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Exponential time-scaling of estimation precision by reaching a quantum critical point
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Quantum metrology refers to the use of quantum resources in parameter-estimation protocols, aiming at
enhancing its precision. The quantum Fisher information is a key quantity in this context, setting the ultimate
achievable precision with respect to available resources, such as the total time of the protocol. In this work, we
report a scheme where the quantum Fisher information features an exponential scaling with the protocol duration.
This is achieved by performing a periodic modulation of the coupling of a quantum critical system close to the
its critical value. This modulation leads to an exponential growth of the excitation number in time. Relying on
the precision bound derived by Garbe et al. [L. Garbe et al., Quantum Sci. Technol. 7, 035010 (2022)], we show
that the quantum Fisher information inherits this exponential time scaling, which is corroborated by numerical
simulations. Finally, the impact of dissipation and finite-size effects are analyzed, showing that the exponential
time scaling is robust to dissipation, although its exponent decreases for larger values of the dissipation rate.
Therefore, our work illustrates the novel metrological opportunities that quantum critical systems can offer.
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I. INTRODUCTION

The existence of quantum fluctuations limits the precision
that can be achieved in parameter-estimation protocols when
using a limited number of physical resources. While the devel-
opment of quantum mechanics has unveiled this fundamental
limitation, it also provides us with the solution: By exploiting
quantum resources, such as squeezing or entanglement, it is
possible to overcome the fundamental limit of precision found
for classical protocols [1–4]. Accordingly, quantum sensing is
one of the most promising applications of current quantum
technologies [5]. In the context of quantum metrology, in
order to assess the performances of a parameter-estimation
strategy, it is of utmost relevance to understand the scaling
of the precision with respect to the amount of used resources,
such as number of probes or total measurement time. At the
theoretical level, the most common figure of merit to quantify
the estimation precision is the quantum Fisher information
(QFI), which sets the ultimate achievable precision according
to the Cramér-Rao bound [3,6]. A paradigmatic example con-
sists in the celebrated Heisenberg limit, valid under a series
of very general assumptions [2], for which the QFI scales
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quadratically with the number of particles of the probe system
and with the protocol duration time. This corresponds to a
quadratic enhancement over the classical case, where the QFI
scales linearly with those resources. It has also been shown
that even super-Heisenberg scalings can be achieved when
allowing for k-body interaction terms [7,8], in which case
scalings N2k , or potentially even exponential scaling in N ,
could be achieved (see, for example, [9]). Another possibil-
ity is to enable time-dependent Hamiltonian evolutions [10],
which allows one to surpass the quadratic scaling in time.

In this context, systems undergoing critical phase transi-
tions are ideal candidates for sensing applications, thanks to
their high sensitivity to external perturbations. In particular,
quantum phase transitions (QPTs) [11] represent a compelling
resource [12–14] for quantum metrology due to highly non-
classical properties developed in proximity of the critical
point. It has also been shown [15,16] that in spite of the critical
slowing down, the framework of critical quantum metrology
makes it possible to achieve the Heisenberg scaling, where
the QFI grows quadratically in time and number of probes.
Recent works [16–24] have shown that the framework of
critical quantum metrology can be applied to a broad class
of quantum optical models. Current solid-state and atomic
technology allows for the implementation of these models in
a controllable way, where their parameters can be tuned in
real time. Intense research efforts [9,25–33] are now dedicated
to identifying optimal control strategies that maximize the
estimation precision while mitigating potential errors.

In this article, we present the design of a quantum sensing
protocol that goes beyond the typical power-law scaling of the
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QFI, achieving an exponential scaling with respect to protocol
duration time. The protocol is based on a quantum-control
strategy that exploits the critical nature of a QPT by cyclically
bringing the probe system in proximity of the critical point.
This modulation is intrinsically nonadiabatic, as at the critical
point the energy gap closes. Information about the parameter
describing the Hamiltonian is continuously encoded in the dy-
namics. By measuring the state at the end of the evolution, we
can then reconstruct these parameters. This scheme is there-
fore an active interferometric metrological protocol where the
number of probes N changes in time, and indeed increases
exponentially with the number of cycles performed. Using
both detailed numerical simulations and the analytical bound
recently introduced in Ref. [25], we show that this exponential
time growth of N is carried over to the estimation precision.
Furthermore, in order to characterize the performances of the
proposed protocols for practical applications, we analyze the
effect of dissipative processes and of finite-size corrections.
We find the protocol to be resilient to thermal and dissipative
effects, and the exponential scaling is preserved when the
decay rate is comparable to or smaller than the single-cycle
time. The rate in the exponential scaling, however, gradually
degrades with decoherence. As we explain, this corresponds to
a departure from a Heisenberg (quadratic in N) to a standard-
quantum (linear in N) regime. Finite-size corrections impose a
saturation on the number of excitations, and so they constrain
the maximum number of cycles allowed. The proposed proto-
col can be advantageous when the estimation time is the most
relevant resource and when using quantum platforms where
ground-state cooling is challenging.

II. CRITICAL FULLY CONNECTED MODEL

Among the different families of quantum critical systems,
we focus on fully connected models such as the quantum Rabi,
the Lipkin-Meshkov-Glick [34], and the Dicke [35] models.
In the thermodynamic limit, these systems feature a QPT that
divides the phase diagram in a normal and a symmetry-broken
phase [36–44]. In the Dicke and Lipkin-Meshkov-Glick mod-
els, the thermodynamic limit refers to the standard notion
of infinitely many components. In the quantum Rabi model,
and related finite-component critical systems [45–51], it rather
refers to a certain ratio of the system parameters. For instance,
in the quantum Rabi model, a QPT emerges when the qubit
frequency becomes much larger than the field frequency. The
frequency ratio acts as an effective system size, and finite-size
critical exponents can also be defined in this case. These mod-
els constitute a suitable testbed for the exploration of different
aspects of quantum critical phenomena [45,46,48,49,52–66].
These fully connected systems admit a simple description
in terms of an effective bosonic mode. For instance, let
us consider the simple Rabi model describing the interac-
tion between a qubit and a bosonic mode. Under a suitable
Schrieffer-Wolff transformation, we can decouple the qubit
and obtain an effective description in terms of the bosonic
field [38,64],

H = ωa†a − λ2

�
(a + a†)2, (1)

where [a, a†] = 1, λ is the dimensionful coupling strength,
and ω and � are the frequency of the field and qubit, respec-
tively. The phase transition occurs at λ = λc =

√
ω�
2 . We can

then rewrite this model in the following form:

H = ω

[
a†a − g2

4
(a + a†)2

]
. (2)

This structure makes apparent that the critical dynamics is
entirely described by two parameters: a global energy scale ω

and a renormalized, dimensionless coupling strength g which
modulates the potential of the bosonic field. The transition
then takes place for g = gc = 1. This derivation can be carried
out with other fully connected systems, such as the Lipkin-
Meshkov-Glick (LMG) model (see Ref. [25] for details),
leading to the same effective Hamiltonian.

The distance to the transition point, g − gc, is the most
important parameter in this effective description. In particu-
lar, observables will obey critical scalings with this distance;
for instance, the energy gap vanishes at the QPT as �(g) ∝
|g − gc|1/2. The associated critical exponents in this case are
of a mean-field type, zν = 1/2 [11]. It is worth stressing that
the critical traits in these systems have been experimentally
observed [67–72].

It is important to notice that, in general, ω and g will not be
independent. For instance, in both the Rabi and LMG model,
we have g ∝ 1/

√
ω. Hence, in all of these models, changing

the frequency ω will both rescale the model frequency and the
distance to the critical point. In the present and our previous
study [25], we exploit this circumstance to devise a sensing
protocol critically dependent on the value of ω.

Finally, let us comment on possible experimental imple-
mentations of critical fully connected models, which could be
realized using current technology. Notice that we are making
two strong assumptions on the coupling parameter g, as an
implementation of the proposed protocols requires that (i) g
can be fast-modulated in real time and (ii) g can be made large
enough to approach the critical point. These requirements
can both be achieved with effective implementations, where a
coupling is induced by an external parametric pump. A broad
variety of methods to induce effective couplings have been
experimentally demonstrated, making it possible to observe
critical phase transitions and access extreme coupling regimes
in neutral atoms [68,73,74], trapped ions [72,75–77], circuit
QED [78–80], optomechanical devices [81,82], and nuclear
magnetic resonance [83], as a nonexhaustive list.

III. QUANTUM FISHER INFORMATION

The ultimate precision for the estimation of a parameter
o is given by the QFI [3], denoted as Io, such that the vari-
ance for the estimated parameter o is bounded as (δo)2 � I−1

x
for a single measurement, which is known as the quantum
Cramér-Rao bound. This result is obtained optimizing over all
possible positive operator-valued measurements and classical
data processing. Thus, the scaling of Io with respect to the
experimental resources, such as the duration of the metro-
logical protocol, is of key importance. Let us denote ρo as
the system state in which the unknown value of o has been
encoded. The QFI is related to the Bures distance between
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two infinitesimally closed states, ρo and ρo+ε , which can be
written as d2

B,o = 2(1 − Tr[
√√

ρoρo+ε
√

ρo]), so that [84]

Io = 4

(
∂dB,o

∂ε

∣∣∣∣
ε=0

)2

. (3)

The signal-to-noise ratio can then be written as Qo = o2Io.
Since the Hamiltonian (2) is quadratic in a and a†, any ini-

tial Gaussian state evolving under (2) remains Gaussian [85].
Recall that a Gaussian state ρ is that whose Wigner function
is Gaussian, and thus ρ can be fully determined in terms of its
first and second moments in the two-dimensional phase space,
X� = (X1, X2) = (x, p) [85], where here we employ the con-
vention x = a + a† and p = i(a† − a). The first moments of
the state are simply 〈X�〉 = (Tr[ρ x], Tr[ρ p]). The second
moments are given by the covariance matrix R, which is real
and symmetric, and its matrix elements read as

Ri, j = 1
2 〈XiXj + XjXi〉 − 〈Xi〉〈Xj〉. (4)

As shown in Ref. [84], the QFI adopts the following form
for Gaussian states:

Io = 1

2

Tr[(R−1∂oR)2]

1 + P2
+ 2

(∂oP)2

1 − P4
+ Lo, (5)

with Lo = �X′�
o R−1�X′

o and �X′
o = ∂〈Xo+ε − Xo〉/∂ε|ε=0,

and P = det[R]−1/2 denotes the purity of the Gaussian state ρ.
Throughout the article, we will consider Gaussian states with
〈x〉 = 〈p〉 = 0, and therefore Lo = 0 in Eq. (5). In this manner,
the QFI and the corresponding signal-to-noise ratio Qo can
be computed from the covariance matrix R. In the following,
we will focus on the estimation of the bosonic frequency ω,
although similar results can be found for the estimation of g
in Eq. (2).

IV. NONADIABATIC CYCLES: EXPONENTIAL SCALING

The Hamiltonian in Eq. (2) displays a QPT at the critical
point gc = 1, which is accompanied by a vanishing energy
gap, among other features. As a consequence, by tuning g(t )
towards the QPT in a finite time, the system will unavoid-
ably depart from adiabaticity [86,87]. Such nonadiabaticity
translates in the formation of quantum excitations in the
system, which can be harnessed and beneficial in different
contexts [88]. In the following, we show that the nonadia-
baticity caused by the QPT can be exploited to lead in an
exponential scaling of the QFI with respect to the protocol
duration.

In particular, we choose a protocol g(t ) that completes a
cycle in a time 2τ � 1/ω as (cf. Fig. 1)

g(t ) =
{

gτ
t
τ

for 0 � t � τ

gτ

(
2 − t

τ

)
for τ � t � 2τ,

(6)

so that g(0) = 0 and g(τ ) = gτ . The state at any time t
follows from ρ̇ = −i[H (t ), ρ(t )], with the initial and final
state upon the completion of the cycle given by ρ(0) and
ρ(2τ ), respectively. Note that the condition 2τ � 1/ω rules
out fast cyclic transformation (ωτ → 0) for which the ini-
tial state remains trivially unchanged. If we perform a cycle
away from the critical point, i.e., for gτ < gc = 1, and for
sufficiently slow cycles, τ 	 1/�(gτ ), the protocol is able to

FIG. 1. Schematic illustration of the protocol. At t = 0, the state
is assumed to be in a vacuum or thermal state, which is brought to
the critical point gτ = gc = 1 in a time τ by tuning g(t ). The cycle
is completed at time 2τ such that g(2τ ) = g(0) = 0. After one cycle
m = 1, the state becomes squeezed, with a squeezing parameter and
angle |s| and θ , respectively, so that the state is squeezed along the
direction x�

s = [cos(θ/2), sin(θ/2)] in the phase space X� = (x, p),
reducing the variance by a factor e−2|s|. Performing another cycle,
m = 2, the state can be further squeezed such that |sm| = m|s|, where
m = 1, 2, . . ., under suitable parameters. This squeezing amplifica-
tion leads to an exponential precision for the estimation of the system
parameters (see main text for further details).

meet the adiabatic condition. Hence, by virtue of the adiabatic
theorem, the state upon the cyclic transformation is simply
ρ(2τ ) = ρ(0). By contrast, if we bring the system all the
way to the critical point, i.e., if gτ = gc = 1, the adiabatic
condition will break down at some point since �(gc) = 0.
Thus, ρ(2τ ) 
= ρ(0) regardless of how slow the cycle is
performed, as studied in Ref. [87]. Indeed, the transforma-
tion (6) reaching the critical point produces squeezing, that is,
ρ(2τ ) = S(s)ρ(0)S†(s) with S(s) = exp[(s(a†)2 − s∗a2)/2]
and s = |s|eiθ , with |s| and θ the squeezing parameter and
its angle, respectively. In this manner, the state is squeezed
along x�

s = [cos(θ/2), sin(θ/2)] in the phase space. To a
good degree of approximation (cf. Appendix A), the acquired
squeezing after completing the protocol g(t ) with duration 2τ

(and τ � 1/ω) is given by [87,88]

|s| = ln(3)

2
≈ 0.55, (7)

while the angle θ depends on τ (see Fig. 1). Note that this is
caused solely by the presence of the QPT.

Although setting gτ = 1 allows one to automatically break
adiabaticity, the resulting squeezing is robust against small
deviations from gτ = 1, i.e., for cycles with |gτ − gc|  1,
Eq. (7) still holds for 1/ω � τ � 1/�(gτ ) (cf. Appendix A).

This cyclic transformation can be carried out m times by
a concatenation of the protocol g(t ) in (6), that is, g(t +
2mτ ) = g(t ) with t ∈ [0, 2τ ] and m = 1, 2, . . ., in a total
time T = 2mτ . By doing so, the produced squeezing can
be amplified to yield |sm| = m|s| = m ln(3)/2, where |sm|
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denotes the squeezing produced on the initial state ρ(0) after
the mth cycles, i.e., ρ(2mτ ) = S(sm)ρ(0)S(sm) with sm =
|sm|eiθm (cf. Fig. 1). Such amplification requires a phase-
matching condition for subsequent cycles, i.e., θm+1 = θm.
However, if θm+1 = θm + π (modulo 2π ), the (m + 1)th cycle
compensates the squeezing generated in the previous cycle,
and thus we expect |s2m+1| ≈ |s| = ln(3)/2 and |s2m| ≈ 0, so
that N2m+1 ≈ Nm=1 = 1/3 while N2m ≈ 0.

It is worth mentioning that other schemes can also achieve
a linear amplification of squeezing, such as the one reported
in Ref. [32] based on a suitable periodic modulation of the
oscillator frequency [89], which differs from Eq. (6).

A. Bound to the quantum Fisher information

As aforementioned, Eq. (5) allows us to exactly compute
the QFI. However, before presenting the numerical results
in the next section, here we show that the main features of
the QFI behavior can be predicted analytically. For that, we
rely on a recently derived bound to the QFI, which is valid
for active interferometric protocols and Gaussian states. This
bound is denoted as IB

ω such that Iω � IB
ω , and in our case is

given by (see Ref. [25] for the details of the derivation)

IB
ω = 8(χ2 + φ2)

{∫ T

0
dt[2N (t ) + 1]

}2

, (8)

where N (t ) denotes the number of bosons at time t , while
χ and φ are the eigenvalues of the matrix ∂ωH (t ) in the
phase space X, which here take a time-independent value
χ = φ = 1/2 [25]. If the number of probes N (t ) is time in-
dependent, Eq. (8) returns the Heisenberg scaling N2T 2. By
contrast, if N (t ) is time dependent, which is the case here, we
can achieve more exotic scalings in T . For simplicity, let us
consider an initial vacuum state ρ(0) = |0〉〈0|, although we
remark that the results are robust against finite-temperature
initial states (see Appendix B). From Eq. (7) and since N =
Tr[S(s)ρ(0)S†(s)a†a] = sinh2(|s|), we expect the number of
bosons, Nm = Tr[ρ(2mτ )a†a], after m cycles, assuming a
phase-matching condition, to obey

Nm = sinh2
[m

2
ln(3)

]
, (9)

which grows exponentially with m, Nm ∼ 3m/4 for m 	 1.
Hence, we can already anticipate that IB

ω will show a similar
exponential scaling. Indeed, by approximating N (t ) during
t ∈ [2(m − 1)τ, 2mτ ] by Nm so that

∫ 2mτ

(2m−1)τ dt [2N (t ) + 1] ≈
2τ (2Nm + 1), we find

IB
ω � 16τ 2(2Nm + 1)2

≈ 64τ 2 sinh4[m ln(3)/2], (10)

where, in the last step, we have assumed Nm 	 1. In this
manner, for m 	 1, we find

IB
ω ≈ 4τ 232m = 4τ 23T/τ , (11)

where T = 2mτ is the total time of the protocol after m cycles.
That is, the bound to the QFI scales exponentially with T .
This is the central result of the article. Note that IB

ω does not
surpass the Heisenberg limit since it still corresponds to T 2N2

m.
The improvement in the time-scaling comes from the fact that

the number of probes, Nm, increases in time. It is worth men-
tioning that if we have a standard-quantum-limited scaling,
ISQL
ω ∝ Nm instead of N2

m as in Eq. (10), we would obtain
ISQL
ω ∼ 3m, so both scale exponentially with the number of

cycles. However, IB
ω ∼ 3mISQL

ω , meaning that the Heisenberg
behavior still provides an exponential advantage with respect
to the standard-quantum behavior.

In the remainder of the article, we will employ numer-
ical simulations to corroborate the validity of Eq. (11) (cf.
Sec. IV B), while in Sec. V, we investigate the noise robust-
ness of such exponential scaling and how the QFI tends to
ISQL
ω as decoherence becomes prominent, as well as to analyze

the potential impact of finite-size effects.

B. Noiseless dynamics in the thermodynamic limit

The dynamics in the thermodynamic limit can be computed
exploiting the quadratic nature of the Hamiltonian (2). As-
suming that the initial state is such that 〈x〉 = 〈p〉 = 0 and
that it undergoes a noiseless evolution under the protocol
g(t ), the state at time t is completely characterized by the
following time-dependent Lyapunov equation of motion for
the covariance matrix (see Appendix C):

Ṙ(t ) = W(t )R(t ) + R(t )W†(t ), (12)

with

W(t ) =
[

0 ω[1 − g2(t )]
−ω 0

]
, (13)

while 〈x〉 = 〈p〉 = 0 ∀t . The number of bosons at time t is
then given by N (t ) = 1

4 {Tr[R(t )] − 2}, while the QFI can be
computed exactly using Eq. (5) and compared with the bound
prediction (11). In order to test the prediction of the exponen-
tial scaling for Iω, we consider ρ(0) = |0〉〈0| so that R(0) = I.
Numerically solving Eq. (12) under the protocol g(t ) given in
Eq. (6), we can compute Nm = N (2mτ ) and the corresponding
signal-to-noise ratio Qω = ω2Iω. The phase-matching condi-
tion is achieved here when ωτ = 2n with n = 1, 2, . . ., so
that θm = ±π/2 ∀m, while for ωτ = 2n + 1, the (m + 1)th
cycle counteracts the generated squeezing in the previous one
(cf. Appendix C). Thus, for the phase-matching condition,
the state is squeezed in the direction x�

s = (1,±1)/
√

2 in the
phase space. The number of bosons after m cycles is plotted in
Fig. 2(a) for ωτ = 8 (phase-matching condition), ωτ = 8.2,
and ωτ = 9. The results clearly show the exponential growth
of Nm, which is well captured by Eq. (9), for ωτ = 8. Finally,
the signal-to-noise ratio Qω is plotted in Fig. 2(b), together
with the bound and its approximated value given in Eq. (8)
and (11), respectively. The numerical results show that the
QFI shows an exponential scaling with the protocol duration
T , Qω ∝ 3T/τ , as predicted by Eq. (11). The exponential scal-
ing still holds, although the prefactor is reduced, in situations
when ωτ ∼ 2n but ωτ 
= 2n, as exemplified by ωτ = 8.2.
On the contrary, for ωτ = 2n + 1, the number of bosons is
bounded by 1/3, which leads to the standard Qω ∝ T 2 scaling.
We stress again that although the previous results have been
computed considering ρ(0) = |0〉〈0|, i.e., a zero-temperature
initial state, initial thermal states with an arbitrary temperature
also lead to an exponential advantage (cf. Appendix B).
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FIG. 2. Noiseless dynamics in the thermodynamic limit for an
initial vacuum state. (a) Number of bosons after m cycles, Nm,
for ωτ = 8 (solid red circles), ωτ = 9 (open green triangles), and
ωτ = 8.2 (open orange circles). The phase-matching condition is
achieved for ωτ = 8, which leads to an exponential growth of Nm,
while for ωτ = 9, it follows that N2m+1 ≈ 1/3 (dotted black line)
(see main text). The results for ωτ = 8 follow the trend predicted
in Eq. (9) (solid black line), which is closely followed by small
deviations from the phase-matching condition, as illustrated for
ωτ = 8.2. (b) Computed signal-to-noise ratio Qω = ω2Iω together
with the bound computed numerically using Eq. (8) (solid black line)
as well as its approximated expression (dotted black line), given in
Eq. (11), i.e., IB

ω ≈ 4τ 23T/τ . The exponential scaling is robust against
deviations from the phase-matching condition. For ωτ = 9, there is
no exponential scaling, but rather Qω ∝ (2mτ )2 = T 2, which is also
well captured by the bound (not explicitly shown).

Let us conclude this section by commenting on the at-
tainability of the QFI. The QFI bound gives the maximum
precision achievable when optimizing over all possible ob-
servables. This then begs the question, which observables
allow one to reach or approach this maximum? In a previous
work of ours [25], we studied a similar protocol, in which the
coupling of a fully connected system was modulated in time
to generate time-dependent squeezing, leading to a QFI that
scales polynomially in time. We also studied the achievability
of the QFI bound and found that it could, in general, be
saturated using standard homodyne measurement or photon
counting. Although the time-scalings that we obtain in the
present work are very different, the resulting states are similar
(essentially time-dependent squeezed thermal states) and we

expect that the QFI here should be reachable as well using
these standard methods.

V. NOISE ROBUSTNESS AND FINITE-SIZE EFFECTS

Let us now analyze the robustness of the exponential scal-
ing in the QFI with respect to decoherence. For that, we
model the interaction of the system with an environment at
an inverse temperature β such that Nth = (eβω − 1)−1 through
the standard Lindblad master equation [90]

ρ̇(t ) = −i[H (t ), ρ(t )] +D[ρ(t )], (14)

where the dissipator reads as

D[ρ] = κ
(Nth + 1)

2
(2aρa† − {a†a, ρ}) (15)

+κ
Nth

2
(2a†ρa − {aa†, ρ}), (16)

and the parameter κ accounts for the system-environment
interaction strength. As the master equation is still quadratic
in a and a†, the time-dependent Lyapunov equation for the
covariance matrix modifies to

Ṙ(t ) = W̃(t )R(t ) + R(t )W̃†(t ) + F, (17)

where now F = κ (2Nth + 1)I and W̃ = W − κ/2I. As be-
fore, we compute the Qω from Eq. (5) solving Eq. (17). The
results are gathered in Fig. 3(a) for Nth = 2, which shows
that the exponential scaling is robust against decoherence
provided 2τκ  1. There we show Qω for different values of
κ starting from ρ(0) = |0〉〈0|. For 2τκ  1, the dissipation
still permits an exponential scaling Qω ∝ 3αm = 3αT/(2τ ), but
with smaller prefactor, 0 < α � 2, which is reduced as κ

increases. On the contrary, for 2τκ 	 1, the state relaxes to
the thermal equilibrium before the cycle is completed and
thus Qω does not increase with the protocol duration. For
2τκ ≈ 1, both mechanisms are balanced and Qω ∝ T 2 is still
possible. Since Qω ∝ 4τ 232m, for a fixed number of cycles
m, the QFI is maximal when 2τκ = 1 provided ωτ ensures
the phase-matching condition, while for fixed total evolution
time T , it is more beneficial to perform the largest allowed
number of cycles m = T/(2τ ), and hence to take the shortest
possible τ , with the constraints 2τ � 1/ω and 2τκ  1. After
m cycles, the system finds itself in a squeezed thermal state, so
that the variance along the squeezing axis reads as (�xs)2 =
(2nκ + 1)e−2|sm|, while (�ps)2 = (2nκ + 1)e2|sm| is enlarged,
where nκ is the number of thermal bosons acquired by the state
due to the interaction with the environment which decreases
its purity, that is, Tr[ρ(2τm)2] = (2nκ + 1)−1. For κ = 0, the
state remains pure and nκ = 0. Moreover, the total number of
bosons after m cycles is N (2τm) = (2nκ + 1) sinh2 |sm| + nκ .
Although |sm| increases with m for 2τκ � 1, so does the
number of thermal bosons. This leads to a saturation in the
variance (�xs)2, while (�ps)2 keeps increasing with m, which
still allows Qω to grow. This is shown in Fig. 3(b). For
2τκ > 1, both quadratures saturate and, therefore, also Qω.
In addition, we also show the behavior of the prefactor α

as a function 2τκ , which is illustrated in Fig. 3(c). There
we show the fitted α such that Qω ∝ 3αm. For a noiseless
evolution, α ≈ 2 [see Fig. 2(b) and Appendix A for a com-
ment regarding the expected deviation with respect to α = 2],
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FIG. 3. Robustness of the exponential scaling in Qω vs deco-
herence effects. The results have been obtained for ρ(0) = |0〉〈0|,
gτ = gc = 1, and ωτ = 8 as in Fig. 2, although equivalent results
can be found for different ωτ � 1. (a) Qω for increasing number of
cycles m, (b) variance along the squeezing axes, and (c) prefactor α

such that Qω ∝ 3αm, obtained as a best fit in the interval m ∈ [5, 10],
as a function of 2τκ . In (b) the solid red line corresponds to 3±m,
as expected theoretically for κ = 0. Open [full] points correspond to
(�xs )2 [(�ps )2] with the same format as in (a). In (b), the solid red
line corresponds to α obtained from a fit to the bound in Eq. (8). The
exponential advantage holds even for nonzero dissipation interaction
strength κ , although the prefactor α in the scaling decreases. For
2τκ = 1 [open yellow triangle in (a) and (b)], the scaling shifts
to the standard quadratic scaling Qω ∝ T 2, while for 2τκ > 1, the
signal-to-noise ratio Qω saturates and α = 0. Note that α shows a
plateau at α = 1, which can be interpreted as a standard-quantum
limit behavior (see main text).

while as κ increases, α → 0. Yet, there is a wide range of
values for κ in which the exponential scaling holds. Similar
results can be found for other ωτ fulfilling (or close to) a
phase-matching condition. For comparison, we also compute
α using the bound in Eq. (8). As shown in Fig. 3(b), although
the bound still captures the exponential scaling for 2τκ � 1,
it becomes loose and overestimates the exponent α. As we
show in Fig. 3(c), the exponent α gradually decreases with
increasing decay rate κ , and shows a plateau at the value 1.
Finally, when κ is further increased, α starts decaying again
and finally reaches 0, at which point the precision becomes

independent of the protocol duration. It is worth mentioning
that the transition from α = 2 to 1 can be understood as a
departure from the Heisenberg to the standard-quantum limit.
Indeed, we can reexpress Qω in terms of both the maximum
number of bosons and the protocol duration time. Then, α = 2
corresponds to Qω ∼ N2

mT 2 (Heisenberg limit), while α = 1
to Qω ∼ NmT , which is the scaling of the standard-quantum
limit. This expression is useful if we are in a situation in which
both the protocol duration and the number of photons are lim-
ited. By contrast, if the only relevant resource is the time, we
can express again Nm ∼ 3m = 3T/τ . As aforementioned, both
α = 1 and α = 2 lead to an exponential scaling of the QFI
with T , yet α > 1 corresponds to an exponential advantage
with respect to the standard-quantum limit.

Finally, we turn our attention to finite-size effects. As
commented in Sec. II, the Hamiltonian H in Eq. (2) is valid
in the normal phase and in the thermodynamic limit. Yet,
any realistic exploration of a critical system is unavoidably
accompanied by finite-size corrections. Let us denote by η the
system size, which in the Lipkin-Meshkov-Glick and quan-
tum Rabi models refers to the number of spins and a ratio
between spin and bosonic frequencies, respectively. Indeed,
for η < ∞, the leading-order correction to Eq. (2) leads to a
Hamiltonian of the form Hη = H + f (g)

η
(a + a†)4, where f (g)

is a function of g [25,64]. In this manner, the 1/η correction
introduces a confining potential and lifts the vanishing energy
gap at gc = 1. In our case, such correction can become signif-
icant since N grows exponentially, and so does Tr[ρ(t )(a +
a†)4]. Hence, we expect that the exponential scaling reported
in Sec. IV holds as long as f (g)Tr[S(sm)ρ(0)S†(sm)(a +
a†)4]  η, as otherwise the correction can no longer be con-
sidered as a perturbation and will significantly modify the
Gaussian nature of the state and, consequently, the gener-
ated squeezing. The previous conditions allow us to define a
maximum number of cycles, m∗, before the 1/η correction
becomes relevant, i.e., m∗ ≈ ln3 η. Hence, for η ≈ 106, we
expect that the exponential scaling holds up to m∗ ≈ 10.

VI. CONCLUSIONS

In this article, we have reported a quantum metrological
scheme that yields a quantum Fisher information that scales
exponentially with the protocol duration time T . Such scheme
is rooted in the nonadiabaticity of a cycle in the control pa-
rameter reaching a quantum critical point in fully connected
models. In one cycle, the state acquires squeezing, which
can be amplified under a suitable choice of parameters by
subsequent cycles. As we show, after m cycles of a duration
2τ each, the quantum Fisher information scales as Iω ∝ 3T/τ .
This scaling is well captured by the recent bound put forward
in Ref. [25], which in turn allows us to find approximated ex-
pressions for the quantum Fisher information. We discuss the
potential deviations to this ideal scenario, such as finite-size
effects or the effect of decoherence mechanisms. Supported
by numerical simulations, we find that the exponential time-
scaling precision is robust against decoherence effects, while
the exponential advantage over the standard-quantum limited
precision holds even for nonzero dissipation rates. In addition,
as we argue, finite-size effects pose a limit to the maximum
number of cycles that can be performed before the exponential
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scaling breaks down. Based on our previous analysis [25],
we also expect that this QFI bound can be saturated using
standard homodyne or photon-counting measurements.

Our results, together with those reported recently by Gi-
etka et al. [9], highlight that systems featuring a quantum
phase transition are a valuable resource in quantum metrology
as they can yield an exponential advantage for parameter
estimation.
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APPENDIX A: ROBUSTNESS OF THE SQUEEZING
AGAINST FINITE-TIME CYCLES AND VARIATIONS IN gτ

As commented in the main text, the state becomes
squeezed after one cycle, whose squeezing parameter is given
by |s| = ln(3)/2 [cf. Eq. (7)]. Here we provide a brief deriva-
tion of this expression. For that, we follow [87]. The solution
to the dynamics under Eq. (2) can be written in terms of
the Ermakov-Milne equation, ξ̈ (t ) + ω2(t )ξ (t ) = 1/[4ξ 3(t )],
where ω2(t ) = ω2[1 − g2(t )] is the frequency of the harmonic
oscillator at time t , and ξ (t ) is an effective width of the state,
whose equilibrium value is ξ (t ) = [2ω(t )]−1/2. In the ωτ →
∞ limit, it is possible to find solutions to the above equation as
a combination of Airy functions [87]. Indeed, for ωτ → ∞,
one can find the overlap between the ground and the evolved
states upon a cycle g(t ), which is given by f (2τ ) = sin(π/3)
(see Ref. [87] for more details). Since for 〈x〉 = 〈p〉 = 0
the Hamiltonian in Eq. (2) only produces squeezing in the
state, and because |〈0|S(s)|0〉|2 = cosh−1(|s|), it follows that
cosh−1(|s|) = sin(π/3), which finally leads to |s| = ln(3)/2.

This result holds to a good degree of approximation for
ωτ � 1 and gc − gτ  1. Let us denote |s(τ )| the squeezing
parameter after one cycle g(t ) [cf. Eq. (6)] with duration 2τ

(see Appendix C for details on how to obtain |s| from R).
From numerical simulations, we find that |s(τ )| ≈ |s| pro-
vided gc − gτ  1 and ωτ � 1. Indeed, Fig. 4(a) shows the
robustness of |s(τ )| when gτ 
= gc = 1 but |gc − gτ |  1. On
the one hand, if gτ  gc = 1, the dynamics is not influenced
by the critical point, so |s| ≈ 0. In addition, for gτ � gc, the
larger τ , the more sensitive |s(τ )| becomes to deviations in
gτ . This is due to the finite-energy gap at g < gc, that is, for
τ 	 1/�(gτ ) the evolution becomes adiabatic and Eq. (7)
no longer holds. On the other hand, from numerical simula-
tion, we find that finite-time corrections when gτ = 1 obey
|s| − |s(τ )| ≈ (27ωτ )−2/3 for ωτ � 1 [cf. Fig. 4(b)]. Hence,
by increasing ωτ , the resulting squeezing gets closer to the ex-
pected |s| = ln(3)/2 at the price of losing robustness against
potential deviations from gτ = 1. For ωτ → 0, one trivially
obtains |s(τ )| ≈ 0. For the numerical results presented in the
main text, we consider ωτ ∼ O(10). In particular, for ωτ = 8,

FIG. 4. Robustness of the squeezing parameter |s(τ )| achieved
after one cycle under g(t ) in a total time 2τ , such that g(0) = 0 and
g(τ ) = gτ , and for an initial vacuum state. (a) Squeezing |s(τ )| as
a function of the deviation to the critical point gc − gτ . The solid
horizontal line corresponds to the expected |s| = ln(3)/2, while the
points have been obtained numerically for different ωτ and gτ values.
(b) Finite-time corrections to the squeezing |s(τ )| when gτ = 1. The
solid line corresponds to a best fit, |s| − |s(τ )| ≈ (27ωτ )−2/3.

the difference between |s(τ )| and |s| amounts to ≈0.03, and
thus the expected exponential factor α, such that Qω ∝ 3αm, is
α ≈ 1.94 [cf. Fig. 3(b)] rather than α = 2 [cf. Eq. (11)], which
would be reached in the limit ωτ → ∞.

APPENDIX B: FINITE-TEMPERATURE INITIAL STATE

Let us consider an initial thermal state at inverse tem-
perature β = (kBT )−1, ρβ = e−βH0/Tr[e−βH0 ], where H0 =
ωa†a and Nβ = Tr[ρβa†a] = (eβω − 1)−1. As discussed in
the main text, the state upon m cycles can acquire an
m-fold squeezing |sm| = m|s|, where |s| = ln(3)/2, so that
ρ(2mτ ) = S(sm)ρβS†(sm), whose occupation number Nm =
Tr[ρ(2mτ )a†a] is given by

Nm = 1
2 [(2Nβ + 1) cosh(2|sm|) − 1]. (B1)

For Nβ = 0, one recovers the expression in Eq. (9) when
substituting |sm| = m ln(3)/2. From the bound (8) and again
approximating 2N (t ) + 1 ≈ 2Nm + 1 for t∈[2(m − 1)τ, 2mτ ]
and assuming |sm| � 1, we arrive at

IB
ω ≈ 16τ 2(2Nβ + 1)2 cosh2(2|sm|) ∼ τ 23T/τ , (B2)

which is equivalent to Eq. (11) up to prefactors. The bound
captures the exponential scaling. Yet, it becomes loose as it
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overestimates Iω since the Nβ bosons originally contained in
ρβ do not actively participate in the parameter estimation.

APPENDIX C: SQUEEZING AND QUANTUM FISHER
INFORMATION OF A GAUSSIAN STATE

A Gaussian state ρ is characterized by a Gaussian Wigner
function in the phase space X� = (x, p), such that W (X) =
P/(2π ) e−(X−〈X〉)�R−1(X−〈X〉), where 〈X�〉 = (〈x〉, 〈p〉) and
R is the covariance matrix whose matrix elements are
Ri, j = 1

2 〈XiXj + XjXi〉 − 〈Xi〉〈Xj〉. In the previous equation
for W (X), P = det[R]−1/2 denotes the purity of ρ [84]. Un-
der the Hamiltonian H (t ) = ωa†a − g2(t )ω(a + a†)2/4 and
the master equation given in Eq. (14), it is straightforward
to find the time-dependent Lyapunov equation for R, which
is given in Eq. (17). Recall that we employ x = a + a† and
p = i(a† − a), so that N = Tr[ρa†a] = (Tr[R] − 2)/4, while
we consider initial states with 〈X�〉 = (0, 0) so that 〈x〉 =
〈p〉 = 0 ∀t . For a decoherence-free evolution, the covariance
matrix R fulfills det[R] = 1. Moreover, as the evolution pro-
duces only squeezing, it can be diagonalized at any time,
R̃ = VRV� yielding diag[R̃] = (e2|s|, e−2|s|), while the angle
θ follows from the eigenvectors of R in the phase space X.
That is, the eigenvector with eigenvalue e−2|s| is of the form
v� = x�

s = [sin(θ/2), cos(θ/2)].

In all the simulations presented in the main text, the deriva-
tives ∂ωR and ∂ωP have been computed numerically, setting
ε/ω ∼ 10−8, which ensured the convergence of the results.

The phase θ upon one cycle can be estimated as follows.
First, the phase gained during the evolution introduces a factor
eiβ , where β reads

β = −
∫ 2τ

0
dt

√
1 − g2(t ) = −2ωτ

∫ 1

0
dt̃

√
1 − g2(t̃ ),

(C1)

where g(t̃ ) is the protocol with a rescaled time t̃ = t/τ .
That is, the state at time 2τ can be written as |ψ (2τ )〉 =∑

n=0 cnei(n+1)β |n〉. In this manner, we can write β = ωτν

with ν = −2
∫ 1

0 dt̃
√

1 − g2(t̃ ). Then, the phase θ changes
linearly with ωτ , i.e.,

θ = νωτ + θ0, (C2)

where θ0 = π/2 since, for ωτ → 0, the evolution squeezes
the state in the x direction. For a linear ramp, we find ν =
−π/2, so that θ = −ωτπ/2 + π/2. For ωτ = 2n with n =
1, 2, . . ., one obtains θ = ±π/2. For subsequent cycles, the
choice ωτ = 2n leads to the desired phase-matching condition
θm+1 = θm.
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