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Tunable stripe order and weak superconductivity in the Moiré Hubbard model
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The moiré Hubbard model describes correlations in certain homobilayer twisted transition metal dichalco-
genides. Using exact diagonalization and density matrix renormalization group methods, we find magnetic Mott
insulating and metallic phases which, upon doping, exhibit intertwined charge and spin ordering and, in some
regimes, pair binding of holes. The phases are highly tunable via an interlayer potential difference. Remarkably,
the hole-binding energy is found to be highly tunable, revealing an experimentally accessible regime where holes
become attractive. In this attractive regime, we study the superconducting correlation function and point out the
possibility of weak superconductivity.
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I. INTRODUCTION

Twisted moiré materials have attracted intense recent atten-
tion due to the range of correlated phenomena they exhibit and
their versatile experimental tunability. Exotic emergent phe-
nomena including correlated insulating states [1,2], quantum
critically, and tunable metal-insulator transitions (MIT) [3,4]
have been recently realized in the twisted WSe2 system, a typ-
ical class of transition metal dichalcogenides. The low-energy
physics of twisted WSe2 is well captured by the so-called
moiré Hubbard model, a variant of the standard triangular lat-
tice Hubbard model in which the electron hopping amplitude
acquires a spin-dependent phase [5–10]. The Hamiltonian H
of the moiré Hubbard model is the sum of kinetic (H0) and
interaction (HI ) terms with

H0 = −t
∑

σ=↑,↓

∑
r, j=1,2,3

(eiσφc†
r+a j ,σ

cr,σ + H.c.), (1)

and HI = U
∑

r nr↑nr↓ is the standard on-site repulsive Hub-
bard interaction. In Eq. (1), a1,2 are primitive lattice vectors
of the moiré triangular lattice with relative angle 2π/3, a3 =
−a1 − a2 shown in Fig. 1, and σ =↑,↓ represents the spin of
the electron.

The significant feature of the model is the spin-dependent
phase φ in hopping amplitude, teiσφ . Initially obtained from
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density functional theory (DFT) calculations [2], it captures
the effect of the displacement field (gate voltage difference)
between two layers. The displacement field breaks the in-
version symmetry between two layers. The introduced phase
is the simplest way of breaking inversion symmetry, which
breaks the C6 rotation symmetry of the original model down
to C3, and the fact that the phase is spin dependent guaran-
tees the time-reversal symmetry. φ produces a flux of 3φσ

per triangular plaquette, alternating in sign between adjacent
triangles and opposite for spin up and spin down. Since a
flux of 2π per triangular plaquette is equivalent to zero flux,
the model is invariant under φ → φ + 2π/3. Further, a flux
of π ≡ 3π per triangle corresponds to changing the sign of
the hopping along each bond, equivalent to a particle-hole
transformation. Thus, the spectrum of the model at density n
and phase φ is the same as at density 2 − n and flux φ ± π/3
[5–7,9].

Importantly, both the carrier concentration and the phase
are greatly tunable experimentally by the voltages associated
with each layer. The sum of the two layer voltages deter-
mines the chemical potential, while their difference, i.e., the
displacement field, tunes the phase φ [2,5–7,9]. In twisted
WSe2, physically achievable values of the displacement field
correspond to changes of φ over the range of −π

3 � φ � π
3 .

In this work, we explore the physics of the moiré Hub-
bard model along the aforementioned experimental tunable
degrees of freedom: doping and displacement field. Through
a combined exact diagonalization (ED) and density matrix
renormalization group (DMRG) study, we obtain unambigu-
ous numerical results that provide insight into the physics of
the moiré Hubbard model. Key results include an approximate
phase diagram at half-filling, carrier pairing, and indications
of superconductivity away from half-filling at nonzero dis-
placement fields.
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FIG. 1. Approximate ground state phase diagram at half-filling
on the Ns = 12 cluster from exact diagonalization. The colors denote
different quantum numbers of the first excited state. Red (blue)
colors correspond to Sz = 0 (Sz = 1) states at different momenta
and point group symmetry representations, see Appendix. The mag-
netic insulating regime at large U extends close to U = 0 for
φ = π/6, π/2, 5π/6. Two 120◦ Néel ordered states in the x-y plane
with opposite chirality are realized as well as an x-y ferromagnet.
The flux pattern of the moiré Hubbard model and the high symmetry
momenta in the Brillouin zone are shown bottom left and right.

II. PHASE DIAGRAM AT HALF-FILLING

To establish the ground state physics of the model Eq. (1)
at half-filling (N = Ns, where Ns is the number of lattice sites)
as a function of the interaction strength U/t and the flux φ,
we employ ED on finite periodic lattices [11]. We focus on
the Ns = 12 cluster, since this cluster is highly symmetric,
can stabilize 120◦ magnetic orders, and also features the M
point in the Brillouin zone, which we find to be important for
the low-energy physics of the system. The next larger cluster
featuring both the K and M point while having a C3 symmetry
would have Ns = 36, which is not within reach of ED.

The upper panel of Fig. 1 shows the phase diagram ob-
tained from ED, along with color-coded indications of the
momentum, point group representation, and the total mag-
netization Sz. In symmetry breaking phases, the quantum
numbers of the low-lying “tower-of-states,” which become the
degenerate ground states in the thermodynamic limit, can be
computed from group representation theory [12].

To complement this characterization of ground state phases
we computed the ground state magnetic structure factor (in the

x-y plane),

Sm(q) = 1

N

N∑
i, j=1

eiq·(ri−r j )
〈
Sx

i Sx
j + Sy

i Sy
j

〉
, (2)

as well as the single-particle gap �p,

�p = E0(m + 1, m) + E0(m − 1, m) − 2E0(m, m), (3)

and the spin gap �s,

�s = E0(m + 1, m − 1) − E0(m, m), (4)

where E0(m, n) denotes the ground state energy of the system
with a number of m electrons with spin up and n electrons with
spin down. The results as a function of U/t and φ are shown
in Fig. 2.

At large U/t , we find three different insulating regimes,
with three different magnetic orders in the x-y plane. For phase
φ ∈ (π/3, 2π/3) the spins orient ferromagnetically. This is
evident in the large value of the magnetic structure factor
at momentum � ≡ (0, 0) in Fig. 2(b). Consistent with this
interpretation, the first excited state has discrete momentum,
k = � = (0, 0), and nonzero magnetization, Sz = 1, as ex-
pected for a translationally invariant state with ferromagnetic
order. The insulating magnetic regimes at φ ∈ (0, π/3) and
φ ∈ (2π/3, π ) exhibit two peaks in the structure factor at
k = K0 ≡ (4π/3, 0) and k = K1 ≡ (2π/3, 2π/

√
3). This is

indicative of the planar 120◦ Néel order, which can have two
different chiralities. While the structure factor cannot distin-
guish between the two chiralities, the momentum of the first
excitation indicates which chirality is realized, with the first
excitation for φ ∈ (0, π/3) exhibiting excitation wave vec-
tor k = K0 while φ ∈ (2π/3, π ) yields momentum k = K1,
which distinguishes the two chiralities.

In order to distinguish the metallic from the insulating
regime, results for the single-particle gap �p as defined in
Eq. (3) are shown in Fig. 2(c). We find that indeed the magnet-
ically ordered regions coincide with regions of an enhanced
single-particle gap. The magnetic insulating regimes extend
close to U/t = 0 for values of φ = π/6, π/2, 5π/6.

These findings are consistent with previous results from a
Hartree-Fock approximation [6], where these three magnetic
orders at large U as well as a metallic regime at small U
were found. However, the MIT found here is shifted towards
larger values of U/t than the Hartree-Fock transition, con-
sistent with recent dynamical mean-field results [9] and with
more elaborate numerical results of the case φ = 0, where the
critical interaction strength for the MIT has been estimated to
be Uc/t ≈ 8.7 [13].

Apart from the magnetic regimes, Fig. 1 shows several
other regions with different quantum numbers of the first
excitations, each of which could indicate a different phase
being realized. At φ = 0, we find that in the intermediate
coupling regime 9 � U/t � 11 the lowest excited state has
Sz = 0, momentum q = �, and, importantly, a point group
representation E of the discrete dihedral point group D3. This
point group representation has been observed for chiral spin
liquids [14]. This observation would be consistent with recent
proposals of a chiral spin liquid in the intermediate coupling
regime at φ = 0 [15–17]. This putative chiral spin liquid
regime is suppressed by a finite displacement field, which
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FIG. 2. Magnetic order and gaps of the Ns = 12 cluster from ED. The magnetic structure factor Sm(q) evaluated at (a) points q = K and
(b) Brillouin zone center q = �, indicating 120◦ Néel order and ferromagnetic order in the x-y plane, respectively. We observe a discontinuity
as small values of U/t around special values of φ = π/6, π/2, 5π/6. (c) The single-particle gap �p indicates the insulating and metallic
regimes. (d) An enhanced spin gap �s is observed close to the transition from the magnetic insulator to the metallic regime, possibly indicating
nonmagnetic insulating states.

is consistent with the expectation that breaking the SU(2)
symmetry disfavors the formation of a spin singlet and hence
makes the spinon condensation harder to realize [8].

At the particular values φ = π/6, π/2, 5π/6 close to
U/t = 0 we observe several regimes where the first excitation
has momentum q = M ≡ (π, π/

√
3). The representation of

the ground state is also different from the surrounding regime.
Moreover, we observe a discontinuity in the structure factor in
Figs. 2(a) and 2(b). Therefore, this region could constitute a
separate, likely metallic, phase whose precise nature is yet to
be determined.

At the boundary of the magnetic insulators, we observe a
state with momentum q = M and Sz = 0, which could indi-
cate a nonmagnetic insulator. This would also be supported by
the fact that the spin gap shown in Fig. 2(d) is rather sizable in
this region and exhibits a discontinuity. Especially, we do not
observe any particular feature in the magnetic structure factor
in Figs. 2(a) and 2(b) in this regime. However, we cannot fully
exclude that this is an artifact of the finite cluster size, which
could render this particular state to be the lowest excitation.

III. PHYSICS AT SMALL HOLE DOPING

A. Intertwined spin and charge ordering

Away from half-filling, charge and spin modulations of
considerably larger wavelength than accessible by ED be-
come important. We therefore apply the DMRG method to
study the ground state properties of the system at small hole
doping on elongated cylindrical geometries. In this study, we
focus on the YC3 geometry shown in Fig. 3. The lattice is
chosen to have periodic boundary conditions along the short
cylinder length and open boundary conditions in the long

direction, as conventionally chosen for use in matrix product
state techniques. The cylinder is well suited to study the or-
dered phases since it resolves the momenta K0 and K1. While
YC4 and YC5 geometries of the triangular lattice Hubbard
model at half-filling have been studied to unravel a chiral spin
liquid [15,16], these geometries do not resolve the K points,
and would hence introduce unphysical frustration. Similarly,
twisted boundary conditions shift the resolved momenta. The
YC6 cylinder would be a suitable candidate system. However,
DMRG simulations at finite hole doping in addition to the
staggered magnetic field on the YC6 cylinder are currently
beyond our reach.

We focus on the case U/t = 8, which is believed to be
relevant in twisted WSe2 [2,4], where the system is metallic
for φ = 0 while insulating for φ = π/6 at half-filling. We pick
particular values of φ = 0, π/6, π/3, and π/2. The case
φ = 0 corresponds to the pure Hubbard model with nearest-
neighbor hopping, where previous DMRG studies suggested
the possibilities of pair-density wave [18] or chiral metal [19]
physics in this intermediate U regime. At φ = π/6 we are
doping the system which according to Fig. 1 exhibits 120◦
Néel order in the x-y plane at half-filling. For φ = π/2 the
system exhibits x-y ferromagnetic order at half-filling. In con-
trast, at φ = π/3 the system is metallic at half-filling.

We show ground state properties on the YC3 upon doping
the ferromagnetic state at φ = π/2 in Fig. 3. We observe a
regular charge density modulation, where two holes form one
stripe. The sign of the magnetic correlation switches on the
maximum of the respective hole density. Thus, the system
exhibits typical intertwined spin and charge order. Origi-
nally, such orders were proposed by Hartree-Fock studies on
the square lattice [20–23] and have as of now been firmly

FIG. 3. Hole density 1 − 〈ni〉 and spin correlation 〈Sx
i Sx

0 + Sy
i Sy

0〉 of the ground state on the 36 × 3 YC3 cylinder for U/t = 8 and small
hole doping p ≈ 0.074, corresponding to nh = 8 holes at φ = π/2. The reference site of the spin correlations is marked with the black cross.
We observe charge modulations with two holes per stripe. The spin correlation switches the sign at the maxima of the hole density, indicating
intertwined spin and charge ordering.
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FIG. 4. Intertwined charge and spin ordering on the 72 × 3 YC3
cylinder at hole doping p = 1/18 and U/t = 8. Blue and orange
indicate the cut through the Brillouin zone shown in the insets. The
peaks of spin structure factors in (a,b) are shifted by δ = π

√
3p from

the ordering vectors K0 (a) of the 120◦ Néel order for φ = π/6 and
� = (0, 0) in (b) for φ = π/2. The charge structure factor Sc(k)
in (c) is identical for φ = π/6 and φ = π/2 and is peaked at a
wave vector 2δ, indicating stripe order. For φ = π/3 in (d) no peak
indicating stripe order is observed. The behavior Sc(k) ≈ α|kx| at
small |kx| indicates a metallic state.

established as the ground states in certain parameter regimes
of the Hubbard model [24–28].

To quantify these observations, we computed the magnetic
structure factor Sm(k) and the charge structure factor,

Sc(k) = 1

N

N∑
i, j=1

eiq·(ri−r j ) 〈(ni − 〈ni〉)(n j − 〈n j〉)〉 , (5)

on the 72 × 3 YC3 cylinder at hole doping p = 1/18 (nh =
12) for different values of φ. Figure 4(a) shows the magnetic
structure factor Sm(k) for φ = π/6. We observed that its peak
is shifted from the ordering vector K0 of the 120◦ Néel order
by δ = π

√
3p = π

√
3(1 − n). Similarly, we observe a peak

in the charge structure factor Sc(k) at a wave vector of 2δ

in Fig. 4(c). Hence, stripe order where the wave length of
the charge modulations is half the wave length of the spin
modulation is also realized for φ = π/6 and the spin mod-
ulation is a modulation of the 120◦ order. To further verify the
case of stripe ordering for φ = π/2 shown in Fig. 3, Sm(k)
shown in Fig. 4(b) is similarly peaked at a small shifted wave
vector δ instead of � = (0, 0), which would indicate uniform
ferromagnetism. The charge structure factor in Fig. 4(c) is
identical for both φ = π/6 and φ = π/2, as expected from
symmetry. Finally, at φ = π/3 we do not observe any charge
ordering, as can be seen from the structure factor Sc(k) in
Fig. 4(d). Instead, we clearly observe that

Sc(k) ≈ α|kx| (6)

for small values of |kx|. This is a key feature of a metallic
state [29–32], as opposed to an insulating state, which would
be indicated by Sc(k) ≈ αk2

x . This agrees with the fact that

FIG. 5. Rung-averaged density nR as a function of position x at
small hole doping for U/t = 8.0 in the case of (a) φ = 0, (b) φ =
π/6, π/2, and (c) φ = π/3. The number of holes is denoted by
nh. The φ = π/6 and φ = π/2 yield identical density profiles as
guaranteed by the symmetry discussed in the main text. This density
profile indicates that single holes are separated at φ = 0, while pairs
of holes bind together to form a charge modulation at φ = π/6, π/2.
At φ = π/3 no clear charge density wave patterns are formed.

the parent state at half-filling from ED in Fig. 1 is already
metallic.

B. Effects of flux φ on hole binding

The charge structure factor Sc(k) in Figs. 4(c) and 4(d)
illustrates a nontrivial effect of the flux φ on the charge
degrees of freedom upon hole doping the parent states at
half-filling. To further investigate the effect of φ, we inves-
tigate the ground state electron density nR from DMRG for
different values of φ in Fig. 5 for U/t = 8. Results are shown
for hole doping with nh = 4, 6, 8 holes and φ = 0, π/6, π/3.
The density profile of φ = π/6 is identical to φ = π/2 due
to symmetry. For φ = 0 in Fig. 5(a) we find that the holes
remain separated from one another. Hence, we observe one
hole per stripe as previously reported in Ref. [18]. In contrast,
at φ = π/6 two holes bind together to form the charge mod-
ulation, so two holes per stripe are observed. Moreover, the
hole density at φ = π/3 does not show regular charge density
wave modulations, consistent with the absence of a peak in the
Sc(k) in Fig. 4(d). Therefore, by changing the value of φ the
system can be tuned from having repulsive, isolated holes to
paired holes forming stripes to a more uniform charge density
in a metallic state.
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FIG. 6. Hole-binding energy Eh−h and electron-binding energy
Ee−e as a function of φ evaluated on Ns = 12 for various values of
U/t . Negative hole-binding energies favor the formation of bound
hole pairs, consistent with the density profiles shown in Fig. 5.
Electron- and hole-binding energies are related by symmetry.

To quantify this effect of the flux φ on the charge degrees
of freedom, we investigate the hole-binding energy Eh−h and
the electron-binding energy Ee−e defined by

Eh−h = E (m − 1, m − 1) + E (m, m)

− E (m − 1, m) − E (m, m − 1) (7)

Ee−e = E (m + 1, m + 1) + E (m, m)

− E (m + 1, m) − E (m, m + 1), (8)

where E (m, n) denotes the ground state energy in the sector
with m up- and n down-electrons. The dependence of these
energies on the Ns = 12 cluster from ED for various values
of U/t is shown in Fig. 6. The hole-binding energy Eh−h is
strongly positive at φ = 0, which implies that it is energet-
ically more favorable to introduce two separate holes than
a pair of holes, consistent with the isolated holes shown in
Fig. 5(a). The value of Eh−h decreases as a function of φ,
eventually becoming negative and attaining a minimum be-
tween φ = π/6 and φ = π/3. Negative hole-binding energies
indicate that binding of two holes is energetically preferable
to having two isolated holes. The small hole-binding energy at
π/6 is thus consistent with having bound hole pairs as shown
in Fig. 5(b). Due to symmetry, the electron-binding energies
Ee−e are identical to the hole-binding energies Eh−h up to a
shift of φ = π/3.

C. Weak superconductivity

To determine whether the stripe state is accompanied by
superconductivity, we investigate the pairing properties of the
system. We focus on a particular set of parameters upon dop-
ing the 120◦ magnetically ordered phase, U/t = 8, p = 1/18
for both φ = 0 and φ = π/6. Superconductivity is diagnosed
by two means. First, we demonstrate off-diagonal (quasi)
long-range order in the pairing correlations. We consider the

FIG. 7. Singlet-pairing correlations ρS (r, x) = ρS (r, α|x, β ) for
U/t = 8 and p = 1/18 on the 72 × 3 cylinder as a function of
x = |ri − r j | for (a) φ = 0 and (b) φ = π/6. The reference point is
chosen as r = (5, 0) and we choose α = β = (1, 0). We extrapolate
data from finite bond dimension D to infinite bond dimension by fit-
ting a second-order polynomial to the truncated weight ξ in DMRG,
as shown in the insets. We fit both algebraic as well as exponential
decay to the extrapolated correlations. The long-distance behavior
of φ = 0 is well described by an exponential decay with correlation
length ≈4.47, while for φ = π/6 both an algebraic decay with expo-
nent ≈3.34 and an exponential decay with correlation length ≈9.63
can be fitted.

singlet pairing matrix ρS (riα|r jβ ),

ρS (ri, α|rk, β ) = 〈�†
ri (ri+α)�r j (r j+β )〉, (9)

where α, β denote the direction of the nearest-neighbor lattice
site on the triangular lattice and

�†
rir j

= 1√
2

(
c†

ri↑c†
r j↓ − c†

r j↑c†
ri↓

)
(10)

denotes the singlet-pairing operator. On elongated quasi one-
dimensional geometries, long-range order even at T = 0 is
excluded by the Mermin-Wagner theorem. Quasi long-range
order, i.e., algebraic decaying correlation functions, is in-
terpreted as an indication of true long-range order in the
fully two-dimensional system. We performed ground state
simulations for bond dimensions D = 2000, . . . , 8000 and
extrapolated towards infinite bond dimension. Results on
the 72 × 3 cylinder are shown in Fig. 7. The extrapolated
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FIG. 8. Spectrum of the singlet-pairing two-body density ma-
trix as defined in Eq. (11) at U/t = 8 on the 72 × 3 cylinder for
(a) φ = 0 and (b) φ = π/6. We compare different hole dopings with
nh = 0, 6, 12, 18 and show the largest 50 eigenvalues only. For finite
doping at φ = π/6 in (b) a small gap to the continuum of resid-
ual eigenvalues is observed upon doping the system. The number
of dominant eigenvalues equals the number of stripes, indicating
a fragmentation by the stripes of the superconducting condensate.
The absence of a large gap indicates only the possibility of a weak
superconductivity. For φ = 0 in (a), we do not observe a gap in the
eigenvalues and can therefore exclude superconducting order.

correlation function for φ = 0 is well described by an ex-
ponential decay with a correlation length of ∼4.47, shown
in Fig. 7(a). For φ = π/6 the correlation function is well
described by either algebraic decay with an exponent ≈3.34 or
an exponential decay with correlation length ≈9.63. It is thus
difficult to discern whether algebraic or exponential decay is
realized based on the present data.

As compared to similar studies on different superconduct-
ing phases, this exponent is rather large (which means the
superconductivity correlation is weak). Reference [33], for
example, reported an exponent η ≈ −0.96 for the supercon-
ducting state realized in the t-J model on the square lattice on
a width W = 4 cylinder. Hence, we interpret an exponent of
η = −3.34 as a sign of weak superconductivity.

As a second means of diagnosing superconductivity, we
investigate the spectrum of the nonlocal singlet density matrix,

ρ̂S (riα|r jβ )

=
{
ρS (riα|r jβ ) if {ri, ri + α} ∩ {r j, r j + β} = ∅
0 else. (11)

Upon Cooper pair condensation, we expect one or more
eigenvalues to become dominant over the residual continuum
of eigenvalues [34]. The spectra of ρ̂S (riα|r jβ ) for U/t = 8,
φ = π/6, and nh = 0, 6, 12, 18 on the 72 × 3 cylinder are
shown in Fig. 8. For φ = 0 in Fig. 8(a) we observe simply
a continuum of eigenvalues and no dominant eigenvalues,
indicating an absence of superconductivity. Similarly, for
φ = π/3 at half-filling nh = 0 shown in Fig. 8(b), we observe
a continuum of eigenvalues. However, for nh = 6 we observe
a small gap of three dominant eigenvalues to the continuum
of residual eigenvalues. Similarly, we observe six dominant
eigenvalues for nh = 12 and nine for nh = 18. Hence, the

number of dominant eigenvalues equals the number of stripes
in the system. While this phenomenon is analogous to the
superconducting state in the two-dimensional t-J model on
the square lattice, the gaps are smaller in magnitude. Whereas
for the robust superconductivity in the t-J model on the square
lattice gaps of the order of � ≈ 0.1 have been observed [34],
here we report a gap of order � ≈ 0.01. We again interpret
this small gap as a sign of weak superconductivity. However,
the spectrum in the hole-doped cases nh = 6, 12, 18 is clearly
gapped in Fig. 8, as compared to the half-filled case or φ = 0
without superconductivity, which indicates a condensate of
Cooper pairs forming on the stripes of the system.

IV. CONCLUSION AND DISCUSSION

The moiré Hubbard model is an effective description of the
low-energy physics of twisted WSe2, which features a spin-
dependent staggered flux through the plaquettes of a triangular
lattice. This model exhibits a rich phenomenology whose
central aspects we have now established by our combined
ED and DMRG study. We have established an approximate
phase diagram at half-filling, where at larger values of U/t two
magnetic regimes with 120◦ Néel order and one regime with
xy-ferromagnetic order is realized. In comparison to the pre-
vious Hartree-Fock study [6], the critical values of U/t of the
metal-insulator transition are shifted to larger values, in agree-
ment with more elaborate studies on the pure triangular lattice
Heisenberg model at φ = 0 [13,15]. At the particular values
φ = π/6, π/2, 5π/6 the magnetic insulating phases extend
up to U/t = 0 (within the numerical precision), which is also
apparent from the single-particle gap in Fig. 2(c). Since at
φ = 0 at intermediate values of 8 � U/t � 11 the model has
been shown to feature a nonmagnetic insulating (possibly spin
liquid) state, a natural question is where else to expect putative
spin liquid regimes. The spin gap in Fig. 2(d) is pronounced
close to the metal-insulator transitions, which could be a first
indication of a nonmagnetic insulating state. However, further
studies will be required to establish the phase diagram close
to the metal-insulator transition at nonzero values of φ.

Doping the parent magnetic insulating states leads to the
formation of intertwined spin and charge ordering such that
the wavelength of the charge modulations is half the wave-
length of the spin modulation at φ = π/6 and φ = π/2.
Interestingly, a nonzero flux φ leads to the formation of hole
pairs which we relate to a strong dependence of the hole-
binding energies on φ. While for φ = 0 individual holes are
strongly repulsive, at intermediate and large values of U/t
the hole-binding energy is found to be negative, leading to
an attractive force between the holes. Analogously, we find
that a finite value of φ can enhance the superconducting
pair correlation and lead to a gap in the eigenvalues of the
two-body density matrix. However, the pairing correlations
at U/t = 8 and φ = π/6 are still weak and can be fitted by
an algebraic decay with exponent ≈3.34 or an exponential
decay with correlation length ≈9.63 in units of the lattice
spacing, in either case too rapidly decaying to be consistent
with a physical superconducting phase. Similarly, the gap in
the spectrum of the two-body density matrix remains small.
It will be interesting to determine how the superconductivity
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FIG. 9. (a) Wigner-Seitz cell of the Ns = 12 simulation cluster
used for exact diagonalization. (b) Momentum resolution in recip-
rocal space of the Ns = 12 cluster. This cluster features the highly
symmetric K and M points.

can be further enhanced, for example by further frustrating the
magnetic order or tuning the value of the flux φ.

Pair-density wave (PDW) orders have been previously dis-
cussed in particular parameter regimes of Eq. (1). For φ = 0
in the case of the pure triangular lattice Hubbard model we
observe an alternating sign of the pairing correlation ρS (r, x)
in Fig. 7(a), similar to that observed in Ref. [18]. In our case,
however, the absolute values |ρS (r, x)| decay exponentially
fast with a rather short correlation length. From this we cannot
conclude that a PDW is realized at U/t = 8 and p = 1/18.
At nonzero φ, PDW order has also been suggested for small
values of U/t in DMRG [35] and renormalization group
[36] studies. For the parameters studied in this manuscript,
U/t = 8 and φ = π/6, π/2, we observe a uniform pairing
correlation inconsistent with a PDW state.

We note that, perhaps consistently with our finding of only
weak superconductivity, no superconductivity has yet been
observed in these materials, although superconductivity has
been observed in the closely related twisted bilayer graphene
materials [37]. This is in interesting counterpoint to the high
-Tc cuprate materials, a square lattice material family in which
robust superconductivity is observed. For the cuprates the ac-
cepted theoretical model is the square lattice Hubbard model.
Whether the ground state in certain parameter regimes is su-
perconducting is the subject of ongoing research [25] where
an absence of superconductivity in the unfrustrated case has
been noted [38]. However, in the closely related square lattice
t-J model robust superconductivity was recently established
[33,34,39,40].

More generally, the great tunability of the moiré materials,
in particular the ability to vary both carrier concentration and
the hopping phase over wide ranges in situ, offers promise of
a detailed comparison to theory. Displacement field-tunable
metal insulator transitions with interesting precursor phe-
nomena have been reported [1,4], along with indications of
metallic magnetic phases [1]. The plethora of interesting
phases found in our calculations encourage further experi-
mental searches for the stripe and potentially superconducting
phases predicted here. In favorable cases stripe phases may be

TABLE I. Character table for the irreducible representations of
the dihedral group D3 (left) and the cyclic group C2 (right).

D3 I C3 C3R

A1 1 1 1
A2 1 1 −1
E 2 −1 0

C2 I R
A 1 1
B 1 −1

observed via anisotropies in transport measurements, although
multidomain structures commonly occur and complicate the
observations. The spatial modulation of the charge density
occurring in a stripe may also be accessible to scanning
capacitance probes. Deeper theoretical and experimental un-
derstanding of the spin liquid phase that may occur near
U = 9t at φ = 0 and of the anomalous “transition” phases
separating the insulating magnet and nonmagnetic metal
phases are also important open questions.
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APPENDIX: GEOMETRY OF THE EXACT
DIAGONALIZATION CLUSTER

The geometryof the Ns = 12 site simulation cluster used
for the exact diagonalization calculations is shown in
Fig. 9(a). The cluster features the full sixfold rotational sym-
metry and a mirror reflection symmetry. In reciprocal space it
resolves the high symmetry momenta K , M, and X as shown
in Fig. 9(b). The moiré Hubbard model at φ �= 0 is only three-
fold rotationally symmetric but retains the mirror reflection
symmetry. In Fig. 1 we show the irreducible representation
(irrep) of the first excited state as a function of both U/t and φ.
The irreps are labeled by first their momentum quantum num-
ber k and then their point group representation ρ, e.g., K0· A2
refers to the state where k = K0 and ρ = A2. The point group
irreps are denoted by the standardized Mulliken notation [43].
The momenta k = � and k = K0, K1 have the little group D3
(dihedral group of order six), whereas the momenta k = M
and momenta k = X0, X1 have the little group C2. We list the
character table of these groups in Table I.
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