = tr〈ξ|ρ|ξ〉 and

Pρ ′ (α′) = 1

π k p(ξ|ρ)

∫
d2kαe−|α−ξ|2 Pρ (α1, α2 · · · , αn−k, α1, α2, · · · , αk ), (A4)

with α = {α1, α2, · · · , αk}. Then, s-parametrized quasiprobability distribution of ρ ′ becomes

Wρ ′ (α′; τ ) =
(

1

πτ

)n−k ∫
d2(n−k)βPρ ′ (β)e− 1

τ
|β−α′|2

= 1

πnτ n−k p(ξ|ρ)

∫
d2(n−k)βe− 1

τ
|β−α′|2

∫
d2kαe−|α−ξ|2 Pρ (β1, β2 · · · , βn−k, α1, α2, · · · , αk )

= τ k

p(ξ|ρ)

∫
d2kξ′e− 1

1−τ
|ξ′−ξ|2Wρ (α′

1, α
′
2, · · · , α′

n−k, ξ
′
1, ξ

′
2, · · · , ξ ′

k ; τ ). (A5)

If τ = τm(ρ), Wρ (α; τ ) is positive so that Wρ ′ (α′; τ ) is positive
as well. Therefore, we have τm(ρ ′) � τm(ρ). In the classical
mixing process σ = ∑

i �i(ρ), we have

Wσ (α; τ ) =
∑

i

W�i (ρ)(α; τ ). (A6)

Although W�i (ρ) on the right-hand side are not normalized,
positivity is not affected by the normalization factor. Let τ ∗ ≡
max{τm(�i(ρ))}, then Wσ (α; τ ∗) is positive, which implies
that τm(σ ) � τ ∗ � τm(ρ). We have shown that the nonclassi-
cality depth is nonincreasing under all classical processes we
considered as free operations. Especially, the nonclassicality
depth is nonincreasing under postselection of measurement
outcome, which implies the monotonicity (C2c).

APPENDIX B: PROOF OF LEMMA 1

We first prove that NBCs are necessarily entanglement
breaking. Since a quantum channel � is linear, it suffices
to prove the lemma for pure states only. Suppose a (n +
m)-mode pure entangled state written in the Schmidt decom-
position as |�〉 = ∑

i ci|ui〉|vi〉. Let us consider a pure n-mode
state |φ〉 = ∑

i di|ui〉, which is a superposition of Schmidt
basis |ui〉. The application of NBC �NB on |φ〉 reads

�NB(|φ〉〈φ|) = 1

πn

∫
d2nα

∑
i, j

diPi j (α)d∗
j |α〉〈α|, (B1)

where Pi j (α) is a P function of �NB(|ui〉〈u j |). Because the
channel is nonclassicality breaking, the term

∑
i, j diPi j (α)d∗

j
should be nonnegative for any state |φ〉, which is fulfilled
if and only if the matrix with elements Pi j (α) is positive
semidefinite. The application of �NB on the first n modes of
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|�〉 reads

(�NB ⊗ I )(|�〉〈�|)
= 1

πn

∫
d2nα

∑
i, j

ciPi j (α)c∗
j |α〉〈α| ⊗ |vi〉〈v j |

= 1

πn

∫
d2nα|α〉〈α| ⊗

∑
i, j

ciPi j (α)c∗
j |vi〉〈v j |. (B2)

As {Pi j (α)}i j is a positive semidefinite matrix, the last term∑
i, j ciPi j (α)c∗

j |vi〉〈v j | represents an unnormalized quantum
state. Therefore the application of � always produces sepa-
rable output states, that is, � is entanglement breaking.

An entanglement-breaking channel can always be ex-
pressed in the Holevo form �EB(ρ) = ∑

k tr[ρMk]σk [66],
where {Mk}k is a set of POVM and σk’s are density operators.

Because �NB is also entanglement breaking, we can write

�NB(ρ) =
∑

k

tr[ρMk]
1

πn

∫
d2nαPσk (α)|α〉〈α|

= 1

πn

∫
d2nα|α〉〈α|tr

[
ρ

∑
k

Pσk (α)Mk

]

≡
∫

d2nα|α〉〈α|tr[ρMα]. (B3)

Because of the definition of NBC, tr[ρ
∑

k Pσk (α)Mk] should
be nonnegative for any quantum state ρ. This guarantees that
Mα ≡ 1

πn

∑
k Pσk (α)Mk is a positive operator and thus {Mα}α

is a set of POVM.
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