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Nonmonotonic skewness of currents in nonequilibrium steady states
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Measurements of any property of a microscopic system are bound to show significant deviations from the
average, due to thermal fluctuations. For time-integrated currents such as heat, work, or entropy production
in a steady state, it is in fact known that there will be long stretches of fluctuations both above as well as
below the average, occurring equally likely at large times. In this paper we demonstrate that for any finite-time
measurement in a nonequilibrium steady state—rather counterintuitively—fluctuations below the average are
more probable. This discrepancy is found to be higher when the system is further away from equilibrium. For
overdamped diffusive processes, there is even an optimal time when time-integrated current fluctuations mostly
lie below the average. We demonstrate that these effects are consistent with a nonmonotonic skewness of current
fluctuations and provide evidence that they are easily observable in experiments. We also discuss their extensions
to discrete space Markov jump processes and implications to biological and synthetic microscopic engines.
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I. INTRODUCTION

In microscopic nonequilibrium systems, individual mea-
surements of heat, work, or entropy production can signifi-
cantly fluctuate about the average values [1]. The nature of
these fluctuations are constrained within the framework of
stochastic thermodynamics by some universal results [2]. The
most celebrated ones are the fluctuation theorems (see review
[3] and references therein) which constrain the probability
distributions of thermodynamic quantities such as heat, work,
and entropy production. Its applications range from estimating
free-energy differences in single molecule experiments [4,5]
to determining the nature of efficiency fluctuations in micro-
scopic engines [6–8]. Another class of results provide bounds
on the fluctuations of currents in nonequilibrium steady states
in terms of the steady-state entropy production rate σ =
〈�Stot〉/t [9]. For any current J in a stationary state of a con-
tinuous time, Markov process, it can be shown that the scaled
cumulant generating function φσ

J (λ, t ) ≡ 1
t log〈e−λσ t J

〈J〉 〉t is
bounded from below by a parabola [9–11],

φ(λ, t ) � −σλ(1 − λ). (1)
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Terminating the expansion of φ to the second order in λ, leads
to the thermodynamic uncertainty relations [12–14] which are
tradeoff relations connecting the precision of arbitrary current
measurements to the entropy production rate.

In the t → ∞ limit, the left-hand side of Eq. (1) converges
to a time-independent function [9] referred to as the large
deviation rate function [15–19], knowing which helps fully
characterize the fluctuations in the long-time limit. In general,
such long-time results can be obtained within the mathemati-
cal framework of large deviation theory and many such results
have been obtained for the statistics of the fluctuations of en-
tropy production [20–25], efficiency distributions [6–8], first
passage problems [26–28], and current fluctuations in general
[29,30]. An interesting addition to this class of results was
obtained in Ref. [31], where it was shown that the fraction
of time that a current spends above its average value follows
the arcsine law in the long time limit [32]. As a consequence,
stochastic currents with long streaks above or below their av-
erage value are much more and equally likely than those that
spend similar fractions of time above and below their average.

The other extreme of very short-time fluctuations of cur-
rents, is also surprisingly nontrivial. It has been shown that
Eq. (1) saturates for J = �Stot in the limit t → 0 for over-
damped diffusive processes [33–36]. As a consequence, σ can
be exactly inferred for such systems by studying the mean and
variance of current fluctuations at short times [33–36], even
for nonstationary systems [37]. The saturation of the bound
also implies that the fluctuations of �Stot are Gaussian in
these systems in the short-time limit even when arbitrarily far
from equilibrium [33]. In fact, as was recently pointed out, the
Gaussianity in the t → 0 limit holds for any arbitrary current
in overdamped diffusive processes [37]. As we show below,
this short-time behavior combined with the large-deviation
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results mentioned above hold important clues for interesting
finite-time fluctuation properties.

Finite-time fluctuations are clearly of interest since this is
most often what is observed in experiments. However, when
neither the t → ∞ nor the t → 0 limit can be taken, generic
features of such fluctuations are harder to identify because
of the prevalence of transient effects and time-correlations. If
the t → ∞ limit can be thought in terms of applying a ther-
modynamic limit [38], then finite-time fluctuations include
effects which vanish in the thermodynamic limit, making
them harder to access. Some important general results in this
category include the integral fluctuation theorem for stochas-
tic entropy production [39], statistical properties of entropy
production derivable from the fluctuation theorem [40], the
finite-time versions of the thermodynamic uncertainty rela-
tions [11,41–43], universal results known for the statistics of
infima, stopping times, and first-passage probabilities of en-
tropy production [44], a generic equation describing the time
evolution of the stochastic entropy production [45], statistics
of the time of the maximum of a one dimensional stationary
process [46], and bounds on first passage times of current
fluctuations [47].

In this paper, we unravel a previously unnoticed property of
current fluctuations at finite and short times. We demonstrate
that the skewness of current fluctuations is positive and non-
monotonic in time and argue that this behavior is generic for
nonequilibrium steady states generated by any overdamped
diffusive process. An expected consequence of this, which
we find also holds true here is that at all finite times, current
fluctuations below the long-time average are more probable
than those above. For a single realization of the process,
interestingly, this implies that a below average outcomes will
be typical. Moreover, due to the nonmonotonicity, there is an
optimal time when this discrepancy is the highest. We show
that these features of current fluctuations are easily visible
in nontrivial models studied numerically and experimentally
and conjecture that they universally hold true. We also discuss
their extensions to discrete space Markov jump processes and
implications to biological and synthetic microscopic engines.
In all cases, in the limit of large t , we recover results consistent
with Ref. [31].

II. RESULTS

The central results we present in this manuscript apply to
nonequilibrium systems in a stationary state. We first consider
generic overdamped diffusive processes of the form,

ẋ(t ) = A[x(t )] + B[x(t ), t] · η(t ), (2)

where A(x) is the drift vector, and B(x, t ) is a d × d ma-
trix, and η(t ) represents a Gaussian white noise satisfying
〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). Consider a current J in the sta-
tionary state of this system defined as J = ∫ x(t )

x(0) d(x) ◦ dx,
where d(x) is any arbitrary function of x, and ◦ corresponds
to the Stratanovich product. First we look at the implications
of Eq. (1) for any such current. Without loss of generality,
we consider currents for which 〈J〉 � 0. Let 〈[J (t )]k〉 be the
kth cumulant of J [48]. Expanding the inequality in Eq. (1) in
powers of (−λ)i, it can be shown that 〈[J (t )]k〉 � 0 for k � 2
for any t . For 1 < k � 3, the cumulants coincide with the kth

central moment of J . Here 〈·〉 corresponds to an ensemble
average over steady-state trajectories of length t . An important
standardized moment which can then be constructed is the
skewness, S = 〈[J (t )]3〉

〈[J (t )]2〉3/2 . Skewness quantifies the asymmetries
of the fluctuations about the average value. Here we focus on
the properties of the skewness as a function of t . Using the
results in Ref. [37] which proved the Gaussianity of general
current fluctuations in the t → 0 limit (see Eqs. S13–S15 in
Supplementary Note 1 of Ref. [37], where it is shown that
〈J (t )〉 and 〈J (t )2〉 are ∝ t for small t , but 〈J (t )3〉 ∝ t2 for
small t . For J = �Stot, this behavior was shown already in
Ref. [33]), we obtain that S ∝ t1/2 for small t . Further, the ex-
istence of the large deviation function �(λ) = limt→∞ φ(λ, t )
ensures that all the cumulants scale linearly in time as t →
∞. As a result, S ∝ t−1/2 for large t . Combining these two
limiting behaviours with the positivity of the cumulants, we
obtain that S is a positive, nonmonotonic function of time that
vanishes both in the t → ∞ limit as well as the t → 0 limit.
As a consequence, there will also be a special time, where the
skewness attains a maximum value. This is the first central
observation we make in this paper.

From the generality of the above arguments, we expect
this behavior to be generic for any nonequilibrium steady-
state current if the short-time and long-time behavior are as
detailed above. But to be more concrete, we now take the ex-
ample of the nonequilibrium steady state of a colloidal system
[24,36,49–52]. The model consists of a single colloidal parti-
cle in a harmonic trap with stiffness κ , whose mean position is
modulated according to the Ornstein-Uhlenbeck process. The
dynamics of the system with position variable x(t ) and the
trap center x0(t ) ≡ λ(t ) can be described using a system of
overdamped Langevin equations as

ẋ(t ) = −x(t ) − λ(t )

τ
+

√
2Dζ (t ),

λ̇(t ) = −λ(t )

τ0
+

√
2Aξ (t ). (3)

Here D is the diffusion constant at room temperature (T ),
τ = γ /κ is the relaxation time of the harmonic trap, κ is the
trap stiffness, and γ is the drag coefficient related to D by
the Stokes-Einstein relation as Dγ = kBT . Similarly, τ0 is the
relaxation time of the OU process and A corresponds to its
strength. The noise terms ζ (t ) and ξ (t ) are Gaussian white
noises obeying 〈ξ (t )〉 = 0, 〈ζ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = δ(t − t ′),
〈ζ (t )ζ (t ′)〉 = δ(t − t ′), and 〈ξ (t )ζ (t ′)〉 = 0.

In Fig. 1, we plot the skewness S of several arbitrary cur-
rents as a function of time, using numerical data. Currents are
constructed using J = ∫ x(t )

x(0) d(x) ◦ dx, where x=[x; λ]T and
d(x) = [c1x + c2λ; c3x + c4λ]T . Here {ci} ∈ R are constants
which can be varied to construct different currents. Without
loss of generality, we consider currents with 〈J〉 � 0. We find
that the skewness of arbitrary currents is a positive, bounded,
and nonmonotonic function of t which vanishes both in the
short-time limit as t1/2 and in the large-time limit as t−1/2.
Next, we investigate these properties for a particular choice
of the current, which is J = �Stot [53]. The corresponding
entropy production rate is given by σ = δ2θ

(δ+1)τ0
, where δ = τ0

τ

and θ = A
D [24,50,52]. In Fig. 2(a), we plot the analytically
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FIG. 1. The skewness S of arbitrary currents (shown in colors)
in nonequilibrium steady state of the stochastic sliding parabola
model as a function of t . The vanishing of S(t ) in the t → 0 limits
shows the emergence of Gaussian fluctuations in the short-time limit.
The solid black line corresponds to J = �Stot. The red dashed lines
corresponds to power-law fits at the short and large t limits.

computed skewness of �Stot(t ), for different values of θ [54].
As expected, we find that S(t ) � 0 and is nonmonotonic in
time, featuring a maximum at an intermediate time t ≡ τE .
We also find that the skewness increases with θ , which also
increases the entropy production rate of the system.

Now we look at the measurable consequences of this non-
monotonicity. We first consider the mean fraction of the time
when the measured entropy stays above the average value,

denoted by 〈T+〉 = 1
t

∫ t
0 �[J (s) − 〈J (s)〉] ds, where �(x) is

the Heaviside function. If the fluctuations of �Stot(t ) were
symmetric about the average, then it would have implied,
〈T+〉 = 1

2 . Indeed, this is known to be the case in the t → ∞
limit [31]. In Fig. 2(b), we plot 〈T+〉, obtained from the numer-
ical data as a function of t . We find that 〈T+〉 < 1

2 for all t and
tends to 1

2 in the limits t → 0 and t → ∞. We also find that
〈T+〉 is nonmonotonic in time and attains a minimum close to
when S(t ) is the highest.

Interestingly, the behavior of 〈T+〉 implies that it is more
likely that a current measured for a finite t duration stays
below the average value for most part of the measurement.
This discrepancy is the highest when the skewness peaks. We
also find that 〈T+〉 is monotonically decreasing as a function
of θ for all t . Hence, the further away the system is from
equilibrium, the more likely that arbitrary currents or entropy
production measured along a single trajectory stay below the
average value for most of the time.

Next we consider 〈Tmax(t )〉, where Tmax(t ) = tsup

t , where tsup

is the time of global maximum of �Stot(t ) − σ t . The results
are shown in Fig. 2(c). We find that 〈Tmax〉 has a similar time
dependence as 〈T+〉 and stays below 1

2 for all t and tends to
1
2 in the limits t → 0 and t → ∞. 〈Tmax(t )〉 is also found
to be nonmonotonic in time featuring a minimum at t ∼ τE .
This means, for currents measured for a finite time, it is more
likely that its maximum deviation above the mean will be
found before the half-length of the measurement. Again, the
discrepancy will be the highest when t ∼ τE .

As seen in Fig. 1, the time at which the skewness has
the highest value varies from current to current. In particular,
for J = �Stot, from the analytical solutions, we find that τE

monotonically decreases with increasing θ (see Appendix A
where the dependence of τE on θ and τ0 is analytically ob-
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FIG. 2. (a) Skewness of �Stot as a function of t computed analytically for the model in Eq. (2). (b) 〈T+〉 and (c) 〈Tmax〉 as a function of
t for different values of θ , obtained from numerical simulation of the system. In panels (d)–(f), we show the same results obtained from the
experimental realization of the same system.
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FIG. 3. (a) Double-well potential with b = 1 and k = 2 (see the details in Ref. [57]). (b) Skewness, (c) 〈T+〉, and (d) 〈Tmax〉 of the entropy
currents as a function of t , obtained numerically for the gyrator model with double-well confining potential for different values of the ratio of
the temperatures (α = T2

T1
) along the two orthogonal directions of the gyrator system. See Appendix B for relevant details of the model.

tained). As a result, in order to capture the non monotonic
nature of S(t ), the further a system is away from equilibrium,
the finer the resolution needs to be. We demonstrate below
that this is, however, still very detectable in experimental
data.

Experiments. The model in Eq. (3) was first realized in
an optical tweezers setup in Ref. [49] and was also stud-
ied recently in Ref. [36]. To realize this system, we trap
a 3 μm polystyrene particle in an aqueous solution in a
harmonic potential well given by U [x(t ), λ(t )] = k[x(t ) −
λ(t )]2/2, where the trap stiffness is k = 19.7 ± 0.1 pN/μm.
Here λ(t ) is the time-dependent mean position of the trap
which is modulated using an acousto-optic modulator ac-
cording to an Ornstein-Uhlenbeck process [see Eq. (3)] with
τ0 = 2.5 ms, and A = [0.1, 0.2, 0.3] × (0.6 × 10−6)2 m2/s.
We sample the one-directional trajectory of the probe at a spa-
tiotemporal resolution of ∼1 nm–10 kHz for 100 s. We then
use the autocorrelation of the time series of a trapped particle
and the noise to calibrate the fluctuation of the probe from
volts to nanometers [55]. We plot the experimental results in
Figs. 2(d), 2(e) and 2(f). We find that the numerical results in
Figs. 2(a)–2(c) are reproduced by our experiments and that the
nonmonotonicities in S(t ), 〈T+〉, and 〈Tmax〉 are clearly visible
[56]. So far, we have considered a linear Langevin model.
However, as we argued, the nonmonotonic nature of skewness
is expected to hold for any overdamped diffusive process. To
substantiate this, we numerically study fluctuations of entropy
currents of a system with nonlinearities. For this, we consider
an anharmonic Brownian gyrator with a double-well confin-
ing potential (studied recently in Ref. [57]; see Appendix B
for details and for the additional example of a gyrator with
a quartic confining potential). We vary the nonequilibrium
conditions by changing the ratio of the temperatures (α = T2

T1
)

along the two orthogonal directions. In Fig. 3, we show that
all the features that we showed in Fig. 2 are also present in
this nonlinear model.

Apart from the generic bound in Eq. (1) which holds for
any continuous-time Markov process, a crucial ingredient in
our results is the emergence of Gaussian fluctuations in the
short-time limit of overdamped diffusive systems, recently
proved in Ref. [37]. For discrete-space systems, which evolve
according to a continuous-time Markov process, current fluc-
tuations are not necessarily Gaussian at t → 0; in fact, it can
be shown that all the moments scale ∝ t at short times (see the
details in Appendix C). Thus, the skewness will scale ∝ t−1/2,
diverging as t → 0, and will not necessarily be nonmonotonic
in time. We see again that shorter current measurements in
such systems are more likely to lie below the average. In all
the cases these effects increase when the system is further
away from equilibrium. In Fig. 4, we demonstrate this for
a three-level system, coupled to two thermal reservoirs at
unequal temperatures [58–60]. Variants of this system have
recently appeared in a number of different contexts [61–63],
an important example being classical/quantum clocks [64]. It
is known that clocks need to run for a long time to give reliable
estimates [65] which is also the limit in which the skewness
vanishes.

III. CONCLUSIONS

In summary, we have unravelled and quantitatively char-
acterized the universal properties of finite-time skewness of
current fluctuations, and their measurable consequences in
nonequilibrium steady states. For overdamped diffusive sys-
tems, we have demonstrated that the skewness of currents
must be positive and nonmonotonic in time, vanishing in

(a) (b) (c) (d)

FIG. 4. (a) Three-level system. (b) Skewness of �Stot, (c) 〈T+〉, and (d) 〈Tmax〉 as a function of t computed analytically for the three-level
system. See Appendix C for details and the choice of the parameters.
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the t → 0, t → ∞ limits. It is also found to peak at an
experimentally accessible, short-time which varies with the
system parameters. For discrete space systems evolving ac-
cording to a continuous time Markov jump processes, we
show that skewness is not necessarily nonmonotonic, and di-
verges to +∞ in the t → 0 limit. The results imply that, rather
counter intuitively, it is more probable that currents such as
entropy production will mostly lie below average in a single
realization of finite-time duration. For overdamped diffusive
processes, we find there is even an optimal time when this
discrepancy is the highest.

Although we provide numerical and experimental evi-
dence, we remark that we have not proved the positivity of
1/2 − 〈T+(t )〉, 1/2 − 〈Tmax(t )〉 and their nonmonotonicity in a
generic setting. We have shown the positivity of skewness for
overdamped diffusive processes and Markov jump processes
and its nonmonotonicity in time in the former case. However,
that alone does not always imply the observed properties
of current fluctuations; for example, it is known that there
exist probability distributions with positive skewness where
nevertheless the mean is less than the mode [66]. Based on
the extensive evidence at hand, however, it is a reasonable
conjecture that the probability distribution of time integrated
currents in nonequilibrium systems is so constrained that the
results we find here generically hold.

Our results can be potentially verified in molecular motors
such as kinesin [67] by looking at the statistics of its steps
[68] or energy dissipation [69]. Our results also show that the
nature of the fluctuations of currents, and thus the most prob-
able outcome, crucially depend on the time duration of the
measurement. It would be of substantial interest to investigate
whether biological motors have optimized their timescales
considering such constraints (through molecular evolution).
For artificial microscopic engines such as the ones studied in
Refs. [70–75], this implies that it might be possible to choose
cycling times to optimize fluctuations, and to get a reliable
performance in a limited number of runs. We plan to attempt
answering these questions in our future research.

Data and Code Availability The raw data files and codes
are available openly at Ref. [81].
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APPENDIX A: EXACT CALCULATION OF THE MGF OF
�Stot(t ) FOR THE STOCHASTIC SLIDING

PARABOLA (SSP) MODEL

In this section, we reproduce the exact calculation of the
moment generating function of �Stot(t ) for the Stochastic
Sliding Parabola model, previously obtained in Ref. [52]. The
stationary probability distribution for x and λ is given by [50]

pst[x(t ), λ(t )] =
exp
{− (δ+1)[δ2θ (x−λ)2+δ(θx2+λ2 )+λ2]

2Dτ0θ[δ2(θ+1)+2δ+1]

}
2π

√
D2τ 2

0 θ[δ2(θ+1)+2δ+1]
δ(δ+1)2

, (A1)

the MGF of total entropy production �Stot(t ) can be written
down in the following manner. First, the joint probability
density functional of trajectories starting at t = 0 at (x0, λ0)
and ending at t = τ at (xt , λt ) may be written as

P[x(·), λ(·)] = N exp

{
−
∫ t

0
ds L(ẋ(s), x(s), λ̇(s), λ(s), s)

}
,

(A2)

with the Lagrangian

L = 1

4D

( [
ẋ + δ(x − λ)

τ0

]2

+ 1

θ

[
λ̇ + λ

τ0

]2)
. (A3)

The normalization constant N for this case is [78],

N = exp

(
1

2

[
δ + 1

τ0

]
t

)
. (A4)

The entropy production in the steady state in the time interval
[0, τ ] for the SSP is then

�Stot(t ) = δ

Dτ0

∫ t

0
ds λ(s) ẋ(s) + δ2

{
δ
[
θ
(
x2

0 − x2
t

)+ 2x0λ0 − 2xtλt − λ2
0 + λ2

t

]
2x0λ0 − 2xtλt

}
2Dτ0[δ2(θ + 1)+2δ + 1]

. (A5)

This form of the entropy production can easily be obtained by equating it to the ratio of the probabilities of forward and time-
reversed trajectories using Eqs. (A1) and (A2) and the form of the Lagrangian Eq. (A3). Hence, up to a normalization factor C
[determined by Eqs. (A1) and (A4)], we have the following expression for the MGF of �Stot(t ):

〈
e− u

2 �Stot (t )
〉 =C

∫
dx0

∫
dλ0

∫
dxt

∫
dλt

∫ xt ,λt

x0,λ0

D[x(·), λ(·)] e−β S[ x(·), λ(·), u ], (A6)

with the augmented action

S[ x(·), λ(·), u ] = (δ + 1)
[
δ2θ (x0 − λ0)2 + δ

(
θx2

0 + λ2
0

)+ λ2
0

]
2Dτ0θ [δ2(θ + 1) + 2δ + 1]

+
∫ t

0
ds

1

4D

{ [
ẋ + δ(x − λ)

τ0

]2

+ 1

θ

[
λ̇ + λ

τ0

]2}

+ u

2
�Stot(t )[x, λ]. (A7)
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After several partial integrations, it can be shown that the above quadratic action reduces to

S[ x(·), λ(·), u ] = 1

4D
[x λ] Au

[
x
λ

]
+ Boundary terms in (x, λ, u), (A8)

where the kernel is defined by the operator:

Au =
[ − d2

ds2 + δ2

τ 2
0

k δ
τ0

d
ds − δ2

τ 2
0

−k δ
τ0

d
ds − δ2

τ 2
0

− 1
θ

d2

ds2 + 1
θτ 2

0
+ δ2

τ 2
0

]
, k ≡ 1 − u.

(A9)

Carrying out the Gaussian integral, and requiring the bound-
ary terms to vanish, the generating function at arbitrary times
τ can be written down as a ratio of functional determinants,

〈
e− u

2 �Stot (t )〉 =
√

det Au=0

det Au
≡ �(u). (A10)

This ratio can be computed using a technique described in
Ref. [79] and used in Ref. [51], which is based on the spectral-
ζ functions of Sturm-Liouville type operators. Applying this
method, it can be shown that this ratio can be obtained in terms
of a characteristic polynomial function F as

〈
e− u

2 �Stot (t )
〉 =
√

F (1)

F (k)
, F (k)

≡ Det[M + NH (t )], k = 1 − u, (A11)

where H is the matrix of suitably normalized fundamental
solutions of the homogeneous equation, Au x = 0, and is
defined as

H (t ) =

⎡
⎢⎢⎣

x1(t ) x2(t ) x3(t ) x4(t )
λ1(t ) λ2(t ) λ3(t ) λ4(t )
ẋ1(t ) ẋ2(t ) ẋ3(t ) ẋ4(t )
λ̇1(t ) λ̇2(t ) λ̇3(t ) λ̇4(t )

⎤
⎥⎥⎦, H (0) = I4.

(A12)

M and N have information about the boundary conditions
from Eq. (A8) and we require

M

[x(0)
̇x(0)

]
= 0, N

[x(t )
̇x(t )

]
= 0. (A13)

A derivation of Eq. (A11), applicable to a class of driven
Langevin systems with quadratic actions is given in Ref. [51].
We also stress that the expression given in Eq. (A11) is valid
only for u ∈ [u−(τ ), u+(τ )] for which the operator Au does not
have negative eigenvalues. The MGF is not analytic outside
this interval.

For the SSP in the steady state, we find the four indepen-
dent solutions of Aux = 0 to be

xi =
[

xi(t )
λi(t )

]
, i = 1 to 4, (A14)

where

λi(t ) = 1exp

⎛
⎜⎜⎜⎜⎜⎜⎝

±
τ

√√√√ δ2θ+δ2+δ2θ[−(1−u)2] ± τ 2
0

√
δ4[θ−θ (1−u)2+1]2−2δ2{θ[(1−u)2−1]+1}+1

τ4
0

+1

τ 2
0√

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A15)

xi(t ) = 1
τ0
{
(u − 1)λ′

i(t )[δ2θ (u − 2)u − 1] + τ0
[
δλ′′

i (t ) + τ0(u − 1)λ(3)
i (t )

]}+ δλi(t )[δ2θ (u − 2)u − 1]

δ3θ (u − 2)u
. (A16)

Matrices M and N are given by

M = 1

⎛
⎜⎜⎜⎝

[1−(1−u)θ]δ3+2δ2+δ

2D[(θ+1)δ2+2δ+1]τ0

δ{[(1−u)θ−1]δ2−uδ−u+1}
2D[(θ+1)δ2+2δ+1]τ0

− 1
2D 0

− (2−u)δ2(δ+1)
2D[(θ+1)δ2+2δ+1]τ0

(2−u)θδ3+(θ+1)δ2+2δ+1
2Dθ[(θ+1)δ2+2δ+1]τ0

0 − 1
2Dθ

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (A17)

N = 1

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

δ{[(1−u)θ+1]δ2+2δ+1}
2D[(θ+1)δ2+2δ+1]τ0

− δ[(1−u)θδ2+δ2+(1−u)δ+δ−u+1]
2D[(θ+1)δ2+2δ+1]τ0

1
2D 0

− uδ2(δ+1)
2D[(θ+1)δ2+2δ+1]τ0

(θ−(1−u)θ )δ3+(θ+1)δ2+2δ+1
2Dθ[(θ+1)δ2+2δ+1]τ0

0 1
2Dθ

⎞
⎟⎟⎟⎠. (A18)

Using these, the MGF can be computed exactly using
Eq. (A11), and various moments of the probability distribution
can also be exactly obtained for any t .

Dependence of τE on system parameters

For the stochastic sliding parabola model, it is possible
to analytically compute how τE , the time at which Skewness
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FIG. 5. (a) Dependence of τE on the relative magnitude of the Ornstein Uhlenbeck driving θ . We find that τE monotonically decreases
with increasing θ , which is the limit at which the system goes further away from equilibrium. (b) Dependence of tE on τ0. We find that τE is a
nonmonotonic function of τ0 and features a minimum at a particular τ0 value.

peaks, depends on the system parameters, using the exact ex-
pressions. In Fig. 5, we demonstrate how τE depends on θ and
τ0. We find that τE monotonically decreases with increasing
θ , which is the limit at which the system goes further away
from equilibrium. This means, further away the system is from
equilibrium, a higher resolution in time will be required to see
the nonmonotonicity in current fluctuations. The dependence
of τE on τ0 is found to be more nontrivial. We find that τE is
a nonmonotonic function of τ0 and features a minimum at a
particular τ0 value.

APPENDIX B: ENTROPY CURRENTS OF ANHARMONIC
BROWNIAN GYRATORS

The Brownian gyrator is one of the minimal prototypes of
a microscopic heat engine [72,73,75]. It consists of a micron-
sized particle trapped in a generic potential well, coupled
to two heat reservoirs with different temperatures along two
orthogonal directions. When the two degrees of freedom of
the trapped particle are coupled, it can be shown that the
system reaches a nonequilibrium stationary state, where the
particle starts gyrating around the minima of the potential.
The dynamics of the system, in the overdamped limit, can be
expressed in terms of coupled Langevin equations:

γ ẋ = −∂U (x, y)

∂x
+
√

2γ kBT1η1(t ), (B1)

γ ẏ = −∂U (x, y)

∂y
+
√

2γ kBT2η2(t ). (B2)

Here, U (x, y) denotes the confining potential in the x-y
plane. The x axis is coupled to a thermal reservoir at tempera-
ture T1 and the y axis is coupled to another thermal reservoir at
temperature T2. The corresponding thermal noises ηi(t ) are of
Gaussian nature and white in time, such that 〈ηi(t )〉 = 0 and
〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). The viscous drag of the medium
is denoted by γ , which is related to the temperatures of the
reservoirs through the Einstein relation, Diγ = kBTi, kB is the
Boltzmann constant (we set kB = 1 for simplicity). In this

work, we choose the anharmonic Brownian gyrator, where the
confining potential is anharmonic [57,74], as an example of a
nonlinear diffusive model.

We first consider a Brownian gyrator with a double-well
confining potential of the form

Udw(x′, y′) = x′4 − 2bx′2 + 1
2 ky′2, (B3)

where axes of the potential x′ and y′ are rotated by an
angle θ with respect to the temperature axes (x, y) (axes of
the coordinate frame) as[

x′
y′

]
=
[

cos θ − sin θ

sin θ cos θ

]
×
[

x
y

]
. (B4)

The parameter “b” can be used to tune the bi-stable nature
of the potential along the x′ direction as the barrier height (=
b2) and the position of the minima (= ±√

b) of the potential
are dependent on it. The stiffness constant “k” characterizes
the harmonic part of the potential along the y′ direction. We
choose b = 1, k = 2, and θ = 45◦ for the analysis performed
in this work.

We also consider another anharmonic Brownian gyrator
with a quartic confining potential given by

Uqw(x′, y′) = (k1x′2 + k2y′2)2. (B5)

The parameters “k1” and “k2” can be considered as the stiff-
ness constants along the respective directions. We set k1 = 1,
k2 = 2 along with θ = 45◦ to construct an anisotropic quartic
potential for the analysis performed in this work.

The entropy currents for both gyrators are constructed nu-
merically with third-order polynomial basis functions using
the TUR-based short-time inference scheme [33–35], as de-
scribed in Refs. [57,80]. We have looked into the properties
of entropy currents corresponding to the different nonequilib-
rium conditions controlled by the ratios of the temperatures
(α = T2/T1) of the thermal reservoirs of the systems, where
α = 0.1 corresponds to the most nonequilibrium configura-
tion we considered, and α = 0.3 is the least nonequilibrium
configuration of both systems. The nonmonotonic features of
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FIG. 6. (a) Quartic confining potential with “k1” = 1 and “k2” =2. (b) Skewness, (c) 〈T+〉, and (d) 〈Tmax〉 of the entropy currents as a
function of t , obtained numerically for the gyrator model with a quartic confining potential for different values of the ratio of the temperatures
(α = T2

T1
).

the entropy current fluctuations for the gyrator system with
double-well confining potential are shown in Fig. 3 of the
main text and in Fig. 6 we show the similar results for the
quartic well confining potential.

APPENDIX C: SKEWNESS OF CURRENTS IN
CONTINUOUS-TIME MARKOV JUMP PROCESSES

Here we demonstrate that Skewness ∝ t−1/2 in the t → 0
limit for discrete space system evolving according to a con-
tinuous time Markov jump process. We consider a set of M
number of states {i}, i = 1, 2, ...M, and transition rates �i j �.
Let π (i) correspond to the steady-state probability of finding
the system in the state i. A stochastic realization of the system
is denoted by x(s) ∈ {i} with s ∈ [0, t ). The fluctuating current
between any two pairs of states i and j can be computed as

ji j (t ) =
∑

k

δ(s − sk )
[
δx(s+

k ), jδx(s−
k ),i − δx(s+

k ),iδx(s−
k ), j

]
, (C1)

where x(s+
k ) [x(s−

k )] corresponds to the state of the system
immediately after (before) the transition at times s = sk . A
generalized time-integrated current in this system is given by

J (t ) =
∫ t

0
ds
∑
i< j

di j ji j (s), (C2)

where di j = −d ji are weighting factors which are constants.
The steady-state average of this current is given by

〈J (t )〉 = t
∑

i j

π (i)�i jdi j . (C3)

A particular choice, di j = Fi j = log �i jπ (i)
� jiπ ( j) , corresponds to

the current J = �Stot(t ).
The fluctuations of any such current J can be calculated

using its moment generating function,

G(λ, t ) = 〈e−λJ (t )〉 = 〈1|etL(λ)|π〉, (C4)

where L(λ) is the tilted transition matrix with elements,

Li j (λ) = � ji exp(λd ji ) − δi j

∑
l

�il . (C5)

We are particularly interested in the small time properties of
the moments of the current J (t ). This can be obtained by
Taylor expanding G as near t = 0. Keeping to first order in
t , we obtain

G(λ, t ) ∼= 1 − t 〈1|Li j (λ)|π〉 + O[t2]. (C6)

For a generic choice of �i j and di j , it is possible to verify that
all the moments of J , obtained by Taylor expanding G as a
function of λ, will be proportional to t for small t . Thus, the
skewness as defined in the main text, will be proportional to
t− 1

2 for t → 0.
In Fig. 4(a) of the main text, we show this for a three-level

system x ∈ {0, 1, 2}, with energy levels Ei = {0, E1, E2}. We
have assumed that the transitions between the levels 0 and
1, and the levels 0 and 2 are mediated by a hot reservoir
at inverse temperature β1 = 1

kBT1
, where kB is the Boltzmann

constant and T1 is the temperature of the hot reservoir. The
corresponding transition rates obey the local detailed balance
condition:

�01 = exp(−β1E1)�10, �02 = exp(−β1E2)�20. (C7)

The transitions between levels 1 and 2 are assumed to be me-
diated by a cold reservoir at inverse temperature β2 = 1

kBT2
>

β1. The corresponding transition rates obey

�12 = exp[−β2(E2 − E1)]�21. (C8)

The skewness of arbitrary currents and in particular entropy
production can be straightforwardly computed for this model
using the expressions given above. There are also standard
techniques available to numerically simulate this model as
a continuous time Markov process [82] and to obtain the
statistics of fluctuating currents as a function of time. The
plots in Fig. 4 of main text are obtained for the parame-
ter choices E1 = kBT1, E2 = 2kBT1, �01 = �02 = �12 = 1s−1,
β1 = (kBT1)−1 and T2 = T1/2, T1/3, and T1/5, for which the
entropy production rates are, σ = 0.027kBs−1, 0.076kBs−1,
and 0.176kBs−1, respectively.

APPENDIX D: PARAMETER VALUES

(1) Figure 1: τ ≡ 1
2π fc

= 0.0013 s, τ0 = 0.0025 s, D =
1.6452 × 10−13 m2/s, A = 0.3 × (0.6 × 10−6)2 m2/s.

(2) Figure 2: (a–c) τ ≡ 1
2π fc

= 0.0013 s, τ0 = 0.0025 s,

D = 1.6452 × 10−13 m2/s, A = [0.1, 0.15, 0.2, 0.25, 0.3,

0.35] × (0.6 × 10−6)2 m2/s; (b–d) τ ≡ 1
2π fc

= 0.0013 s, τ0 =
0.0025 s, D = 1.6452 × 10−13 m2/s, A = [0.1, 0.2, 0.3] ×
(0.6 × 10−6)2 m2/s.

(3) Figure 3: (a) b = 1, k = 2; (b–d) γ = 1, T1 ≡ D1 = 1,
α ≡ T2

T1
= [0.1, 0.2, 0.3].
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(4) Figure 4: E1 = kBT1, E2 = 2kBT1, �01 = �02 = �12 =
1 s−1, β1 = (kBT1)−1, T2 = [ 1

2 , 1
3 , 1

5 ] × T1.
(5) Figure 6: (a) k1 = 1, k2 = 2; (b–d) γ = 1, T1 ≡ D1 =

1, α ≡ T2
T1

= [0.1, 0.2, 0.3].
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