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Noise-induced artificial intelligence

Alex Zhao®,!" Anastasia Ermolaeva®,>” Ekkehard Ullner®,3 Juergen Kurths,*>
Susanna Gordleeva, 2%’ and Alexey Zaikin!-2-5-8:

' Department of Mathematics, University College London, London WCIE 6BT, United Kingdom
2Department of Neurotechnology, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
3Institute for Complex Systems and Mathematical Biology, Institute for Pure and Applied Mathematics,
and Department of Physics (SUPA), University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
4 Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14415, Germany

SWorld-Class Research Center Digital Biodesign and Personalized Healthcare,
Sechenov First Moscow State Medical University, Moscow 119991, Russia
S Neuroscience Research Institute of Samara State Medical University, Samara 443099, Russia
"Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components,

Innopolis University, Innopolis 420500, Russia
8 Institute for Women’s Health, University College London, London WCIE 6BT, United Kingdom

® (Received 14 December 2021; accepted 22 August 2022; published 31 October 2022)

‘We show that unavoidable stochastic fluctuations are not only affecting information processing in a destructive
or constructive way, but may even induce conditions necessary for the artificial intelligence itself. In this
proof-of-principle paper we consider a model of a neuron-astrocyte network under the influence of multiplicative
noise and show that information encoding (loading, storage, and retrieval of information patterns), one of the
paradigmatic signatures of intelligent systems, can be induced by stochastic influence and astrocytes. Hence,
astrocytes, recently proved to play an important role in memory and cognitive processing in mammalian brains,
may play also an important role in the generation of a system’s features providing artificial intelligence functions.
Hence, one could conclude that intrinsic stochasticity is probably positively utilized by brains, not only to
optimize the signal response but also to induce intelligence itself, and one of the key roles, played by astrocytes

in information processing, could be dealing with noises.
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I. INTRODUCTION

Our brain has to operate under very noisy conditions. There
are random intrinsic fluctuations [1], and variability because
of a single-neuron-specific response [2]. There are even no
identic neurons from a genetic point of view [3]. The num-
bers of vesicles transmitted from terminal to terminal and
through special channels variate a lot, and, finally, there is
intrinsic stochasticity in any gene expression [4] linked to the
neuron’s function. Some noise can be theoretically avoided
or reduced, such as noise from the surroundings, e.g., noise
from the street, but some fluctuations are intrinsic and cannot
be avoided in principle. Hence, mammalian brains, showing
intelligence and consciousness, have to be evolved under
stochastic conditions, and, naturally, a question arises as to
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what the role of stochasticity and variability in the function
and evolution of brains was.

Recently, it was shown that noise can play a constructive
role in the dynamics of complex systems, to mention well-
known stochastic resonance [5], coherence resonance [6],
noise-induced transitions [7], and noise-induced transport [8]
in ratchets. Moreover, it was shown that not only time-
dependent noise, but a heterogeneity can play an optimizing
role in complex networks [9]. Hence, a natural question arises,
what is the role of noise in the functioning of neuron-astrocyte
networks, and whether noise can not only optimize the sig-
nal processing but induce information encoding itself. As
an example of this process, we consider a generic exam-
ple of information pattern storage and recognition. In this
proof-of-principle paper, we study a paradigmatic model of a
neuron-astrocyte network and show that multiplicative noise
of a specific form can induce an ability of a system to form
short-term memory. Moreover, we show that astrocytes, these
local and tentative integrators of neuronal activity [10-12],
play an important role in this ability, hence, probably ex-
plaining one of the astrocyte’s functional key roles [13].
Recently, using computational models we have shown that
astrocyte-induced spatial synchronization in neuronal ensem-
bles [14—19] plays a crucial role in information processing
in the brain, organizing short-term working memory [20,21],
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FIG. 1. Network structure. Blue nodes stand for neurons and
square gray fields for astrocytes which cover uniformly all neurons.
The gray fields, representing astrocytes, overlap by one neuron-wide
layer.

and, even, mediating analogous memory in multilayer spik-
ing neuron networks [22]. Naturally, a question has arisen,
could these manifestations of artificial intelligence appear, if
a spiking regime exists because the excitability of neurons is
induced by noise.

II. METHODS AND MODEL

The proposed neuron-astrocyte network consists of two
components; the first is the network of the FitzHugh-Nagumo
neurons (FHNs) with a dimension 130 x 130, and the sec-
ond network is a network of astrocytes with a dimension
43 x 43. Both networks overlap each other organizing one
multilayer network [23]. Taking the FHN as a model of a
neuron is not so important, but it is crucial that excitability
is supported by multiplicative noise. Fully in correspondence
with recent studies [13], astrocytes actively participate in
information processing in the brain by releasing gliotransmit-
ters (e.g., glutamate) that influence neuronal excitability and
synaptic transmissions [24], thus forming a bidirectional com-
munication between the neuron and the astrocyte layer. Each
astrocyte interacts with a 4 x 4 neuronal ensemble with one
overlapping row, to allow communications between astrocytes
(Fig. 1). In response to neuronal activity, astrocytes emerge
with the elevations of intracellular Ca®>*. When the concen-
tration of Ca®* in astrocyte exceeds the threshold, it releases
gliotransmitters that may affect the neuronal excitability. A
detailed description of the neuron-astrocyte network model is
presented in the Appendix.

II1. RESULTS

Without noise, each neuron will oscillate, and these oscilla-
tions will be soon synchronized via coupling. Noise-induced
excitability means that in the presence of optimal intensity of
multiplicative noise and coupling, oscillations of the neuronal
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FIG. 2. Phase diagrams for the transition from a self-sustained
oscillatory regime to noise-induced excitability. (a) Coupling
strength D, versus multiplicative noise intensity o2 for 400 coupled
elements, D, = 100. (e) Coupling strength D, versus multiplicative
noise intensity o2 for 400 coupled elements, D, = 100. (f) Number
of coupled elements N versus multiplicative noise intensity o2 for
D, = 300, D, = 300. Time series of the mean field of the fast vari-
able U with increasing multiplicative noise intensity: (b) o2 = 0.0,
(c) o2 = 0.065, (d) o> = 0.09.

layer are suppressed as a result of a noise-induced phase tran-
sition (Fig. 2). Figures 2(b)-2(d) display the time series of the
activator’s mean field, (U) = 1lv vazl U;, for a system of 400
coupled elements, with the coupling strengths D, = 100 and
D, = 100. The increase in multiplicative noise intensity o2
leads to an increase in the time interval between consecutive
spikes. For sufficiently large noise intensity, no spikes appear.
This corresponds to the suppression of oscillations due to
multiplicative noise and coupling.

Figures 2(a) and 2(e) depict a phase diagram in the plane of
parameters D,-0 2 (a) and D,-o2 (e) distinguishing the regions
where the original oscillatory behavior and the noise-induced
excitability regime exist. Figure 2(f) displays the dependence
of the transition to noise-induced excitability on the number of
coupled elements of the system. The region of noise intensity
values for which noise-induced excitability exists becomes
larger as the number of elements increases. The quantitative
description of the transition from oscillatory to excitable state
depends on the minimum number of coupled elements re-
quired for a transition (approximately 100) and the coupling
strength between the elements [25].

Noise-induced excitability occurs as a result of a second-
order phase transition and, hence, is possible only due to noise
and coupling, but, surprisingly, after the transition, the neu-
ron network is capable of exhibiting propagation of excitable
structures, as it allows the propagation of the plane wave
front and spiral waves [25]. Noise-induced phase transitions
of this kind have been first reported in [26]. A mechanism is
not linked with timely dynamics of noise like in stochastic
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FIG. 3. Input patterns: (a) without noise, (b) training sample with
10% salt and pepper noise, (c) testing sample with 40% salt and
pepper noise. Noise-induced neuron-astrocyte network response and
short-time associative memory [(d)—(i)]. First without multiplicative
noise: cr,,zl = 0.0 [(d)—(H)] and then with multiplicative noise J,fl =
0.09 [(g)—(1)]. Here (d), (e) neuronal network response during and
after testing, respectively, (f) the intracellular Ca®* concentration
in astrocytes without noise, and (g), (h) neuronal network response
during and after testing, (i) the intracellular Ca** concentration in
astrocytes with noise. It is clearly seen that the presence of mul-
tiplicative noise makes a response to the input pattern possible:
compare (e) and (h). Examples of not overlapping input patterns:
(j) training sample with 10% salt and pepper noise, (k), (1) testing
samples with 40% salt and pepper noise.

resonance. A combined effect of multiplicative and additive
noise on such systems has been investigated in [27,28]. Note
that also many other noise-induced stabilization effects are
possible in biological systems, see, e.g., [29,30], including
noise-induced synchronization of uncoupled excitable sys-
tems [31]. We found that the noise-induced excitability is
preserved under the influence of astrocytes; hence, the nat-
urally appearing question was whether astrocytes may help
process information if overlapped over a network with noise-
induced excitability as they do if overlapped over a network
of excitable elements.

Next, we show how this system responds to an input signal.
As an example, the input signal was a binary image of digit
1 with a size of 130 x 130 pixels [see Fig. 3(a)]. During
training, the network is presented with 5 instances of an image
with 10% salt and pepper noise [Fig. 3(b)] for 5 msec, and
with a period of 100 msec between each instance.

The input image is first processed by the neuronal network
that obtains the applied current Iy, in Eq. (A1) and is further

(a)

(b)

0 1 2 3 4 5
time, sec
FIG. 4. Membrane potential of neurons in target pattern during

and after training without (a) and with (b) astrocytes, a,fl =0.09.
(c) The intracellular Ca®* concentration in active astrocyte.

converted into spikes. During training, each astrocyte mon-
itors the activity of the associated 16 neurons. If more than
half of this neural ensemble were spiking then the astrocyte
receives an input signal Ineyo, Which models the glutamate-
induced IP; production in response to neural activity, inducing
an elevation of the intracellular calcium concentration. The
activity of a neuron under the input signal and corresponding
astrocyte is shown in Figs. 4(a) and 4(b). Neurons inside
the target pattern respond to the input signal and produce a
spike. During training, the intracellular Ca** concentration
of astrocyte associated with these active neurons is slowly
increasing during the training phase and eventually exceeds
the threshold [Fig. 4(c)]. It is important to note that informa-
tion pattern storage realized by such astrocytic modulation is
characterized by one-shot learning and is maintained for the
lifetime of the calcium signal in astrocytes (about 3.5 sec).
The testing image with 40% salt and pepper noise [Fig. 3(c)]
is presented to the network for 10 msec at 1 sec. The increased
concentration of Ca®' in the astrocyte is giving feedback
to the neurons and causes the neurons in the target area to
continue to fire even after the testing image is no longer
present as shown in Fig. 4(b). Feedback from the astrocyte
to the neuron is switched on if the Ca>" concentration in the
astrocyte is above the threshold in 0.15 uM and more than
8 of the associated neurons are still active. This feedback is
modeled as an additional current Iy, in Eq. (A1), which is
determined by its biophysical mechanisms of an astrocyte-
mediated increase of postsynaptic neuronal excitability via
activation of extrasynaptic NMDAR [32] and other glutamate
receptors [33] by the astrocytic gliotransmitter—glutamate.
Without astrocytes, due to the diffusion coupling, the neu-
ral network is still able to suppress noise in the input image.
But neurons respond to an input signal for a very short period
of time, and during training, a neural network without astro-
cytes cannot store the pattern. Therefore, there is no activity
on the neurons after testing. The presence of astrocytes qual-
itatively changes the situation enabling short-term memory.
Indeed, if we analyze the response of the neuron-astrocyte
network during and after testing, with significant noise con-
tribution, the neuron-astrocyte network can store the pattern
after training for a period of time, which is determined by the
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FIG. 5. Noise-induced intelligence. (a) Accuracy against noise
intensity in the system. (b) Accuracy against noise intensity in the
training sample, o> = 0.09.

m

duration of the astrocytic calcium pulse [see Figs. 3(g)-3(1)].
Hence, the presence of astrocytes, measured by I, is ab-
solutely necessary for this kind of noise-induced information
encoding. Noise is also a necessary ingredient of the effect
because without noise the neuronal layer is in an oscillatory
state and the network cannot store the pattern [Figs. 3(d)—
3M).

Due to the features of the FitzHugh-Nagumo coupled os-
cillators, a signal is able to propagate throughout the network
and decreases the accuracy of retrieval. Hence, the accuracy of
the network is different if taken at a different time frame. To
measure the memory performance of the system, we calculate
the correlation of a recalled pattern with the ideal item in the
following way:

"1 1U; (k) > th
M,-j=1|:(2k=t' L )>trl]>>thr2:|, (1)

T

1] 1 1
A:E[ﬁ Z Mij+m Z(I_Mij):|’ (@)

(i.j)eP (i, )¢P

where ¢, is the moment in time when the testing sample is
presented, 7 = 500 msec, P is a set of pixels belonging to
the ideal pattern, W and H are network dimensions, thr; is
the spike threshold, thr, is the frequency threshold, and 7 is
the indicator function. First, we calculate the frequency of
the neuronal network for 500 msec after the testing sample
is presented and convert it into a binary image (1 if the fre-
quency of a neuron is greater than 0.0016 Hz, 0 otherwise).
Then we compare the input image and output binary signal
and calculate the accuracy of the neural network retrieval. If
there is no output signal, the accuracy = 0.5. The accuracy
is plotted against the multiplicative noise intensity [Fig. 5(a)]
and against the salt and pepper noise intensity in the training
sample [Fig. 5(b)].

We find that the system with astrocytes performs much
better than its counterpart. These plots show that the astro-
cyte network is indeed assisting the neuronal layer to store
the pattern. With increasing the multiplicative noise intensity,
the accuracy of the neuron-astrocyte network increases and
reaches high values, but it decreases again at significant noise
intensity. With increasing salt and pepper noise intensity in the
training sample, the accuracy of the neuron-astrocyte network
decreases. The system works best at low noise intensity in the
training pattern.

To demonstrate the ability of the neuron-astrocyte network
to remember the input images, we tested the system with
the sample that did not participate in the training, i.e., does
not overlap with the training pattern [Fig. 3(j)]. The testing
patterns are shown in Figs. 3(k) and 3(1). We calculate the
accuracy by comparing the input pattern with the frequency
of the neuronal network during 500 msec after the testing
sample is presented. If the network is tested by the sample
that is shown in Fig. 3(k), the accuracy is 0.994. But if we test
the system with the pattern from Fig. 3(1), the accuracy is 0.5;
i.e., the network does not respond to the input signal that did
not participate in the training.

IV. DISCUSSION

In summary, in this proof-of-principle paper, we have
shown that stochastic fluctuations can induce information en-
coding via noise-induced phase transition in neural networks
and a pattern recognition organized by astrocytes. For the
study, we have used well-established models of a neuron-
astrocyte network, a variation of the model proposed in [20].
Moreover, we have found that, surprisingly, astrocyte sig-
naling plays a very important role in this effect. This could
potentially lead to further investigations of the role of astro-
cytes as cells that help neurons to deal with noise, a functional
role that was not previously reported for astrocytes despite re-
cent intensive investigations of these cells’ functionality [10].
Integration of astrocytic signaling in cognitive processing has
implications for understanding the mechanisms of cognitive
impairment [13,34,35].

The code is available at [36].
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APPENDIX: DESCRIPTION OF THE MODEL

The neurons are modeled as a set of N coupled FitzHugh-
Nagumo oscillators, where each oscillator is coupled to
its nearest neighbor with fixed zero boundary conditions.
The dynamic of each neuron is governed by the following
equations [25]:

. 1 _ .
Ui = =[F(U) = Vil + D(U; = Up) + ™ + I, (A1)
€

Vi = cUi +d + Vi& + Dy (V; = V), (A2)
where X; = /%/ Zj\il xj, x; = U;, V; is the mean Yalue at site i
by summing over the A" = 4 nearest neighbors. I;™ simulates
an input signal and is a supra-threshold for the noise-induced

excitable system:

app _
Ii =

60, if an input signal is present,
{ put sig p (A3)

0, otherwise.
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TABLE I. Table of parameter values and units.

Parameter Value Unit
a 1.0 -

b 2.0 -

c 0.2 -

d 0.075 -

g 0.2 -

€ 0.01 -
D, 100 -
D, 100 -

Co 2.0 LLM
i 0.185 uM
o 6.0 s7!
103 0.11 s7!
V3 2.2 UM s~
Uy 0.3 M s
s 0.025 UM s~!
Vs 0.2 UM s~!
k| 0.5 S_1
k> 1.0 uM
ks 0.1 uM
ky 1.1 uM
d; 0.13 uM
d, 1.049 uM
d; 0.9434 uM
ds 0.082 uM
1P3; 0.16 uM
1/, 0.14 57!

o 0.8 -
a 0.14 uM-1ts!

1" simulates astrocytic modulation of the synaptic activity:

Jasto _ {60, if [Ca>*] > 0.15 pM, A
l 0, otherwise.
The voltage dependence F (U) is given by
—1—-U+Db, U< _%’
FU)= 18U +b+3(g— 1), leu<tiol
—H—aU—I—b—%—i—a(é—%), U}él)_%.
(AS)

In a neural context, the membrane potential of a neuron is
represented by the fast activator variable U, as indicated by the
small timescale-ratio parameter €, and V' is associated with the
time-dependent conductance of the potassium channels in the
membrane [37]. &; is the §-correlated multiplicative Gaussian
noise representing random fluctuations with zero mean and a
correlation (&;(1)&;(t")) = a2t — t)8; j, and is interpreted in
the Stratonovich sense [38].

The astrocytic activity is determined by the dynamics of
intracellular Ca>* concentration, [Ca>*], which is controlled

by the intracellular concentration of IPs, [IP3], and by the frac-
tion of calcium channels on the membrane of the intracellular
calcium store—the endoplasmic reticulum—that are in the
open (non-inactivated) state, i. To describe the dynamics of
the intracellular Ca®* in each astrocyte (j) of our network, we
used the well-established biophysical Li-Rinzel model [39],
which qualitatively reflects the main features of the calcium
dynamics of astrocytes (for more details about this model
and the biophysical meaning of all flows and parameters,
see [39]). This model consists of the following differential
equations:

[Caz+]j =1, — Ipump + Deak + Lin — Touts (A6)
. IP;]s — [IP
[IP3]j = M + Iplc + I;leuro’ (A7)
. H—h
hj = , (A8)
Ty
where
< [IP5] >3< [Ca®*] )3
I, =civ 2+
[IP3] + dy [Ca*"] + d5s
_ C 2+
< P (M _ [Ca”]), (A9)
ci
—IC 2+
B = m(M - [Ca”]), (A10)
C1
[Ca2+]2
Toump = USW, (A11)
I + [IPs ) (A12)
n=V5s + Vg 5——,
TR R P
I = ki[Ca®"], (A13)
[IP3] + d; )/( [IP3] + d; 2 )
H=|d— dy——— +[Ca ,
( *[IP3] + ds My va !
(Al14)
[IP3] + d; s )]1
7, = || dy—=—— + [Ca®" , Al5
[2( Z[IP3]+d3 [ ] (A15)
Ca?t 1—a)k
Ly = v S 1A = ks (A16)

[Ca®*] + ky

and Ij‘.‘e““’ =1, if more than 50% of the neurons, interact-
ing with this astrocyte, are spiking and the average spiking
frequency in the neural ensemble is more than 25 Hz. The
parameters of Eqs. (A6)—(AS8) are determined experimentally
and the biophysical meaning of all parameters can be found
in [25,39]. For this experiment, the values of parameters are
listed in Table 1.
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