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We theoretically predict a working principle for optical amplification, based on Weyl semimetals: When a
Weyl semimetal is suitably irradiated at two frequencies, electrons close to the Weyl points convert energy
between the frequencies through the mechanism of topological frequency conversion from [Martin et al.,
Phys. Rev. X 7, 041008 (2017)]. Each electron converts energy at a quantized rate given by an integer multiple
of Planck’s constant multiplied by the product of the two frequencies. In simulations, we show that optimal,
but feasible band structures, can support topological frequency conversion in the “THz gap” at intensities down
to 2 W/mm?; the gain from the effect can exceed the dissipative loss when the frequencies are larger than the
relaxation time of the system. Topological frequency conversion forms a paradigm for optical amplification,
which further extends Weyl semimetals’ promise for technological applications.
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Weyl semimetals are at the center of topological mate-
rials research thanks to their rich phenomenology [1-13]
and promising technological applications [14-16]. They
are characterized by topologically protected nodes in the
band structure near the Fermi surface that give rise to
(pseudo)spin-momentum locked low-energy excitations with
linear dispersion. Being surrounded by very high Berry cur-
vature, these nodal points, or Weyl points, lead to unusual
linear and nonlinear optical properties, which make Weyl
semimetals promising platforms for, e.g., photovoltaics and
high-harmonic generation [16-26].

In recent years, it was also appreciated that the interplay
between external driving and band topology can give rise
to a rich variety of exotic phenomena [27—46]. Particularly
relevant for our paper, bichromatic driving (i.e., simultaneous
driving at two distinct frequencies) has emerged as a versatile
tool for control of matter [47-51], that can even induce its own
unique topological phenomena [43,52-54]: Reference [52]
showed that a spin driven by two oscillating magnetic fields
with incommensurate frequencies f; and f> can enter a regime
where it transfers energy between the driving modes at an
average rate given by the universal “energy transfer quantum”
hfif>, where h denotes Planck’s constant [43,53,54]. This
effect was termed topological frequency conversion.

While the model from Ref. [52] has been experimentally
implemented and studied [55,56], actual observation of topo-
logical frequency conversion is still lacking. The reasons are
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twofold: First, in the magnetic realm, topological frequency
conversion in the desirable frequency regime of THz and
above requires extremely high amplitudes of the oscillating
magnetic field (of about 1 Tesla and above, corresponding to
radiation intensities of more than 240 MW/ mm?). Even then,
measurable—and especially useful—conversion rates would
require many spins acting synchronously.

In this paper we propose a Weyl semimetal as the medium
of choice for realizing topological frequency conversion at
high frequencies and with large conversion rates. For that we
consider a Weyl semimetal, subjected to incoming radiation
at two incommensurate frequencies, as depicted in Fig. 1(a).
Under appropriate driving, individual electrons near the Weyl
nodes act as an ensemble of topological frequency convert-
ers (as in Ref. [52]), with the (pseudo)spin of each electron
playing the role of the spin, and the vector potential potential
inside the material playing the role of the magnetic field (the
“transduction” being provided by the Fermi velocity of the
Weyl point). As a result, the system hosts an ensemble of
electrons that each convert energy from mode 2 to mode
1 at the quantized rate +Af) f, per electron; the number of
active frequency converters is controlled by the magnitude
of the vector potential. Importantly, topological frequency
conversion can be realized in Weyl semimetals at relatively
modest radiation intensities. This is because the effective spins
interact directly with the (strongly coupled) electric field of
the radiation rather the than the magnetic field. As another
benefit, Weyl semimetals host a macroscopic number of ac-
tive frequency converters, giving rise to very large conversion
rates. As a bulk response, topological frequency conversion is
unique to Weyl semimetals, and constitutes a fundamentally
new mechanism for optical amplification. The phenomenon
has novel features of intrinsic interest: first, it is a 2-wave
mixing effect that does not require an idler beam or phase
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FIG. 1. (a) Ilustration of main result: A Weyl semimetal ir-
radiated by distinct frequencies can transfer energy between the
modes through a novel mechanism known as topological frequency
conversion. (b) Gain coefficient in an inversion-symmetric Weyl
semimetal with a Fermi surface consisting of two Weyl points with
Fermi velocities 3.87 x 10° m/s, as a function of the Fermi energy
er. The “pump” and “signal” modes have frequencies 0.82 THz
and 1.23 THz and amplitudes 50kV/m and 100kV/m inside the
material, respectively. Near ¢ = 4meV, these values correspond
to radiation intensities of 0.5 W/mm?, and 2 W/mm?, respectively.
Blue, orange, and green data result from relaxation times 200,
400, and 600ps, respectively. (c) Energy transfer per unit vol-
ume, as a function of relaxation time t, for an isolated Weyl
node with Fermi velocity 3.87 x 10°m/s. Modes 1 and 2 have
amplitudes 900kV/m and 1800kV/m inside the material, respec-
tively. Mode 2 has frequency f, = 1.23THz, and mode 1 has
frequency f; = (v/3 — 1)f2/2, (blue), fi = 2f>/3 (green), and f; =
2f,/(3 4 0.0017) (orange). See Secs. VID and IV for further details
of the calculation used for panels (b) and (c), respectively.

matching. Secondly, it is in essence a nonperturbative effect,
beyond the regime of standard “x,” responses: In the ideal,
fully adiabatic, limit, we show that the rate of topological fre-
quency conversion is nonanalytic as a function of the driving
amplitude, and hence cannot be captured through a standard
Taylor expansion. Away from this limit (i.e., in the presence
of finite driving frequency and relaxation), the nonperturba-
tiveness persists in the form of a highly nonlinear amplitude
dependence.

The novel features above, along with the modest radi-
ation intensities required and the macroscopic number of
active frequency converters give Weyl semimetals a signifi-
cant potential for optical amplification. This is demonstrated
in Fig. 1(b): here we plot the gain coefficient (i.e., the ex-
ponential rate at which the intensity of the amplified mode
increases inside the material), obtained from simulations with
a somewhat optimized, but feasible band structure of a Weyl
semimetal. The material is irradiated at frequencies in the
“THz gap,” where new effective amplifiers are in high de-
mand, due to a lack of powerful coherent radiation sources.
Assuming sufficiently slow relaxation, our simulations indi-
cate gain coefficients of order 100cm~" can be achieved at
intensities of order 1 W/m?. This value is comparable with
current methods such quantum cascade lasers [57-61], which
report gain coefficients, 20—50cm ™' range [57,58]. We em-
phasize it may be possible to realize significantly larger gain

coefficients than O (100cm~!) in other parameter ranges;
e.g., with stronger intensities.

There still are challenges that need to be overcome before
optical amplification can become reality: Being a conduc-
tor, Weyl semimetal respond with plasma oscillations to
radiation, which renormalize the vector potential inside the
material. It is therefore necessary to drive the system above
its plasma frequency to allow the vector potential enter the
material. The plasma oscillations on the other hand provides
an opportunity: Driving the material close to resonance with
the plasma frequency amplifies the internal vector potential,
thus significantly enhancing the rate of energy conversion.
Indeed, we exploit this resonance effect to achieve the sim-
ulated gain coefficients of ~100 cm ™! for the data depicted in
Fig. 1(b).

Another, more serious, challenge is electronic relaxation
processes. These counteract the frequency conversion by
providing a channel for trivial energy dissipation—material
heating. For the parameters considered in Fig. 1(b), net energy
gain of the pumped mode becomes possible for a char-
acteristic relaxation time of order 300 picosecond at THz
frequencies. Such relaxation times are longer than the relax-
ation times that have been mostly reported experimentally
to date, which range from 0.25ps — 3 ps [62-65] to 40ps
[66]. The nature and timescales for scattering processes in
Weyl semimetals is an interesting subject on its own, which
is still being explored, however, some experiments report
signatures with much longer lifetimes [17,67,68] that can
even exceed 1000 ps [69]. In addition, experiments and the-
oretical studies indicate regimes dominated by nonstandard,
momentum-conserving channels of dissipation, resulting in
hydrodynamical behavior [70,71].

We speculate that slower relaxation rates can be
achieved, e.g., through improvement of materials quality and
bath/substrate engineering. As another example, we show that
dissipation is significantly reduced at commensurate frequen-
cies, without affecting the energy transfer from topological
frequency conversion [see Fig. 1(c)]. Excessive heating can
be countered through pulsed driving, by allowing the system
to dissipate away heat between the pulses. If sufficiently slow
relaxation can be reached through such or similar incremental
improvements, there is a potential for significant benefits in
the form of a new and powerful mechanism for optical ampli-
fication.

The rest of this paper is structured as follows: In Sec. I
we review the characteristic properties of Weyl semimet-
als, which forms the basis for our discussion. In Sec. II,
we present the mechanism for frequency conversion from a
single-particle perspective. Section III shows how topological
frequency conversion arises in a realistic many-body system,
taking into account the effects of finite frequency and dissipa-
tion. In Sec. IV, we support our conclusions with numerical
simulations. In Sec. V, we summarize the conditions that
a Weyl semimetal and driving modes must satisfy to allow
for topological frequency conversion. In Sec. VI, we incor-
porate the effects of plasmons on the single-grain frequency
converter, calculate the work in the context of Maxwell equa-
tions for the problem, and propose a practical implementation
of an amplifier based on this effect using a “phase array”
of Weyl grains. We conclude with a general discussion in
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FIG. 2. (a) Energy bands of the linearized Hamiltonian in Eq. (1) in the plane k, = 0, with & = 0, R;; = §;;3.87 x 10°m/s, and v =
(0,0,3.1 x 10°m/s). The red line shows an example of the Fermi surface (with Fermi energy —115meV) when projected into the same
plane. (b) Trajectory of eA(t)/h resulting from two modes with circular polarization in the xz and yz planes with amplitudes £ = 740kV/m,
& = 1000kV/m, and frequencies f, = 1 THz, f| = @ f> (blue). Also shown is the surface By (gray). See main text for further details.
(c) Cross section of B, for the same parameters as in (b). Within the red and blue subsurfaces W (k) takes value 1 and —1, respectively,
while W (k) = 0 outside the surface. (d) Trajectory of eA(r)/h for the same values of &, and f; as in (b), and with E; = 720kV/m, f; = % f
(resulting in a commensurate frequency ratio). The different value of &£ is chosen to ensure that the vector potential of mode 1 has the same
amplitude in panels (b) and (d), such that the topological phase boundary B, is the same for panels (b)—(d).

Sec. VII. Details of derivations are provided in the Appen-
dices.

I. REVIEW OF WEYL SEMIMETALS

We begin by reviewing the characteristic properties of
Weyl semimetals. This review forms the basis for our sub-
sequent discussion.

Weyl semimetals are 3-dimensional materials in which two
adjacent energy bands touch at isolated points in the Brillouin
zone [11,12], as depicted in Fig. 2(a). These band-touching
points are known as Weyl points. To understand Weyl points
better, we consider the Bloch Hamiltonian of the system
H (K) near one such Weyl point, which we (without loss of
generality) take to be located at wave vector k = 0. When
restricted to the subspace spanned by the two touching bands,
and linearized in k around k = 0, H (k) takes the following
characteristic form:

H(k) = e+ Y oiRyk; + 7Y Viki + O, (1)
i,j i

where oy, 0y, and o, denote the Pauli matrices acting on the
subspace spanned by the two touching bands in some given
basis, R is a real-valued symmetric full-rank 3 x 3 matrix,
while V = (V}, V,, V3) and ¢y is a real-valued velocity and
energy, respectively. Evidently, the two energy bands of H (k)
included above touch at the Weyl point (k = 0). When the
touching energy bands are plotted in the plane k; = 0 (for
i=x,y, or z), the bands form a characteristic “touching
cones” structure, as for example in Fig. 2(a). &9 determines
the location of the touching point on the energy axis, while
V determines the “tilt” of the cones. The eigenvectors and
spectrum of R determines the anisotropy (or “squeezing”) of

the band gap around the Weyl point.
Once it is present, a Weyl point is a very robust feature:
As long R remains full rank, any infinitesimal perturbation to

the system can only shift the location of the band-touching
point, but not eliminate it. This is straightforward to verify
through direct calculation. Hence, a smooth change of sys-
tem parameters can only cause Weyl points to continuously
move around in the Brillouin zone [72]. As a result of this
robustness, Weyl semimetals are a generic class of materials.
Indeed, many materials have recently been shown to be Weyl
semimetals [10-12,73-79].

Another novel feature of Weyl semimetals is the non-
trivial band topology associated with the eigenstates of
the Bloch Hamiltonian {|v,(k))}. These topological prop-
erties are captured by the Berry curvature R,(k) =
(2L (k), Q2 (k), Q2 (k)) where

3
QLK) =i Y € (Va0 Va(k)), 2

Jk=1

with ¢€;j; denoting the Levi-Civita tensor and 9; the partial
derivative with respect to the ith component of crystal wave
vector k; (we discuss the physical significance of the Berry
curvature below). Weyl points act as point sources for Berry
curvature: for two bands, 1 and 2, touching at an isolated
Weyl node at k = k;, the Berry curvature of the upper band,
2, satisfies

V- (k) = 27 sgn(|R|)é (k — k), 3

where | - | denotes the determinant, and V the nabla operator
in k space. The sign is reversed for the the lower band. The
relationship between Weyl points and Berry curvature is in
exact analogy to point charges and the electric field. In this
analogy, the index g = sgn|R| determines the “charge”, or
chirality, of the Weyl point [80]. The net charge of all Weyl
points that appear within a given gap is zero [1]; thus any gap
must hold an even number of Weyl points.
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For a system with many bands and multiple Weyl points,
Eq. (3) generalizes to

VR =271 ) gisiadk —Kp), )

where the sum runs over all Weyl points in the system, g;
denotes the chirality of Weyl point i, and s;, indicates how
the Weyl points of the system connect the bands: specifically
si« = 1if Weyl point i connects band « with the adjacent band
above, s;, = —1 if it connects band « with the band below,
and s; , = 0 if band « is not involved at Weyl point i.

Equation (4) can equivalently be expressed using the di-
vergence theorem: For a closed surface in the Brillouin zone
C, the total Berry flux of band «, fc d*S - R,(k) (which is
identical to the Chern number of band « when constricted to
the 2-dimensional closed surface C), is given by Zk,»ec qiSa.i
where the sum runs over all Weyl points contained within C.

Berry curvature acts as a magnetic field in reciprocal space:
An electron in band « with a relatively well-defined position
and wavevector, r and k, acquires a transverse velocity pro-
portional to £, (k) when subject to a weak external force [81],
k,

i, (k) = %Vkaa(m +k x 2 (k). 5

This second term above is known as anomalous velocity,
and can be seen as a canonically-conjugate analog to the
Lorentz force: whereas a magnetic field B generates a velocity
in reciprocal space perpendicular to the real-space velocity,
k= —#B x I (the Lorentz force), Berry curvature generates
a real-space velocity perpendicular to the reciprocal space
velocity, I = k x €, (the anomalous velocity); here e denotes
the elementary charge.

Equation (3) implies that the Berry curvature diverges near
Weyl points. Hence electrons with wavevectors near a Weyl
point experience a divergent anomalous velocity [82]. When
subject to an applied electric field E such that k = —eE/#,
Weyl semimetals can thus produce a large current response,
which may be nonlinear as a function of E. This significant
nonlinearity makes Weyl materials particularly attractive as
nonlinear optical media, with potential applications including
high-harmonic generation, frequency conversion, and photo-
voltaics [16,20].

In principle, any material with a band geometry that has
large local Berry curvature near the Fermi level is prone to
having strong nonlinear response; Weyl semimetals are just
a prominent example of those thanks to the divergent Berry
curvature near the Weyl points. However, this is not the full
story: The exotic band fopology of Weyl semimetals (i.e., the
nontrivial winding of the Berry curvature around Weyl points)
in itself gives rise to unique nonlinear response phenomena.
The effect we explore in this paper—topological frequency
conversion—is an example of such an inherently topological
response phenomenon.

II. FREQUENCY CONVERSION FROM
A SINGLE ELECTRON

Here we show how the nontrivial band topology of Weyl
semimetals allows electrons to act as topological frequency

converters [52,83]. We consider a Weyl semimetal irradiated
by two electromagnetic waves, or “modes”, with distinct prop-
agation angles and frequencies, and with elliptical or circular
polarization. Figure 1(a) depicts a concrete example in which
the two waves are circularly polarized in the xz and yz planes.
We let E; (¢) and E;(¢) denote the electric fields resulting from
mode 1 and 2, respectively, such that the net electric field
in the Weyl semimetal at time ¢ is given by E(r) = E;(¢) +
E, (7). We assume the wavelengths of the incoming waves to
be much longer than the relevant length scales we consider,
and hence take E;(¢) to be spatially uniform. The two modes
are oscillating with frequencies flA and f;, such that, for
i=1,2, Ei(t) =E;( + T;), where T; = 1/ f;. For simplicity,
we first consider the case where f; and f, are incommensu-
rate; we consider the case of commensurate frequencies in
Sec. ITA.

The coupling between the Weyl semimetal and the elec-
tromagnetic radiation is captured by the Peierls substitution
[84], which causes the driven system to be governed by the
time-dependent Bloch Hamiltonian

H(k,t) =H(k + eA(t)/h), 6)

where A(t) = — f(; ds E(s) denotes vector potential induced
by E(¢) [85]. In the following H (k) denotes the Hamiltonian
of the system in the absence of the driving, while H (K, t)
denotes the Hamiltonian in the presence of the driving.

It is useful to decompose the vector potential as A(r) =
A(t) + Ay (t), where 9,A;(t) = E;(¢). Since E;(¢) is gener-
ated by electromagnetic radiation, its time average vanishes;
hence A;(?) is also 7; periodic with respect to . Without loss
of generality we take both A;(¢z) and A,(z) to have time-
average zero [recall that constant shifts in A(HA correspond
to benign gauge transformations]. It is convenient to represent
the vector potentials A and A; as explicit functions of the
phases of the two modes, o and «; (rather than single time
variable). Specifically, a(¢;, ¢2) = A1(¢d1/w1) + Asx(d2/w2)
and o;(¢;) = A;(¢;/w;), where w; = 27 f; denotes the angular
frequency of mode i. We similarly let €(¢;, ¢,) and €;(¢;) de-
note the electric fields E and E; as functions of the individual
phases the two modes.

To reveal how topological frequency conversion emerges,
we consider the dynamics of a single electron in band «, in a
wavepacket with some relatively well-defined position r, and
wavevector k. The rate of energy transferred to mode 1 by the
wavepacket P, (k, t) is given by Ohm’s law [86],

Py(k, 1) = —eE (1) - T (k, 1), (N

where 1, (k, 1) denotes the velocity of the wavepacket in band
o at wavevector K, given the Hamiltonian H (K, t). When w,
and w, are small enough so that the time dependence of
H(k,t) is adiabatic [87], f,(k,?) is given by Eq. (5), with
the instantaneous reciprocal space velocity given by k(t) =
—eE(t)/h,

ro(k, 1) = %Vksa(k + eA(t)) — %E(t) x gy (K + eA(t)/h).
®)
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Our goal is to compute the time-averaged rate of energy
transfer into mode 1,

_ 1 [
P,(k) = lim ?/dsPa(k, 5). ©)
— 00 0

Here and throughout this paper, we use the - accent to indicate
time averaging, such that, for any function of time and, possi-
bly, other parameters f(, x), f(x) = lim, o 1 f(; dsf(s, x).
To compute P, (k), we express I, (K, ¢) as a direct function
of ¢ and ¢,: T (K, 1) = vo(K; wit, wot). Here v, (K; @1, ¢2)
is obtained from the expression for ¥, (K, ¢) in Eq. (8) after
replacing A(z) and E(¢) with a(¢;, ¢,) and €(¢;, ¢»), respec-
tively. Since we assume w; and w, to be incommensurate,
the time-averaged value of E;(¢) - ¥, (K, ¢) is identical to the
phase-averaged value of €;(¢;) - v (K; ¢1, ¢2). Hence,

2

Pok) = —= | deudere(d)) - Valkidr. dn).  (10)

47T2 0
Using the expression for v we described above, along with
€; = 27 f;04,0, we obtain

2 2T
PO = fif2% / d¢1des (3,0 x gyct) - Ru(k — ear/ ).
0

an
See Appendix A for detailed derivation. The integral above
has a direct geometrical interpretation: ;—qu&ldq)z (0,0 X
d4,0) gives the differential area element of the closed surface
defined by ea(¢1, ¢2)/F in reciprocal space,

By = {ea(¢1, 2)/1}, 0 < ¢1, 42 <27, 12)

The direction of the differential area element (94, e X d4,0)
defines the orientation of By. In Fig. 2(b) we depict By for
the case where modes 1 and 2 are circularly polarized in
the xz and yz planes respectively, and have electric field am-
plitudes & = 1000kV/m, & = 740kV/m, and frequencies

fo=1THz, fi = % f>. For incommensurate frequencies,
the trajectory of eA(?)/ fills out By completely at long times,
as also illustrated in Fig. 2(b).

With the above geometric interpretation, we find

Py (k) =f1fzh7§ K - R,k +K), (13)
By

where fBa d’k’ denotes the surface integral of k/ over the
surface By. From Sec. I we recall that this integral is quantized
as 27 times the net charge of Weyl points of band « enclosed
within the surface By after displacing it by k from the origin in
reciprocal space Qy[Kk] (here the enclosed charge is weighted
by the orientation of B, with respect to the volume in which
the Weyl point is enclosed),

Py (k) = hfi2Qak] (14)

where we used h = 2m /.

For an isolated Weyl point with charge +1 located atk = 0
in a two-band system, Q,[K] is given by the following for the
upper band (o = 2):

O2[k] = —W(k), s)

where the function W (k) is integer valued and denotes the
net winding number of By around k as a function of ¢; and

¢». In Fig. 2(c) we plot W (k) for the configuration of two
circularly polarized modes also considered in Fig. 2(b). The
sign is reversed for mode 2 [i.e., when replacing E; with E; in
Eq. (7)]. Hence the electron acts as a conversion medium that
transfers energy between mode 2 and 1.

For a system with multiple bands, Q,[k] =), W(k —
K;)gisi o, where the index s; , encodes how Weyl point i con-
nects the bands of the system (see Sec. I). We hence arrive at

Pu(k) = hfifs ) Wk —K)gisia- (16)

This constitutes one of our main results.

Equation (16) shows that each electron in the Weyl
semimetal transfers energy from mode 2 to mode 1 at a rate,
which is quantized, as an integer multiple of A f) f,. The value
of the integer depends on the location of the electron in the
Brillouin zone k. Specifically, the conversion rate P, (k) is
nonzero for electrons whose wavevectors k are located within
the surface By relative to a Weyl point. Thus, a nonzero con-
version power can be realized for electrons near Weyl points.

The energy conversion predicted in Eq. (16) can be seen
as a realization of the topological frequency conversion that
was discovered in Ref. [52]. Reference [52] showed that a
2-level system (such as a spin-1/2) initialized in its lower band
and adiabatically driven by two modes with frequencies f)
and f> can transfer energy between the modes at an average
rate quantized as A f; f,z, where z is an integer. Reference [52]
explained this conversion as an anomalous velocity along the
synthetic dimensions that correspond to the photon numbers
of the two modes. To understand the relationship between
our result and Ref. [52], note that for fixed k, H(k, t) is
a Hamiltonian of a 2-level system of the exact same form
as considered Ref. [52], with the pseudospin of the electron
playing the role of the physical spin in Ref. [52]. Indeed, the
arguments of Ref. [52] show that for the two-level system
described by H(k, t), z = W (k). In this way, each electron
in a Weyl semimetal can be seen as a topological frequency
converter from Ref. [52], with the quantized rate of conversion
controlled by its location in the Brillouin zone.

A. Commensurate frequencies

The discussion above for simplicity assumed the frequen-
cies fi and f, incommensurate. Here we consider the case
where the frequencies of the modes are commensurate such
that fi/f> = p/q for some integers p and ¢g. In this case,
E(¢) and A(¢) thus are time periodic with the extended period
Texe = pTh = qT>. This time periodicity significantly affects
the electron’s trajectory in the BZ (relative to its equilibrium
wavevector) eA(t)/h. For incommensurate frequencies, the
trajectory fills a closed surface, namely B, as illustrated in
Fig. 2(b). In contrast, commensurate frequencies causes the
trajectory to form a closed curve Cy, as in Fig. 2(d). The curve
Cy is still located on the surface 5.

For commensurate frequencies, the driving experienced
by the electron depends on the initial phase difference be-
tween the modes A¢; here nonzero A¢ corresponds to
a shift of the phase of mode 2 such that E(t) = E;(¢) +
E>(t + A¢/wy), resulting in E(t) = e(wit, wyt + A¢) and
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A(t) = a(wyt, wot + A¢). For incommensurate frequencies,
different values of A¢ are equivalent to shifts in the time
origin and hence do not affect the long-term dynamics of
the electron. In contrast, for commensurate frequencies, each
distinct value of A¢ results in a different closed trajectory of
A(1), Cy. The surface By is recovered by combining the curves
Cy for all possible values of A¢.

For commensurate frequencies, the quantization of P
breaks down. The breakdown of quantization arises be-
cause the trajectory of the modes’ phases (¢;(t), ¢2(¢)) =
(w1t, wyt + A¢) does not cover the whole 2d phase Brillouin
zone over time, ¢y, ¢, = [0, 27), thus invalidating the step
leading to Eq. (10). However, quantization is recovered when
averaging P over all possible values of A¢: for commensurate
frequencies, Eq. (10) remains valid for the average value of P
with respect to A¢. Thus, for commensurate frequencies it is
possible to enhance conversion rates relative to the quantized
value by tuning the phase difference to a value where the
conversion rate exceeds its average value. For uncontrolled
(random) phase differences, the conversion rate remains quan-
tized on average.

III. FREQUENCY CONVERSION
IN MANY-BODY SYSTEMS

Our next goal is to show how topological frequency conver-
sion emerges in a realistic Weyl semimetal where electrons are
affected by interactions, impurities, and phonons. We focus
on the rate of energy transfer to mode 1 per unit volume
for a Weyl semimetal driven by two modes n(t). If n(z) is
positive, there is a net flow of energy into mode 1, implying
amplification of this mode. This energy must originate from
mode 2. The conversion rate 7(¢) can be computed from the
current density j(z) using Ohms law,

n(t) = —Ei() - j@). a7

To obtain the current density j(z) we characterize the many-
body state of the Weyl semimetal in terms of the momentum
resolved density matrix,

p(k, 1) = Trok[pr(0)], (18)

where pp(t) denotes the full density matrix of the Weyl
semimetal at time ¢, which is subject to interactions, impu-
rities, and phonons, while Try[-] denotes the trace over all
possible occupations of electronic states with crystal momen-
tum other than k. p(k, ) is a matrix in the 2¢ dimensional
Fock space associated with the d orbitals (or bands) accessible
by the electrons at wavevector k [88] Below, the “hat” accent *
indicates operators that act on many-body orbital Fock states.
Operators without the accent, such as the Bloch Hamiltonian
from Secs. I and II, H(k, t), are single-particle operators.
p(Kk, 1) encodes the band occupancies alongside with inter-
band coherences and all multiparticle correlations of electrons
with the same wavevector k. The interband coherences are
crucial for capturing topological energy conversion, since they
give rise to the anomalous velocity in our formalism.

o(k, t) determines the current density in the system j(¢)
through

(9] ° / &’k Tr[p(k, 1) VicH (K, 1)] (19)
i L Ir ) ) )
! n) ey P k

where momentum integrals are taken over the full Brillouin
zone, and H (k, t) denotes the second-quantized Bloch Hamil-
tonian of the system,

Ak, 1) =" Hij(k 1)éj¢;, . (20)
ij

Here H;;(k,t) = (i|lH(k, t)|j), and |i) denotes the ith orbital
state in the standard Bloch space.

In the presence of driving p(k, ¢) approaches to a time-
dependent steady state. We obtain this steady state by solving
a master equation for p(k, ¢), in which the effects of inter-
actions, impurities, and disorder are included as a dissipative
term. The master equation and steady-state solution are sum-
marized in Sec. III A below. The calculation of the steady
state is straightforward, but involved, and is detailed in Ap-
pendix B. A key feature of the steady-state solution is that
the current response can be split into an energy-conserving
“adiabatic component” jy (), and a dissipative correction due
to nonadiabaticity and scattering 8j(¢),

J(@®) = jo(®) + 8j(®). 2y

This decomposition allows us to identify an energy-
conserving and dissipative component of n(z),

no(t) = —Ei(2) - jo®),  nais(t) = =K. (1) - 8j(). (22

The component jo(¢) is responsible for topological fre-
quency conversion, and we find that this term dominates in
the limit of adiabatic driving and slow relaxation. As a central
result, we find that

jo(?) = &’k o, (K)r, (K, ¢ 23
Jo()=—€/m2azpa( )ig (K, 1) (23)

with ro(k, 1) = %Vkso,(k +eA(t)) — FE() x 2, (k +
eA(t)/h) denoting the wavepacket velocity in band «;
P« (K) is the time-averaged occupation in the ath band of the
instantaneous Bloch Hamiltonian H (K, ¢).

In what follows, we first discuss the steady-state solution
of the density matrix (Sec. III A). We then compute the time-
averaged energy pumping resulting from the nondissipative
component of the current response 1. We finally consider
the dissipative component of 7, 14;s in Sec. III C. It is crucial
to estimate 174;5, since amplification is only achieved when 1
exceeds 7gis.

A. Steady-state solution

We now discuss how we obtain the steady state of p(k, 1).
Details of this discussion are provided in Appendix B.

For a clean and noninteracting system, p(k,7) evolves
according to the von Neumann equation, 9;p(k,t) =
—(i/R)[H(K, 1), p(k, 1)]. Interactions, phonons, and impu-
rities cause a dissipative correction to this equation. For
sufficiently weak dissipation, this correction can be derived
approximately from first principles and takes the form of
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a trace- and positivity-preserving linear operator acting on
ok, 1), D(k, t) [89]. Thus, p(k, ) is governed by the follow-
ing Lindblad-type quantum master equation

o p(k, 1)~ %l[lfl(k, 0, pk, )]+ Dk, 1) o p(k,1). (24)

In Appendix B, we obtain a solution to Eq. (24). The
solution p(k, ) is accurate as long as the driving is adiabatic
with respect to the energy gap of H(k, t), 8¢, and much faster
than the the magnitude of the dissipator D [90],

IDK, )| € w1, wy K e 25)
We term this limit, as the coherent adiabatic regime.

When the above conditions are satisfied, we find the
steady-state value of p(k,t) is diagonal in the eigenbasis
of the Hamiltonian H (k, t), up to minor nonadiabatic cor-
rections. The corresponding eigenvalues [which determine
the the occupations of the instantaneous bands of Hk, )]
are nearly stationary, except for minor fluctuations of order
ID||/O(wy, wz). These fluctuations, along with the sublead-
ing (second-order) nonadiabatic corrections to p(k,?) give
rise to the dissipative current 8 j(¢). The term jo(¢) results from
just keeping the (dominating) time-independent component of
the eigenvalues of p(k, ) and including leading-order nona-
diabatic correction to its eigenbasis. Here the leading-order
nonadiabatic correction to the eigenbasis is responsible for the
anomalous velocity, which enters in jo(¢).

Our solution to Eq. (24) applies to any dissipator D,
and this dissipator can be derived from first principles [89].
However, for illustrative purposes, we now demonstrate our
solution for the concrete example where D takes a partic-
ular phenomenological form: the “Boltzmann” form. In this
approximation, the dissipator uniformly relaxes electrons to-
wards their instantaneous equilibrium state at some given
ambient temperature 1/8 and chemical potential p, and with
some rate 1/7,

1
Dg(k,t)op = _;[Ib—;@eq(k’t)]' (26)

Here peq (K, 1) is the instantaneous equilibrium state described
above, and is given by e~# (A (.)=puh) /T (= BIHKD—pily \yhere
A=);¢/¢;. We also use this dissipator in our numerical
simulations (see Sec. IV).

The Boltzmann-form dissipator [Eq. (26)] leads to the fol-
lowing steady-state density matrix:

1 t
Po(k) ~ lim ;/ ds fplea(k, 1) — pl. 27)
t—00 0

where fg(E) denotes the Fermi-Dirac distribution at tem-
perature 1/B8. This result (see also Appendix B) indicates a
steady-state occupation, which is the average band population
on the trajectory k + eA(t)/h, as if the equilibrium distribu-
tion is “smeared” over a characteristic wavevector scale eA/7,
where A is the drive vector potential magnitude. This smearing
is confirmed in our numerical simulations (see Sec. IV and
Fig. 4 in particular).

B. Nondissipative frequency conversion

We first compute the average rate of energy transfer in
the limit of adiabatic driving and zero dissipation. That is,
we compute the the time-average of the component 1y (t), 7o.
We find that 5y(¢) can have nonzero time average because of
the mechanism of topological frequency conversion that we
discovered in the last section.

To compute 7y we first note ny can be written

&’k _
mit) = Y [ SRk, (28)

where Py, (k, 1) = eE(t) - 1o (K, t) [see also Eq. (7)]. We find
the time average of the above using the main result from
Sec. IHB, Pa(k) = —hf1f2 Zi W(k — ki)q,‘S,‘,a [Eq (16)]
Here ¢;, si«, and k; denote the charge, band connectivity,
and wave vector of Weyl point i in the system, respectively,
while W (k) measures the net winding of the surface B, around
wavevector k (see Sec. III C for further details). with this,
Eq. (28) becomes

i, d’k i,
o= —hfifa Z /W%Si,ap(x(k)w(k —k). (29

Thus, each Weyl point is surrounded by a region of reciprocal
space [namely the region where W (k — k;) # 0], in which
electrons act as topological frequency converters. In this re-
gion, each transfers energy to mode 1 at the quantized rate
+hf) f>. This is a many-electron generalization of Eq. (16) and
constitutes another main results of this paper. In the following
we thus refer to 7 as the topological frequency conversion
rate of the system, to distinguish it from the dissipation rate,
which is given by the time average of 7g;s(?).

While the conversion rate from each electron is quantized,
the net number of electrons with nonzero conversion rate is
not fixed, but depends on the amplitude and configuration of
the driving field [through the function W (k)] and the steady-
state distribution surrounding each Weyl point p, (k). This
steady-state distribution is in turn controlled by the band struc-
ture of the system, as well as the configuration and intensity
of the external driving.

To explore how the band structure and driving configura-
tion controls the conversion rate, we first estimate the “gross”
rate of topological frequency conversion from a Weyl point
(i.e., not taking into account cancellation between electrons
that transfer energy at opposite rates). Note that W (k) is
positive within volume of order ~%3A]A2(Al + A,) in re-
ciprocal space, with A; = E;/w; denoting the vector potential
amplitude of mode i. This volume corresponds to an electronic
density of N%AIAZ(Al + A) for each Weyl point. Since
each electron contributes i f; f> t0 %o, fgross 18 Of order

&SEE, <E1 N E2> 30)
8r4h? \w w )

As an example, for w; ~ 27 THz and E; ~ 1500kV/m. The
above estimate yields 7go5s ~ 500 kW /mm?.

The actual, net, topological conversion power 7j is signif-
icantly smaller than the gross rate we estimated above, due
to cancellation between electrons that convert energy at rates
hfif> and —hf f,. Specifically, when modes 1 and 2 only

Ngross

043060-7



NATHAN, MARTIN, AND REFAEL

PHYSICAL REVIEW RESEARCH 4, 043060 (2022)

contain a single harmonic each, the driving induced vector
potential satisfies A;(t) = —A;(t + T;/2), implying W (k) =
—W (—Kk) [91] [this symmetry is clearly evident in Fig. 2(c)].
Hence the regions of reciprocal space characterized by con-
version rates hf)f, and —hf) f, have equal net volumes. In
realistic situations, both volumes will be occupied by elec-
trons, implying 7jo < Ngross. HOWever, because ngrss can be
quite large, even a small imbalance in the filling of the two
regions can lead to significant net frequency conversion.

To achieve a nonzero 7, the steady-state occupation of
the bands p, (k) must be anisotropic around the Weyl point
to counteract the antisymmetry W (k) = —W(—k). Such an
anisotropy is generally achieved when the “Weyl cone tilt” V
is nonzero, since we expect the steady state inherits the same
symmetry properties as the equilibrium state [see Eq. (1)].
Additionally, the Weyl point must be within a distance of
order ~eA;/h from the Fermi surface to ensure that p, (k)
does not take constant value (1 or 0) within B,. Indeed, our
numerical simulations demonstrate that nonzero 7, can arise
when V # 0 and the Fermi surface lies close to the Weyl point.

Topological frequency conversion is in essence a nonper-
turbative effect: it is controlled by the overlap of the quantized
(i.e., nonanalytic) function W (k) with the steady-state dis-
tribution. Hence topological frequency conversion does not
have a simple power-law dependence on A in the limit of
small A, and is therefore beyond standard nonlinear response
theory. In Sec. IV [Fig. 6(b)] we provide data from numeri-
cal simulations indicating this highly nonlinear nature of the
phenomenon.

C. Dissipative energy loss

For topological frequency conversion to cause a net am-
plification of mode 1, 7y must exceed the rate of energy loss
due to dissipation ng;s. It is therefore crucial to estimate this
dissipation rate. This is the goal of this subsection.

Our solution of the master equation in Appendix B shows
that the dissipative current response §j(¢) [see Eq. (21)], con-
tains two components,

8j(t) = 8jmr (1) + 8jna (1), €29

which we interpret as arising from momentum-relaxation
(8jmr) and nonadiabaticity-induced particle-hole pair creation
(8jna); see discussion below. Consequently, ngis(f) can also be
separated into these two components,

Ndis(#) = Ne(?) + Nna(2). (32)

where 1y (1) = E{(f) - jme(¢), and 1y, is defined likewise.

While nn,, and n,, are given in Appendix B, here we
discuss their origin and estimate their magnitudes based on
a phenomenological discussion.

Energy loss due to momentum relaxation 7y, arises when
perturbed electrons in the close vicinity the Fermi surface re-
lax due to their displacement from instantaneous equilibrium,
as schematically indicated in Fig. 3(a). In contrast, 1,,(¢)
arises from the particle-hole pair creation that results because
the driving-induced electric field inevitably overpowers the
gap sufficiently close to Weyl points. Equivalently, n,, arises
because effective gap closing of H(k, ) near a Weyl point
gives rise to Landau-Zener tunneling from the conduction

FIG. 3. Schematic illustration of the two distinct dissipation
mechanisms in a driven Weyl semimetal. (a) Momentum relaxation:
As electrons are adiabatically translated in the Brillouin zone by
the driving-induced electric field (black arrows), electrons shifted to
higher energies (black dots) can relax by decaying to vacant states
that have become available at lower energies within the same band
(white dots), causing net dissipation of energy. This mechanism can
occur for all wavevectors near the Fermi surface, where driving
increases the energy of electrons beyond the energies of vacant states
elsewhere in the same band. (b) Nonadiabatic heating. Electrons that
are taken through or near a Weyl node by the driving-induced electric
field can undergo complete or partial Landau-Zener tunneling from
the valence to the conduction band. This results in dissipation when
the excited electrons in the conduction band relax back into vacant
states in the valence band.

to the valence band upon driving. These excited electrons
dissipate energy as they relax back to the conduction band,
as schematically illustrated in Fig. 3(b).

Below we estimate 1y, and n,, based on phenomenological
arguments. For simplicity, we consider system with two bands
and an isolated Weyl point at k = 0 (which is easily general-
ized to multiple Weyl points). Moreover, we do not distinguish
between the characteristic relaxation rates associated with
momentum relaxation and particle-hole pair creation (which
may be different in real materials), but use

I ~ Dk, 1) (33)

as an estimate for both characteristic relaxation rates.

1. Momentum relaxation

We first estimate the rate of energy loss arising from mo-
mentum relaxation ny, (). For convenience, in the following
we let A = E/Q denote the characteristic magnitude of the
driving-induced vector potential, E the characteristic magni-
tude of E(¢), and 2 the characteristic scale of w; and w,.

Effects of momentum relaxation can only emerge within a
distance ~eA/h from the Fermi surface, where electronic oc-
cupation fluctuates. Therefore, only a density of eSgA /(27 )i
contributes to §jun (), where Sg is the area of the Fermi
surface. Electrons near the Fermi surface on average gain
an energy of order eAvp/2h due to the driving (with v the
characteristic Fermi velocity). Assuming their relaxation rate

is of order I', the average rate of energy loss in the system
. . . 2A28 v

due to momentum relaxation thus is given by %. We

estimate that half of this comes from mode 1. This estimate

agrees well with our predictions based on the definition of
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8jmr(¢) in Appendix B. Using that A ~ E /<2, we find
FezE ZSF Ur
16m3AQ2

It is interesting to note that nn, is proportional to the
size of the Fermi surface Sg. Therefore type-I Weyl points
are more suitable for frequency conversion than type-II Weyl
semimetals, since the surrounding Fermi surface forms a com-
pact ellipsoid for the former case, in contrast to an extended
hyperboloid in the latter.

As an example, we estimate 7, for the same parameters
we used to estimate 7gs in Sec. IIIB, i.e., E ~ 1500kV /m,
vE~5x 100 m/s, 2 = 2x THz. For an ellipsoid Fermi
surface with principal semi axes (1.5, 1.5,2.4)eA/h (yield-
ing Sg A~ 0.0672), our estimate then results in 7y ~ 5 X
1073 J/mm?z, where T = 1/T. Note that our estimated value
of 1y, is proportional to the Fermi surface area and thus can be
easily adjusted to other values of this quantity. Recalling that
Ngross ~ SO0 KW/ mm? for the same parameters, we expect net
frequency conversion to only exceed momentum relaxation
when 7 >> 100 ps. This expectation is confirmed in our nu-
merical simulations [see Fig. 1(b)].

Nmr ™~ (34)

2. Nonadiabatic heating

Nonadiabatic heating arises from electrons at k points
where the time dependence of H(K,t) = H(k + ¢A(t)/h)
overwhelms the band gap. In Weyl semimetals, such k points
inevitably exist (even for arbitrarily slow driving), because the
band gap of H (k) closes at Weyl points. For each such k point,
the band gap of H(Kk, t) effectively closes at certain times ¢,
namely when k 4 eA(t)/h is sufficiently close to the Weyl
point at k = 0 (see below for more detailed conditions). At
each such gap-closing event, electrons at wavevector k will
undergo partial or complete Landau-Zener transition from the
conduction to the valence band. This mechanism effectively
heats the electrons and eventually results in dissipation once
the excited electrons relax. The dissipation induced by the
mechanism above is captured by 7, (7).

To estimate n,, we first identify the set of k points for
which the time dependence of H(k,t) is nonadiabatic; we
term this region of reciprocal space as the “nonadiabatic” re-
gion and denote it by V,,. The Landau-Zener formula [92,93]
states that time dependence of H (K, t) is nonadiabatic if, for
some £,

Rl0H (K + eA@) Z 86> (k + eA®)/h,  (35)

where de(k) = (k) — £1(k), and &,(K) denotes the «ath
energy band of H (k). Using the linearized form of H (k)
in Eq. (1), a straightforward derivation (see Appendix C)
shows that this condition is satisfied at k points for which
min, |k + eA(t)/h| < dy where

[eE|R]|
dy = , 36
o 2 (36)

while ||R|| and vy denotes the largest and smallest eigenvalue
of the velocity matrix R, respectively [see Eq. (1)] [94]. For
incommensurate frequencies, Vy, thus consists of all k points
within a distance dj from the topological phase boundary B
by our estimate. For commensurate frequencies V,, consists

all k points within a distance dy from Cy, which forms a closed
curve on By, as in Fig. 2(d).

Electrons with wave vectors k within },, encounter a
vanishing gap of H(k,t) at times ¢ where |k + eA(r)/h] <
dy. These electrons then undergo Landau-Zener tunneling,
which effectively heats them to a high-temperature state, as
explained in the beginning of this subsection. These high-
temperature electrons then relax back to equilibrium after a
characteristic time 1/T". n,,(¢) is then the rate of energy loss,
or heating, (per unit volume) arising from this relaxation. We
estimate

Nna ~ Agnahna'/2, 37

where n,, is the concentration of excited electrons within V,,,
and Aegy, denotes the characteristic average value of de(k +
eA(t)) for k within V,,. Here the factor of 2 comes because
we estimate that the other half of the dissipated energy comes
from mode 2.

We obtain Agp, using that V), is located a distance ~eA/h
from the Weyl node, such that Ag,, ~ eA||R||, and ||R]| is the
largest velocity implied by the velocity tensor R. Using A ~
E /<2, we obtain

Agny S eE|IR|l/S2. (38)

To estimate n,,, it is crucial to know the characteristic time
interval between successive gap-closing events experienced
by electrons with a given wavevector within V,,, At. To build
intuition, let us first consider what happens when At > 1/T,
i.e., when electrons have time to fully relax between succes-
sive gap-closing events [95]. Electrons at wavevector k are
taken to a high-temperature state whenever k comes within a
sphere of radius ~dy from eA(t)/h. Electrons are in equilib-
rium as they “enter” the sphere (due to our assumption Az >
1/T"), and we estimate that half of them are excited to the con-
duction band as they “leave” the sphere. The concentration of
electrons per unit time that are heated by this process is hence
given by the cross-section of this sphere times %e|8,A| /h.
Therefore, we expect the concentration of electrons heated per
unit time to be given by ed?|d,A(r)|/16*h. Assuming the
electrons relax with characteristic rate I', we estimate n,, as
the fixed point of 9,n,, = endg|3,A(t)|/l6n2h — I'ny,. Using
A = E, we thus find nn, ~ ed3E /167?hT.

Next, we consider the case where At < 1/T. In this case,
a significant fraction of electrons are already in a high-
temperature state when they experience a gap-closing event
[i.e., when they “enter” the sphere with radius dyp centered
at eA(t)/h]. Assuming that the gap-closing event effectively
randomizes the state of the electrons (i.e., the electrons are in
a infinite-temperature state right after “leaving” the sphere,
regardless of their initial state), a subsequent gap-closing
event only reheats a reduced number of electrons to a high-
temperature state. We estimate the fraction of pre-excited
electrons to be of order 0.5 ¢~ right before the gap closing
and 0.5 right after; thus the heating rate is reduced by a factor
O(1 — e~ 2", resulting in

ed&E

ma — e TAn), (39)

Nna
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Combining this result with Egs. (36)—(38), we obtain

CE’|R|?

—I'A
e ) (40)

na

Below we estimate Ar (i.e., the characteristic time between
gap closing events) for the two cases incommensurate and
commensurate frequencies; as we find these two situations
lead to significantly different A¢, and hence also different
values of 7p,.

Evidently, the bound above is controlled by the ratio be-
tween the largest and smallest eigenvalues of the matrix R,
IIR||/vo. As we argued in Sec. I, this number quantifies the
anisotropy of the band gap around the Weyl point.

Note that the first factor in Eq. (40) is larger than the
gross rate of topological frequency conversion in Eq. (30) (this
follows from ||R|| /vy > 1, and 7% > 8). Thus, At needs to be
much shorter than I'~! for nonadiabatic heating not to over-
whelm the net rate of topological frequency conversion. In
particular, since At is at least 27 /2, we expect I < €2 to be
a necessary condition for topological frequency conversion.

To illustrate the above result, we estimate 1,, for the same
parameters as gave us the estimates 7gross = 500 kW /mm?
and 79y ~ 100kW/mm3, namely, E ~ 1500kV/m, Q =
27 THz, |R|| ~ vo ~ 5 x 10° m/s [see text below Egs. (30)
and (34)]. With these parameters Eq. (40) yields 1y, ~
650 kW /mm?>(1 — e~T4"). In the case of fast relaxation I, 9,
is clearly the dominant heating mechanism.

3. Nonadiabatic heating at incommensurate frequencies

For incommensurate frequencies, we estimate At as the
time window over which trajectory of eA(t)/h has length
|By|/dy, where |By| denotes the area of the surface on which
eA(t)/h is confined to at all times, By = {ea(¢;, ¢2), 0 <
¢; < 2m} [see Sec. II and Fig. 2(b)]. Since 9,A(t) = E(¢),
the trajectory of eA(r)/h over the time window Af has
length eE At/h. Estimating |By| ~ 4w2e?A?/h* and using

dy =, /eE||R||/hv§ along with A ~ E /2, we hence obtain

472 |eEv?

~ = AR for irrational w;/w;. “41)

For the parameters we used to estimate 7n,, above [E ~
1500kV/m, vg ~ 5 x 10°m/s, and © = 27 THz] this es-
timate yields At ~ 30ps. To achieve topological frequency
conversion at incommensurate frequencies with these parame-
ters, the characteristic relaxation time 7 = ['~! must be much
longer than this timescale. In this limit (i.e., T > At), we find
Nna ~ 5 x 1078 kJ/mm37:, which is smaller than 7gss When
7 2 100 ps.

D. Lissajous Conversion

We now consider the case of commensurate frequencies,
which can give a marked reduction of the nonadiabatic losses.
Equation (40) shows that small time intervals between
subsequent gap-closing events Ar leads to suppression of
nonadiabatic heating 7,,. An important consequence of this is
that n,, is strongly suppressed for commensurate frequencies,

i.e., when

filfa=aq/p (42)

for some integers p and g (which we, without loss of gener-
ality, take to have no common divisor). In this case, eA(t)/h
forms a 3-dimensional Lissajous figure in reciprocal space, as
in Fig. 2(d), and is time periodic with period g7} = pT,. Thus,
a given k point within V,, experiences gap-closing events with
periodicity [96]

At = qT = pT,. 43)

As a consequence, 7, is strongly suppressed for highly ratio-
nal frequency ratios, i.e., when p and ¢ are small.

The suppression of 1,, means that net amplification from
topological frequency conversion is significantly enhanced
at highly commensurate frequencies. We term this mecha-
nism of topological frequency conversion at commensurate
frequencies Lissajous conversion. The dramatic suppression
of nonadiabatic heating results in an enhanced net frequency
conversion rate in the Lissajous conversion regime, as is evi-
dent in our numerical simulations [see Fig. 1(b), and Sec. IV].

As an example, we consider Lissajous conversion at fre-
quencies w; =27 THz w, = %a)l. These parameters result
in At ~ 3ps. To compare, recall that Ar was estimated to
30ps in the same frequency range. Using Eq. (37), we es-
timate the nonadiabatic heating rate to be given by 7y, ~
35x 107° kl/ mm37, which we expect can be smaller than
Neross When 7 >> 10 ps. In contrast, recall that our estimated
nonadiabatic heating rate at incommensurate frequencies in
the same frequency range is given by 5 x 1078 kJ/mm?z, and
thus more than 10 times larger.

In the limit of large p, g, we expect that our estimate for
At saturates at the expression we obtain for incommensurate
frequencies.

IV. NUMERICAL SIMULATIONS OF
FREQUENCY CONVERSION

We now support our theoretical predictions by data from
numerical simulations.

In our simulations, we consider the dynamics of electrons
near a single Weyl node in a Weyl semimetal with 2 bands.
The electrons are subject to the linearized Bloch Hamiltonian

H() = hvk -0 + ik - V. (44)

We also introduce two electromagnetic modes that are
circularly-polarized that propagate in the yz and xz planes,
respectively. For i = 1, 2, mode i has angular frequency w;
and electric field amplitude & inside the material. It thus
induces the time-dependent electric field E;(¢), where

E((t) = & (coswt, 0, sin wt), 45)

E>(t) = &(0, cos wat, sin wyt). (46)

The irradiated electrons are governed by the time-dependent
Bloch Hamiltonian H (K, t) = H(k + eA(t)/h), where A(t)
denotes the driving-induced vector potential and is defined
through 0,A(t) = E (t) + E(¢) (see also Sec. II). As in the
previous sections, we work in a gauge where A(¢) has vanish-
ing time average.
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We numerically obtain the evolution of the momentum-
resolved density matrix of the system p(k,7) (see Sec. III
for definition), using the master equation in Eq. (24). We
take the dissipator D to be given by the Boltzmann form
[Eq. 26)): Dk, 1) 0 p = —L[p — peg(k. 1)]. Here peg(k. 1)
denotes the instantaneous equilibrium state of electrons with
crystal momentum Kk at time ¢ at some given temperature 7'
and chemical potential u [see text below Eq. (26) for ex-
plicit definition]. Since Eq. (24) describes evolution in the
4-dimensional second-quantized Bloch space of the system,
its numerical solution is relatively inexpensive.

For each k, we numerically solve Eq. (24) to obtain the
steady-state evolution of p(k, ¢). From this steady state we
extract the quantity

P(k) = lim 1 / ds%El(s)-Tr[VI-?(k, P&k, ). @7

t—o00 t 0

P(k) gives the time-averaged fotal rate of energy transfer to
mode 1 from electrons with wavevector k. The total time-
averaged rate of energy transferred to mode 1 per unit volume
of the whole system 7 is obtained by integrating P(k) over all

wavevectors,
= f Ik P(k) (43)
"= ey

In our simulation, we evaluate the k integral above by sam-
pling P(k) over a large number of uniformly distributed values
of k [97].

We solve the master equation for p(k,¢) through direct
integration, not making use of any of the approximations
of Sec. IIIC. In particular, our simulation does not distin-
guish between coherent and incoherent dynamics, and our
obtained value for 7 thus includes both contributions both
from topological frequency conversion and dissipation. Hence
our simulation can be used to test the conclusions in Sec. III.

We probe different values of f; and t, while keeping
all other parameters fixed at values f, = 1.23THz, v =
3.87 x 10°m/s, V=(0,0,3.1 x 10°m/s), u = 115meV,
T =20K, & =09MV/m, and & = 1800kV/m. Our cho-
sen values of v and V have magnitudes comparable to those
in real materials [98,99]. The values of u and V are chosen
to maximize the imbalance between the number of electrons
acting as frequency converters at rates if; f> and —hfi f>, as
discussed in Sec. III B (see also Sec. IV B below).

A. Identification of amplification regime

In Sec. III, we showed that the time-averaged rate of energy
transfer to mode 1 can be decomposed as ) = 7o + 7ais- Here
Mo can be positive due to topological frequency conversion,
while 745 1 negative and measures the time-averaged rate of
energy dissipated from mode 1 due to heating in the system.
We expect |7qis| to decrease with increasing relaxation time
7, while 7jo remains constant. Thus, 7 should increase with 7.
There should also exist a critical value of T for which 1 = 0.
When t is larger than this “amplification threshold”, the sys-
tem will amplify mode 1 (77 > 0). We expect the amplification
threshold to be significantly lower in the Lissajous conversion
regime (i.e., at rational frequency ratios) than for irrational

frequency ratios due to the suppression of nonadiabatic heat-
ing in the former case (see Sec. IV C below).

To identify the amplification threshold for the system, we
computed 7 as a function of t for three representative choices
of f1/f>; namely, irrational f; = % f>, rational f| = % f>, and

nearly-rational f; = ﬁ f>, where ¢ is given by the “golden

mean”, %(1 ++/5), and € = 7/1000. We keep all other pa-
rameters fixed at the values we specified earlier. The two
latter values of fi are chosen to demonstrate the mechanism
of Lissajous conversion: Whereas f; = % f> is commensurate

with f>, f1 = ﬁ f> is not, and hence the former value of f; is
expected to yield more efficient—Lissajous—conversion.

In Fig. 1(c) we plot 7 as a function of t for the three values
of f| above. As we expect, 7 increases as a function of 7 for all
choices of f1, and attains positive value for sufficiently large 7.
For the irrational frequency ratio f; = f>/¢, the amplification
threshold is reached at T =~ 1000 ps, for f; =2f,/3 at t =
300 ps and for f1 = 2f,/(3 + €) above T = 1200 ps.

Note that the weak detuning of f; from 2f,/3 (green
curve) to 21, /(3 + €) (orange curve) reduces 7; by more than
100kW/mm?, and pushes the amplification threshold from
300 to 1200 ps. This demonstrates the strong dependence of
the net conversion rate on the commensurability of f; and f,
that we discussed in Sec. III D.

B. Origin of energy conversion

Next, we confirm that the amplification of mode 1 (i.e, the
positive values of 7 > 0) we observed is due to topological
frequency conversion. To this end, we compute P(k) as a
function of k around the Weyl point.

We first review the signatures of topological frequency
conversion we expect to see. For k points where H(K, 1)
changes adiabatically in time, electrons should act as topolog-
ical frequency converters (as in Ref. [52]) that transfer energy
to mode 1 at an average rate quantized as A f; /oW (k), where
the W (k) denotes the integer-valued net winding number of
the surface By around k [see Fig. 2(c)]. Here + and — result
from electrons in band 1 and 2, respectively. We hence expect

P(k) = hfi LW (K)[p1(K) — p2(K)] + Puis(K), (49)

where p, (k) denotes the time-averaged occupancy of band
o, and Pgis(k) denotes the rate of energy loss from mode 1
due to dissipation. We expect the latter is always negative, but
only significant around the Fermi surface (due to momentum
relaxation), and within the nonadiabatic region (due to nona-
diabatic heating).

In Fig. 4(a) we plot W(K) in the plane k, =0, for f; =
f>/¢ and with all other parameters specified below Eq. (48).
We also indicate the Fermi surface (dashed line) and schemat-
ically indicate the nonadiabatic region (shaded region), which
surrounds the topological phase boundary (solid line). Since
w > 0, band 1 is fully occupied in equilibrium. We therefore
expect pi(k) =~ 1 [see Eq. (27)] for all k away from the nona-
diabatic region (where Landau-Zener tunneling can induce
holes). We hence expect topological frequency conversion
causes P(k) to approximately take value hfi fo[1 — pa(Kk)]
within the red region of Fig. 4(a), value —hf; f>[1 — p2(K)]
in the blue region, and value 0 in the white region.
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FIG. 4. Energy conversion in the model we study in Sec. IV.
(a) Plot of W(k) in the plane k, =0, with red, blue, and white
indicating values —1, 1, and 0, respectively. Black circle indicates
B, and shaded region schematically indicates the nonadiabatic region
Vha- Orange circle and dashed line indicate the location of the Weyl
point and equilibrium Fermi surface. (b) Net rate of energy transfer to
mode 1 from electrons with a given wavevector k, P(k), as a function
of k in the plane k, = 0, for same parameters as in Fig. 4(a). (c) Oc-
cupation number in equilibrium of electronic modes with wavevector
k, as a function of k in the plane k, = 0, for the same system as
in panels (a) and (b). (d) Net time-averaged occupation number of
electronic modes with wavevector k, (7i(k)) as a function of k in the
plane k, = O for the system depicted in panel (a)—(c).

In Fig. 4(b), we plot P(K) in the plane k, = 0 in for param-
eters fi = fo/¢ and T = 51.6 ps [100]. The data shows clear
signatures of topological frequency conversion, in the form
of two “topological plateaux” of the Brillouin zone where
P(k) takes positive and negative values, respectively. These
plateaus coincide closely with the regions in Fig. 4(a) where
W (k) = £1. P(k) approximately takes value A f| f> within the
red plateau (away from the Weyl point), and value between 0
and —hf) f> within the blue plateau (close to the Weyl point).

We expect P(k) differs from £Af|f> in the topological
plateaux due to the finite value of p,(k) — p; (k). To confirm
this, we computed the time-averaged number of electrons
per k point, (i(k)) = lim,_, % fé ds Tr[Ap (K, s)], where i =
6161 + 6‘;@2. Our expectation that p;(k) ~ 1 implies that 2 —
(n(k)) should be a good proxy for [p>(k) — p; (k)] away from
the nonadiabatic region. In Fig. 4(d) we plot (7i(k)). Taken in
combination with Figs. 4(a) and 4(b), our data are thus con-
sistent with P(k) taking value £Af; f>[p2(k) — p1(K)] within
the topological plateaux.

In addition to topological frequency conversion, the data
in Fig. 4(b) also shows clear signatures of the two distinct
mechanisms for dissipation that we identified in Sec. IIIC,
i.e., momentum relaxation and nonadiabatic heating: P(k)
takes large negative values within the nonadiabatic region, as
we expect from nonadiabatic heating, and moderate negative
values around the Fermi surface, as we expect from momen-
tum relaxation.

k, [nm~!] Py
@ ® Wit
0 ) e . ° 0
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0 o o
-1} | | '¢ 0
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FIG. 5. Evidence of Lissajous conversion. [(a),(b)] Plot of P(k)
in the plane k, = O for parameters T = 516ps, fi =2f,/(3 + €) (a),
and f; =2£/3 (b). [(c),(d)] Total dissipation rate P (k) for the
same parameters as depicted in panels (a) and (b), respectively. Note
the different color scales used in panels [(a),(b)] and [(c),(d)].

Note also that the data in Fig. 4(d) are in good agree-
ment with our prediction that in the regime t > 1/€2, the
steady-state band populations are effectively “smeared” ver-
sions of their equilibrium counterparts [see Eq. (27)]: The
distribution in Fig. 4(d) clearly resembles a “smeared” version
of the ellipsoid-profile that occurs in equilibrium [plotted in
Fig. 4(c)].

Finally, the data in Figs. 4(c) and 4(d) demonstrate how
a nonzero value of the “Weyl cone tilt” V is needed to
nonzero net rate of topological frequency conversion 7, as
we discussed in Sec. III B. The nonzero value of V, which
causes an ellipsoid profile of (7i(k)) in equilibrium [Fig. 4(c)],
results in a “smeared ellipsoid” profile of (7i(k)) in the steady
state. As a result of this smeared ellipsoid profile, the region
characterized by W (k) =1 has a larger volume in which
[p2(k) — p1(K)] > 0 ({7i(k)) < 2) than than the volume where
W (k) = —1, allowing for a nonzero value of 7.

C. Lissajous Conversion

We finally verify that the enhancement of 7 in the Lissajous
regime (i.e., at commensurate frequencies) is due to the sup-
pression of nonadiabatic heating. To this end, we plot in Fig. 5
P(k) for the parameters T = 516ps and f; = 2/>/3 (a) and
f1i=2f>/(3+ €) (b). The two choices of f; are very close,
but whereas the former choice of f; is commensurate with f>,
the latter choice is not. The negative values of P(k) within
the nonadiabatic region (which we attribute to nonadiabatic
heating), are much fainter in panel (a) than in panel (b). This
is consistent with our expectation that nonadiabatic heating
is indeed significantly suppressed for f; = % > compared to
EEedf

We also compute the
the system due to both driving modes,

total  dissipated power in
Fyis (k) =
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FIG. 6. (a) Net conversion rate as a function of the electric field
amplitude inside the material, E, with E; fixed to E, /2 throughout,
while f; = %fz =3.18 THz, T = 516.3, and u = 115meV (mode
configurations and band structure parameters are given in the main
text). (b) Relative amplitude of mode 1 (blue), 2 (orange), and of
all other modes (green) inside the material, due to current-induced
plasma oscillations in the grain of Weyl semimetal; see Sec. VI A for
details of the computation.

—1lim; o0 fy ETr[VAK, $)p(k, $)] - (Ei(s) + Ex(5)),  for
the same parameters as in panels (a) and (b). Py;(K) measures
the time-averaged rate of work done on electrons with
wavevector Kk by the two driving modes in combination; hence
it measures the total rate of dissipation, and is guaranteed
to be positive due to the second law of thermodynamics. In
Figs. 5(c) and 5(d) we plot Py (k) for the parameter sets we
considered in panels (a) and (b), respectively. While outside
the nonadiabatic region, P(k) and Pys(k) effectively take
the same values for the two frequency ratios, nonadiabatic
heating is much weaker in panel (d) than in panel (c). The very
different values of 7 at frequencies f; = % frand fi = ﬁ b
must therefore be due to this suppression of nonadiabatic
heating in the commensurate case.

D. Nonanalytic amplitude dependence

We next explore the relationship between the topological
frequency conversion rate, the amplitudes of the incoming
modes. Fixing E, = 2E, Fig. 6(a) plots 7 as a function of E,
for the isolated Weyl node studied in the previous subsections,
with fi = 3f» = 1.23 THz, T = 5163 ps, and x = 115meV.
The error bars in Fig. 6(a) indicate the estimated uncertainty
due to the finite number of k points we sample [101]. The
conversion rate exhibits a clear cusp when E; =~ 1000 kV /m;
by inspecting the k-dependent frequency conversion rate as in
Fig. 4, we verified that this is the amplitude where topological
frequency conversion sets in due to the surface By crossing
the Fermi surface. The cusp of 7 reveals a nonmonotonous
and nonlinear dependence on driving amplitude, supporting
our conclusion that topological frequency conversion is an
effectively nonperturbative response phenomenon. The ampli-
fication threshold is reached at amplitude E; ~ 1300kV/m.

V. CONDITIONS FOR FREQUENCY CONVERSION

There are several conditions that a Weyl material must
satisfy to realize topological frequency conversion. The con-
ditions can be grouped into the conditions that an individual
Weyl node must satisfy (Sec. V A), the conditions on the
global band structure and symmetry class of the system

(Sec. V B), conditions on the driving (Sec. V C), and condi-
tions on relaxation (Sec. V D).

A. Conditions on individual Weyl nodes

The rate of topological frequency conversion from Weyl
node i is given by the ith term in the sum over Weyl
. - K 1o _
nodes in Eq. (29): 7; = qihf1 fo [55:[p2 (k) — b1 (K)IW (k —
k;). Thus, Weyl point i can only contribute to frequency
conversion if

p1(K; + 3K) # pa(k; + k)

Therefore only the Weyl nodes sufficiently near the Fermi
energy can contribute to topological frequency conversion. If
a Weyl node is too far from the Fermi energy, the two touching
bands are either both full or empty within a distance ~eA/h
from the Weyl node, implying p; (k; 4+ k) ~ p,(k; + 5k) for
8k; within By.

For the most natural case where each of the two modes
contains only a single harmonic, W (k) = —W(—Kk), as is also
evident in Figs. 2(c) and 4(a). For Weyl point i to contribute
to frequency conversion, p;(k) or p(k) must hence break
inversion symmetry around k;. Specifically,

Po(K; + 0K) # py (ki — 8K)

This constitutes our second condition. This symmetry break-
ing can be achieved with a nonzero value of the Weyl cone
tilt, V [see Eq. (1)], as we demonstrated in our numerical
simulations (Sec. IV).

for § k within By. (50)

for 8k within B. (51)

B. Condition on symmetry class

We now identify the symmetries a Weyl semimetal must
break to support topological frequency conversion.

The two symmetries that are central to the Weyl semimetals
are the inversion and the time-reversal symmetry [12]; at least
one of these symmetries must be broken for the Weyl nodes
to exist. Both inversion and time-reversal symmetry results
in inversion-symmetric energy bands, ¢, (k) = ¢,(—k) (with
a denoting the band index after indexing them according
to their energy). Thus, for both symmetries, a Weyl point
at wavevector k implies the existence of a Weyl point at
wavevector —k. The conjugate Weyl nodes at k and —k have
equal charges for time-reversal symmetric Weyl semimetals,
and opposite charges for inversion-symmetric Weyl semimet-
als [12]. We expect the steady state to approximately inherit
the same inversion symmetry, such that p, (k) = p,(—Kk). For
the most natural case where modes 1 and 2 each contain a
single harmonic, W (k) = —W (—Kk). Hence the contributions
to 7jo from symmetry-conjugate nodes cancel out for Weyl
semimetals with time-reversal symmetry, but not for Weyl
semimetals with inversion symmetry.

We conclude that broken time-reversal symmetry is re-
quired for topological frequency conversion, while inversion
symmetry does not need to be broken. Other crystal symme-
tries, such as reflection and discrete rotation symmetry, do
also not preclude frequency conversion, since the incoming
modes [and hence W (k)] can be configured in a way that
breaks these symmetries. Hence magnetic Weyl semimetals,
such as CosSn,S or Co,MnGa [77,79], intrinsically support
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topological frequency conversion, while nonmagnetic Weyl
semimetals (such as TaAs) require an externally-provided
time-reversal symmetry breaking. This external symmetry
breaking is already achieved with the circularly-polarized
driving; a higher degree of asymmetry can further be achieved
with, e.g., a current bias or externally applied magnetic field.

C. Condition on driving

Next, we identify the conditions that the driving amplitudes
and frequencies must satisfy to support frequency conversion
for a given Weyl semimetal.

Section IIIC2 concluded that the dynamics of electrons
is nonadiabatic within a distance dj from the boundary B,

where djy ~ \/;»TEO , and vy is the smallest singular value of the

matrix R in Eq. (1) [see Eq. (36)]. For a nonzero number
electrons to act as frequency converters, dy must hence be
smaller than the linear dimension of By, which we estimate
to be of order eA/h. These considerations imply that

92

h
E>— (52)
evg

is required for frequency conversion.

Hence, “steep” Weyl points (i.e., Weyl points with large
vo) are most useful for frequency conversion, as they support
topological frequency conversion at lower intensities.

Weyl points in known compounds support topological fre-
quency conversion at experimentally accessible parameters:
for example, TaAs has Weyl points for which vy ~ 103 m/s
[98,99] At frequency 2 ~ 2w THz, we hence expect these
Weyl points can support topological frequency conversion at
moderate intensities of order 100 W /mm? and above.

Finally, we require that the bandwidth of the bands con-
taining the Weyl node be larger than the driving frequency;
otherwise, driving cannot be considered adiabatic anywhere
in the system. This puts an upper limit for the frequencies
that could achieve frequency conversion in a given Weyl
semimetal. As an example, for TaAs the characteristic band
gap between Weyl points is of order 20 meV [98], correspond-
ing to a maximum frequency limit of ~5 THz.

D. Condition on relaxation

A final condition for amplification, is that the rate of
topological energy conversion 7o must overcome the (neg-
ative) rate of dissipation 7g. Our analysis and numerical
simulations identified two sources of dissipation: momentum
relaxation (1) and nonadiabatic heating (1n,): Ndis = Mmr +
Nna- Amplification of mode 1 thus requires

o + Nmr + Mna > 0, (53)

In Sec. IIC2 we concluded that the gross rate of topo-
logical frequency conversion, ngoss (i-€., the rate that results
when not taking into account cancellation between electrons
that convert energy in opposite directions), can only exceed
N if T 2 1/K. Since the net rate of topological frequency
conversion #jg is just a small fraction of g, and since energy
is also lost to momentum relaxation, we hence expect net

amplification (7 > 0) can only be achieved when
T K 1/Q. 54)

The phenomenological discussion in Sec. IIIC2 shows
that 7y, o< (1 — e T2) where At denotes the characteristic
time between instances where a given wavevector K is taken
to the Weyl point by the applied drive (k — Kk + eA(r)/h)
. Here At is significantly smaller for Lissajous conversion
(highly rational frequency ratios) than for incommensurate
frequency ratios. Thus, the threshold for net amplification is
significantly lower at commensurate frequencies. Indeed, in
our simulations, a small adjustment of f; from 2f,/(3 + €) to
2 f,/3 lowered the amplification threshold from above 1200 ps
to ~300 ps.

Our quoted values in Sec. III provide an example of
how to estimate the break-even relaxation rate. For inten-
sity E ~ 1600kV/m and 2 ~ 27 THz, we estimated 1gross ~
500kW/mm?>. The net rate 7, will be only a fraction of
this value. For the same parameters, and with isotropic band
gap matrix R of order 5 x 10°m/s and Fermi surface area
0.0672, we found 7y, ~ 5 x 1078 kJ/mm3z, and n,, ~ 5 x
108 kJ/mm3t (for incommensurate frequencies) or 3.5 x
10~ kJ/mm3t (for Lissajous conversion at frequency ratio
2/3). Hence, we expect topological frequency conversion can
exceed the rate of dissipation when t are several times larger
than 100 ps. We moreover expect the threshold to be signif-
icantly lower for Lissajous conversion (i.e., commensurate
frequencies), than for incommensurate frequencies. This is in
good agreement with our data in Fig. 1(b), which indicate
that T must exceed 300 ps in order to achieve net frequency
conversion in the Lissajous regime for the parameters above,
and 1000 ps for incommensurate frequencies.

The different scaling behaviors of dissipation and topolog-
ical frequency conversion point toward the parameter regimes
beneficial for amplification.

First, note that (at a fixed area of the Fermi surface), nm,
scales linearly with electric field E, while 7y, and ngrss scales
as E® (specifically, 1y, ~ I° in the Lissajous regime) [see
Egs. (34), (37), and (30)]. Thus, we expect that the relative
contribution of 1, decreases at high intensity, while the ratio
of Nna and 7gross Temains fixed, implying that frequency con-
version becomes more efficient at higher intensities.

Second, for a given intensity, the topological frequency
conversion rate scales as 1/, while 1, scales as 1/Q3 (for
incommensurate frequencies) or 1/Q? (for commensurate fre-
quencies). Similarly, momentum relaxation scales as 1/2.
Thus, we expect amplification is most easily reached at the
top of the frequency range that supports topological frequency
conversion, given the driving intensity and band structure of
the system.

The requirements on the relaxation rate pose the biggest
current challenge to realizing topological frequency conver-
sion. Relaxation times in known Weyl semimetals have been
reported to be in the range 0.25—3 ps [62-64,67], although
transient signatures with lifetimes above 100 [67,68] and 1000
[69] ps have also been reported in some compounds. Thus
further improvements in the quality of materials are needed to
fulfill the requirements of topological frequency conversation
in the practically interesting THz range.
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VI. THINKING OUTSIDE THE GRAIN: GLOBAL
ELECTRODYNAMICS CONSIDERATIONS AND
IMPLEMENTATION USING PHASE ARRAYS

The full understanding of the frequency conversion effect
requires thinking about the global electromagnetic field, and
the material response of the Weyl grains to an external drive.
Specifically, in this section we incorporate the dielectric
response to our analysis, and propose a phase-array geometry
of the Weyl grains as a prototype for a Weyl topological
amplifier.

A. Renormalization of electric field by plasma oscillations

Let us begin with considering the macroscopic response
of a single grain to external driving. For i = 1,2, we let
E;(r, t) denote the (plane-wave) electric field from mode i
as a function of position r and time ¢ and let Eo(r,t) =
E|(r,t) + Ey(r, t) denote the net “incoming” field resulting
from the driving. The current and charge oscillations in the
grain induced by the external driving creates an additional
electric field E;nq(r, 1). The total electric field inside the sam-
ple is thus given by E(r, t) = Eo(r, 1) + Eina(r, 1); this is the
field driving the response of the material, and is the one we
considered in the calculation in the previous sections. Evi-
dently, the internal field in the sample gets renormalized by
the charge and current in the material.

Our first order of business is to find the internal field
E(r,t) (which we used in our analysis above) in terms of
the external fields. We can find E(r, ¢) self-consistently by
solving Maxwell’s equations, taking account the current and
charge dynamics in the grain induced by E(r, ). While an
exact (geometry-dependent) analysis is in principle possible,
the small size of the grain allows us to make some simpli-
fications, such as ignoring the skin effect. Thus, inside the
grain Eiq(r, ) is approximately given by the electrostatic
field resulting from the instantaneous charge configuration
in the system. These in turn arises from the driving-induced
oscillations of the grain’s bulk plasmonic mode [102].

For a small spherical grain, we can assume Ey(r, t) uni-
form within the grain, and moreover ignore retardation effects
of the electromagnetic field (this is equivalent to neglecting
the skin effect). Inside the grain, Eiyq(r, ¢) is thus given by
the electrostatic field arising from the instantaneous charge
distribution at time . The charge distribution is nontrivial
due to the oscillating currents, which produce surface charges.
Specifically, & p(r, 1) = V - j(r, 1), implying p(r, w) = £V -
j(r, w). We now show that the equations of motion above
have a solution in which the current density and Eiyq(r, )
are also uniform within the sample. To show this, note that
a uniform current density in the grain, j(r, ) = j(¢), implies
that the charge accumulates on the surface. The surface charge
density at the angle specified by unit vector £ on the sphere,
is given by o, A(f, ) = j(¢) - £. Hence A(f, 1) = £ - Ao(¢), with
Ao(t) denoting the unique zero-mean solution to d,;Aq(t) =
j(@). Inside the sphere, the electrostatic field from a surface
charge distribution A(f) = - 14¢ is uniform and given by
Eina(t) = )‘307? Hence, the electric field is uniform within the
sample and given by E(r) = Eo(r) + %? Thus, a uniform
current density j(z) and E(z) solves the dynamics of the
grain.

Transforming to frequency domain, and using that j(w) =
—iwko(w), we finally arrive at

ij(w)

E(w) = Ey(w) — e’

(55)

This gives the frequency-dependent renormalization of the
electric field inside the grain, and is an exact solution in the
limit where the grain size is smaller than the wavelength of
the driving modes.

In linear response theory, the time derivative of the current
response is assumed proportional to the electric field, imply-
ing j(w) ~ —ikE(w)/w for some constant x. The resulting
solution leads to a frequency dependent relative permittivity,
E(w) = e(w)Eyp(w) with €(w) = (1 — a)f,/a)z)*1 with w), =
/o /3€p denoting the plasma frequency of the system. The
plasma frequency omega, is estimated for generic Weyl
semimetals, in Ref. [103]: it is typically given by an O(1)
constant times the Fermi energy.

The linear response analysis above is useful for eluci-
dating the qualitative features of the plasmonic response.
However, the regime we consider potentially supports a sig-
nificant nonlinear response due to the nonquadratic dispersion
and large Berry curvature surrounding Weyl nodes—indeed,
topological frequency conversion is a nonlinear response phe-
nomenon. We thus go beyond the linear response regime in
our analysis below: For a given internal field configuration
E(t), the current response j(¢) can be easily computed in
the limit of weak relaxation and adiabatic driving without
any linear response approximation, using Eq. (21), j(t) =
Jo(t) + 8j(r) with jo(¢) given in Eq. (23) and the dissipative
component §j(¢) is negligible in the limit we consider [104].

The driving frequency controls whether the plasma oscilla-
tions amplify or screen the electric field from the incoming
radiation. This qualitative behavior is evident in the linear
response result we quoted above, but also endures after taking
into account the nonlinear response. To see this, consider what
external electric field Eq(w) is needed to cause a given internal
field E(w) [which determines the current response j(w)]. As
in the linear response regime, j(w) is controlled by vector
potential, and thus scales with E(w)/w [see Eq. (23)]. The
plasmon-induced electric field hence is negligible in the limit
of large w (but grain size still smaller than the wavelength),
meaning the grain is effectively transparent to the radiation:
E(w) =~ Ey(w). Conversely, for small w, j(w)/wey will be
considerably larger than E(w), implying that E¢ in turn has
to be much larger in E(w) for Eq. (55) to hold. Thus, for
small frequencies, the plasma oscillations severely screens the
electric field inside the sample relative to the external field.
At some intermediate frequency, E(w) ~ —% and a very
weak external field thus causes a large internal field. In this
case, driving resonates with the plasma oscillations, causing
significantly enhanced amplitude of the electric field. As we
will see, this mechanism allows for significant enhancement
of the topological frequency conversion rate.

B. Radiation output of grain

Next, we want to compute E(r,?) outside the grain, to
determine the profile of the emitted radiation. Here, the grain’s
small size means that Ej4(r, ¢) to a good approximation takes
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the form of dipole radiation generated by some nontrivial
trajectory of the dipole moment. Using that the surface charge
distribution we obtained above, we find the dipole moment to
simply be given by p(w) = %”ir”%’).

The energy converted to mode 1 leaves the grain as radia-
tion energy at frequency w;. The bulk of the emitted radiation
energy comes from constructive interference between the in-
coming plane wave E((r, ;) and the emitted dipole radiation
Eina(r, 1) [i-e., the w;-Fourier components of Eiq(r, ) and
Ey(r, t), respectively].

To compute the frequency-resolved radiation energy em-
anating from the grain, we consider the total energy
flux density, given by the Poynting vector field, S(r,?) =
ﬁE(r, t) x B(r,t). By using the Fourier decomposition
E(r,t) = [dwE(r, w)e ™" along with E(r, ) = E*(r, —w)
[and likewise for B(r,?)], we find that the time-averaged
energy flux density S(r) is thus given by

- 2
S(r)=— /dw Re [E(r, ) x B*(r, w)]. (56)
o
We identify S(r, w) = MLORe [E(r, w) x B*(r, w)] as the
energy flux density from modes with frequency w. The total
radiation power from the grain at frequency w is given by

P(w) = %dA -S(r, w) &7
c

where C is some surface containing the grain.

To compute P(w), we use the divergence theorem to find
P(w) = M% JodV Re[V - (E(w) x B*(w))], with [.dV de-
noting the integral over the volume contained in C. Next, we
apply the cross product identity V - (E x B*) = —E - (V x
B*). Using Ampere’s law V x B(r, w) = —ipgeowE(r, o) —
Hoj(r, w), where j(r, w) is the Fourier transform of the cur-
rent density, yields P(w) = % JdV Re[iwey|E*(w)| + E(w) -
j*(w)]. The first term in the parenthesis evidently is fully
imaginary, and thus gives a vanishing contribution to the inte-
gral. This leave us with P(w) = 2 [ dVRe [E(r, ) - j*(r, )].
Since E(r, w) and j(r, ) are uniform within the grain, we
find

P(w) =2VRe [E(w) - j*(w)], (58)

which is exactly the quantity we calculated in Sec. III. Inter-
estingly, the plasma-induced electric field does not directly
contribute to the power output, since it is proportional to
—ij(w); rather it indirectly modifies the power output through
its effect on the current response. We thus arrive at

P(wy) =17V, (39)

with 7 denoting the frequency conversion rate within the
grain. This gives the output intensity of the dipole radiation
emitted with frequency w;.

C. Implementation using a phase array

In order to produce an amplifier out of the frequency-
conversion effect, we must consider combining many grains
together to create a phase array. While we do not intend to
analyze such a device in detail in this paper, we will here
outline its design. The phase-array geometry we envision has

A4

N
3

T fied wy
sl =
‘E’ wy feedbeam

FIG. 7. Phase-array proposal for combining the gain from Weyl
grains into a topological amplifier. The spacing of the grains in the
direction of propagation should match a quarter of the wavelength of
the amplified wave. This will suppress reflection, and will concen-
trate the contribution of each grain into a single forward-propagating
beam. The pump beam is expected to be normal to the source beam,
and the spacing along its direction should be its wavelength.

W
N
—_—

Weyl grains arranged in a 3d cubic lattice, with one axis
along the propagation direction of an external plane wave with
circularly polarization (mode 1), which we intend to amplify.
In the direction of the propagation of mode 1 the structure
will have a lattice constant of a quarter wavelength, such
that the backscattering element of the amplified mode 1 is
be eliminated by destructive interference. The array will also
be subject to a normal-incident radiation from mode 2, which
is the amplification source beam to be converted. In order to
maximize the amplification effect, we anticipate that in-phase
arrangement of all layers with respect to mode 2 would be
beneficial, hence the lattice constant along the mode 2 direc-
tion should be mode-2 wavelength A, (see Fig. 7). Indeed,
obtaining amplifiers from single gain elements is a common
practice. Josephson traveling wave amplifiers JTWA; see,
e.g., Ref. [105]), for instance, are essentially a chain of indi-
vidual Josephson parametric amplifiers. Other traveling wave
optical amplifiers rely on nonlinear crystals such as LiNb or
B—BaB,0, (BBO). It is only in the macroscopic constructs
of parametric JTWA, and nonlinear crystals, which mix light
modes, that issues related to phase-matching arise. Similarly,
a single Weyl grain in a topological-frequency-conversion
regime requires no mode matching beyond the need to have a
rational frequency ratio to be in the Lissajous regime. In fact,
the grains are expected to be smaller than the wavelengths
involved. It is only when these grains are combined into an
array that we need to consider how the wavelengths of the
amplified radiation correspond to the spatial structure of the
amplifier.

D. Numerical simulations of plasmon-enhanced amplification

We now demonstrate that topological frequency conver-
sion remains possible even after including screening effect
of plasma oscillations. Furthermore, we show that tuning fre-
quencies near the plasma resonance dramatically enhances the
frequency conversion effect.
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We consider an inversion-symmetric Weyl semimetal
whose Fermi surface consists of two Weyl nodes that are
related by inversion symmetry. The Hamiltonian of one Weyl
node is given by H(k) = hvk - o + ik - V with v = 3.87 x
10°m/sand V = (0,0, 3.1 x 10°m/s) (i.e., the same disper-
sion as considered in Sec. IV); the Hamiltonian of the other
Weyl node is given by H(—k). We consider the case where
the electric field inside the grain E(¢) is fixed and given by
two circularly polarized modes as in Sec. IV [see Egs. (45) and
(46)] with amplitudes £, = 100kV/m and &, = 50kV/m; we
allow the incoming radiation field E¢(w) to vary.

We first compute the external electric field Eq(¢), which
causes the internal electric field to be given by E(¢) as speci-
fied above. We compute Ey(w) as described in Sec. VI A. That
is, we use E(w) = Ey(w) — ij(w)/3€pw, along with j(¢) =
—e % Za Po (KT, (K, 1), where p, (K, t) denotes the time-
averaged value of the equilibrium state occupation of band «,
(1 4 exp[—(eq(k + eA(2))) — u/kgT])~', with g, (k) denot-
ing the oth band of H (k). We use temperature 7 = 20K in
our simulation and consider different values of L.

In Fig. 6(b) we plot the resulting relative increase of
mode 1 inside the material, G = |E(w) - Eg(a)l)|/|E0(a)1)|2,
as a function of chemical potential u (blue). We also plot
the corresponding relative increase of mode 2 (orange), as
well as the net relative gain of all remaining modes (in-
duced by the nonlinear oscillations of the plasmons), G3 =
(fda)|8E0(a))|2)l/2, with 6Ey(w) denoting the component
of external field Eg(w), which is orthogonal to the internal
field E(w) [for w ¢ {w;, @}, SE(w) = E¢(w)]. The data in
Fig. 6(b) shows that the plasma oscillations do not affect the
modes when the chemical potential is smaller than 2.5 meV.
Moreover, for u < 5meV, G; < 1, implying that the external
radiation field does not need lead to appreciable amplitude
of any higher-harmonic or orthogonal modes to provide the
bichromatic electric field inside the grain, which we require.
In other words, the plasma oscillations do not significantly
excite any modes other than the pump and signal mode when
1 < 5meV. For values of © above 5 meV, the internal electric
field gets severely suppressed by the plasmon screening, while
the plasma oscillations begin to significantly excite modes
other than the pump and signal modes. Here, the frequency
conversion rate is significantly reduced. Furthermore, a more
careful analysis is needed in this regime to account for the
higher harmonics of E(#) induced by the nonlinear plasma
oscillations.

In the range 2meV < p < 4meV, the internal field is
significantly enhanced by the plasma oscillations, without
nonlinear corrections playing a role. This plasma resonance
dramatically enhances topological frequency conversion: We
first compute the frequency conversion rate for the same
parameters considered for Fig. 6(b), using the approach of
Sec. IV. From our obtained frequency conversion rate 7, we
compute the gain coefficient of the material, g = /I with
I, = cgo|Eq(w))|? denoting the intensity of mode 1 outside the
material; we use the data from Fig. 6(b) to compute Eq(w;)
[recall we consider a fixed value of the internal field E(w),
but allow Eg to vary]. The gain coefficient has dimension
of inverse length, and gives the characteristic rate at which
mode 1 gets amplified inside the material. In Fig. 1(b), we
plot the gain coefficient as a function of chemical potential,

using T = 200 ps (blue), 400 ps (orange), and 600 ps (green).
When the plasmon resonance is reached at © ~ 4 meV, the
gain coefficient increases dramatically, reaching values of or-
der 100cm~!, exceeding, e.g., the THz gain coefficients of
20-50 cm ™! reported in Refs. [57,58].

VII. DISCUSSION

In this paper, we showed that Weyl semimetals can effi-
ciently convert energy between two driving modes, through
the mechanism of topological frequency conversion [52].
This effect makes Weyl semimetals promising media for
THz and possibly even infrared amplification. Our analysis
shows that Weyl semimetal with feasible band dispersions
support topological frequency conversion in the “THz gap” at
experimentally accessible intensities of order ~50 W /mm?.
Topological frequency conversion is supported both for in-
commensurate frequencies and commensurate frequencies,
but is most efficient in the latter case, due to the mechanism of
Lissajous conversion. Our numerics and estimates focused on
topological frequency conversion in the THz regime, where
there is the biggest need for new photonic control elements,
but the effect may also be supported at other frequency ranges.

The primary obstacle to Weyl semimetals operating as
topological frequency converters is drive-induced heating.
Heating both wastes energy from the beams we would like to
amplify, and may even damage the material. Phonons, interac-
tions, and impurities all lead to electron relaxation processes,
which cause this heating.

Through phenomenological arguments and numerical sim-
ulations, we identified two important mechanisms for dis-
sipation: momentum relaxation and nonadiabatic heating.
Momentum relaxation occurs when electrons near the Fermi
surface relax their energy by changing their momentum, and
which is common to all irradiated materials. Nonadiabatic
heating emerges when electrons undergo Landau-Zener tran-
sitions between the valence and the conduction band. This
mechanism is particularly relevant in topological semimetals,
due to the existence of gap-closing points in these materials.
Even so, nonadiabatic heating is strongly suppressed in the
Lissajous regime, which makes it much preferred for amplifi-
cation.

In our simulations and phenomenological discussion, re-
laxation was parameterized through a single relaxation time 7.
In particular, we took electron-hole recombination, and intra-
band momentum relaxation (which is supported by phonons)
to have the same characteristic rates. Needless to say this
treatment could be made more realistic by considering sep-
arate relaxation rates for these processes, as suggested by
experiments [64,67,68]. Nonetheless, we believe our simple
dynamical model captures the conditions for amplification.

To achieve amplification, where energy gain due to
topological frequency conversion exceeds the loss due to
dissipation, the characteristic relaxation time T must be
sufficiently long. To limit nonadiabatic heating as well as
momentum relaxation we need 7 f > 1. This condition was
clearly evident in our simulations: even for optimal parame-
ters, and in the Lissajous regime, break-even was only reached
when 1/t 2 300f, (for incommensurate frequencies, ampli-
fication required tf > 1000). So far, t’s were reported in
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the range 0.25 — 5ps [62—-64] in pump-probe experiments.
This suggests net amplification of continuous-wave THz
frequencies is currently beyond reach. That said, transient ex-
perimental signatures with 7 > 100 ps have been seen in Weyl
semimetals [67,68], emphasizing that a more discriminating
analysis may reveal a broader amplification regime.

Notwithstanding, signatures of topological frequency con-
version effect could be observed even if the relaxation time
is too short to allow for amplification. That is because the
direction of energy conversion of a Weyl semimetal driven
bichromatically by two circularly-polarized modes is deter-
mined by the product of the two mode’s polarizations. Hence a
reversal of the circular polarization of either mode should will
lead to an increase in the output intensity of one mode, and
a decrease for the other mode. This topological effect could
be accessed experimentally. Another group recently proposed
to utilize this chirality-sensitive intensity shift to extract enan-
tioselective information from a gas of chiral molecules [106].

Furthermore, we can suggest several strategies to approach
the amplification regime. Commensurate frequency conver-
sion, i.e., Lissajous conversion, already provides a dramatic
improvement by suppressing nonadiabatic effects by an or-
der of magnitude. Momentum relaxation is harder to control.
Note, however, that momentum relaxation energy loss scales
linearly with radiation intensity /. In contrast, topological
energy conversion (and nonadiabatic heating) scale as I°/2.
Therefore the relative significance of momentum relaxation
should decrease at larger intensities. Moreover, at a given
intensity, topological frequency conversion scales inversely
with the driving frequency f, while dissipative energy absorp-
tion decreases as f 2 (specifically, 7, ~ f~2 in the Lissajous
conversion regime). The amplification threshold of 7 f will
therefore be lower at higher frequencies.

The regime of higher intensities and frequencies puts
different constraints on the materials needed for topologi-
cal frequency conversion. Larger intensities induce heating,
which may cause material damage. This problem, however,
could possibly be circumvented by using pulsed lasers instead
of continuous wave beams: By allowing the system to dis-
sipate heat between pulses, such a scheme would allow us
to reach the high-intensity regime without causing material
damage; while a detailed investigation would be an interesting
topic for future studies, we expect pulses with durations more
than a few periods, or randomly-timed pulses, will yield con-
version rates consistent with topological frequency conversion
at continuous-wave operation. This way the large-amplitude
regime required for frequency conversion could be realized
while allowing time for the system to dissipate absorbed
heat between pulses even if relaxation times are short. In
addition to these considerations, materials with a steeper ve-
locity makes realizing the large frequency regime easier, as
the velocity at the Weyl point is the “coupling constant” that
converts the electric-field amplitude into an energy scale.

Weyl nodes need to be located near the Fermi surface to
support topological frequency conversion, and moreover need
to be surrounded by an asymmetric electron distribution, in
order to ensure an imbalance in the numbers of electrons that
convert energy at opposite rates. Optimal imbalance can be
reached in the presence of a “Weyl cone tilt”, and through
appropriate tuning of the chemical potential. Additionally, our

analysis indicates that time-reversal symmetry needs to be
broken to achieve frequency conversion. Hence, we expect
magnetic Weyl semimetals, such as Co3Sn,S or Co,MnGa
[77,79] are best-suited for topological frequency conversion.
Topological frequency conversion could also be achieved
in nonmagnetic Weyl semimetals, or even be enhanced in
magnetic Weyl semimetals, by “priming” the particle distri-
bution into an out-of-equilibrium state. Such priming could,
e.g., be achieved by driving the system with ultrashort laser
pulses or with a DC current, and would create a transient state
more suited for frequency conversion than the steady states
we have considered in this paper. Similarly, purification of
the material, alongside bath or substrate engineering are other
potentially important directions for realizing amplification by
suppressing dissipation. Indeed, these research directions are
also important for the general nonlinear response of Weyl
semimetals (e.g., chiral photogalvanic effect) [20].
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APPENDIX A: DERIVATION OF EQ. (11)

In this Appendix, we derive the expression for the time-
averaged energy conversion rate from a single electron in band
a, P,(k), that we quote in Eq. (11) in the main text.

To recapitulate, the equation we aim to derive [Eq. (11)]
reads

B 62 2w
Pu(k) = fifsg 52 /0 dp1depy (8, x Oy,1)

- Ry (k + ea/h),

where we suppressed the (¢;, ¢») dependence of the inte-
grand. The quantities above are defined in the main text. For
brevity, we will use the shorthand notation ¢ = (¢, ¢») and
Q,(k, ¢) = ,(k + ea/ 1) in the following.

We derive Eq. (A1) starting from Eq. (10) in the main text,

(AD)

2
_ —e
Pk) = —— | d*¢pe(d)-Valk; ). (A2)
47 0
Here €;(¢) denotes the electric field of mode i as a function
of ¢ [107], while v, (k; ¢) denotes the wavepacket velocity in
band « as a function of ¢, and is given by

1
Va(ki§) = 3 Veu(k, 9) - %e«p) x k. )  (A3)
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with €(¢) = €1(P) + €2(9), ea(k, §) = &4 (K + ea(¢p)/ 1) and
&4 (Kk) denoting the energy of band «.

First, we consider the contribution to 2, (k) from the group
velocity component of v,,

2
Pogv(k) = : /0d2¢61(¢)-V8a(k,¢). (A4)

472R

Using €;(¢) = w;04,0t(¢p) along with the chain rule, one can
verify that

—e€1(9) - Veu(K, @) = hw0g,&4(K, ¢).

Since g4 (k, ¢) is 2 periodic in ¢, we conclude F_’O,;gv (k) =0,
implying that

(A5)

—¢?

472h

To evaluate Eq. (A6), we use that €(¢) = €;(¢) + €2(¢),
along witha - (b x ¢) = ¢ (a x b), we obtain

P,(k) =

2
/Od2¢61(¢)~[6(¢)><52a(k,¢)] (A6)

_ 2 2
Py(k) = 1 62 f d* ¢ le1() x ()] Ru(k, ) (AT)
wh 0
Using €; = w04, and w; = 27 f;, we identify
€1(P) X €2(P) = w10y, 0 X Iy, 0. (A8)

Inserting this in the above establishes Eq. (A1).

APPENDIX B: SOLUTION OF MASTER EQUATION

Here solve the master equation in Eq. (24), and use the
solution to obtain the expression for the current density in
Eq. (21).

The Appendix is structured as follows: We provide a sum-
mary of the results in Appendix B 1. In Appendix B2 we
derive the steady-state solution to the master equation. We
demonstrate our solution for the Boltzmann-form dissipator
in Appendix B3. Using our steady-state solution, in Ap-
pendix B 4 we obtain the current density, while Appendix B 5
contains derivations of auxiliary results, which enter in our
calculation.

1. Summary of solution

Our goal is to obtain the steady state of the master equation
5 Lo 5 5
Pk, 1) = —%[H(k, 1), p(k, )]+ Dk, 1) o p(k, 7). (BI)

Here p(k, t) and H (K, t) denote the momentum-resolved den-
sity matrix and Hamiltonian in the second-quantized Bloch
space of the system H,, while D(k, ) is Lindblad-form su-
peroperator. H (K, t) is given by Zij(i|H(k, 1)]j)élé;, where
H (k, t) denotes the ordinary (first-quantized) Bloch Hamilto-
nian of the system, and ¢; annihilates a fermion in orbital «;
see Sec. III for further details of the notation.

We solve Eq. (B1) in the limit where dynamics are adia-
batic, and the characteristic relaxation rate I' = ||D(k, 1)|| is
slower than the characteristic angular driving frequency 2.
This limit is summarized through the following conditions:

<Q, §"Q<sek,t), hyHK,1) <L Kk,1), (B2)

where e (K, ¢) denotes the (smallest) spectral gap of H(k, 7).
The second and third inequality are independent conditions
that are both needed to ensure adiabatic dynamics.

To quantify the extent to which the system satisfies the
conditions in Eq. (B2), we use the dimensionless parameter

s =mx (G5 ) ®
1\ Q Sek, 1) 8e2(k, 1)

The system satisfies the conditions in Eq. (B2) for wavevec-
tors k where A(k) < 1. In Appendix B2, we derive the
steady-state solution of Eq. (B1) up to a correction of order
A2 (K).

From our steady-state solution we obtain the current den-
sity using

'(t)——f/‘P—kT VA, Opk,0)].  (B4)
WO =% aay " PP DI

The relevant property of the steady state in this computation
are the band occupancies of the instantaneous Hamiltonian,

Pk, 1) = Tr[p(k, )Y} (K, ) (K, 1], (B5)

where i, (k, 1) = > i{ila (K, 1))é, denotes the ath eigen-
mode of A (K, 1), with |« (K, t)) denoting the oth eigenstate
of H(k, ) with associated energy ¢, (K, t). In Appendix B4,
we show that the integrand in Eq. (B4) can be expressed in
terms of p, as follows:

1 -
7 VA (K, Dp(k, )] = Xa:pa(k, Dig(k, 1) + 002 (K)vE),

(B6)
where 1, (K, 1) = Ve, (k, 1) — 7E(7) x 2,(k, ) denotes the
group velocity in band «, and and vg denotes the characteristic
magnitude of |VH(K, t)||/h. This constitutes the main result
of this Appendix.

We provide a prescription for computing p,(k, 7) in Ap-
pendix B 2 d, and demonstrate the computation for the case of
a Boltzmann-type dissipator in Appendix B 3.

a. Decomposition of current density
We now show how Eq. (B6) allows us to decompose the
current density as

J(@®) = jo(1) + 8j(®), B7)

where
. PR
jo(t) = —e f g Z Po (K)¥y (K, 1), (B8)

with p, (k) denoting the time average of p,(k,t), and 8j(t)
denotes a dissipative component of the current density, which
we define below, and which is small in the limit A(k) < 1.
This result was quoted in Eq. (21) of the main text.

As our first step, we find that p, (K, t) is nearly stationary
in the limit I' < Q:

pa(K, 1) = pa(k) + O(T/Q) + O’ (k).  (BY)

This result is established in Appendix B 5 a. Note that I'/Q2 <
A(Kk), such that vy, (k,7) < A(k)vg. However, we expressed
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this O(1) correction as above to make it explicitly clear that it
is controlled by I' /2.

Next, we use that the two components of the group velocity
satisfy

1
7 Vealk 1) S Ve, %IE(I) x 2q(k, )] S AK)vp. (B10)

These results are established in Appendix B 5b.
The above two results motivate us to decompose Eq. (B6)
as

%Tr[VH(k, NPk, )] = vo(k, 1) + Vi (K, 1) + Vna (K, 1),

(B11)
where

vo(k, 1) = ) Pa(K)Eq (K, 1),
1
vie(k, 1) = Z (P (K, 1) — Pa(K))Vey (K, 1),

Via(K, 1) = %Tr[VI-?(k, NP, )] — voKk, t) — vir(K, 1).
(B12)

Due to Egs. (B9) and (B10), the latter two components in
particular satisfy

Ve (K, 1) S O(vel' /) + O G2 (K)vg), (B13)

Vi (K, 1) S OG2(K)vg). (B14)

The decomposition above allows us to express the current
density as

J@) = Jo(®) + Jme (1) + Jna () (B15)
where

. e 4’k

.]mr(t) - _ﬁ mvmr(k’ t)v (B16)

' t——e'/dSk k, 1 B17

Jna(®) = ﬁ mvna( ). ( )

We identify §j(t) = jna(t) + jmr(t)- Evidently, jo dominates in
the limit of adiabatic driving and coherent dynamics, where
Ak) < 1.

Jjmr 1S the current density correction due to relaxation-
induced fluctuations in the band occupancy, while j,, as the
correction due to the finite driving frequency and relaxation
rate (relative to the band gap). Note that j,,(¢) is only sig-
nificant for k points where dynamics are nonadiabatic, while
Jjme(t) can be nonzero for all k points where the electron
density fluctuates. For this reason, we heuristically identify jy,,
and jj, as the components of §j(¢) that arise due to momentum
relaxation and nonadiabatic heating, respectively.

2. Derivation of steady state

In this subsection we derive the steady-state solution of
Eq. (B1).

We first show that such a steady state exists. Given an
initial condition specified at some time fy, the solution of

Eq. (B1) can formally be written as

Pk 1) = Teh ™50 o pk, 1), (B18)

where 7 denotes time ordering, and L(k,t) denotes the
Liouvillian generating the time evolution: £(k,1)o O =
—(/MAK, 1), O1+ DK, 1) 0 O.

Due to its Lindblad form L(k, ) is negative semidefinite.
Except in cases of fine tuning or in the presence of conserved
integrals of motion (which we do not consider here), all
eigenvalues of L(K,t) except for one are negative; the last
eigenvalue takes value 0. The left eigenvector correspond-
ing to this unique zero eigenvalue is the identity operator

I [108]. Tt follows that lim,, ., ’Tef'; dsLKS) pas a single
left eigenvector with eigenvalue 1 (namely /), while all other
eigenvalues vanish. Letting p(k, ¢; ) denote the correspond-
ing right eigenvector, we hence have

lim el 2% o 31 = po(k, 1310) Te[M]

ty—>—00

(B19)

L(k,t) preserves the trace and positivity of any operator
and we may choose M positive definite. Hence py(k, #;7y)
must be positive definite and have unit trace. In other words,
Po(K, t; ) corresponds to a physical density matrix.

The semigroup property, Teo BE09) oy —
Teln LD o (Telo L0 o Ay implies that po(k, £:10)
must be independent of 7y in the limit ) — —oo. We thus
simply refer to this operator as py (K, ). This operator defines
the time-dependent steady state of the system. Our goal is to
obtain this steady state.

Equation (B19) implies we can obtain the steady state by
evolving Eq. (B1) from any initial state with unit trace; for our
purpose it is convenient to choose the initial state p(k, 7)) =
1/2%, where I denotes the identity operator. Our derivation
proceeds as follows: We first identify a time-dependent uni-
tary transformation (or “comoving frame transformation”)
that maps Eq. (B1) into a new master equation of the same
form in which the eigenbasis of the Hamiltonian is constant
up to a correction of order A%; this approach was, e.g., also
used in Ref. [109]. We then solve the master equation in this
new frame using a rotating wave approximation, by exploiting
that the spectral gap of the Hamiltonian is the largest energy
scale of the system in the limit A(k) < 1 [110,111].

In the following, we consider the dynamics of electrons
with a fixed given wavevector K. For brevity, we suppress all
quantities’ dependence on K, unless otherwise noted.

a. Rotating frame transformation

Here we map the master equation in Eq. (B1) into one
where the Hamiltonian has an effectively time-independent
eigenbasis. To this end, we sequentially apply two comoving
frame transformations that each reduce the time dependence
of the Hamiltonian’s eigenstates by a factor A [109]. The first
transformation Ql (t) maps 1/}0, (t) into the orbital annihilation
operator ¢, for all «,

Ol (O)Wra(1)01(1) = &4

As we show in Appendix B 5 c, the above is realized when

(B20)

01(r) = Te Mo 43 Xy Mo OOV OP, (B21)
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where
Map@) = i(Ya ()]0, V(1))

and V, = exp( Zij Ej'éj log(M);;), with log(M) denoting the
logarithm of the matrix with entries M;; = (v,;(0)|j). Since
(Vo ()]0 Yp(1)) = — (0 ()Yp(1)), Map(r) is Hermitian.
Without loss of generality, we choose to work in a gauge
where (Y40, %) = 0, implying M, (¢) = 0.

We consider the evolution of the system in the rotating
frame that results after applying Q) (¢). That is, we consider
the evolution of

(B22)

pi(t) = 01 ()p(1)01 (1). (B23)

By taking the time derivative of pi(f) and exploiting
3 01(t) = —i D o5 Map®)¥y (1 Vp(1)01 (1), we find that

0:01(t) = _%[ﬁl(t)’ P14+ D)o pr1(2), (B24)
where
Bi(t) =) ea(t)elea — Y Map()els (B25)
o ap
and
Di 0O = Qi[D o (0:100)101, (B26)

with time dependence suppressed for brevity. Note that D, (¢)
is in the Lindblad form.

Equation (B24) is of the same form as the original master
equation we considered, Eq. (B1). However, the eigenmodes
of the new Hamiltonian H, (), 1/;; () are nearly stationary. To
see this, note that, for o # S,

(Y (W10 H ()| Yp())
2(eq(t) — ep(1))

Mp(t) = —i (B27)

implying

[Map@)] S Ade(t). (B28)

Thus, in the adiabatic limit, A < 1, Iﬁoll (t) can be computed
using canonical perturbation theory with respect to the term
Do P Mp(t )62 ¢g in Eq. (B25). The nth term in this expansion
will be of order A", and first-order expansion thus yields

THOETIESY Map (1)

—— 25+ OO).
2 —en 7O

(B29)

The expression above gives 1&01[ (t) up to an overall (time-
dependent) phase factor, which we are free to choose due
to gauge symmetry. Similar perturbative arguments show
that the associated energies of H(t) are given by eé(t) =
(1) + O(A28¢), since we chose a gauge for |/, (¢)) where
Mo (t) = 0. Evidently, the a'th eigenmode of the transformed
Hamiltonian, Iﬁolt (), is given by &, up to a time-dependent
correction of order A. Hence the eigenmodes of H(t) are
nearly stationary in the limit A < 1.

We now apply the above procedure one more time. We first
apply a comoving frame transformation 0»(1) to H,(¢), which
transforms each eigenmodes xﬁolt (t) into the orbital annihila-
tion operator ¢,

Qi )02(1) = &4 (B30)

Since lﬁ;(t) =2, +OM), 0x(t) =1+ O(L). We can find
0, (1) exactly using the same procedure we used to obtain
Ql (). Following this procedure, we find the density matrix in
this frame, Qz(t)fo](t)Qz (t) evolves according to the master
equation

5 Lon oy 5
O pa(t) = —E[Hz(t), P(t)] — Da(1) o po(t), (B31)
where  Dy00 = Os[D; 0 (0:00510,  (with  time-
dependence suppressed for brevity), and
(B32)

By(t) =) el (0elea + D Miy(t)cles.
o aff

Here M), (1) = i{¥, (1|8, 94(0)), with [¢,(t)) = ¥,,7(1)|0)
denoting the single-particle eigenstate of H,(t) with associ-
ated energy & (1).

We now seek to bound M;ﬂ. To this end, we use
that 9, (e, (t) — 4(t)) ™" S A [112], 8 |va (1)) < Ade(r) [113],
and 92H (t) ~ Q9,H(t) < A*8&(t). Combining these results
with Eq. (B27), we conclude 0, Mgp(t) ~ A28e(t). Using
Eq. (B29), E),(a,,((t)—sﬂ(z‘))’1 < A, and the definition of
M;,4(t), we hence obtain

M g(t) ~ 128e(0). (B33)

In principle we could iterate the comoving frame trans-
formation procedure further to obtain increasingly accurate
master equations for p(k, ) [109]. However, since we are just
interested in obtaining (K, t) to corrections of order A2, this
second step is enough for our purpose.

b. Rotating wave approximation

We now solve Eq. (B31) with a rotating wave approxima-
tion. To this end, we first apply a final unitary transformation
to Eq. (B31), which is generated by diagonal part of H,(¢),

V(t):exp|:—i/ dtZei(t)éléa}.
0 o

The density matrix in this frame, p(t) = V(t)p,(t)V (1),
evolves according to the master equation

WD =Vi(Lyo[VRVTV,

(B34)

(B35)
where

A

R i . .
Lro0=—+ LX/S: Migeles, 0} +Dy00.  (B36)

Here we suppressed time dependence for brevity.

We consider the matrix elements of p(¢) in the basis of
states corresponding to the 2¢ unique configurations of elec-
trons in the orbitals in the system {|n)},

Pmn (1) = (m[p()|n). (B37)

Here, n = (ny, ...ny) with n; = 0, 1 for each i and ¢/ ¢;|n) =
n;|n). That is, |n) denotes the state in H, with n; Fermions
in orbital i. In this basis t orbital basis of H,. Here and below,
we use bold italic symbols to indicate configurations of orbital
occupancies, as above.
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According to Eq. (B35), pma(t) evolves according to the
coupled differential equation

N
3 pam(t) =Y Rit,()pua (1)

(B38)
kl
where
Ripa (1) = (1] L () o (1) (1) m) o> e Ot
(B39)

Note that £5(z) is of order A28e(¢). This follows since
M., ~ 228e(t) and ||D,|| = |D|| < T, while T' < A%8¢(2).
At the same time, we expect (rn|L,(t) o (|k)(I|)|m) oscillates
with characteristic frequency . In the limit A < 1, R¥ (1)
hence oscillates rapidly relative to its characteristic magni-
tude for choices of n, m, k,l where n; — m; # k; — [; for one
or more choices i. This allows us to make a rotating wave
approximation, where we only keep the terms in Eq. (B39)
where n; —m; = k; — [; for all i. We expect this approxima-
tion yields the correct steady state up to a correction of order
I1£211/8e ~ A2 [110].

After the rotating wave approximation above, Eq. (B39) in
particular only couples diagonal matrix elements of p with
other diagonal elements,

O Pan(t) = = Ro™(t) puum (1)

m

(B40)

Since we chose the initial condition p(ry) = [/2¢, implying
Pum(to) = 1/248,m, we hence conclude

p@t) =Y fu®)n)(n] + OGP, (B41)
where f;,(¢) denotes the steady state of
O fu(t) = — ZR'""’(t V(1) (B42)

k

and is normalized such that ), f,(t) = 1. Evidently, p(r)
is diagonal in the orbital eigenbasis up to a correction of
order A%, while the off-diagonal elements decohere (this is
a general feature for open quantum systems where relax-
ation is slow compared to the level spacing of the system
[110]).

We obtain the steady state in the laboratory frame p(r)
by reverting the net unitary transformation that we applied to
obtain p,

Ut) =Vt)0x2(t)0i(t).

Thus we conclude

p) =Y L0 O)In) (0 @)+ OG?).

(B43)

(B44)

Here f,(¢) is computed from Eq. (B42).

c. Direct method for computing R,

The matrix elements R;", which determine the steady
state through the coefficients f,(¢), can in principle be ob-
tained from the definition in Eq. (B39). However, we can
obtain them directly from the eigenstates of the instantaneous

Hamiltonian H(¢) and the laboratory frame dissipator D(z)

without having to go through the procedure we described in
Appendix B2 a.

First note that M} = 0, implying
Ry (1) = Tr[Da(t) o (|m) (m|)|n) (n]]. (B45)
Next, we recall that
D00 = 00D 0 (0:0:10010))10:01.  (B46)

where we suppressed . We now use that 0> =1+ 0O() and

01(1)In) = W, (1)) (B47)
where | W, (¢)) is the eigenstate of H() satisfying
Vi DY (O (1)) = g | Wy (1)) (B48)

Combining the above results and using D(¢) ~ I', we thus
obtain

Ron' = Tr[D o (W) (W DI W) (Va1 + OT),  (B49)

where we suppressed the time-dependence of |W, (7)), D(t),
and R;;)" (¢). Since R} (¢) ~ I', we expect neglecting the cor-
rection above yields the correct value of f,(f) state up to a
correction of order A.

d. Calculation of band occupancies

Now, we compute the instantaneous occupancy in band «
in the system p, (K, #), which will play an important role for
determining the current density.

We consider the one-body correlation matrix in the eigen-
mode basis,

gup(k, 1) = Tr[¥) (K, O Pp(k, 1)p(k, 1)].

The instantaneous occupancy of band « is given by the diago-
nal elements of this matrix, p, (K, ) = g4 (K, ). However, we
will also keep track of the off-diagonal elements of g,z(k, 1),
since these are used to compute the current density in the next
subsection. In the remainder of this step of the derivation, k
and ¢ are fixed parameters, and we therefore suppress them for
brevity.

Inserting the solution for p

gaﬁ—zf,, 09

(B50)

we obtained Eq. (B44), we find

A

sUTn) + 003, (B51)

where U = VQng Since |n) is an eigenstate of V, and
', we find

8ap = an (n|0a8]es05In) + O02). (B52)

Since Qz is a product of exponentials of a quadratic operators,
cha 0> must be a linear combination of the operators {¢;};

ie.,
= Z Q.ibi
i

for some unitary matrix Qy,;, which we obtain below. Using

(n|éf¢j|n) = 8;;n;, we thus find

gap = Y _ famiQ5Qpi + O02).

n,i

0;¢,0, (B53)

(B54)
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To compute Q,;, we use Egs. (B29) and (B30) to obtain

A AF A Mg,
06005 =t + Y Lty + O(?). (BS5)
Ea — &
BFa
Combining this with Eq. (B53), we conclude
Qup = 8ap + ———(1 — 8up) + O(A?). (B56)
Eo — &8
Inserting this result into Eq. (B54), we obtain
Gap = 3 Ju( Bapa + Mpa(l = 80p) =" ) + O(?)
af - n\ aplta Pa opf £y — €5 )
(B57)
Mg . .
where we used that ﬁ ~ O(A). Setting @ = B and using
Po = &aa» We hence find
(B58)

Poa = anna + O()\z)-

3. Explicit solution for Boltzmann-form dissipator

We finally demonstrate our solution above for the case
where D(k, t) is given by the Boltzmann-type dissipator in
Eq. (26), D(k,t)0 O = —1[0 — pzl(k, 1)]. Here pi'(k,1)
denotes the equilibrium state of the instantaneous Hamilto-
nian H(k,r) with temperature 1/8 and chemical potential
nw. We treat k as a fixed parameter and suppress it
below.

First, we obtain the coefficients f,(¢), which determine
the band occupancies p,(t). Recall that f, are given as
the steady-state solution to the the differential equation in
Eq. (B42), 8, fu(t) =Y, Rl (t) fn(t). Using Eq. (B49) to
find the coefficients {RI"(¢)}, a straightforward computation
yields

1 1
Rfyzn(t) = _;(Snm + ;Tr[,aeq(t)“pn(t)(\pn(t)”- (B59)

Thus
1 1
O fut) = _;fn(t) + ;Tr[ﬁeq(t)l‘lln(t))<\I’n(t)|] (B60)

where we used ), fw(t) = 1. This first-order inhomoge-
neous differential equation has steady-state solution

1 ! . .
In(0) = ;/ dse™ " T Pog ()| Wa(5)) (Wa(s)[].  (B61)
0
Next, we obtain the band occupancies {p,(?)}, using

pa(t) =Y fult)ng. (B62)

Substituting in Eq. (Bol) and
3 W) (W (1) = Y (1) a (1), we obtain

identifying

1 ! ) o o
palt) = — / dse” "I T peg ()i ()Pa ()] (B63)
0

Next, we note that Tr[tﬁ;(s)l/?a(s)ﬁeq(s)] gives occupa-
tion probability of the ath band of the Hamiltonian H () in
equilibrium at temperature 1/ and chemical potential u.
We recognize this probability as fg(e,(s) — n) where fg(e)

denotes the Fermi-Dirac distribution at temperature 1/p.
Thus
1 t
pu) = 7 [ dse I et . o)
0

Note that p,(¢#) converges to its time-average in the limit
17! « Q, consistently with what we claimed in Eq. (B9).

We finally compute the time-average of p,(t). A straight-
forward computation shows

pu=jin 1 [t -, @63
t—00 0

which was what we quoted in Eq. (27) in the main text.

4. Derivation of current density

We finally obtain the expression for the current density in
Eq. (B6), i.e., we seek to show that

1 N .
=Tr[VH D] = Z Pate + O vp), (B66)

where 1, = %Vsa — %E x ,. Here and below, we take both
k and 7 to be implicit parameters.

As our first step, we combine Tr[,?)VH 1=
Zij(i|VH|j)Tr[,béjéj]. with 67 = Za(l/faﬁ)lﬁ;r to write

TrpVA] = ) (Yul VHIV5)gup,
af

(B67)

where gop = Tr[lﬁj[' @&ﬂ] and is computed in Appendix B 2d.
Combining Egs. (B57) and (B58) we can express g, in terms
of the band occupancies py,

p —

o
Eq —

8ap = BapPu + Mpa(l — 8ap) f;’ +00Y).  (B68)

Next, we use the spectral decomposition H = ), [¥o) (Ve €4
to find

(Vo VH| V) = 8apVey + iAgp(ea — €p), (B69)
where A, g = (Y| V). Combining Eqs. (B67)-(B69), we
hence find

TeVADI =Y puVea +i D (pa — pp)AupMpa
14 af

+ O vp). (B70)

We identify the first term in the right-hand side above as the
contribution arising from the group velocity.

To rewrite the second term, we use that |9,%,) =
Vo), implying Myg = FE - Aqp [114]. Thus

. e . :
D0 = o) Map A = 2D (pa = ppEi Ay A,
ap apB,i

(B71)
where .Afx P and E; denotes the ith vector component of Ayg
and E, respectively. Next, we note

D (a = pp) AL ALy = pu(Alg AL, — ALLAL).
af af
(B72)
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Using the definition of A, along with (y|d;14) =
— (0¥ |Vg), we find Zf, .AfmAéa = (0;V«|0;¥). Hence

> (pa — pp) Al g AL,
of

= Zpa((anﬂalaﬂﬂa) — (0jYa|0iYha)).  (B73)

We identify the right-hand side as —i ), , pu€;jx 2, where
€;jx denotes the Levi-Civita tensor and Q§ denotes the kth
component of €,. Thus,

> (Pe = o) A My = —i2 Y PuE X R (BT
aff o

Hence the second term in Eq. (B70) gives the contribution to
the particle velocity from the anomalous velocity. In particu-
lar, by inserting the above result into Eq. (B70), and dividing
through with 7, we establish Eq. (B66), which was the goal of
this subsection.

5. Derivation of auxiliary results

In this subsection we derive the auxiliary results, which
we quoted in the subsections above. Specifically, we derive
Egs. (B9), (B10), and (B21). These results are established in
Appendixes B5c, B5a, and B 5b, respectively.

a. Near stationarity of p, [Eq. (B9)]

We first show that p,, is nearly stationary.

Our starting point is the equation of motion for the diagonal
matrix elements of p(k,7) in the orbital basis, {f,(k,7)},
fut) = =D Ri™(1)fum(t). We note that R (k, ) is of
order I', but oscillates with characteristic frequency 2. As
a result, we expect f,(k,?) to deviate from its time average

fa(K), by a correction of order I'/<2,

filk, 1) = fi(k) + OQ). (B75)
Inserting this into Eq. (B58), we thus find
Pou = Pa + O()")a (B76)

where p, (k) denotes the time-average of p, (K, t), and we ne-
glected a correction of order A2, since it is subleading relative
to I'/Q.

b. Bounds on group velocity [Eq. (B10)]

We next establish the bounds on the group velocity in
Eq. (B10). To obtain this result, we note that %|Vaa| =
%|(wa|VH |Y4)| < vg. This establishes the first condition in
Eq. (B10).

To establish the second condition in Eq. (B10), we use that

ZE() x 2,(1) = iZﬁj(AaﬂMﬁa — Ay Mug).  (BTT)

This follows from Eq. (B74) after setting p, equal to 1 for one
particular choice of @ and O for all other choices. Next, we
use that |Augl = [(Vo|VH|Vg) /(e — €8)] < vp/Se. Since
[Magl S Ade [see Eq. (B28)], we thus conclude that £ [E(r) x
R, (t)] < Avg. This was what we aimed to show.

c. Expression for Ql (t) [Eq. (B21)]

We finally prove that, for each «, the unitary operator in
Eq. (B21),
0(1) = TeiJod! Xup Mmr’y/?;(r’)z/?ﬂ(t’)Vh (B78)

transforms the eigenmode of the Hamiltonian 1/701 (k, t) into
the orbital annihilation operator ¢,

Ol ()W ()01 (1) = &4.

We first note that Q 1(t) is quadratic and conserves the
number of fermions. Hence, QJ{ ()Y (t)Q;(¢) must be a linear
combination of the orbital annihilation operators,

Ol (a()01(t) = Kuilt)e

(B79)

(B80)

for some matrix K,;(t). Equation (B79) is satisfied if K;(¢) =
Bui-

We can find K,;(t) from the single—partjgle evolution of the
system, using [i) = &/10) and [, (1)) = ¥} (1)[0),

Koi(t) = (Yo (0)|Q1 (1)),

where Q(¢) is the operator O1(1) projected into the single-
particle space,

(B81)

01(1) = T o 4 Tup el Wp () Map(5) o Xy 1) TogM;
(B82)
Since M;; = (i|y;(0)), we find
e 1l log(M)y; Z i) (7M.
ij

Using D, 1) (jIMi; = =, [¥:(0))(il, we find

(B83)

Kai(t) = (Yo ()| T e o L MuOWOI 050l .0y (B84),
implying
Kyi(0) = 84 (B85)

To see that K,;(¢) also equals &,; at later times, we take the
time derivative above,

0, Koi(t) = <<3t%(t)| - iZAa,s(t)(W,s(t)l)Q1(t)Ii)-
B

(B86)
Since (Y (DI Yp()) = —(0Ya(IYp(t)), Map(t) =
RACAZIGINZIG)E This result, along with
> 5 Wp(@)) (Y1)l = 1, implies

(B87)

D Map)(p(t)] = —i (3, Ya (t)].
B

Using this in Eq. (B86), we conclude that 9;K,;(¢) = 0. Since
we found above that K, 4(0) = 84, it hence follows that

Kai(t) = 801[ (B88)

at all times ¢. Using this result in Eq. (B80), we conclude
that Eq. (B79) holds. This was what we wanted to show, and
concludes this Appendix.
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APPENDIX C: DERIVATION OF BOUND ON d,

Here we derive the condition for adiabaticity, which we
quote above Eq. (36) and the text above. That is, we seek to es-
tablish that the time dependence of H (k, t) can be considered
adiabatic for k points where

IR|leE
hv%

m[in |k + eA(t)/h| > (C1)

See main text for definition of quantities and notation.
Our starting point is Eq. (35), which states that the dynam-
ics of the system are adiabatic for k points where

h3,H(k + eA(t)/R)|| < 8&*(k + eA(t)/h) (C2)

for all 7.

We consider the dynamics near a Weyl point, where the
Hamiltonian takes the linearized foom H(k) = o - Rk + V - k
[see Eq. (1)]. We ignore the second term arising from the Weyl

cone tilt V, since it only affects the time evolution through an
overall phase factor. With this linearized form we find

se(k) = |RK|, (C3)

hl19,H (k + eA(r)/n)|| = e|RE()|. (C4)

Thus dynamics in the system are adiabatic if
e|RE(1)| < |R(K + eA(t)/h)|*. (C5)
We now use that |RE(¢)| < ||R||E, where E denotes the
characteristic magnitude of the driving-induced electric field.
Moreover, |Rv| = vg|v| where vy denotes the smallest eigen-
value of R. Combining these two inequalities with condition

(C5), we conclude that the time-dependence of the Hamilto-
nian is adiabatic if

ek
IRI— 5 valk + eA()/ (C6)

for all z.

Rearranging the factors above, we conclude that the dy-
namics of the system are adiabatic if condition (Cl) is
satisfied. This was what we wanted to show.
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