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Two-qubit gate using conditional driving for highly detuned Kerr
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A Kerr nonlinear parametric oscillator (KPO) is one of the promising devices used to realize qubits for
universal quantum computing. The KPO can stabilize two coherent states with opposite phases, yielding a
quantum superposition called a Schrödinger cat state. Universal quantum computing with KPOs requires three
kinds of quantum gates: Rz, Rx , and Rzz gates. We theoretically propose a two-qubit gate Rzz for highly detuned
KPOs. In the proposed scheme, we add a parametric drive for the first KPO. This leads to the Rzz gate based on
the driving of the second KPO depending on the first-KPO state, which we call “conditional driving.” First, we
perform simulations using a conventional KPO Hamiltonian derived from a superconducting-circuit model under
some approximations and evaluate the gate fidelity. Next, we also perform numerical simulations of the two-qubit
gate using the superconducting-circuit model without the approximations. The simulation results indicate that
the conditional-driving gates can be implemented with high fidelity (>99.9%) for rotation angles required for
universality.
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I. INTRODUCTION

Superconducting circuits (SCs) are considered as a promis-
ing platform for implementing practical quantum computation
[1–3]. The physical properties of superconducting qubits have
garnered much attention since the first realization of a super-
conducting qubit about two decades ago [4,5]. Inspired by
cavity quantum electrodynamics (QED) in atomic physics and
quantum optics, circuit QED has also been developed [3,6–9]
and has improved technologies, such as qubit readout [10],
parametric amplifiers and oscillators [11–13], and various
quantum-optics experiments [14,15].

Moreover, a charge-based superconducting qubit robust
against stray electric field noise was proposed [16,17]. The
qubit is called a transmon, and it has become standard as a
SC qubit. The transmon can be regarded as a nonlinear LC
circuit whose nonlinearity originates from Josephson junc-
tions, and also as an anharmonic oscillator with the Kerr
effect.

As a further development, a parametric oscillator formed
by nonlinear LC circuits whose Kerr nonlinearity is larger than
the single-photon loss rate has attracted interest as a qubit,
which is called a Kerr nonlinear parametric oscillator (KPO)
[18–20]. Although Kerr nonlinear oscillators with/without
parametric drive were theoretically studied more than two
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decades ago [21–26], the KPO has recently attracted intense
attention again because of recent intriguing theoretical pro-
posals for quantum annealing [18,20,27–32] and gate-based
quantum computing [19,20,28,33–38]. A KPO can stabilize a
quantum superposition of coherent states with opposite phase
[18–20,33,34,39], which is often called a Schrödinger cat
state. A KPO is similar to a Josephson parametric oscilla-
tor (JPO) using a SC [13]. KPOs have been implemented
experimentally with superconducting quantum interference
devices (SQUIDs) [40,41] or by a superconducting nonlinear
asymmetric inductive element (SNAIL) transmon [42]. For
gate-based quantum computing using KPOs, three kinds of
gates are required for universality: Rx gate (X rotation), Rz

gate (Z rotation), and Rzz gate (ZZ rotation) [19,33,38]. The
Rzz gate can be realized by controlling a linear coupling be-
tween two KPOs [19,33]. The single-qubit gates (Rx, Rz) have
been experimentally demonstrated, although the angle of one
of them was limited, that is, not continuous [42]. In contrast,
the two-qubit gate (Rzz) for KPOs has not been experimentally
realized yet.

In this paper, we theoretically propose a two-qubit gate for
highly detuned KPOs coupled with a fixed coupling rate. Dur-
ing idle time, the coupling between the KPOs is effectively
turned off because of the large detuning between the KPOs.
To perform a two-qubit gate, we add a parametric drive for the
first KPO, the frequency of which is set to the sum of the KPO
frequencies. This leads to the generation of photons with the
second-KPO frequency through a three wave mixing process
in the first KPO, resulting in the driving of the second KPO
depending on the first-KPO state, which we call “conditional
driving.” The conditional driving is physically similar to the
previously demonstrated cat-quadrature readout for a KPO
[42]. The Rzz gate can be realized using the conditional driving
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FIG. 1. Circuits of the two-qubit gate for KPOs using three-wave
mixing (irradiated with the sum frequency). ω j is the eigenfrequency
of KPO j ( j = 1, 2).

induced by a gate pulse of the parametric drive, which we call
the conditional-driving gate.

We propose a SC model of two coupled KPOs for the Rzz

gate and derive a simple model from the SC model under some
approximations. Using these models, we show that high gate
fidelity (>99.9 %) can be achieved for rotation angles required
for universal quantum computing.

This paper is organized as follows. In Sec. II, we propose
a two-qubit gate for highly detuned KPOs and show a SC for
that. For simplicity, we start with the explanation of a single
KPO and derive a conventional KPO Hamiltonian, which we
call a simple model, from the SC model under some approx-
imations. Next, we explain a SC model of the two-qubit gate
for two coupled KPOs and derive a simple model under the
same approximations. In Sec. III, using the simple and SC
models, we demonstrate numerically that the Rzz gate can be
implemented with high fidelity. In Sec. IV, we investigate the
effect of single-photon loss for the gate fidelity. Finally, we
conclude this paper in Sec. V.

II. MODEL

A. Rzz gate and SC

We propose the Rzz gate for highly detuned KPOs. The
proposed SC is shown in Fig. 1, where two KPOs are imple-
mented as transmons with a dc-SQUID array [40], and they
are connected with a coupling capacitance. The frequencies
of KPO1 and KPO2 are denoted by ω1 and ω2, respec-
tively. Because of the large detuning, the coupling between
the two KPOs is effectively turned off during idle time. To
perform the Rzz gate, a parametric drive (flux modulation of
the dc-SQUID array) for KPO1 with the sum frequency ω3 (=
ω1 + ω2) is added into the parametric drive with frequency
of 2ω1, as shown in Fig. 1. Then, the two-mode squeezing
between KPO1 and KPO2 is turned on, because of the three-
wave mixing (Fig. 2) due to the nonlinearity of Josephson
junctions in KPO1. The two-mode squeezing is known to
be sufficient for realizing the Rzz gate [43]. This process is
also explained qualitatively as follows. The three-wave mix-
ing leads to difference-frequency generation of a photon of

FIG. 2. Three-wave mixing induced by the sum-frequency (ω3 =
ω1 + ω2) drive in KPO1. This leads to difference-frequency genera-
tion of a photon of ω2 from a pump photon of ω3 and a KPO1 photon
of ω1.

ω2 = (ω3 − ω1) from a parametric pump photon of ω3 and a
KPO1 photon of ω1, as shown in Fig. 2. The photons of ω2

propagate to KPO2 via the coupling capacitance. Since the
phase of the generated photons of ω2 depends on the phase of
KPO1, the phase of KPO2 is rotated depending on the phase
of KPO1, resulting in the Rzz gate (ZZ rotation) [19,20,33].
(A more theoretical explanation is given in Sec. II C.) We
thus refer to this gate as a conditional-driving gate. We also
investigate the Rzz gate with a difference-frequency drive. (See
Appendix B.)

B. Single KPO

Before discussing two KPOs, we explain the single-KPO
case for simplicity. We also derive a simple model under some
approximations, which is useful for parameter setting.

The SC of a KPO in Fig. 1 with a time dependent ex-
ternal magnetic field proportional to θ0 − δp cos ωpt in the
dc-SQUID array is governed by the following Hamiltonian
[40] (See Appendix A):

Ĥ = 4ECn̂2 − NEJ cos(θ0 − δp cos ωpt ) cos
ϕ̂

N
, (1)

where ωp is the parametric pump frequency (ωp = 2ω1 in
Fig. 1), N is the number of dc SQUIDs in the array, EC is
the charging energy of shunt capacitance, EJ is the Joseph-
son energy, and n̂ and ϕ̂ are the Cooper-pair number and
phase-difference operators, respectively, satisfying the com-
mutation relation [ϕ̂, n̂] = i. Equation (1) can be rewritten
using bosonic operators â† and â as

Ĥ = ω1â†â − NEJ cos(θ0 − δp cos ωpt ) cos
ϕ̂

N

− NEJ cos θ0 · ϕ̂2

2N2
, (2)

where ω1, n̂ and ϕ̂ are defined as

ω1 =
(

8ECẼJ

N

) 1
2

, n̂ = i

(
ẼJ

32NEC

) 1
4

(â† − â),

ϕ̂ =
(

2NEC

ẼJ

) 1
4

(â† + â), (3)
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FIG. 3. Average photon number of a single KPO. (a) Simple model. (b) SC model. (c) Difference between (a) and (b). The parameters are
set as (EC/h, δp,max, T, ω1/2π, N)=(300 MHz, 0.050, 2 μs, 10 GHz, 5). h is the Planck constant. The other parameters are obtained by their
definitions such as Eqs. (3) and (5).

where ẼJ (= EJ cos θ0) is the effective Josephson energy.
Assuming a sufficiently small pump amplitude (δp � 1)

and performing the rotating-wave approximation (RWA) in a
rotating frame of half the pump frequency ωp/2 and in the
transmon limit (EC/EJ � 1), we obtain the Hamiltonian in
the simple model as

Ĥ = �â†â − K
2 â†2â2 + P

2 (â†2 + â2), (4)

where � (� ω1 − ωp/2) is the detuning, and the Kerr coeffi-
cient K and the parametric pump amplitude P are defined by

K = EC

N2
, P = δp

(
ECẼJ

2N

) 1
2

tan θ0. (5)

With the small amplitude both models [Eqs. (1) and (4)] give
approximately the same results as shown below. In this work,
we set θ0 = π/4 and � = 0. The Hamiltonian in Eq. (4) has
two degenerate eigenstates |±α〉 with α = √

P/K [20,33],
which are used as computational basis states.

We calculate the difference in the average photon number
between the SC and simple models for a single KPO. In
Eq. (2), we set the pump frequency as ωp = 2ω̃1, where ω̃1

is the single-photon resonance frequency of KPO1 obtained
by numerically diagonalizing Ĥ in Eq. (4). We also set the
parameters as EC/h = 300 MHz, P = 4K , ω1/2π = 10 GHz,
and N = 5. The other parameters are obtained by their defini-
tions such as Eqs. (3) and (5).

Figure 3 shows the dependence of the average photon
numbers in the two models, where we solve the Schrödinger
equation with δp(t ) = δp,maxt/T , where T is a sweeping time
of δp. Figure 3(c) illustrates the difference between the two
models. The photon number can be increased up to about 10
with a small amplitude such as δp = 0.05 in both models.
In this region, δp is small enough to suppress the effect of
the counter-rotating term, which was investigated in [44]. The
fast oscillations with small amplitudes in both models are due
to nonadiabatic evolution. An even smaller oscillation is also
shown in Fig. 3(c), which is probably due to fast oscillating
terms dropped by the RWA.

C. Two coupled KPOs

The SC model of the two coupled KPOs shown in Fig. 1 is
given by (see Appendix A for detail)

Ĥ =
∑
j=1,2

Ĥj + V̂ , Ĥ1 = ω1â†
1â1 − NEJ1 cos(θ0 − δ1 cos ωp1t − δg(t ) cos ω3t ) cos

ϕ̂1

N
− NẼJ1 · ϕ̂2

1

2N2
,

Ĥ2 = ω2â†
2â2 − NEJ2 cos(θ0 − δ2 cos ωp2t ) cos

ϕ̂2

N
− NẼJ2 · ϕ̂2

2

2N2
, V̂ = 16EC1EC2

EC0 + EC1 + EC2
n̂1n̂2, (6)

where Ĥj is the Hamiltonian of KPO j ( j = 1, 2), δ j and ωp j

are the parametric pump amplitude and frequency, (respec-
tively, for KPO j), EC0 is the charging energy for the coupling
capacitor, and δg is the amplitude of the gate pulse defined as

δg(t ) = pg0

(
2N

EC1ẼJ1

) 1
2 tanh βt

Tg
tanh[β(1 − t

Tg
)]

tanh2 β

2 tan θ0

, (7)

where pg0 and Tg denote the peak value of the gate pulse and
the gate time, respectively, and β is a parameter determining
the rise time of the gate pulse.

The Hamiltonian of the simple model is derived in a similar
manner to the single-KPO case (see Appendix A for details):

Ĥ =
∑
j=1,2

Ĥj + ĤI + Ĥg,

Ĥj

h̄
= −K

2
â†2

j â2
j + P

2

(
â†2

j + â2
j

)
,

ĤI

h̄
= g

(
â1â†

2e−i�12t + â†
1â2ei�12t

)
,

Ĥg

h̄
= pg(t )

2

(
â2

1e−i�12t + â†2
1 ei�12t

)
, (8)
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where g is a coupling constant (see Appendix A for its defini-
tion), �12 = ω1 − ω2, K, and P are given in the same manner
as Eq. (5), and the gate pulse is given by

pg(t ) = pg0

tanh βt
Tg

tanh
[
β(1 − t

Tg
)
]

tanh2 β

2

. (9)

When �12 is sufficiently larger than any other parameters,
the effect of ĤI can be regarded as zero, since the factor
e−i�12t oscillates very fast. By the gate pulse described by
Ĥg, the parametric oscillation amplitudes of KPO1 become
±α1 = ±√

[P + pg(t )ei�12t ]/K . The second term with fast
phase rotation corresponds to photons of ω2 generated by
the difference-frequency generation (three-wave mixing) in
KPO1. This term cancels out the phase factor in ĤI, resulting
in turning on the coupling between the two KPOs. This is a
mathematical explanation of the conditional driving. Thus, the
Rzz gate can be performed by the conditional driving induced
by the gate pulse.

III. Rzz GATE SIMULATIONS

In this section, we show the simulation results of the Rzz

gate using both the simple and SC models.

A. Simple model

Using the Hamiltonian in Eq. (8), we solve the Schrödinger
equation to calculate time evolution of the two-KPO state
|ψ〉, and to evaluate the gate fidelity. For convenience, we
introduce the following two state vectors:

|ψeven〉 ∝ (|α〉 ⊗ |α〉 + |−α〉 ⊗ |−α〉),

|ψodd〉 ∝ (|α〉 ⊗ |−α〉 + |−α〉 ⊗ |α〉), (10)

where |±α〉 are coherent states with α = √
P/K . We set the

initial and ideal final state as

|ψ (0)〉 = N0(|ψeven〉 + |ψodd〉), (11)

|ψideal(�)〉 = N1(|�even〉 + ei�|�odd〉), (12)

where N0 and N1 are normalization factors, and

|�even〉 = Û0(Tg)|ψeven〉, |�odd〉 = Û0(Tg)|ψodd〉. (13)

Here we have introduced another rotating frame with the
time-evolution operator Û0(t ) without the gate pulse (δg = 0)
[45]. From the definition of the Rzz gate, the final state may be
approximately given by

|ψ (Tg)〉 � α1|�even〉 + α2|�odd〉,
α1 = 〈�even | ψ (Tg)〉, α2 = 〈�odd | ψ (Tg)〉. (14)

Hence we define the rotation angle of the Rzz gate as � =
θ2 − θ1, where θ1 and θ2 are the arguments of α1 and α2,
respectively. The gate fidelity of the Rzz gate is thus defined
by

F = |〈ψideal(�) | ψ (Tg)〉|2. (15)

Figure 4(a) shows the simulation results of the gate fidelity
using the simple model. We find that high fidelities over
99.9% can be achieved for � in the range from 0 to π/2,

FIG. 4. Simulation results for Rzz gate. F and � de-
note the gate fidelity and the rotational angle, respectively.
(a) Simple model. (b) SC model. The parameters are set
as (EC j/h, P, ω1/2π, �12/2π, g/2π, N, β, Tg)=(300 MHz, 4K ,
10 GHz, −1 GHz, 10 MHz, 5, 3, 40 ns). The other parameters are
obtained by their definitions such as Eqs. (3) and (5). The gate pulse
peak pg0 is increased up to 5K .

which is sufficient for universality. (We have also investigated
the Rzz gate using a difference-frequency drive [34], instead
of the sum-frequency one, and also obtained high fidelities
over 99.9%. Interestingly, the fidelity is a little lower than
in the case of the sum-frequency drive. See Appendix B for
details.)

B. SC model

Next, we perform numerical simulations using the SC
model. Using the Hamiltonian in Eq. (6), we solve the
Schrödinger equation and evaluate the gate fidelity, where
the initial state is set as Eq. (11). Using the ideal final
state defined by Eq. (12) and the final state obtained by the
simulation, the gate fidelity is also calculated by Eq. (15).
Figure 4(b) shows the gate fidelity of the Rzz gate in the SC
model. The Rzz gate can be performed with high fidelities over
99.9% in the range from 0 to π/2. [The gate fidelity using
a SC model with the difference-frequency drive is shown in
Fig. 7(b).]

IV. EFFECT OF SINGLE-PHOTON LOSS

Finally, we study the effect of single-photon loss of KPOs,
using the simple model. Taking the effect into account, the
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FIG. 5. Infidelity of Rzz gate for the rotation angle π/2 as a
function of single-photon loss rate T1 = γ −1 using the simple model.
The parameters are the same as in Sec. III A.

time evolution of the density operator ρ̂ can be written by the
following master equation:

∂t ρ̂ = − i

h̄
[Ĥ, ρ̂] + γ

2

∑
j=1,2

(
2â j ρ̂â†

j − ρ̂â†
j â j − â†

j â j ρ̂
)
,

(16)
where γ is the single-photon loss rate (T −1

1 ) of KPOs. We
evaluate the error rates of the Rzz gate by solving the mas-
ter equation with decay time T1 = γ −1 from 1 μs to 1 ms.
Figure 5 shows the infidelity 1 − F for the rotation angle �

of π/2 as a function of T1, where the fidelity is calculated
by

F = 〈ψideal(�)|ρ̂(Tg)|ψideal(�)〉 . (17)

The decay time in a recent experiment [42] is T1 = 15.5 μs,
which corresponds to 1 − F ∼ 2% in Fig. 5. Figure 5 also
shows that the infidelity below 0.1% will require a decay time
of longer than 500 μs. The error due to the single-photon
loss can be decreased by shorting the gate time. On the
other hand, the shorter the gate time is, the worse the gate
fidelity becomes owing to nonadiabatic evolution. These two
factors are in a trade-off relationship on the gate operation.
An analysis of this relationship will be carried out in future
work.

V. CONCLUSION

In this paper, we have proposed the conditional-driving
gate, which is the Rzz gate using conditional driving for highly
detuned KPOs. We have also proposed a SC composed of
two transmons with a dc-SQUID array (KPOs) coupled with
a capacitor. Using the simple and SC models of the proposed
SC, we have numerically demonstrated that the Rzz gate can
be performed with high fidelity (>99.9%) for rotation angles
required for universal quantum computing. We have also ex-
amined the effect of single-photon loss. The result suggests
that the error probability below 0.1% will require a decay
time of longer than 500 μs, which seems challenging but is
expected to be realized in the future, suggested by recent ex-
perimental advances [46]. We expect that this simple scheme

will be helpful toward the first realization of the two-qubit gate
for KPOs.
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APPENDIX A: SC HAMILTONIAN OF TWO KPOs

The SC Hamiltonian of coupled two KPOs (see Fig. 1) in
Eq. (6) is derived from the following Lagrangian:

L = T − U, T =
∑
j=1,2

Cj

2
φ̇2

j + C0

2
(φ̇1 − φ̇2)2,

= 1

2
φ̇

t
Mφ̇,

U = −
∑
j=1,2

NEJ j cos(θ0 − δ j cos ωp jt ) cos
ϕ j

N
, (A1)

where T and U are the kinetic and potential energy, C0 is
the coupling capacitance, Cj is the shunt capacitance, φ j is
the magnetic flux across the dc-SQUID array, N is the num-
ber of dc SQUIDs in the array, and EJ j is the Josephson
energy for a single dc SQUID for KPO j. Here the flux in
the dc-SQUID array is modulated with the external magnetic
field �ex such as π�ex/�0 = θ0 − δp cos ωpt (�0 is the flux
quantum). The kinetic energy can be rewritten in a com-
pact form using the following flux vector and capacitance
matrix:

φ̇
t = (φ̇1, φ̇2), M =

(
C1 + C0 −C0

−C0 C2 + C0

)
. (A2)

The charge Qj , which is the canonical conjugate of φ j , is given
by Q = Mφ̇, [Qt = (Q1, Q2)]. From the Legendre transfor-
mation, we obtain the following Hamiltonian:

H = 1

2
Qt M−1Q −

∑
j=1,2

NEJ j cos(θ0 − δ j cos ωp jt ) cos
ϕ j

N
.

(A3)

Imposing quantization on the Hamiltonian, we obtain the
quantum-mechanical Hamiltonian:

Ĥ = Ĥ0 + V̂

Ĥ0 = 4EC1(EC0 + EC2)n̂2
1 + 4EC2(EC0 + EC1)n̂2

2

EC0 + EC1 + EC2

−
∑
j=1,2

NEJ j cos(θ0 − δ j cos ωp jt ) cos
ϕ̂ j

N
,

V̂ = 16EC1EC2

EC0 + EC1 + EC2
n̂1n̂2, (A4)

where n̂ j, ϕ̂ j are the Cooper-pair number and phase-difference
operators satisfying the relation [ϕ̂i, n̂ j] = iδi, j . EC0 (EC j ) =
e2/2C0 (e2/2Cj ) is the charging energy of the corresponding
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FIG. 6. Three wave mixing processes using difference-frequency
drive. (a) Difference-frequency generation when ω1 > ω2. (b) Sum-
frequency generation when ω1 < ω2.

capacitance. Substituting the following into Eq. (A4),

n̂ j = i

(
ẼJ j

32NEC j

) 1
4

(â†
j − â j ), ϕ̂ j =

(
2NEC j

ẼJ j

) 1
4

(â†
j + â j ),

(A5)
we obtain Eq. (6). Performing the transmon approximation of
cos(ϕ̂ j/N ), we also obtain

Ĥ0 ≈
∑
j=1,2

EC0(EC1 + EC2)

EC0 + EC1 + EC2

(
ẼJ j

2NEC j

) 1
2

(â†
j − â j )

2

+ (EJ j − δ j cos ωp jt − δg(t ) cos ω3t )

×
(

EC j

2NEJ j

) 1
2

(â†
j + â j )

2 − EC j

12N2
(â†

j + â j )
4,

V̂ = − 4EC1EC2

EC0 + EC1 + EC2

(
ẼJ1ẼJ2

4N2EC1EC2

) 1
4

︸ ︷︷ ︸
g

(â†
1 − â1)(â†

2 − â2).

(A6)

Performing the RWA in a frame rotating at half the pump
frequencies, we can obtain the Hamiltonian in Eq. (8).

APPENDIX B: Rzz GATE USING
DIFFERENCE-FREQUENCY DRIVE

We also investigate the Rzz gate using the difference-
frequency drive, instead of the sum-frequency drive explained
in the main text. In this case, the three wave mixing process
generating photons of ω2 differs depending on whether ω1 >

ω2 or ω2 > ω1. The generation processes are shown in Fig. 6.
As shown in Fig. 6(a), when ω1 > ω2, photons of ω2 are
generated by difference-frequency generation with the gate
pulse of ω1 − ω2 and photons of ω1 in KPO1. On the other

FIG. 7. Simulation results for Rzz gate by the difference-
frequency drive when ω1 < ω2 [Fig. 6(b)]. (a) Simple
model. (b) SC model. F and � denote the gate fidelity and
the rotation angle, respectively. The parameters are set as
(EC j/h, P, ω1/2π, �12/2π, g/2π, N, β, Tg)=(300 MHz, 4K ,
10 GHz, −1 GHz, 10 MHz, 5, 3, 40 ns). The other parameters are
obtained by their definitions such as Eqs. (3) and (5). The gate pulse
peak pg0 is increased up to 20K .

hand, when ω2 > ω1, the photons of ω2 are generated by sum-
frequency generation with them in Fig. 6(b).

In the case of the difference frequency drive, the Hamilto-
nian in the SC model is also given by Eq. (6), but in the simple
model, Ĥg in Eq. (8) must be replaced by

Ĥg = pg(t )

2
cos(�12t )â†

1â1. (B1)

This Hamiltonian describes both difference-frequency and
sum-frequency generations shown in Figs. 6(a) and 6(b), re-
spectively, because cos(�12t ) has both ei�12t and e−i�12t .

The simulation results of the Rzz gate in the simple and
SC models are shown in Fig. 7. It is found that we can
also achieve high fidelities over 99.9% using the difference-
frequency drive.
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