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Riemannian geometry of optimal driving and thermodynamic length and its application to chemical
reaction networks

Dimitri Loutchko,* Yuki Sughiyama, and Tetsuya J. Kobayashi †

Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Received 26 April 2022; accepted 22 September 2022; published 20 October 2022)

It is known that the trajectory of an endoreversibly driven system with minimal dissipation is a geodesic
on the equilibrium state space. Thereby, the state space is equipped with the Riemannian metric given by the
Hessian of the free energy function, known as Fisher information metric. However, the derivations given until
now require both the system and the driving reservoir to be in local equilibrium. In the present article, we
rederive the framework for chemical reaction networks (CRN) and thereby enhance its scope of applicability to
the nonequilibrium situation. Moreover, because our results are derived without restrictive assumptions, we are
able to discuss phenomena that could not be seen previously. We introduce a suitable weighted Fisher information
metric on the space of chemical concentrations and show that it characterizes the dissipation caused by diffusive
driving, with arbitrary diffusion rate constants. This allows us to consider driving far from equilibrium. As the
main result, we show that the isometric embedding of a steady-state manifold into the concentration space yields
a lower bound for the dissipation when the system is driven along the manifold. We give an analytic expression
for this bound and for the corresponding geodesic, and thereby are able to dissect the contributions from the
driving kinetics and from thermodynamics. Finally, we discuss in detail the application to quasithermostatic
steady states.
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I. INTRODUCTION

In general thermodynamics, the importance of the Hessian
of the free energy function as a Riemannian metric has been
recognized as early as 1975 by Weinhold [1–3] and by Rup-
peiner [4]. In 1983 it was discovered by Salamon and Berry
that this metric controls the dissipation when the system is
driven endoreversibly between equilibrium states [5]. For this
reason, the concept to determine curves of minimal dissipation
from the Riemannian geometry of the parameter space was
termed thermodynamic length. The derivation required that
the driving is given by the explicit form dηi/dt = k(ηi

e − η)
for the extensive variables ηi characterizing the equilibrium
state of the system and ηi

e being the respective variables of
the reservoir, with a universal rate constant k. More recently,
a derivation using a statistical approach was given by Crooks
[6,7] based on a cyclic driving protocol. In 2012, Zulkowski,
Sivak, Crooks, and DeWeese have presented an exact and ex-
plicit computation of geodesics for a driven particle diffusing
in a one-dimensional harmonic potential [8].

These previous approaches were valid for endoreversible
driving, i.e., for such processes that both the system and the
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driving reservoir are in local chemical equilibrium and dissi-
pation takes place only at the boundary between the system
and the reservoir. This theory does not directly apply to sys-
tems in nonequilibrium or those with algebraic constraints.
Chemical reaction networks (CRN) are an important class
of such systems and we extend the concept of thermody-
namic length to chemical reaction networks in equilibrium
and nonequilibrium steady states.

The importance of chemical reaction networks derives
from the fact that they form the basis to model and understand
complex chemical processes on a molecular level [9,10]. They
are central to the understanding of biological function as well
as in many industrial applications [11–16], where tight control
and high efficiency of the reactions are mandatory.

For CRN, a physically meaningful driving dynamics
should be given by dxi/dt = ki(xi

e − x), where xi is the con-
centration of the ith chemical, xi

e the concentration of the
respective chemical in the reservoir, and ki the diffusion
rate constant across the boundary. This dynamics generalizes
the one given by Salamon and Berry and, more importantly,
it can perturb the CRN away from chemical equilibrium or
from a steady state. Furthermore, models of CRN found in
biochemical applications are often open CRN, and as such
might not exhibit equilibrium states. For such networks, the
dissipation caused by the driving between steady states is of
interest, yet it cannot be determined within the framework
available thus far.

The mathematical foundation of CRN theory was laid by
Horn, Jackson, and Feinberg [17–21], and the theory has
been refined and developed by employing various mathemat-
ical disciplines such as graph theory [22–24], homological
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algebra [25], and differential geometry [26]. In recent years,
it has become clear that CRN are most naturally analyzed
using geometrical methods: Algebraic geometry has led to
various important foundational results [27–30] for CRN with
mass action kinetics as well as applications to biologically
important networks and phenomena [31–33]. Meanwhile, in-
formation geometry has been successfully used to analyze the
geometry of thermodynamics within a stoichiometric com-
patibility class [34,35]. Finally, both approaches could be
merged within the framework of Hessian geometry [36–40].
This framework generalizes the global structure of the con-
centration space as studied in algebraic geometry and equips it
with the thermodynamic structure from information geometry.
Moreover, it reproduces the classical results [41–48] on the
thermodynamics of CRN. In [34,35,37–39], the information
geometric aspects of Hessian geometry, based on the Breg-
man divergence, have been thoroughly explored and linked to
thermodynamics. Here, we focus on the differential geometric
aspects of this Hessian geometry.

In this article, we quantify the dissipation caused by the
diffusive driving of a CRN coupled to a chemical reservoir.
We do not, however, account for the internal housekeeping
dissipation of the CRN in nonequilibrium states. The dis-
sipation due to driving is determined by the square of the
norm ‖ jD‖2

gK
X

of the driving flux jD with respect to the Rie-

mannian metric diag(x1k−1
1 , . . . , xnk−1

n ) on the concentration
space. Thereby it is assumed that the driving takes place in
the linear regime, i.e., that the chemical potentials of the
external driving reservoir are close to the chemical potentials
of the system throughout the process. The CRN, however, can
be arbitrarily far from equilibrium. The Riemannian distance
LX := dX (x0, x1) between two concentration vectors x0 and x1

on the concentration space is called thermodynamic length.
Its square is proportional to the minimal dissipation due to the
driving in the case that the driving flux jD and the reaction
flux jR obey the time scale separation ‖ jD‖ � ‖ jR‖, which
allows to ignore the reaction effects in the fast time scale.
The geodesic equations can be solved explicitly to yield the
optimal trajectory of the system x(t ) and the optimal driving
protocol xe(t ). This is Result 1, which is derived in Sec. II. The
total minimal dissipation �min

X of this process can be explicitly
computed as

�min
X = 4

T

∑
i

k−1
i

(√
xi

1 −
√

xi
0

)2

.

This is Result 2 of this article. Without any assumptions on
the time scales of jD and jR, the minimal total dissipation
�min

V ss caused by the driving of the system along the steady-
state manifold V ss between x0 and x1 on V ss is proportional
to the square length of the Riemannian distance between x0

and x1 on V ss (Result 3). The optimal system trajectory is
thus a geodesic and the optimal driving protocol can be de-
termined from the respective geodesic equations. The main
result (Result 4) follows from the isometric embedding of V ss

into concentration space and states that �min
V ss is bounded from

below by �min
X , i.e.,

�min
V ss � 4

T

∑
i

k−1
i

(√
xi

1 −
√

xi
0

)2

.

This lower bound is universal in the sense that it holds for
all possible steady-state manifolds irrespective of the reaction
kinetics of the CRN. The Results 1–4 are derived in Sec. II.

In Sec. III, the general results from Sec. II are applied to
the important class of quasithermostatic CRN. By definition,
these are all CRN whose steady-state manifold is given by

V ss = {x ∈ Rn
>0| log x − log xss ∈ ker[ST ]},

where xss is any steady state and S is the stoichiometric
matrix. This class includes all CRN with equilibrium states
that obey the thermodynamics of an ideal solution and all
complex balanced nonequilibrium steady states. An explicit
parametrization akin to the exponential family in informa-
tion geometry is used to derive an explicit expression for
the Riemannian metric on the parameter space, which yields
numerically solvable geodesic equations for any optimal driv-
ing problem. This parametrization is complemented by a
parametrization via conserved quantities, and its physical im-
portance is discussed. In particular, the parametrization via
conserved quantities is an important tool to treat the problem
of arbitrary driving protocols with the time scale separation
‖ jR‖ � ‖ jD‖, which we aim to investigate in the future.
Finally, in Sec. IV, we discuss possible extensions of our
approach to systems with nondiagonal Onsager relations.

Setup and notation

Notation. The logarithm and exponential functions of vec-
tors are taken componentwise and the resulting vectors are
elements of the linear dual of the original space, i.e.,

log

(∑
i

xiei

)
=

∑
i

log(xi )ei,

where {ei} is a basis for the vector space and {ei} the respective
dual basis. The reason for this convention is that the exp and
log maps appearing here are Legendre transformations.

By the symbol ◦ we denote the Hadamard product between
vectors, i.e.,(∑

i

xiei

)
◦

(∑
i

yiei

)
=

∑
i

xiyiei.

For the differential geometric formalism, we refer to the
textbook [49].

Chemical reaction networks (CRN). In this article, we con-
sider a chemical reaction network consisting of n chemicals
X1, . . . , Xn and r reactions R1, . . . , Rr . The jth reaction is
given by

Rj :
n∑

i=1

(S+)i
jXi →

n∑
i=1

(S−)i
jXi

with nonnegative integer coefficients (S+)i
j and (S−)i

j . These
coefficients determine the reactants and products of the reac-
tion [50]. The structure of the network is thus encoded in the
n × r stoichiometric matrix S = (Si

j ) with matrix elements

Si
j = (S−)i

j − (S+)i
j .
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The state of the reaction network is characterized by a vector
of nonnegative concentration values x = (x1, . . . , xn) ∈ Rn

>0,
where xi represents the concentration of the chemical Xi. We
denote the concentration space by X := Rn

>0. Finally, the dy-
namics of the CRN is governed by the equation

dx

dt
= S jR + jD, (1)

where jR = ( j1
R, . . . , jr

R) is the vector of reaction fluxes and
jD = ( j1

D, . . . , jn
D) is the vector of the external driving fluxes.

Choosing a kinetic model is tantamount to specifying jR as a
function of x. For any given kinetic model jR(x), we denote
the respective steady-state manifold by

V ss = {x ∈ X |S jR(x) = 0}.
The results in this article have general validity as they are not
based on the choice of a particular kinetic model for jR.

Chemical thermodynamics. In chemical thermodynamics,
the state of the system is characterized by concentration
vectors x ∈ X ⊂ Rn or, equivalently, by chemical potential
vectors μ, which live in the dual space Y := (Rn)∗. We denote
the bilinear pairing between the dual vector spaces by 〈., .〉.
The concentration and potential vectors are connected by Leg-
endre duality via the strictly convex free energy function ϕ(x)
and its Legendre dual ϕ∗(μ) as ϕ∗(μ) = maxx{〈x, μ〉 − ϕ(x)}
and μ(x) = argmaxμ{〈x, μ〉 − ϕ∗(μ)} and analogous varia-
tional characterizations of ϕ(x) and x(μ). Additionally, the
equality

ϕ(x) + ϕ∗(μ) = 〈x, μ〉 (2)

is satisfied for the Legendre dual pair of x and μ. Hereby, the
potential ϕ(x) is the Gibbs free energy [51], which takes the
form

ϕ(x) =
n∑

i=1

xi
(
μ0

i + log xi − 1
)

(3)

for an ideal dilute solution (or, equivalently, an ideal gas). The
vector μ0 ∈ (Rn)∗ is the vector of standard chemical poten-
tials and we choose the energy scale such that kBT = 1. This
explicit form of ϕ(x) will be used in calculations throughout
the text. This yields the x dependence of μ as

μ = μ0 + log x (4)

and, using Eq. (2), the explicit form of the Legendre dual
potential function [52] as

ϕ∗(μ) =
n∑

i=1

exp
(
μi − μ0

i

) =
n∑

i=1

xi. (5)

The strictly convex function ϕ(x) on the concentration space
X gives rise to a Riemannian metric via its Hessian

gX

(
∂

∂xi
,

∂

∂x j

)
:= ∂2ϕ(x)

∂xi∂x j
.

This is known as the Fisher information metric in information
geometry [53] and Weinhold or Ruppeiner metric in thermo-
dynamics [1,4]. Because the spaces we work with have global
coordinate systems, the metric can be globally represented by
a matrix. For the specific form of the convex function ϕ(x)

given in Eq. (3), the metric gX is represented by the diagonal
matrix

gX = diag

(
1

x1
, . . . ,

1

xn

)
. (6)

To account for the driving kinetics in the next section, we in-
troduce a diagonal weight matrix K = diag(k1, . . . , kn) with
ki ∈ R>0 and the weighted Fisher information metric on X as

gK
X := diag

(
1

k1x1
, . . . ,

1

knxn

)
, (7)

which relates to the Hessian metric gX as gK
X =

K−1/2gX K−1/2.
The Legendre duality between X and Y , together with

the Hessian metric gX and the Bregman divergence is the
setup leading up the Hessian geometry of CRN, which was
thoroughly explored in [37] and [38]. Here, we focus on the
Riemannian geometry based on the metric gK

X .

II. DISSIPATION VIA THERMODYNAMIC LENGTH

Throughout this section, we analyze the case of an ex-
ternally driven CRN between two states x0, x1 ∈ X in finite
time T . The full dynamics of the driven CRN is given by
Eq. (1). We let x(t )t∈[0,T ] denote the resulting integral curve
and let x0 = x(0) and x1 = x(T ). The driving is due to the
flux jD, which is controlled by the concentrations of chemicals
in the reservoir, and the resulting dissipation is evaluated in
Sec. II A. If the driving is faster than the chemical reactions,
i.e., ‖ jR‖ � ‖ jD‖, then the dynamics reduces to

dx

dt
= jD (8)

in the fast time scale and the optimal trajectory x(t )t∈[0,T ] is
a geodesic in the concentration space X , endowed with the
weighted Fisher information metric gK

X . In this case, the opti-
mal trajectory and the minimal dissipation can be calculated
analytically, as shown in Sec. II B.

If such a time scale separation does not exist, then the
problem of treating an arbitrary driving field jD is rather
intricate as the contributions to the dissipation and to the
dynamics generated by jD and by jR mix. Even if the time
scale separation ‖ jR‖ � ‖ jD‖ holds, although this constrains
the trajectory x(t )t∈[0,T ] to the steady-state manifold, the con-
tribution of the dissipation due to chemical reactions cannot be
neglected. More precisely, the part of jD, which is horizontal
to V ss will cause an additional dissipation by reactions in
which chemicals from the reservoir are interconverted within
the CRN. Because of the dependence on the details of the
particular CRN and of the driving protocol, we do not treat
this general case here.

The dissipation due to the horizontal part of the driving
field jD vanishes if one restricts jD to the tangent space Tx(t )V ss

of the steady-state manifold and imposes the initial condition
x0 ∈ V ss. This implies that the dynamics is again described by
Eq. (8) and that the trajectory x(t )t∈[0,T ] is restricted to the
steady-state manifold. In this case, as shown in Sec. II C, the
optimal trajectory is given by a geodesic on V ss and can be
explicitly computed whenever a parameter manifold for V ss is
known.
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A. Dissipation

We assume that the system is in contact with an exter-
nal reservoir and can exchange all its chemicals X1, . . . , Xn

via diffusion with the reservoir, with diffusion rate constants
k1, . . . , kn. The reservoir is thereby characterized by the time-
dependent concentration vector xe(t ) = (x1

e (t ), . . . , xn
e (t ))

and the corresponding chemical potential vector μe(t ), which
satisfy μe(t ) = μ0 + log xe(t ). The diffusion flux is given by
Fick’s law, i.e., the flux vector field on X is

jD(x, t ) = K (xe(t ) − x(t )), (9)

where K = diag(k1, . . . , kn) is the matrix of diffusion rate
coefficients. In the following, we suppress the time depen-
dence of the variables for the sake of clarity of exposition.
In addition, we assume that the external reservoir potential
vector is close to the system potential vector, i.e., μe ≈ μ.
Then the relation

μe − μ = ∂μ

∂x
(xe − x) = gX (xe − x) (10)

holds [54], where gX is the Fisher information metric intro-
duced in Eq. (6). This leads, using Eqs. (9) and (10), to the
dissipation rate at the boundary as

σD = 〈 jD, μe − μ〉 = 〈 jD, gX (xe(t ) − x)〉
= 〈 jD, K− 1

2 gX K− 1
2 jD〉.

= ‖ jD‖2
gK

X
, (11)

where gK
X is the weighted Fisher information metric intro-

duced in Eq. (7). This expression is the reason for introducing
the weights to the standard Fisher information metric: The
dissipation rate at the boundary between the system and the
reservoir is given by the squared norm of the driving vector
jD(x, t ). Together with Eq. (8), this allows to relate the dissi-
pation rate to the squared speed of the integral curve x(t ) and
the total dissipation to its integral.

B. Optimal fast driving

If the time scale separation ‖ jR‖ � ‖ jD‖ holds, which we
call the fast driving regime, the optimal system trajectory x(t ),
the corresponding driving protocol xe(t ), and the minimal
dissipation can be determined analytically. In the fast driving
regime, the dynamics of the driven system obeys Eq. (8) and
therefore the dissipation rate is given by Eq. (11),

σD =
∥∥∥∥dx

dt

∥∥∥∥
2

gK
X

.

The total dissipation �X is therefore

�X =
∫ T

0

∥∥∥∥dx

dt

∥∥∥∥
2

gK
X

dt . (12)

Applying the Cauchy-Schwarz inequality to the integral yields

�X � 1

T

(∫ T

0

∥∥∥∥dx(t )

dt

∥∥∥∥
gK

X

dt

)2

= 1

T
L2

X , (13)

where LX is the length of the curve x(t ). For the trivial weight
matrix K = I , this is known as thermodynamic length [5] and

we also use this term for the lengths of curves on spaces
endowed with the weighted Fisher metric. The equality in
Eq. (13) holds if and only if the speed of the curve, ‖ dx

dt ‖gK
X
,

is constant. In this case, x(t ) is a geodesic. If it is a minimal
length geodesic, then both the length LX of the curve and the
integral �X of the squared speed are minimized. In this case,
LX is equal to the distance between x0 and x1 on the space X ,
i.e.,

Lmin
X = dX (x0, x1) = min

γ :[0,T ]→X
γ (0)=x0
γ (T )=x1

∫ T

0

∥∥∥∥dγ (t )

dt

∥∥∥∥
gK

X

dt .

For the driving field given by diffusion, i.e., jD = K (xe − x),
and the weighted Fisher information metric gK

X , the geodesic
equations are

d2xi

dt2
− 1

2xi

(
dxi

dt

)2

= 0

for i = 1, . . . , n, cf. Appendix A. They have the explicit so-
lution

xi(t ) = −
(√

xi
1 −

√
xi

0

)2 t

T

(
1 − t

T

)
+

+xi
1

t

T
+ xi

0

(
1 − t

T

) (14)

for t ∈ [0, T ]. The second term of the expression describes
a linear trajectory in concentration space, which would yield
the shortest path in the standard Euclidean metric, and the first
term shows the correction due to the non-Euclidean geometry
of the concentration space. Interestingly, the optimal curve
x(t ) does not depend on the details of the driving kinetics,
i.e., it is identical for all possible values of the diffusion rate
constants ki. In other words, the optimal curve is determined
purely by the thermodynamics of the system via the Hessian
gX . This is the first main result of this section:

Result 1. The optimally driven curve x(t ) in the fast
driving limit is given by Eq. (14). It does not depend on
the diffusion rate constants but only on the thermodynam-
ics of the system.

Moreover, using Eqs. (8) and (9), the optimal driving pro-
tocol can be computed as

xe(t ) = K−1 dx

dt
+ x(t ). (15)

With the explicit solution at hand, Eq. (11) yields the dis-
sipation rate and Eq. (12) the total dissipation in the driving
process and thus the second main result:

Result 2. The optimally driven system under fast driving
has the constant dissipation rate

σ min
D = 4

T 2

∑
i

k−1
i

(√
xi

1 −
√

xi
0

)2

and the minimal total dissipation is

�min
X = 4

T

∑
i

k−1
i

(√
xi

1 −
√

xi
0

)2

. (16)

The corresponding distance LX is known as the weighted
Hellinger distance, which is a commonly used quantity to
measure the similarity between two distributions [55]. The
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results are not only significant in the fast driving regime but
they provide lower bounds for dissipation when the trajectory
x(t ) is restricted to the steady-state manifold, as is shown in
the following section.

C. Driving between arbitrary steady states

In this section we consider the case that the driving field jD
is constrained to the tangent space Tx(t )V ss of the steady-state
manifold with the initial condition x0 ∈ V ss. This implies that
the integral curve x(t ) is restricted to V ss and therefore the
term S jR(x(t )) in Eq. (1) vanishes for all points on the curve
by definition of V ss. Thus, the dynamics is given by

dx

dt
= jD

and the dissipation rate is given by σD = ‖ dx
dt ‖gK

X
as before.

Now, the integral curve is restricted to V ss and by the same
argument as before, the minimal length curve on V ss between
x0 and x1 will minimize the dissipation. This can be made
precise (and accessible to direct computation as demonstrated
in Sec. III) as follows: Without loss of generality we assume
that V ss is connected and thus parametrized by a connected
manifold M, i.e., there is an embedding

f : M → X

with im[ f ] = V ss. Defining the metric on M as the pullback

gK
M := f ∗gK

X

makes the embedding f isometric and thus the dissipation rate
can be written as

σD =
∥∥∥∥dx

dt

∥∥∥∥
2

gK
X

=
∥∥∥∥dm

dt

∥∥∥∥
2

gK
M

,

where f (m) = x. The total entropy production is bounded
from below by

�V ss =
∫ T

0

∥∥∥∥dm

dt

∥∥∥∥
2

gK
M

dt � 1

T
L2
V ss ,

where LV ss is the length of the curve m(t ) on M, which is
bounded from below by the distance dV ss (m0, m1) between
m0 := f −1(x0) and m1 := f −1(x1) on M, i.e.,

LV ss � dV ss (m0, m1) = min
γ :[0,T ]→M
γ (0)=m0
γ (T )=m1

∫ T

0

∥∥∥∥dγ (t )

dt

∥∥∥∥
gK

M

dt .

This leads to the following result:
Result 3. In the case that the system is driven on the
steady-state manifold, the dissipation �V ss , which is
caused by the driving, is minimized if and only if m(t ) is
a geodesic on M. In this case, the minimal dissipation
reaches its lower bound, which is given by

�min
V ss = 1

T
dV ss (m0, m1)2.

The integral curve on the concentration space is
x(t ) = f (m(t )) and the corresponding driving protocol is

FIG. 1. Illustration of the approach to the lower bound for the to-
tal dissipation �min

Vss . The isometric embedding of V ss (represented by
the green surface) into the concentration space X allows to compare
the lengths of the geodesics dVss and dX on V ss and X between the
two points x0, x1 ∈ V ss as dVss � dX . The relations �min

X = d2
X /T and

�min
Vss = d2

Vss/T show that �min
Vss � �min

X . The latter can be explicitly
computed, cf. Eq. (16), and the former is a lower bound for the
dissipation when the system is driven on V ss with any protocol, thus
yielding Result 4.

given explicitly by

xe(t ) = K−1Jf
dm

dt
+ f (m),

which follows from Eq. (15) and where Jf is the Jacobian
of f at m(t ). This result holds independently of any time
scale separation between jD and jR.

Finally, the isometry of the embedding f implies that

dX (x0, x1) � dV ss (m0, m1)

and thus �min
X � �min

V ss . This is illustrated in Fig. 1. We are led
to the main result of this article:

Result 4. The total dissipation �V ss for a driving process
on the steady-state manifold is bounded from below by

�V ss � 4

T

∑
i

k−1
i

(√
xi

1 −
√

xi
0

)2

.

This lower bound is achieved if and only if the system is
driven on the optimal curve for the fast driving regime,
given by Eq. (14).

Note that nonequilibrium steady states have a nonzero
dissipation rate caused by continuously ongoing chemical
reactions. Our approach does not take this dissipation into
account, but only gives a recipe for minimizing the dissipation
caused through the driving.

For an arbitrary CRN, the parametrization of the steady-
state manifold f : M → X is, in general, not available. In
fact, even when jR is given by mass action kinetics, the deter-
mination of steady states involves highly nontrivial algebraic
geometry and must be carried out for each CRN individually
[56]. Yet, the Result 4 holds irrespectively of any of the
complicated details of V ss.
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III. DRIVING IN QUASITHERMOSTATIC CRN

If an explicit parametrization of the steady-state manifold
is available, then one can aim to determine the minimal total
dissipation �min

V ss and the optimal driving protocol along V ss,
based on Result 3. In this section, this is carried out for the
class of quasithermostatic CRN.

Quasithermostatic CRN, as defined by Horn and Jackson
in [17], are characterized by the following particular form of
the steady-state manifold

V ss = {x ∈ X | log x − log xss ∈ ker[ST ]}, (17)

where xss is a particular solution of the equation S jR(xss) = 0.
The quasithermostatic property derives its importance from
the fact that all equilibrium states of ideal solutions and
complex balanced steady states of CRN with mass action
kinetics are quasithermostatic. The class of quasithermostatic
CRN is, however, even broader because there exist qua-
sithermostatic CRN that belong to neither of the two classes
mentioned above [57]. In the following, we give two possi-
ble parametrizations of quasithermostatic steady states and
illustrate each with an explicit calculation of the geodesic and
minimal dissipation based on Result 3.

A. Exponential parametrization of quasithermostatic CRN

By choosing a basis u∗
1, . . . , u∗

q of ker[ST ] and writing
U ∗ = (u∗

1, . . . , u∗
q ) for the n × q matrix of basis vectors, the

characterization in Eq. (17) can be rewritten as

V ss = {xss ◦ exp(U ∗η∗)|η∗ ∈ Rq}. (18)

Thus, we obtain the parametrization of V ss via the embedding

f : Rq → X (19)

η∗ → xss ◦ exp(U ∗η∗).

This structure has been thoroughly studied in algebraic geom-
etry [27,30], where V ss was shown to be a toric variety and
explicit formulas for xss were obtained using the matrix-tree
theorem. In the particular case that V ss is the equilibrium
manifold of a closed CRN, xss is given by exp(−μ0). In
this article, the analytification V ss of the toric variety from
algebraic geometry is used. We call V ss a toric manifold.

We now treat the Riemannian geometry of the quasither-
mostatic steady-state manifold V ss. The pullback of the metric
gX to Rq can be computed as

gK
Rq = f ∗gK

X =
(

∂x

∂η∗

)T

gK
X

(
∂x

∂η∗

)

= JT
f gK

X Jf .

With the Jacobian explicitly given by Jf = DU ∗, where D :=
diag(x1, . . . , xn). Note that D can be explicitly expressed in
the η∗ coordinates by using Eq. (19). We obtain the desired
metric on the parameter space Rq as

gK
Rq = (U ∗)T K−1/2DK−1/2(U ∗). (20)

Although we could not solve the geodesic equations on Rq in
an analytically closed form, they can be solved numerically
for any given CRN. The following example illustrates this.

Example. Consider the following nonlinear chemical reac-
tion network

with stoichiometric matrix S = (−1 4)T . The space ker[ST ] is
spanned by the vector u∗ = (4 1), the space of η∗ variables is
one-dimensional, i.e., it is given by R1, and the metric gK

R1 is
given by

gK
R1 = 16k−1

A xA
ss exp(4η∗) + k−1

B xB
ss exp(η∗)

according to Eq. (20). The geodesic equation for η∗ is

d2η∗

dt2
+

(
64k exp(3η∗) + 1

32k exp(3η∗) + 2

)(
dη∗

dt

)2

= 0, (21)

with k := kBxA
ss

kAxB
ss

. Figure 2(a) shows the geodesic on the steady-
state manifold determined by Eq. (21) and the geodesic on the
space X , which is determined by Eq. (14), with the numerical
parameter values given in the figure caption. The curves are
color coded by the speed of the driving, which is given by
the Euclidean norms of dx

dt and df (η∗ )
dt , respectively. The speed

of the curves is also shown in Fig. 2(b) and as a function
of time. The speed increases with increasing norm of the
coordinate x for both curves, whereby the system driven on
V ss has the greater acceleration. As both curves are geodesics,
their speed with respect to the metric gK

X must be constant,
as is confirmed by the numerical results shown in Fig. 2(b).
The total dissipation for the optimal driving along V ss is

�min
V ss = T ‖ df (η∗ )

dt ‖2

gK
X

≈ 0.20, with the lower bound �min
X =

T ‖ dx
dt ‖

2

gK
X

≈ 0.17.
For linear CRN, i.e., CRN where all the reaction complexes

consist of exactly one chemical, the geodesic on X , given by
Eq. (14), and the geodesic on V ss coincide (see Appendix C).
In this case the equality �min

V ss = �min
X holds and �min

V ss can be
computed by Eq. (16). In order to illustrate the difference
between �min

V ss and �min
X we have thus chosen an example with

a strong nonlinearity. But even in the nonlinear case, �min
X

provides a good estimate for �min
V ss . This is not only the case

for the given example but for various other CRN that we have
analyzed numerically. In future work, we aim to analytically
quantify the error in estimating �min

V ss by �min
X by relating it to

the curvature of V ss.

B. Parametrization via conserved quantities

In addition to the parametrization of the steady-state man-
ifold V ss of quasithermostatic CRN as a toric manifold, given
by Eq. (19), the manifold V ss can be parametrized by the
vector of conserved quantities η = (U ∗)T x, with the matrix
U ∗ introduced in the previous section and x ∈ V ss [58]. This is
based on Birch’s theorem [27,59], which states that the inter-
section of V ss with the stoichiometric polytope P(η) := {x ∈
X |(U ∗)T x = η} exists and is unique, i.e., the map (U ∗)T :
V ss → Rq, defined by x → (U ∗)T x, has a unique inverse
given by

h : E → X (22)

η → V ss ∩ P(η),

where E := (U ∗)TV ss is the image of V ss. This is the
parametrization of quasithermostatic steady states by the vec-
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FIG. 2. Illustration of optimal driving of the A � 4B CRN, us-
ing the numerical values xA

ss = 0.1, xB
ss = 0.5, kA = 100, kB = 20,

η∗
0 = −2, η∗

1 = log 2 and T = 1; with x0 = f (η∗
0 ) and x1 = f (η∗

1 ).
(a) Trajectories of the system being driven from x0 to x1. The lower
curve x(t ) is the optimal curve on the whole concentration space,
given by Eq. (14) and the curve xe(t ) (yellow) is the corresponding
optimal driving protocol, given by Eq. (15). The curve f (η∗(t )) is
the optimal curve on the steady-state manifold V ss (light blue). The
curves x(t ) and f (η∗(t )) are color coded according to the speed of
the driving, given by the Euclidean norm of the tangent vector dx

dt .
In (b), the Euclidean norms, which give the speed of the driving,
and the ‖.‖gK

X
norms (their 10-fold values are plotted here for better

visibility), which govern the dissipation, of the tangent vectors x(t )
and f (η∗(t )) are plotted for the course of the driving.

tor of conserved quantities. The geometrical reason for the
uniqueness of this intersection is the generalized orthogonal-
ity between V ss and P(η), as discussed in [37,38]. Figure 3
illustrates this.

Although the map h cannot be given in analytically closed
form, its Jacobian can be computed. First note that the map
h−1 f is the coordinate change from η∗ to η variables and its
Jacobian is given by

Jh−1 f =
(

∂η∗

∂η

)
= (U ∗)T DU ∗,

FIG. 3. Illustration of the parametrization of points on a manifold
of quasithermostatic steady states V ss via the vector of conserved
quantities η. The codimension of V ss in X is the dimension of
the stiochiometric polytope P(η) and therefore a zero-dimensional
intersection set is expected in general. The dual orthogonality from
Hessian geometry [37,38] or, alternatively, Birch’s theorem from al-
gebraic geometry [27], ensure that the intersection consists of exactly
one point for each η ∈ E . As such, this structure is a foliation of X ,
with the base manifold being V ss and the leaves being P(η). In other
words, V ss is the moduli space of stiochiometric compatibility classes
of the CRN. In the figure, it is illustrated how the P(η) and P(η′)
correspond to parallel affine spaces in X , that cover all of X and are
indexed by points on V ss.

where f is the map given in Eq. (19). Using Jf = DU ∗ leads
to

Jh = Jf Jf −1h = Jf J−1
h−1 f = DU ∗((U ∗)T DU ∗)−1

. (23)

Thus, defining the weighted Fisher information metric gK
E on

E by

gK
E =

(
∂η∗

∂η

)T

gK
Rq

(
∂η∗

∂η

)
= JT

f −1hgK
Rq J f −1h

= (
(U ∗)T DU ∗)−1

(U ∗)T K−1DU ∗((U ∗)T DU ∗)−1

(24)

makes the parametrization h : E → V ss isometric [60]. This is
summarized in the following diagram:

(25)

With the respective metrics gK
E , gK

Rq , and gK
X |V ss , the maps in

the upper row of the diagram are isometries and thus the dis-
sipation through finite time driving can be computed on either
of the three spaces. The embedding ι : V ss → X is isometric
and allows for the explicit computation of lower bounds for
the total dissipation due to the driving as stated in Result 4.

Finally, we remark that the coordinates η and η∗ are Leg-
endre dual, see [38] for details.
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C. Applicability of the two parametrizations

The metric gK
Rq does have an analytically closed expression

in the η∗ coordinates via Eqs. (19) and (20). Therefore, the
space Rq of η∗ parameters, equipped with the metric gK

Rq , is
suitable for explicit computations. The example in Sec. III A
can be generalized to arbitrary quasithermostatic CRN, i.e.,
the geodesic equations in η∗-coordinates on Rq can be ex-
plicitly written and numerically solved for a given set of
parameters to obtain the optimal system trajectory, the optimal
driving protocol and the minimal total dissipation.

In contrast, there is no analytically closed expression for
the metric gK

E on the space E of η coordinates. However,
the vector of conserved quantities η has an intuitive physical
meaning and is a natural tool to analyze the case of the time
scale separation ‖ jR‖ � ‖ jD‖. In the case of arbitrary driving
fields jD, the time scale separation ‖ jR‖ � ‖ jD‖ results in
a slow time scale dynamics on V ss, which is determined by
the pushforward (U ∗)T x(t ) = η(t ) of the trajectory x(t ) to
the space of conserved quantities. While the detailed analysis
of this scenario is dependent on the details of the CRN, the
slow dynamics on V ss can be reproduced by the trajectory
h((U ∗)T x(t )). The corresponding driving protocol is given by

xslow
e (t ) = K−1Jh(U ∗)T dx(t )

dt
+ h((U ∗)T x(t )). (26)

However, this formula requires the evaluation of the function
h. This can be circumvented by transforming the original driv-
ing field jD into a driving field j∗D on the tangent space TV ss of
the steady-state manifold. For each x ∈ V ss and t ∈ [0, T ], the
change in steady state, which is the state that the system will
eventually relax to after the disturbance caused by jD(x, t ), is
described by the change of the vector of conserved quantities.
The latter quantity is given by the pushforward J(U ∗ )T jD(x, t )
to the tangent space T(U ∗ )T xE . There is one and only one vector
field j∗D(x, t ) on TxV ss, which causes the same change in the
vector of conserved quantities as jD(x, t ). It must be given by
the pushforward of J(U ∗ )T jD(x, t ) to V ss, i.e.,

j∗D(x, t ) := JhJ(U ∗ )T jD(x, t ).

Using the explicit formula for the Jacobian Jh given in
Eq. (23), one obtains the desired vector field as

j∗D(x, t ) = DU ∗((U ∗)T DU ∗)−1
(U ∗)T jD(x, t ).

This approach is illustrated in Fig. 4. One verifies by a direct
calculation that J(U ∗ )T j∗D = J(U ∗ )T jD and therefore jD and j∗D
indeed induce the same slow dynamics on V ss. Moreover, in
the case that jD is already a vector field on the tangent space of
V ss, the equality j∗D = jD holds. Therefore, when considering
arbitrary driving fields and the time scale separation ‖ jR‖ �
‖ jD‖, this construction plays an important role. In future work,
it has to be supplemented by an analysis of the dissipation
caused by the relaxation of the system to V ss through chemical
reactions.

IV. DISCUSSION AND OUTLOOK

In this article, we have analyzed the application of the
Riemannian geometry with a weighted Fisher information
metric to the dissipation in driven chemical reaction net-
works. This geometry should be thought of as an infinitesimal

FIG. 4. The construction of a driving vector field j∗D tangent to
V ss from an arbitrary driving field jD such that both fields generate
the same slow dynamics on V ss. At each point xss ∈ V ss, the vector
field jD will drive the system away from V ss in general. However,
if the time scale separation ‖ jR‖ � ‖ jD‖ holds, the steady state
reached after such a perturbation will be determined by the change
in the vector of conserved quantities 	η = η′ − η, i.e., by the push-
forward J(U∗ )T jD to the tangent space T(U∗ )T xss

E . All tangent vectors
at xss, which lie in P(η′) have the same pushforward. Among them,
there is exactly one, which is tangent to V ss. This is the desired
driving field j∗D. Note that in this construction, both stoichiometric
polytopes P(η) and P(η′) lie in Txss X and not in X .

and weighted version of the Hessian geometry established in
[37,38], where information geometric aspects based on the
Bregman divergence were analyzed. Inspired by the classical
results on thermodynamic length, we have shown that the
dissipation rate is given by the speed of the integral curve if
either the diffusion is fast or the driving generates curves that
lie on the steady-state manifold. Thereby, we have presented
a mathematically and physically precise derivation of this
formula based on the physical model of diffusion of chemicals
between the system and the reservoir. Moreover, we were
able to explicitly include the diffusion rate constants into the
calculation. This was the reason to introduce weights in the
various Fisher information metrics.

The careful mathematical setup allowed us, almost effort-
lessly, to obtain several new results for the dissipation in
driven chemical reaction networks. If the diffusion of the driv-
ing is faster than the chemical reactions, a complete analytical
solution was given: The optimal curve in concentration space,
the optimal driving protocol and the minimal total dissipation
were determined. Interestingly, it was found that the optimal
curve does not depend on the diffusion rate constants, i.e., it
is determined purely by the thermodynamics of the system,
whereas the optimal driving protocol depends on the kinetics.

Then, without any assumption on the time scales, if the
driving proceeds along the steady-state manifold, the geodesic
equations were formulated on the respective parameter space.
For the case of quasithermostatic steady states, the equa-
tions were derived explicitly and thus they can be numerically
solved for any given CRN. More importantly, the isometric
embedding of the steady-state manifold into the concentration
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space was used to obtain a lower bound for the total dissi-
pation. This bound is universal as it is independent of the
particular kinetic model jR(x) and is valid for any steady-state
manifold. In all numerical examples we investigated thus far,
this bound turned out to provide a good estimate for the actual
total dissipation. Thereby the estimation error seems to grow
with the curvature of the steady-state manifold and it will be
a future challenge to make this precise.

Seen through the lens of general thermodynamics, this
article shows that the concept of thermodynamic length can be
extended to the nonequilibrium situation. This is necessitated
by the physically meaningful driving of the concentration
variables x instead of the extensive parameters η, which char-
acterize the equilibrium system. In regard to the original
derivation in [5], where only a specific driving field on the
space of η parameters is considered, we have shown how
the isometric embedding into a larger state space can yield a
more detailed understanding of the driving kinetics and enable
the calculation of explicit bounds.

The explicit analytical results obtained in this article shed
light on time-reversed driving: Results 1 and 3 show that
the optimal system trajectory for the driving from x1 to x0

will be the time-reversed trajectory caused by the optimal
driving from x0 to x1. However, the driving protocols will
follows different paths (see Appendix C for a discussion of
time reversal illustrated with an example). This leads to the
conclusion that the approach taken in [6] to compute the total
dissipation for the driving between x0 and x1 is strictly valid
only in the T → ∞ limit for the trivial weight matrix K = kI
with a uniform rate constant k ∈ R>0.

Recently, Yoshimura and Ito have derived dissipation
bounds for CRN by information geometric techniques
[34,35]. These bounds hold for the nondriven reaction dy-
namics within a fixed stoichiometric polytope P(η), whereas
the bounds derived in the present article hold for the comple-
mentary case of driving the η parameter and thus constantly
changing the polytope. This begs the question about a unify-
ing framework for the two approaches.

In future work, it will be interesting to address the gen-
eral case of an arbitrary driving protocol and without any
assumptions on time scale separation or restrictions of the
direction of the driving field. Thereby, the results from [37], in
particular the Pythagorean theorems, will be useful to evaluate
the contribution to dissipation through chemical reactions.
Furthermore, the minimization of the total dissipation, includ-
ing the internal dissipation of the CRN, will provide a useful
extension of our results and valuable insights into the driving
of nonequilibrium systems [40].

Another way of driving a CRN can be realized by the
time-dependent variation of the kinetic rate constants. This
approach is known under the expression “shortcuts to adia-
baticity” [61] and has been applied to CRN [62]. In [63], the
minimal dissipation during the driving of a Markov network,
which is mathematically equivalent to a linear CRN, has been
found to be given by an expression analogous to our Result
2. This motivates to investigate whether there exists a frame-
work, which unifies these results with the ones obtained in the
present article.

There are further conceptual questions that have been
raised by the presented analysis. The weighted metric gK

X

should be thought of as an Onsager matrix for the fluxes jD
and the corresponding forces μe − μ. This is in line with the
interpretation of the metric as the generalized friction tensor
given in [8]. It will be a rewarding future challenge to work
out the geometry of optimal driving for arbitrary Onsager ma-
trices. Moreover, the fact that the calculated optimal curve did
not depend on the particular details of the driving kinetics and
was of thermodynamical origin requires a thorough physical
explanation. It might be necessary to employ a mathematically
more advanced framework to disentangle the contributions
from kinetics and thermodynamics, which are mixed within
the matrix gK

X in our current approach.
Apart from the theoretical insights and questions raised in

this article, we have provided another tool to better understand
biochemical reaction networks and to aid in the design and
optimization of operational protocols in industrial chemical
applications.
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APPENDIX A: GEODESIC EQUATIONS

On a Riemannian manifold X with local coordinates
(x1, . . . , xn) and Riemannian metric

gi j = g

(
∂

∂xi
,

∂

∂x j

)

the geodesic equations read

d2xk

dt2
+

n∑
i, j=1


k
i j

dxi

dt

dx j

dt
= 0.

Hereby, the Christoffel symbols are given by


m
i j = 1

2

n∑
k=1

[
∂

∂xi
gjk + ∂

∂x j
gki − ∂

∂xk
gi j

]
gkm

and gkm are the matrix elements of the inverse of g = (gi j ),
which is given by a matrix in local coordinates. See, for
example, [49] for more details.

APPENDIX B: OPTIMAL DRIVING IN LINEAR CRN

A CRN is called linear if each reaction has exactly one re-
actant and one product. Linear CRN with mass action kinetics
are mathematically equivalent to Markov chain models on a
graph, which are widely used in stochastic thermodynamics.
Whereas the latter strictly obey the conservation of proba-
bility, the conserved quantities in linear CRN can be driven.
In this Appendix it is shown that the optimal driving on the
steady-state manifold of a linear quasithermostatic CRN, as
described in Result 3, coincides with the optimal driving on
X , given in Result 1.

Without loss of generality, consider a linear CRN with one
linkage class [64]. The stoichiometric matrix S of the CRN is
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identical to the negative incidence matrix of the digraph with n
vertices given by the chemicals X1, . . . , Xn and directed edges
between Xi and Xj iff there is a reaction Xi → Xj . Therefore
ST has a one-dimensional kernel spanned by u∗ = (1 1 . . . 1)
and there is one conserved quantity given by

η =
n∑

i=1

xi.

The steady-state manifold is given by V ss = {xss ◦
exp(η∗)|η∗ ∈ R}, which yields the parametrization of all
x ∈ V ss via the conserved quantity η ∈ R>0 as

x = η

ηss
xss,

where ηss = 〈u∗, xss〉 = ∑n
i=1 xi

ss. Thus, the metric on E =
R>0 is given by Eq. (24) as

gK
E = (

(U ∗)T DU ∗)−1
(U ∗)T DK−1U ∗((U ∗)T DU ∗)−1

= 1

ηηss

n∑
i=1

xi
ssk

−1
i ,

which gives the Christoffel symbol 
 = − 1
2η

and the geodesic
equation for η,

d2η

dt2
− 1

2η

(
dη

dt

)2

= 0.

This equation has the explicit solution

η(t ) = −(
√

η1 − √
η0)2 t

T

(
1 − t

T

)
+

+η1
t

T
+ η0

(
1 − t

T

)
,

(B1)

where η0 = η(0) and η1 = η(T ). The ideal driving on V ss

between the points x0 = η0

ηss
xss and x1 = η1

ηss
xss thus follows the

trajectory

x(t ) = η(t )

ηss
xss. (B2)

The total dissipation is given by

�min
V ss = T σ min = T

dη(t )

dt
gK
E

dη(t )

dt

= 4

ηssT
(
√

η1 − √
η0)2

n∑
i=1

xi
ssk

−1
i

= 4

T

n∑
i=1

k−1
i

(√
η1

ηss
xi

ss −
√

η0

ηss
xi

ss

)2

= 4

T

n∑
i=1

k−1
i

(√
xi

1 −
√

xi
0

)2

.

FIG. 5. Reversal of driving: an example. The example from
Fig. 2 with the assumption that no reactions take place between A
and B is used here. The optimal protocol x f

e (t ) for the driving from
x0 to x1 is shown in yellow and the optimal protocol xb

e (t ) for the
driving from x1 to x0 is shown in blue.

This dissipation �min
V ss is equal to the lower bound �min

X stated
in Result 2 and thus the driving on the equilibrium manifold
coincides with the optimal driving for the fast driving regime
given by Eq. (14). This can also be verified by directly substi-
tuting Eq. (B1) into Eq. (B2).

APPENDIX C: REVERSAL OF DRIVING

The Results 1 and 3 imply that a system, which is optimally
driven from x0 to x1 will follow the same trajectory as the
optimally driven system from x1 to x0 with time reversal:
Denoting the former trajectory by x f (t ) and the latter by
xb(t ), the relation xb(t ) = x f (T − t ) for all t ∈ [0, T ] holds.
However, the same results show that this is not true for the
driving protocols x f

e (t ) and xb
e (t ). They lie on different curves

and cannot be identified under time reversal, even if one would
introduce a lag time. This is illustrated in Fig. 5. Therein,
the example from Sec. III A is considered with the additional
assumption that there are no chemical reactions between A
and B and thus that all of X is the equilibrium manifold. The
driving protocols x f

e (t ) and xb
e (t ) are different nonintersecting

curves.
For x f

e (t ) and xb
e (t ) to become the same curves, it is nec-

essary and sufficient that the matrix K is proportional to the
identity matrix and that the time limit T → ∞ is taken. In
this case, they are identified with the geodesic x(t ).
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