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Quantum spin Hall effect from multiscale band inversion in twisted bilayer Bi,(Te;_,Se, )3
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Moiré materials have become one of the most active fields in material science in recent years due to their
high tunability, and their unique properties emerge from the moiré-scale structure modulation. Here, we propose
twisted bilayer Bi(Te;_,Se,); as a moiré material where the moiré-scale modulation induces a topological
phase transition. We show, in twisted bilayer Bi,(Te;_,Se,);, a topological insulator domain and a normal
insulator domain coexist in the moir€ lattice structure, and edge states on the domain boundary make nearly flat
bands that dominate the material properties. The edge states further contribute to a moiré-scale band inversion,
resulting in moiré-scale topological states. There are corresponding moiré-scale edge states and they are so to
speak “edge state from edge state,” which is a unique feature of twisted bilayer Bi,(Te;_,Se,);. Our result not
only proposes characteristic quantum phases in twisted bilayer Bi,Te; family, but also suggests the twisting of
stacking-sensitive topological materials paves an avenue in the search for novel quantum materials and devices.

DOLI: 10.1103/PhysRevResearch.4.043045

I. INTRODUCTION

The twisted van der Waals heterostructure materials,
or moiré materials, have been studied very intensively in
recent years as a platform for exploring novel quantum
phases [1-24]. In those materials, moiré superlattices are
formed by the lattice misalignment with a small twist angle,
and the moiré superlattices produce flat electric bands and
various strongly correlated phases. In particular, the experi-
mental reports on the magic-angle twisted bilayer graphene
have stimulated this field [1,2]. They reported that the bilayer
graphene stacked with a twist angle 1.08° (magic angle),
which has been known to have flat bands near the Fermi
level, shows correlated insulating phases and superconducting
phases when the filling factor is tuned. Because the behavior
resembles the phase diagram of the high-temperature cuprate
superconductors, twisted bilayer graphene has attracted great
attention. The unique feature of the moiré material is its
high tunability. The twist angle is a tunable parameter spe-
cific to moiré materials. Furthermore, because the system is
two-dimensional (2D) and has a large moiré unit cell, the
filling factor can be tuned easily and significantly. This high
tunability allows us to find various quantum phases in a sin-
gle moiré material. Inspired by the twisted bilayer graphene,
moiré systems of some other layered materials have been
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studied. In the twisted bilayer transition metal dichalco-
genides (TMD), nearly flat bands have been theoretically
predicted on the valence band edge, and an experimental
signature of a correlated insulator phase has been re-
ported [25-36]. Also for other materials, such as hexagonal
boron nitride (hBN), the existence of nearly flat bands has
been suggested [37,38]. Although the tunability of moiré
materials is remarkable, research of moiré materials has
concentrated on the layered materials above. Hence, the
physics that describes their low-energy electronic states can
be qualitatively categorized into two groups, semimetallic one
(graphene) and insulating ones (TMD, hBN).

In this paper, we theoretically propose twisted bilayer
Bi,(Te;_.Se, )3 (Fig. 1) as a moiré material that hosts charac-
teristic low-energy electronic states described by a topological
phase transition and corresponding topological edge states.
Three-dimensional bulk Bi,(Te;_,Se,); is one of the van
der Waals heterostructure materials, and is well known as a
typical strong topological insulator [39-42]. For the thin-film
Bi, (Te;_,Se, ); case, it has been suggested that the topological
invariant strongly depends on the number of stacked lay-
ers [43]. Therefore, topological phase transitions are expected
to occur when the stacking order or interlayer distance is
changed. Generally in a moiré material, the local stacking
order and interlayer distance are modulated by the lattice mis-
alignment [20]. Combining the stacking modulation and the
stacking-sensitive topological insulator, we propose a Moiré
material with mixed topological insulator domain and normal
insulator domain.

II. EFFECTIVE MODEL FOR MOIRE MATERIALS

In this paper, to avoid confusion, an atomic-scale lattice
structure in an untwisted system is explicitly referred to

Published by the American Physical Society
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FIG. 1. Lattice structure of twisted bilayer Bi,(Te;_,Se,);. (a) Schematic picture of the moiré pattern in twisted bilayer Bi,(Te;_,Se,)s.
There are three in-plane atomic sites, A, B, and C sites, in the untwisted Bi,(Te,_,Se,)s;. The atomic lattices in the upper and lower layers
are drawn with red and blue markers, respectively. The solid rhombus represents the moiré unit cell. The three sampling points used in the
effective model are denoted with circles. (b) Schematic picture of the moiré BZ. The red and blue dashed hexagons are twisted atomic BZ
of the upper and lower layers, respectively. Gy ~ G are the moiré reciprocal lattice vectors that we used in the effective model. (c) Top and
horizontal views of the atomic lattice structures of untwisted bilayer Bi,(Te;_,Se,); for AA (left), AB (middle), and AC stacking (right), drawn
by VESTA [46]. Each of the upper and lower layers has five atoms in the atomic unit cell.

s “atomic lattice” and a moiré superlattice structure in a
twisted system is referred as “moiré lattice” (Fig. 1). The
words “atomic” and “moiré” are used in the same way for
other terms, such as atomic (moiré) Brillouin zone (BZ).
In Biy(Te;_,Se,)s, the relation between an atomic lattice
constant a and a moiré lattice constant L is written as a =
2L sin ¢ 7, Where 6 is a twist angle.

The moiré electronic states are calculated with an effec-
tive model within a small-angle approximation [44,45]. The
Hamiltonian of the effective model is given as

ao,B'o’
H = /dk Z Ztkk G,.G; owkcﬁ’a’k G’

ao,B'a’ G

ey

where ao and B'c’ are orbital-spin indices, and ¢’ (¢) is
a creation (annihilation) operator. The sum ZGI is taken

over seven moiré reciprocal lattice vectors Gy ~ G¢ (Gy = 0,
4 . . .
1G1z0| = [—3”1‘) [Fig. 1(b)] as an approximation. The ;" ﬂG‘j G

are determined to satisfy
iG-r; 0.0’
Z ¢ 6,6 =

ao,B'o’

=17 (k — G, /2), 2

where h (k) are the matrix elements calculated from
hopping parameters around position r; (see Appendixes A, B,
and C for more detail of the model derivation). The local
atomic lattice structure around r; is approximated by an
untwisted lattice with a particular stacking order, and thus

hfjd”s '(k) and the electronic states on it are also estimated

by calculation in the untwisted lattice. We take three sam-
pling points of r;, and interpolate the intermediate region
by the discrete Fourier transform. We call the three stacking
orders at the three sampling points AA, AB, and AC stacking
[Figs. 1(a) and 1(c)]. The AB stacking is the most stable
one and thus it is realized in the three-dimensional (3D) bulk
Bi,(Te;_,Sey);. With the three sampling points approxima-

. .. i ao,p'o’ :
tion, the explicit definitions of 7, ;"  are given as

ren = %[h;“;’ﬂ’“kk) + OB o)+ BB (k)]
fertonG = ;[hf;’ﬂ’akk —G1/2) + TR (k - Gy /2)
+e TR (= Gy /2)] (L =1,3,5),
R 6 = U (k= Gy + P K~ Gy/2)

3

e (1), hf;”s ' (k), and th‘Z’ﬂ (k) are matrix elements of
Hamlltonlans calculated in the AA-, AB-, and AC-stacking
untwisted bilayer Biz(Tel,xSex);, respectively.

R P (), h2oP (k), and K2 (k) are obtained by
the first-principles calculation. All first-principles calculations
are implemented in the Vienna ab initio simulation package
(VASP) [47]. We use the projector augmented wave (PAW) po-
tential sets recommended by VASP and set the kinetic-energy

cutoff to 500 eV. For each of the three stacking orders, we

e TP (k- Gy/2)] (1 =2,4,6).
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TABLE 1. Optimized in-plane lattice constant a and interlayer
distance D for bilayer Bi,Te; and Bi,Se; with three stacking orders.
The AA, AB, and AC stackings are defined in Fig. 1.

Bi,Te; AA AB AC
In-plane lat. const. a A 4.40 4.41 4.39
Interlayer distance D A 3.18 2.73 3.98
Bi,Se; AA AB AC
In-plane lat. const. a A 4.15 4.16 4.15
Interlayer distance D ) 3.05 2.75 3.78

optimize the lattice structure and obtain electronic band struc-
tures. The lattice optimizations are performed in the strongly
constrained and appropriately normed (SCAN) metageneral-
ized gradient approximation for short- and intermediate-range
interactions with the long-range van der Waals (vdW) interac-
tion (rVV10) with the spin-orbit interaction [48]. We calculate
the electronic band structure in the B3LYP with the VWN3
correlation [49]. We construct Wannier functions for the Bi
and Te/Se p orbitals with WANNIER9O package [50]. We use
8 x 8 x 1 k mesh for the lattice optimization and 9 x 9 x 1 k
mesh for the electronic calculation and the Wannier function.
The obtained band structures reproduce well the results of
angle-resolved photoemission spectroscopy (ARPES) [51,52]
and the GW approximation [53]. The Fermi level is set in
the averaged Hamiltonian of three stacking orders £, Ggoa
by the filling factor, i.e., the middle of the 36th and 37th
bands in the I" point of the 60 bands (2 layers x5 atoms X p
orbitals x spin). The obtained Wannier functions and matrix
elements are also used in the calculations of the Wilson loop

spectra with the WANNIERTOOLSpackage [54]. We also calcu-
late the Sb,Te; under the same condition (see Appendix D).

III. BILAYER Bi,(Te,_,Se,);

First, we show the result of calculations on the untwisted
atomic lattices of bilayer BiyTe; and BiySe; for the three
stacking orders. The atomic positions are shown in Fig. 1(c).
All these untwisted bilayer lattices belong to the layer group
No. 72 (or the space group No. 166 with infinitely long ¢
axis). The optimized in-plane lattice constant a and interlayer
distance D, which is defined as the vertical distance between
the two Te/Se atoms in the twist face [see Fig. 1(c), right], are
listed in Table I. We neglect the stacking order dependence
in the in-plane lattice constant in each material and use an
averaged value in the effective model calculations. For Te/Se
doping, the in-plane lattice constant is linearly interpolated.
In both materials, the AB stacking has the smallest interlayer
distance and the AC stacking has the largest. The obtained
electronic band structures are shown in Figs. 2(a)-2(f) for both
of Bi, Te; and BiySes, where the Fermi level is determined by
the filling factor. The magenta and yellow dots represent the
projected weight on the p, orbitals of Bi and (Te,Se) atoms,
respectively. In these materials, the overlap of the p, orbitals
contributes to a topological phase transition. Therefore, the
smaller the interlayer distance, the more likely it is to be a
topological insulator. To evaluate their topological invariants,
we make Wannier functions for them and calculate the Wilson
loop spectra as shown in the right panel of each figure of
Figs. 2(a)-2(f). We can see only AB-stacking Bi,Tes is a topo-
logical insulator and all of the others are normal insulators.
These results indicate that a twisted bilayer BiyTe; system
has a topological insulator domain around the AB-stacking
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FIG. 2. Electronic band structure and Wilson loop spectra of the untwisted bilayer Bi,Te; and Bi,Se; for each stacking order. (a)—(c) For
AA-, AB-, and AC-stacking bilayer Bi, Tes, and (d)—(f) are for those of bilayer Bi,Ses, respectively. The magenta and yellow dots in the band
structure figures represent the projected weight on the p, orbitals of Bi and Te/Se atoms, respectively. Only AB-stacking bilayer Bi, Tes (b) is

a topological insulator, and the others are normal insulators.
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FIG. 3. Moiré band structure of twisted bilayer Biy(Te,_,Se,)s. (a) Moiré band dispersion of Bi,(Te(g55€¢.15); with a twist angle 0 =
0.50°. The top (VB1), second (VB2), third (VB3), and fourth (VB4) valence band pairs are shown as orange, red, green, and purple lines,
respectively. The symbols of the high-symmetry points are defined in Fig. 1(b). (b)—(e) Real-space plot of the wave functions [upper layer,
lower Bi, p, orbital, spin-up component, as shown in (f)] of VB1-4 in the I'y, point. The brightness and color indicate the absolute value
(normalized to have the maximum value of 1) and phase of the wave function as shown in the right of (c). The moiré unit cell is shown as a
white dashed rhombus. The angular momentum / is also shown in each figure. (f) Bi atom that is focused in the plots.

region, and a normal insulator domain in the other region.
Although Bi,Sej; is a normal insulator in the three stacking
orders, we consider Se doping in Bi,Te; by the linear interpo-
lation to tune the system parameters. However, note that the
topological nontriviality of the AB-stacking Bi,Te; plays an
essential role even in doped cases.

IV. MOIRE BAND AND QUANTIZED EDGE STATE
IN TWISTED BILAYER Bi,(Te;_,Se,);

Next, we show the moiré band dispersion of twisted bilayer
Bi,(Te;—.Se,)s;. Due to the twisting, the inversion symme-
try is broken and twisted bilayer Bi,(Te;_,Se,); belongs to
the layer group No. 67 (or the space group No. 149 with
infinitely long ¢ axis). The in-plane C, axis exists along
the (AA-AB-AC)-stacking line [see Fig. 1(a)], which cor-
responds to the I'y-Mj, line in the reciprocal space. The
symbols of the high-symmetry points in the moiré BZ are
defined as Fig. 1(b). Figure 3(a) shows the band disper-
sion of the twisted bilayer Biy(TeggsSep.15)3 with a twist
angle 6 = 0.50°. Here, to obtain a clear domain bound-
ary, the amount of Se (x) is determined so that the gap in
the AA and AB stacking would be roughly the same (see
Appendix D for the detail of Se-doping dependence of the gap
and moiré band dispersion). All bands are doubly degenerate
at time-reversal invariant momenta (TRIM), the I'y; and My,
points. Because of the absence of the inversion symmetry,
the Kramers degeneracy in the untwisted bilayer splits at a
general momentum. The split is easy to see in the conduction
bands above 0.020 eV in the K), point, while it is too small
to see in the valence bands. It is worth noting that there
are nearly flat bands around the Fermi level. For the nearly
flat valence bands [from the top to fourth valence band pairs
VBI1, VB2, VB3, and VB4 in Fig. 3(a)], real-space plots of
the wave functions (upper layer, lower Bi, p, orbital, spin-

up component; see Fig. 3(f)] at the 'y, point are shown in
Figs. 3(b)-3(e). The brightness and color indicate the absolute
value (normalized to have the maximum value of 1) and phase
of the wave function, respectively [as shown in the right of
Fig. 3(c)]. The wave function has a ring-shaped density distri-
bution, clearly indicating that these nearly flat bands originate
from the edge state corresponding to the topological insulator
domain around the AB-stacking area. To compare with the
wave functions of the flat bands, we calculate the real-space
dependence of the band gap between the valence top and
conduction bottom bands in the I" point AE(T") in the interpo-
lated untwisted Hamiltonian obtained by the discrete Fourier
transform in Eq. (2) (see Appendix D for more detail). In
Fig. 4, the real-space dependence of the band bap (violet line)
and the absolute value of the wave function of VB2 (cyan line)
along the (AA-AB-AC-AA)-stacking line (the longer diagonal
of the moiré unit cell shown as a white arrow) are shown.
The negative band gap means that the bands are inverted. The
gapless points are the domain boundary and the topological
insulator domain is shown as a green-shaded range. We can
confirm that the wave function has a large amplitude around
the domain boundary. Next, we focus on the difference be-
tween the wave functions of VB1-4 [Figs. 3(b)-3(e)]. They
show ring-shaped density distributions in common, but their
phase structures are different from each other. We can see a
lower energy band has a larger angular momentum /, which
is calculated as a winding number of the phase along the
ring. Note that because these states are coupled with spin,
the spin-down component has one different / and the total
angular momentum is a half-integer (see Appendix E for more
detail). The phase structure indicates that the nearly flat bands
are formed by quantization of topological edge states due to
the finite-size effect of the domain boundary. The flatness of
these bands and the gap size between them depend on the twist
angle. Figures 5(a)-5(c) show the twist angle dependence of
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FIG. 4. Moiré wave function and local electronic state. The
rhombus is a wave-function plot of VB2 in the moir¢ unit cell [same
as Fig. 3(c)]. The lower plot shows the real-space dependence of the
absolute value of the wave function of VB2 (cyan line, right verti-
cal axis) and the band gap calculated in the interpolated untwisted
Hamiltonian (violet line, left vertical axis). The horizontal axis is the
real-space position along the (AA-AB-AC-AA)-stacking line, which
is the longer diagonal of the moiré unit cell as shown with a white
arrow in the top figure. The negative band gap means that the bands
are inverted. The two gapless points around the AB-stacking area are
the domain boundary, and the topological insulator domain is shown
as a green-shaded range.

the moiré band dispersion. It can be seen that as the twist angle
increases, the nearly flat bands get more dispersive and the
energy gaps between them get larger. This twist angle depen-
dence is explained by the angle dependence of the effect of

moiré modulation terms [’:Zf(/;(j/ap ! # 0in Eq. (3)], in which

interlayer components play a major role. As in Eq. (1), the

moiré modulation terms couple the atomic Bloch states at k
and k + G,. Hence, the effects of the moiré modulation terms
are interpreted as a hybridization between moiré bands given
by band folding with the moiré BZ. The twist angle depen-
dence of them appears in G; as |G;| « 6, while the amplitude

[ Zf(g ¢, | are independent of 6. For a smaller twist angle, the
moiré modulation terms get relatively larger than the band-
width of the folded moiré bands, and thus their effects, which
make a gap and flatten the moiré bands, get more significant.
A concrete picture for the Biy(Te_,Se,)s case is illustrated
in Fig. 5(d). The moiré bands around the Fermi level are
basically formed by folding the original Dirac cone of the
edge state on the domain boundary with the moiré BZ. In a
smaller angle case, the original Dirac cone is folded into many
smaller parts and the moiré modulation terms make more flat
moiré bands with smaller gaps. This picture is consistent with
the angular momentum sequence of the wave functions at the
I' point. The band-flattening effect of the moiré modulation
terms and its twist angle dependence are also understood in a
perspective of a spread of a the wave function and a coupling
strength between edge states around the neighbor TI domains.
For smaller twist angle, there are more moiré bands in the
typical energy range of the moiré modulation. As a result,
the moiré bands are made by hybridizing more states with
shorter wavelengths, and less spread wave functions in the
moiré unit cell can be obtained [Figs. 5(a)-5(c), bottom]. It
means the coupling strength between edge states around the
neighbor TI domains gets weaker for a smaller twist angle,
and thus more flat moiré bands are obtained (see Appendix E
for more detail). Note also that as the wave function spreads,
the effect of the moire unit-cell shape becomes significant
and the anisotropy of the distribution of the wave function
(triangular in this case) becomes more pronounced. With these
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FIG. 5. Twist angle dependence of moiré band dispersion and wave functions of Bi,(Tegg55¢€q.15)3. (a)—(c) The cases with a twist angle
6 = 1.00°, 1.50°, and 2.00°, respectively. VB1-4 are shown with the same color as Fig. 3(a). The wave functions of the VB2 bands are plotted
in the same way as Fig. 3. (d) Schematic picture to explain the twist angle dependence of the flatness and gap of the edge-state-originated

nearly flat bands.
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FIG. 6. Quantum spin Hall effect in twisted bilayer Bi,(Te;_,Se,);. (a) Moiré band dispersion of Bi,(Teg,Seq g)3 with a twist angle
6 = 1.55°. The top (VB1), second (VB2), third (VB3), fourth (VB4), eighth (VBS), and ninth (VB9) valence band pairs are shown as orange,
red, green, purple, blue, and yellow lines, respectively. (b)—(g) Wilson loop spectra calculated on VB1-4, VB8, and VB9. While (b)—(e) VB1-4
are topologically trivial, (f) VB8 and (g) VB9 are topologically nontrivial. (h) Magnified view of the VB8 and VBO. In this figure. the numerical
error due to the first-principles calculation is corrected to recover the exact time-reversal symmetry. (i), (j) Real-space plot of the wave functions
(upper layer, lower Bi, p, orbital, spin-up component) of VB8 and VB9 in the Iy, point, respectively. VB8 has a ring-shaped density distribution
around the AB-stacking area, but VB9 has no longer ring-shaped one but localized density distribution around the AA-stacking area.

points of view, the twist angle dependence of the flatness and
energy gap of the edge-state-originated nearly flat bands is
roughly explained, but, in more detail, the effect of the Rashba
splitting and hybridization with other bands must be taken into
account.

Finally, we mention the conduction bands. In
Bi,(Te;_,Se,); case, since the conduction bands are more
dispersive than the valence bands in the band structures of
untwisted lattices, the moiré conduction bands are also more
likely to have dispersion in the higher-energy region. For the
same reason, a band gap between moiré conduction bands
tends to be larger than that of moiré valence bands.

V. MOIRE-SCALE TOPOLOGICAL BAND
AND EDGE STATE

We move on to a discussion of the emergence of
topological bands in the moiré bands of twisted bilayer
Bi(Te;_,Se,);. As we discussed above, the formation of
the edge-state-originated nearly flat bands is explained by a
simple theory and they are ordered with angular momentum /.
Therefore, we could not find a case to have a band inversion
between the edge-state-originated bands. However, in the re-
gion farther from the Fermi level, a bulk-state-originated band
appears and it can hybridize with an edge-state-originated to
form topologically nontrivial bands. For example, the band
dispersion of Biy(Tep.92Sep.03)3 with a twist angle 6 = 1.55°

is shown in Fig. 6(a). Here, the amount of Se (x) is determined
so that the gap in the AA-stacking area would be smaller than
that of the AB-stacking area to obtain the bulk and edge states
in different areas. To evaluate the topological invariants for
each band, the Wilson loop spectra are calculated and given in
Figs. 6(b)-6(g). While the nearly flat band around the Fermi
level [VB1-4, Figs. 6(b)-6(e)] are evaluated as topologically
trivial, the bands around —0.065 eV [the eighth and ninth
valence band pairs VB8 and VB9, Figs. 6(f) and 6(g)] are
evaluated as topologically nontrivial. Figure 6(h) is a magni-
fied view of the VB8 and VBO. Here, we correct the numerical
error due to the first-principles calculation to recover the exact
time-reversal symmetry because the moiré system generally
deals with a small energy scale and thus the numerical errors
get more noticeable. It can be seen that the two bands are
gapped and thus if the Fermi level is tuned and placed between
them the system becomes a topological insulator protected
by the time-reversal symmetry. The real-space plots of the
wave functions in the I'y; point of the two bands are shown
in Figs. 6(i) and 6(j). The wave function of VB8 [Fig. 6(i)]
has a ring-shaped density distribution as well as the nearly
flat bands around the Fermi level. On the other hand, VB9
[Fig. 6(j)] does not have a ring-shaped one, but has a density
distribution localized around the AA-stacking area (the corner
of the moiré unit cell). Considering that the AA-stacking
Bi, Te; has the smallest gap among all stacking orders (Fig. 2),
this state is understood as a state originated from the bulk state
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FIG. 7. Topological edge state in twisted bilayer Bi,(Te;_,Se, ).
(a) Moiré-scale edge BZ that is used in the edge calculation. (b) Edge
band spectrum around VB8 and VB9. The symbols of the high-
symmetry points are defined in (a). Dirac cones of the moiré-scale
helical edge state can be seen appearing around the I’y point.
(c) Schematic picture of “edge state from edge state.” The red
and blue arrows correspond to spin currents having opposite spin
directions to each other. The helical edge state obtained in moiré
bands (moiré-scale helical edge state) is running along the edge of
the moiré-scale lattice system. The moiré-scale edge state is made
from the ring-shaped edge state on the domain boundary around the
AB-stacking area (atomic-scale helical edge state).

of the AA-stacking area. Due to a symmetry restriction of
the hybridization, the simple bulk-state-originated band can
hybridize with a band with a small /. That is why the VB8
has I =1 (as we explained, the spin-down component has
one different /). To obtain edge states corresponding to these
topological bands, we make Wannier functions for these bands
and calculate the edge band spectra with Green’s function
method (technical details are described in Appendix C). The
moiré-scale edge BZ that is used in the edge calculation is
shown in Fig. 7(a). The obtained edge band spectrum is shown
in Fig. 7(b). As in a typical topological insulator, a Dirac
cone of the helical edge state can be seen appearing around
the Iy, point (see Appendix E for a symmetry restriction
on the Dirac cone). These topological bands are obtained in
the moiré band dispersion, and thus the corresponding helical
edge state is running along the edge of the moiré-scale lattice
system [Fig. 7(c)]. As we have seen, the moiré-scale edge
state is partially made from the ring-shaped edge state on
the domain boundary around the AB-stacking area (let us say
atomic-scale helical edge state). Therefore, we can say the
moiré edge state is “edge state from edge state” [Fig. 7(c)],
and this is a characteristic phenomenon that is observed in
twisted bilayer Bi,(Te;_,Se,)s;. These topological properties
also have twist angle dependence. In the small-angle limit,

more edge-state-originated nearly flat bands appear around
the Fermi level due to the band folding with the small moiré
BZ, as seen in Fig. 5. Therefore, as twist angle is decreased,
topological phase transitions occur on VB8 and VB9 and
eventually they become topologically trivial bands. The topo-
logical phase transition goes through a gap closing at general
momenta as described in a general theory of topological phase
transitions in 2D systems [55,56] (see Appendixes E and F for
more detail). From this perspective, when the twist angle gets
smaller, topological bands tend to appear in lower- (or higher-)
energy bands.

The edge-state-originated nearly flat bands, moiré-scale
edge states, and other properties obtained in twisted bilayer
Bi,(Te;_.Se,)s; are also reproduced in a more simplified
model that we propose: twisted Bernevig-Hughes-Zhang
model (see Appendix G). This fact not only allows us to easily
explore the properties of these systems, but also indicates
that our essential strategy can be applied to other topological
materials.

VI. DISCUSSION

In conclusion, we have theoretically studied the electronic
structure of twisted bilayer Bi,(Te;_,Se,)s. It is revealed that
twisted bilayer Biy(Te;_,Se,)s has a topological insulator
domain and a normal insulator domain in the moiré unit
cell due to the stacking modulation of the moiré superlattice
structure. We have obtained a moiré-scale band inversion and
corresponding edge states that are made from the atomic-scale
edge state on the domain boundary, thus it can be called
“edge state from edge state.” With these results, we propose
twisted bilayer Bi,(Te;_,Se,); as a topological moiré mate-
rial that hosts characteristic low-energy states and multiscale
band inversion. This proposal provides a platform to study
topological phases both in atomic and moiré scales. In addi-
tion, the atomic-scale helical edge states are expected to be
used as an ideal platform to realize the Chalker-Coddington
network model [57-61] without an external field. The moiré-
scale topological states also propose a realization of moiré
topological spin Hall materials that do not require external
fields. Further, because the wave function of the moiré-scale
helical edge state has characteristic density distribution and
far larger real-space size than that of helical edge states in
previous topological insulator crystals, it allows us to observe
the nontriviality of wave function with a real-space observa-
tion such as scanning tunneling microscope (STM). While
those phenomena proposed by some previous studies require a
strong external field [62—68] or a particular symmetry-broken
valley setup [28], the role is replaced by the intrinsic strong
spin-orbit coupling in twisted bilayer Bi,(Te;_,Se,)s;. More-
over, twisted bilayer Bi,(Te;_,Se,)3; can be a new platform to
investigate correlated phases. As shown in the moiré band dis-
persion, large Rashba splits are predicted around Kj; points in
our calculation. It indicates that the ratio between bandwidth
and the size of the Rashba split can be tuned by changing the
twist angle.

Although we have studied a specific material twisted bi-
layer Biy(Te;_,Se,)s here, the strategy underlying this study,
making a moiré material with a stacking-sensitive topological
material, is quite versatile. There is an abundance of stacking-
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FIG. 8. (a) Atomic lattice vectors a;, a, and moiré lattice vectors
L, L,. (b) Relation between the atomic lattice vector, the moiré
lattice vector, and twist angle 6.

sensitive topological materials, and it should be possible to
design moiré materials in which multiple topological phase
domains coexist with this strategy. The combination of a quan-
tum system with several different topological phase domains
and the high tunability of the moiré materials provides an
avenue in the search for new quantum materials and devices.
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APPENDIX A: MOIRE PATTERN

To make a 2D moiré superlattice structure, there are two
fundamental methods: lattice constant mismatch and twisting
identical lattices. General moiré superlattice systems are made
by combining the two methods. In this paper, we focus on the
cases of twisting identical lattices.

1. General cases

Generally, given atomic lattice vectors a;, a,, and twist
angle 6, the moiré lattice vectors L; and L, [Fig. 8(a)] satisfy
. .0
2 sin Eez x L = —a,, 2 sin ELZ X e, =aj, (A1)
within the small-angle approximation [Fig. 8(b)], where e; is
a unit vector along the z axis. By solving these equations, the
moiré lattice vectors are obtained as

1

Li=a, x e, X a, X —e,,

¢ z
2 sin 3 0
1 1
L2 = m@z Xa ~ gez X a. (AZ)
It is also proved that a; and L, satisfy
alla alla
a1 Ly = 8o iy x5, D% Gy (a3
sin 5 0

where y is the angle between a; and a;.

This relation indicates that the moiré lattice (moiré recip-
rocal lattice) of the twisted system is similar to the atomic
reciprocal lattice (atomic lattice) in the original untwisted
system.

2. Trigonal lattice

For a trigonal lattice system, atomic lattice vectors are
given with the lattice constant ag as

a1 =ap(1,0), @ =ay(—1/2,v/3/2). (A4
Moiré€ lattice vectors are given as
=L(V3/2,1/2), Ly =L(0,1), (AS)
where the moir€ lattice constant L is written as
ap
= —. A6
2 sin% (A6)

Corresponding moiré reciprocal lattice vectors are written as
27 2 271 2

Note that the subscripts follow the definition in Fig. 1(b).

G =— (1 0), Gs3= ( 1/2,v/3/2). (A7)

APPENDIX B: EFFECTIVE MODEL OF MOIRE
SUPERLATTICE SYSTEMS

In this Appendix, we derive a model of a moiré superlattice
system. In the following, the atomic lattice constant is set to
ap = 1. In Appendix B 1, we describe the general and exact
part of the model derivation that is independent of the detail
of the target moiré system. The description in Appendix B 1 is
consistent with previous studies [44,45]. In Appendix B 2, we
introduce the small-angle approximation, which is generally
used in a moiré system. Further, we improve the approxi-
mation method of the previous studies to make them more
efficient. In Appendix B 3, we describe the system-dependent
part of the model derivation. We also make a correction to
make the model satisfy symmetry restrictions of the twisted
bilayer Bi,(Te;_,Se, )3 system.

1. General formula of model derivation

The exact Hamiltonian of a moiré superlattice system is
given by the following with a microscopic picture:

H=Y" 3" Y 1ol

rj «ao.f'o’ pq

X clolrj +dorpley, Irj+dg(r)) +ayl, (Bl

r; :  atomic unit — cell position,
ao, B'o’ orbital, spin index,
dypg(rj) site position of «, B’ in the unit cell r;, (B2)
Pq : hopping lattice index (a,,),
cc :  creation/annihilation operator.

Here, r; is a position of an atomic unit cell, and ao, '’
are indices to specify orbital and spin. Now r; is defined as
the corner of the atomic unit cell, and thus we define d,(r;)
as the site position of the orbital & measured from the cor-
ner of the atomic unit cell r;. Due to the effect of twisting,
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FIG. 9. Definition of the hopping 7, B ;). rj is a position that
indicates atomic unit-cell index. The tl‘j; ﬁ (r ;) 1s a hopping between
orbital o spin o in the atomic unit cell r; (red dashed cell) and orbital

B’ spin ¢’ in the atomic unit cell 7; + a,, (black dashed cell).

d,(r;) generally depends on the atomic unit-cell position r;.
cl'm [rj +d(r;)]is a creation operator of a fermion on the or-
bital & spin o in the atomic unit cell r;, and ¢ is an annihilation
operator. 7,7 B ;) is a hopping parameter which is defined
as a hopping between “orbital « spin o in the atomic unit cell
r;” and “orbital B’ spin ¢’ in the atomic unit cell r; + a,,”

(Fig. 9). The a,, are defined with integers p, g as
a,, = pa; + qa, (B3)

where a/, @), are atomic lattice vectors defined differently in
intralayer and interlayer cases. The definitions of @} and a), are

a) = Cypay, a, = Cypa, (intralayer, upper layer),
ay, =C_gpa,, a,=C_gpa, (intralayer, lower layer),
a, =ay, a, =a (interlayer).

(B4)
We assume that long-range hoppings are negligible and ) -
is a finite sum. There are two points to note about a,, and
qu. First, in the interlayer case, (a;,a;) does not match
either the atomic lattice period of the upper layer or that
of the lower layer. As a result, it can be possible that there
is no B’ site (or there are two B’ sites) in the atomic unit
cell r; + a,,;. However, because the small-angle limit is in-
terpreted as a continuous limit, those inconvenient cases are
neglected. Second, because d, (r;) depends on the position in
the moir€ unit cell r;, a site can disappear on one end of the
summation range of Y pq @nd appear on the other end when r;
is changed. This will essentially make a “discontinuity” in the
Hamiltonian. However, as long as the range of > g 18 large
enough, the disappearing and appearing hoppings have small
absolute values and thus the discontinuity is negligible.

We perform a Fourier transform of Eq. (B1). We assume
that the Wannier functions are independent of position in the
moiré unit cell, and thus the annihilation operator is trans-
formed as

Cao (r}) = /dke"k‘rﬂfcw,k. (B5)

The Fourier transform of Eq. (B1) is obtained as

H= /dkdk’z >

rj ao,pf'o’
|:Z tom B0’ e ik-do(r)) ik’ (dﬁ,(r,)+ap,,):|
l( —k' +k)r;
J cw Koo (B6)

We focus on the bracketed part. The d(r;) and 1y *ﬁ'”'(r.,-)
are moiré periodic. Therefore, the bracketed part is moiré
periodic and can be decomposed into components of the moiré
reciprocal lattice vectors G; as

|:Z taa B’ (r Ye~ ik-d, (r) iK' -(dg (r,)+a,,,,):|
Y g (®7)

ao,B'o’
where hK.G

Note that the t;: 4 ﬂGU is not the Fourier transform of 7, F ()
because the bracketed part includes a sum on p, g and phase
factors.

By using Eq. (B7), the Hamiltonian is written as

/ aoﬂ” i(—k+K'+G) )7
O 030 3) W .

rj ao,plo

/dk Z Zt;:{;c ﬂG(: G aak Chiol k-G (B8)

ao,f'o’

is the Fourier transform of the bracketed part.

Note that k' is restricted to k — G;.
So far, the model derivation is exact and general. However,
in Eq. (B7), all t"‘"*ﬁ 7 (r j) in the moiré unit cell are needed to

obtain exact value of tk k,

we use a small-angle appr0x1mat10ns to obtain ¢
described in the following.

" Because it is usually unrealistic,
ao,f'o’

hewa 8

2. Small-angle approximation
In a small twist angle case, #,’ k,ﬁ o
obtained as following. First, we obtain tlo,‘”’/s""(rj) at finite
number of sampling points {r;} in the moiré unit cell. In
a small twist angle case, the local atomic lattice structures
around each sampling point can be approximated by untwisted
atomic lattices with proper layer-stacking orders. We perform
first-principles calculation for each untwisted structure and

use the results as approximate value of tg;’ﬂ/”/(rj) at the

can be approximately

sampling points. With the approximated 757 P ), t :Z,ﬁ o
are obtained by the discrete Fourier transform (B7).
Generally, the discrete Fourier transform guarantees that
the parameters in the sampling points are reproduced, but
those in the intermediate area are not necessarily estimated
in a physically reasonable way. To obtain a reasonable es-
timation for the whole moiré unit cell by discrete Fourier
transform, we need to adopt appropriate G;, and sampling
points must be determined to capture the “feature values,” for
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FIG. 10. Examples of parameter sampling and G, adopted in
the discrete Fourier transform in a trigonal lattice system. The left
figure shows the moiré unit cell (red), sampling points, and sampling
lattice vectors (blue arrows) in the real space. The right figure shows
the moiré BZ (red dashed), reciprocal vectors of the sampling lat-
tice (blue arrows), and G, adopted in the discrete Fourier transform
(white and colored dots). For G; shown with the same colored dot,

i
B i;ﬂc" have the same value.
K .Gy

example, the maximum and minimum values of 7,7 B i)
Therefore, the sampling points should be determined from
the atomic positions in the untwisted atomic lattice. Here,
we explain a general way to decide the sampling points and
how to choose Gy in detail, and then we show some examples
in Figs. 10 and 11. As the first step, we decide untwisted
bilayer structures with interlayer in-plane shift {Ar;} that
should be sampled. For the convenience of the discrete Fourier
transform, the list {Ar;} should be taken as a mesh in the
atomic unit cell. As explained above, the { Ar;} should include
the cases where feature values are obtained. Typically, the
{Ar;} include the cases where the atoms on the upper layer
and the lower layer are closest or farthest. We translate the
{Ar;} to a position in the moiré unit cell {r;} by using the
equation Ar; =r; x fe; [easily obtained from Fig. 8(b)]. As
a result, a sampling lattice (green crosses and blue arrows in
left figures in Figs. 10 and 11) is obtained in the moiré unit
cell and a sampling BZ is also defined in the reciprocal space
(blue hexagons in the right figures). The number of sampling
points (the number of Ar;, originally) decides a number of
G, that are taken into account in Eqgs. (B7) and (B8). Moiré
reciprocal lattice points included in the sampling BZ (white
dots) are adopted as G;. Additionally, moiré reciprocal lattice
points on the boundary of the sampling BZ (cyan, magenta,
and yellow dots) are also adopted as G;, but we assume that

t]‘: z/ﬂ ' have same value in the points that are connected by the

real space reciprocal space

Rt
2 pOIr:'tS Sampllng‘r ;
sampling lattice "~ | Q 77777

X sampleponts 1114
4 points N k
sampling : , i

‘ . ,

‘ 6~—+w6~ 4

9 points Y SOV k
sampling Lo ¥xX

FIG. 11. Examples of parameter sampling and G, adopted in
the discrete Fourier transform in a square-lattice system. The left
figure shows the moir¢ unit cell (red), sampling points, and sampling
lattice vectors (blue arrows) in the real space. The right figure shows
the moiré BZ (red dashed), reciprocal vectors of the sampling lat-
tice (blue arrows), and G, adopted in the discrete Fourier transform
(whlte and colored dots). For G; shown with the same colored dot,
l;‘:,ﬁ " have the same value.
reciprocal vectors of the sampling lattice (blue arrows in the
right figures). G; outside of the sampling BZ are neglected,
i.e., components with frequencies higher than the sampling
points are neglected. By using this method, the number of
the sampling points and G, are equal, and thus 7'}’ 560 are
uniquely determined by the discrete Fourier transform B7).
Examples of the way to choose G; are shown in Figs. 10
and 11 (for trigonal and square cases, respectively). In each
row, the left figure is the moiré lattice in the real space, and
the right figure is the moiré reciprocal lattice in the reciprocal
space. In the left figure, the moiré unit cell (red) and sampling
points (green crosses) are shown. Blue arrows are basic lattice
vectors of the sampling lattice. In the right figure, the moiré
BZ (red dashed) and the sampling BZ (blue dashed), which
are defined by the sampling lattice vectors, are shown. Moiré
reciprocal lattice points that are adopted as G; are shown
with dots. If it is included in the sampling BZ, the dot is
white. If it is on the boundary of the sampling BZ, the dot
is colored (cyan, magenta, or yellow) and the points that are
connected by the reciprocal vectors of the sampling lattice

(blue arrows) have the same color. ¢ ,‘: v ﬁG(’ on those G; have

the same value. For example, in the case of the three points
sampling in Fig. 10,

tow,ﬂ’a’ _ ao0,plo’ __ aoc,Bo’

kK.G = kre T K.Gs e (B9)

043045-10



QUANTUM SPIN HALL EFFECT FROM MULTISCALE BAND ...

PHYSICAL REVIEW RESEARCH 4, 043045 (2022)

Note that the number of the sampling points in the left fig-
ure equals to the number of G; in the right figure (dots with
same color on the boundary should be counted as one) in each
column.

Note that depending on the symmetry of the system and
the center of momentum of the cutoff (see Appendix C2),
hopping parameters in some stacking orders can be fixed to
be 0 [69].

3. Specific formula for Bi,(Te;_,Se,)s

Here, we apply the method given in the previous subsec-
tion to Biy(Te;_,Se,)s;. In the case of Biy(Te;_,Se,);, the
in-plane atomic positions are only three in the atomic unit cell
(Cs-symmetry centers). Therefore, the simplest choice is to
calculate three untwisted stacking structures (the three points
sampling in Fig. 10). Here, we define the three stacking orders
as AA, AB, and AC stacking. In this case, we take components
of seven Gy,

G; = {Go, G1, G3, G3, G4, Gs, Gg}, (B10)
and assume equivalences between them as
taa,ﬂ’a’ o taa,ﬂ’a’ . taa,ﬁ’cf’ toto,ﬂ'a’ . taa,ﬁ’a’ . tom,ﬂ’a’
kK.G T kK.Gy T 'kK.Gs O kK.Gy T kK.Gy T 'kK.Gs "
(B11)
Including a completely independent component
ao,f'o’
bk Gy * (B12)

the degree of freedom is three, which is the same as the
number of the sampling points. Therefore, using the rela-

J

q

tion (B11), we can determine the seven 7, iﬂG? from the three
sampling points with the discrete Fourier transform.

The hopping parameters in the three sampling points,
199 F (rpp), 129F° (rag), and 2P (rac), are calculated
with the first-principles calculation of untwisted structures.
However, when the hopping parameters of the twisted
structure are estimated from untwisted structures, the Hamil-
tonian (B8) will break the Hermitian and C;, symmetries
slightly. Therefore, we add a correction factor in Eq. (B7).

The restrictions by each symmetry are given as following.
The detail of the derivation of the restrictions is given in
Appendix B 3 b. The Hermitian symmetry restriction is

ao,fo’ * _ _poac
Gk G = kGG, (B13)
and the C3,-symmetry restriction is
ao,flo’ &, flo’
e k=G1,G; = lCk,Ck—C361,.G:6y (B14)

where the orbital-spin index &6 means the Cs, rotated orbital
spin. The twisted structure also has time-reversal symmetry
and its restriction is

aG,B'6'

1-8,, 0,0’ _
(=1t = lekt6,,-Gp

—k,—k—G).G, (BI5)

where & means the opposite spin, but this equation is satisfied
when the three untwisted structures have the time-reversal
symmetry.

To satisfy these equations, we add a correction factor
el B -dat)+dy ) 4an) i Bq. (B7) as

Z Ry thfGG,,G, _ |:Z t;m,ﬁ’a’ ;) o ikda(r)) ei(k—G,”)~(dﬁr(r/)+a,,q) eiaz’”-(du(r/)+dﬂ/(rj)+a,,q):|
G, rq

— [Z t[(;(qa,ﬂ/o/(rj)ei( —Gz’")'(—du(rj)+dﬁr(rj)+a,;q):|
rq

= h‘,"j"’ﬁ"”(k —G,/2).

(B16)

Because the correction factor tends to 1 as the twist angle gets small, this correction is reasonable. Note that the right-hand side

haa,ﬂ/a/

r; (k — G,,/2) is basically the matrix element of the Hamiltonian with momentum k — G,,/2 given by the parameters of
untwisted structure around r;. The only difference is the momentum twisting due to the different definition of a} , in Eq. (B4).

The explicit definition is given as, for ao, f’'c’ € upper layer,

P = G f2) = Y 53l () oG/ (e 4y ey a),
Pq

for ao, /o’ € lower layer,

for ao € upper layer and 8'c’ € lower layer,

DFT, pgq B17)

hfja.,s/(,/ k — Gy /2) = Z tgg’{i,j ) eiCy/z(k—G”,/Z)'(fdu(r,-)+dﬁr(r,-)+a,,q)’ (B18)
Pq

r (B19)

OV k= Guf2) =Y tpiil o () 4O/ (el tdy o) - pfietee ( — G, /2) = WP (e — G /2)T,
pq

where tg;’rﬂ ’p‘;/ (r;) is the hopping parameter of the untwisted structure around r; calculated by the first-principles calculation.
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The discrete Fourier transform is performed as

ao,f'a’ ao,Bo’ ao,B'o’ ao,f'o
tk Gy — [hrAA ” (k) + hrAB # (k) + thC i (k)]’
el = 9 Lo (= Gij2) + e E R (ke — Gy j2) + FRTF e — Gy/2)] (U= 1,3,5),
v ﬁij 6 = [hg;; Bk — G j2) + € hg;;,ﬁ’a’(k —G/2) +e T h2e: Pk — Gi/2)] (1 =2,4,6). (B20)

With these definitions, Eqs. (B11), (B13), (B14), and (B15)

are satisfied. The t,‘: ‘,: g” term can be understood as an aver-

aged term, and the others as moiré modulation terms.

a. Gauge selection

In Egs. (B17)-(B19), the phase factors are calculated with
the explicit difference of the orbital positions. There is another
standard way to calculate the phase factor, where a phase of

J

(

the basic translations is given only to intercell hopping terms.
In an untwisted system, these two are connected by a gauge
transform, and thus have no physical difference. However, in
a moiré system, they are physically different in a strict sense
due to the interpolation of the Hamiltonian. Although the
difference is negligible in the small-angle limit with a small
cutoff momentum, the former gives a better interpolation for
the large-k region. Therefore, the former definition is recom-
mended, as we used.

b. Derivation of symmetry restrictions

We start from the Hamiltonian (B1):

H=>" " >"1P 1)) cl,[rj + dor)lcy, [rj + dp (1)) + ap,).

rj ao,p'c’ pq

(1) Hermitian symmetry. The Hermite conjugate of the Hamiltonian is given as

=3 ) D ) g+ dp () + @)y [y + da (1))

rj ao,f'o’ pq

~ [akawy> [Ztg;qﬂ’v’
rj ao,pf'o’

[ s ¥ Sy

ri wao,flo’ G

/dkzz

ao,p'o’ G;

(rj )efik

ao,Bla’

T+G k G, /3’0 kCao k+G,

The conditions for this to be Hermite [Eq. (B13)] are

ao,fo’ ¥

"G k.G

When the Hamiltonian of the untwisted structures are Hermite,

P )" =

is satisfied and Eq. (B13) is satisfied by using Eq. (B20).
(i1) Cs; symmetry. The Cs-rotated Hamiltonian is

=20 2 2" cglCory + Cud

rj ao,p'o’ pq

/dkdk’z >

rj wao,flo’

GHC]

/dkdkz >

ri ao,fo’

zG,rj ao,f'o’
|:Ze lesikcw 6,

043045-

(B21)
*
"dy(r;) ik-(dg(ri)+a i(—k+K)r; .t
J e ( B J PQ)} e J Cﬂ’g—”kcao-’k’
z( —k+k')r;
’ Cﬁ’” kcaa k'
(B22)
_ Boao
=k k+G,, -G, (B23)
R (k) (B24)

("])]Cﬂ, — [C3rj + Ciapy + Cid g (r))]

-1 N O L(r: o=l N
|:Z tow,Ba (rj)e iC5 k(/iD,(r,)ezC3 k (dﬁ (r,)Jra,,q):|etC3 ( k+k)rjcj’[(7’kcﬂ7<;’,k’

] iC5 N (kK vy L i
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ao,B'o’ G
ﬂ/ ’
= [k X S eacimcncan (B25)
ao,B'o’ G
where the orbital-spin index @& means the Cs,-rotated orbital spin. The conditions for this to be C; symmetric [Eq. (B14)] are
190 B0’ u?&,ﬂ”;’ (B26)
k k— G] G; C3k$C3k_C3leC3Gl '
When the Hamiltonian of the untwisted structures are C; symmetric,
WP (k) = 7P (Cyk) (B27)
is satisfied and Eq. (B14) is satisfied by using Eq. (B20).
(iii) Time-reversal symmetry. The time-reversed Hamiltonian is
THT =" 3" Y P @) el lry + dalrpley , Irj + dp () + apgl(—1)! 7o
rj ao,B'c’ pq
*
= [araw Y [Zt“" Ha (r,-)e"’“’a(fﬂefk"(dﬁ'(rf>+aw>} R ke (D'
rj ao,f'o’
= [k Y S gy O e 1
ri ao,f'o’ G
B f 1-8,,/
/ dk Z Z I“Z lf GG, Ca&,kcﬂ’6’,k+61(_1) ) (B28)
ao,B'o
where 6 means the opposite spin. The conditions for this to be time-reversal symmetric [Eq. (B15)] are
1=8,47 ;0. B
(=D e 6.6 = (I:+G(,7 —G° (B29)
When the Hamiltonian of the untwisted structures is time-reversal symmetric,
Bo’ * 1=8 5, 1=
WP ) = (=D TP (k) (B30)

is satisfied and Eq. (B15) is satisfied by using Eq. (B20).

APPENDIX C: NUMERICAL CALCULATION METHODS
In this Appendix, we describe methods used in our numer-

ical calculations.

1. Matrix representation
We have obtained the Hamiltonian of the moiré system,
ao,Blo’
H = /dk Z Ztkk 26,6, omkcﬂak G (CI)
ao,B'o’ G

and here we give the matrix representation of this Hamiltonian
so that it can be implemented in numerical calculations.

Tk .k,0

Te40,0 40,00, 0

H(k) =

where k € moiré BZ.

Because all hopping processes have momentum difference
G, the basis is given for k € moiré BZ as

{Caa,kJrvmnlvmn = mGl + nGZa m,n e Z } (CZ)

To describe low-energy physics with a finite-dimension ma-
trix, we take a momentum cutoff k. as an approximation. In
the Bi, Tes system, the low-energy physics is described around
the I" point. Therefore, we take a finite basis as

{CO((T,k+U,,,,,|vml’l = mGl + I’le, m,n € Z, |vmn| < kc} (C3)

With this basis, the matrix representation of the Hamiltonian
is
if Uy — Uy =Gy

¥

tk+v,,m k+vmr,,/ G,
. , (C4)

tk—H) /ot k0,00

m'n’
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1.0

FIG. 12. Weight mapping of the 17th valence band at the I
point of twisted bilayer Bi,(Teg 9Sep gs)3 with a twist angle 6 = 1.0°
and cutoff k. = /4. The hexagons are moiré BZs and their colors
represent the weight on them (normalized with the maximum value).
In this case, it can be seen that the cutoff is large enough.

Because we consider only seven G;, an off-diagonal
block is nonzero only when v,,, — v,,,y matches one of the
seven G.

2. Validity of the cutoff k.

The validity of the cutoff k. is evaluated as follows. Once
we calculate a wave function v, and make a weight mapping
onto moiré BZs within k. as

60 2 . .
(o3} D= ol <« weight on moiré BZ#1
=[P~ | 2,2, 1¢1]* | < weight on moiré BZ#2,

(C5)

By plotting the weight mapping, we check the weight on the
BZs around k.. If the BZs around k. have small weights,
the cutoff k. is large enough and the effect of k. is negligi-
ble. If the BZs around k. have significant weight compared
to other BZs, larger k. should be taken. Generally, wave
functions whose energies are far from Fermi level require
larger k.. Therefore, evaluating with wave functions that are
distant from the Fermi level ensures the validity of k. for
wave functions that are closer to the Fermi level. Figure 12
is an example of the weight mapping for the 17th valence
band of Bi,(Tep.92Sep.05)3 with a twist angle 8 = 1.0°, cutoff
k. = m /4. Each hexagon represents a moiré BZ, and its color
represents the weight (normalized with the maximum value).
It can be seen that the moiré BZs around k. have almost no
weights and thus the cutoff is large enough at least for the 1st
~ 17th valence bands in this case. The validity of k. has been
confirmed in all calculations in this paper.

3. Periodicity in the momentum space

From the Bloch theorem, a wave function Y.¢, is physi-
cally identical with ¥, and thus | (Y+q,|¥x) | = 1. This fact
is used in the numerical evaluation of the Wilson loop spectra.

In the effective model of a moiré superlattice system with
basis (C3), the momentum shift k — k + G, effectively re-
sults in a shift in v, indices. Therefore, components of a
numerically obtained eigenvector Yy ¢, are shifted from those
of Y, and | (Yxsq,|¥k) | # 1 due to the k dependence of the
basis. Note that, as long as the cutoff &, is large enough, i.e.,
no significant component is put outside of the cutoff by the
shift, Yx4¢, and ¥y are physically identical states. To evaluate
the inner product of wave functions ¥,g, and y correctly
with the numerically obtained eigenvectors, we introduce a
basis-shift matrix 7', which is defined as

Ir]’ Vi + GZ = Upw

0,, others (C6)

T = {T(mn)(m’n’)} = {

where n is the orbital-spin degree of freedom [n = 60 in
twisted bilayer Biy(Te;_,Se,)3], and I, and O, are the n-
dimension identity matrix and zero matrix, respectively. By
using this 7', the inner product of wave functions ¥, and ¢
is evaluated as (Yy+q,|T |¥x), which approximately satisfies
| (Yk+a,IT |¥k) | = 1 when the cutoff is large enough.

4. Wannierization and surface-state calculation

To calculate surface states, we construct Wannier functions
from wave functions and a band dispersion obtained from the
effective model. We use the option use_bloch_phases=T
of the WANNIER90 [50] to set the Bloch functions as the initial
guess for the projections. In calculations with this option, we
need a list of eigenenergies E, in file prefix.eig and a
list of wave-function overlaps (Vg+sx|¥x) in file prefix.mmn
for the target bands. These lists are numerically obtained
from the effective model calculation. Both of them should be
calculated with k mesh taken over the moiré BZ. Note that
in the calculation of overlaps, the basis-shift matrix given in
Appendix C 3 should be used for overlaps across the boundary
of the moiré BZ. With this method, Wannier functions and
hoppings between them are obtained for moiré bands. With
the obtained parameters, edge-state spectra are calculated by
the Green’s function method implemented in the WANNIER-
TOOLSpackage [54].

For the parameters obtained by the Wannierization, we
make a correction to recover the time-reversal symmetry. It is
because the energy scale of a moiré superlattice system is so
small that numerical errors in the first-principles calculations
in untwisted systems get more noticeable. The correction is
done by replacing the hopping parameters as

tom,ﬁ’a’ N l(t;tnz,ﬂ’o’ + (_1)17850/ tot&,ﬂ’&’ *)’ (C7)

Anm 2 Qnm

where & is the opposite spin of o. The §,, is the Kronecker
delta for spin ¢ and o', which essentially comes from 72 =
—lina spin—% system. We have confirmed that this correction
works only as a minor correction in the edge-state spectra.
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FIG. 13. Energies of the valence top band and the conduction bottom band at the I" point plotted along the (AA-AB-AC-AA)-stacking line
for Bi, Tes, Biy(Te;_,Se,); with various x, Bi,Ses, and Sb,Te;. Note that the Bi,Se; and Sb,Te; cases are plotted in a different energy range.

5. Symmetry in wave-function plot

Twisted bilayer Bi,(Te;_,Se,); has the time-reversal sym-
metry and the layer group symmetry No. 67, which include
Cs,-rotation symmetry. Due to the time-reversal symmetry, all
bands at the I point appear as doubly degenerate Kramers
pairs. Because the numerical diagonalization does not neces-
sarily give simultaneous eigenvectors of the Hamiltonian and
the Cs, rotation, we need to symmetrize the Kramers pair to
obtain a C3,-symmetric wave-function plot at the I" point.

For a given Kramers pair |Y), [¥») and C5; operator, a
matrix representation of I'c,_ is given as

r =<<w1|czz|w1> <w1|cgz|wz>>
G T\ (WolCslyn)  (WalCs ) )

With a unitary transform U that diagonalizes I'c,, as
U "’FQZU = diag(A1, A2), symmetrized wave functions

(C8)

[1), |¥») are obtained as

() W) =) [2)U. (C9)
APPENDIX D: EFFECT OF SE DOPING ON TWISTED

BILAYER Bi,(Te;_,Se,);

In this section, we discuss the effect of Se doping in in
twisted bilayer Bi,(Te;_,Se,)s. First, we see the Se-doping
effect in parameters of untwisted Bi,(Te;_,Se,)s; systems.
Next, we see the moiré band dispersions for various Se-doping
values.

1. Effect of Se doping on parameters in untwisted bilayer
Bi, (Te;_.Se,)3

The discrete Fourier transform (B16) interpolates the un-
twisted Hamiltonians to the intermediate area. Therefore, we
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FIG. 14. Moiré band dispersions of twisted bilayer Bi,(Te,_,Se, ); for various x. The twist angle is fixed at & = 1.00°. Note that the Bi,Se;
case is plotted in a different energy range. A wave function of the valence top band at the Iy, point (upper layer, lower Bi atom, p, orbital,
spin-up component) is also shown.
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can define ‘band gap in each real-space position 7 in the
moiré unit cell, and it can be used to estimate where the
topological domain boundary is. To evaluate the band gap in
the I' point in the small twist angle limit, we consider k = 0

in Eq. (B16) as

2

G,

where t{i U—G,JG, are given in Eq. (B20). Note that G; are neg-
ligible compared to the atomic BZ in the small twist angle
limit. By diagonalizing the right-hand side, we obtain a band
gap AE(r). The position where AE(r) =0 is satisfied is
the topological domain boundary. In Fig. 13, the energies
of the valence top band and the conduction bottom band at
the I' point calculated with Eq. (D1) are plotted along the
(AA-AB-AC-AA)-stacking line for BiyTes, Biy(Te;_,Sey)s
with various x, Bi,Ses, and Sb,Te;. Here, we calculate the
electronic band structure of Sb,Te; under the same condition
as Bi,Te; and Bi,Se;. Note that Bi,Se; and Sb,Tes cases
are plotted in a different energy range. AE(r) = 0 is the gap
between the two bands in r (horizontal axis).

As shown in the main paper, the valence and conduction
bands in Bi,Te; are inverted only around the AB-stacking
case. As Se is doped (x gets larger), the (inverted) band
gap in the AB-stacking area gets smaller, and the band
gap in the AA- and AC-stacking area get larger. Around
Bi;(Teg 60S€0.40)3 (x = 0.40), a band touching occurs at the
AB-stacking point, and the band structure in the AB-stacking
area becomes trivial in the x > 0.40 region. Because the plots
of Bi,Se; and Sb,Tes; are almost identical, it can be seen

that replacing Bi with Sb has a similar effect as replacing Te

Ay L LA D1)

0,-G,,G,

with Se.

2. Effect of Se doping on moiré band dispersion

Figure 14 shows moiré band dispersions of twisted bilayer

spin-up

wave function
(UL, Bi, pz)
anguler momentum

s=1/2 s=-1/2

spin anguler momentum

total angular momentum 3/2

FIG. 15. Example of the wave function and angular momentum
in the VB2 of twisted bilayer Big(Te()_g5seo_15)3 with 6 = 0.50°.
The wave function plots show the components of spin up and spin
down on (upper layer, lower Bi atom, p, orbital). The total angular
momentum of this wave function is calculated as %

(Fig. 15). By coupling the orbital and spin angular momen-
tum, a total angular momentum (or a rotation eigenvalue of

the wave function) is uniquely defined.

2. Twist angle dependence of the bandwidth

Figure 16 shows the twist angle dependence of the
bandwidth of VBI1-4 in twisted bilayer Bi,(TeggsSeo.1s)3-
The bandwidth is estimated as Max[E (k)] — Min[E (k)] (k €
{Mp-T'y-Ky-Myy line}). As a general trend, the bandwidth
tends to increase as the twist angle increases. This tendency
is explained by the band folding in the moiré BZ, as explained
in the main text. More detailed behavior is determined by a
combination of multiple factors such as Rashba splitting and

hybridization with other bands.

Biy(Te;_,Sey); for various x. The twist angle is fixed at
6 = 1.00°. The values of x are the same as those in Fig. 13.
After the gap closing at the AB stacking occurs (x > 0.40),
the edge-state-originated bands disappear and the band gap
around the Fermi level gets larger. For twisted bilayer Bi,Ses,
a wave function of the valence top band at the I'y; point is
plotted. The wave function is found to be a bulk-originated

state around the AB-stacking area.

APPENDIX E: SUPPLEMENTAL INFORMATION
OF TWISTED BILAYER Bi,(Te;_,Se,);

In this Appendix, we give supplemental information of

twisted bilayer Biy(Te;—,Se,)s.

1. Angular momentum of edge-state-originated bands

When a wave function is plotted for an edge-state-
originated band, it appears to have an integer angular
momentum. However, the electronic state is coupled with spin
degree of freedom and thus the total angular momentum is a
half-integer. Actually, when both of spin-up and spin-down
components are plotted for a wave function, the phase wind-
ing number (*orbital angular momentum) is different by 1

5 [ 4
I’,
o~ /
>4
© / )
£
N— L H J;
g°
f 7/
-9 lll ,,’I
; 2 [ II /'
-O ll' //.- :’L____-‘
% I” /// ,’I
1 / _ 9
m 1 ) f/: -7
’_’,:1::/
————— o«
e A
0 05 1. 1.5 2. 25

Twist angle (deg.)

FIG. 16. Twist angle dependence of the bandwidth of VB1 (or-
ange), VB2 (red), VB3 (green), and VB4 (purple) in twisted bilayer
Biy(Te g55¢€0.15)3. The bandwidth is estimated with the band disper-

sion along the My;-I"y;-Ky-M), line.
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FIG. 17. Edge dependence of edge-state spectra. (a) The edge BZ used in the edge-state calculations. (b), (c) Edge-state spectra of the right

edge and left edge in twisted bilayer Bi,(Teg.92S€g 03 )3-

3. Edge dependence of moiré edge-state spectra

Here, we compare the edge-state spectra for the left and
right edges. Note that the left and right edges are defined by
using the moiré unit cell as a unit to build the half-infinite
plane, i.e., the left edge (right edge) of the moiré unit cell
appears on the left edge (right edge) of the half-infinite plane.
Figure 17 shows the edge BZ (a) and edge-state spectra
of the right edge (b) and left edge (c) in twisted bilayer
Bi,(Tep.92Seg.08)3. The edge-state spectra are topologically
identical for both edges, but the energies of the Dirac cones
of the edge states are different. It is because there is no sym-
metry to guarantee the equivalence of their energies in twisted
bilayer Biy(Teg 92S€eq.08)3. Although the moiré superlattice of
twisted bilayer Bi,(Te;_,Se,)s has in-plane C;-rotation sym-
metries along the I'y;-M), lines, they do not exchange the
two edges. Therefore, each edge state does not necessarily
have the same spectrum. This edge dependence is not moiré
specific but generally found in a noncentrosymmetric 2D
topological insulator. See Appendix F for general and more
detailed discussion. Note that in more realistic conditions,
the energy difference between the two edge states may be
suppressed by the charge-neutral condition.

Bi,(Teg g25€0 0g)3, 6=1.35°

Bulk

-0.034
-0.0345
-0.035
-0.0355

-0.036

Energy (eV)

-0.0365

-0.037

-0.0375

-0.038

4. Topological phase transition in moiré bands

Here, we show how a gap closing and a topological
phase transition occur in moiré bands. As the twist angle get
smaller, more edge-state-originated nearly flat bands appear
around the Fermi level due to the band folding with the
small moiré BZ. For example, in the case of twisted bilayer
Biy(Tep.02Sep 08)3 with 6 ~ 1.55°, topological phase transi-
tions occur on VB8 and VB9 and eventually they become
topologically trivial bands as the twist angle is decreased.
Generally for the topological phase transition in twisted bi-
layer Biy(Te;_,Se,)s, the gap closing occurs on the I'y-Kjy
lines due to the in-plane C; rotation symmetry [70]. Note that
the T'y-Kjs lines are not high-symmetry lines, although the
position of the gap closing is determined by the symmetry
restriction. When edges are made so that there is no symmetry
between the two edges, the gap closing is also seen in the 1D
edge BZ as a gap closing of bulk-band spectra at general mo-
menta. Figure 18 shows a bulk-band spectra and an edge-band
spectra of twisted bilayer Biy(Tep92Sep 0s3); with the twist
angle 6 = 1.35°, which is close to a phase transition point.
Gap-closing points are indicated with white dashed circles.
Note that the edge states appear from the points where the gap
closing will occur and make a Dirac cone that is close to the

Bulk+Edge

-0.034
-0.0345
-0.035
-0.0355

-0.036

Energy (eV)

-0.0365

-0.037

-0.0375

-0.038

FIG. 18. Bulk and edge band spectra of twisted bilayer Bi,(Teg92Seq0s)3 with 6 = 1.35°. The gap closing of the bulk band spectra occurs

at general momenta (white dashed circles).
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FIG. 19. Phase diagram of 3D WSM model (F3). A WSM phase appears between A% = 1.0 and 1.1 as a gapless phase between NI and TL
At AY = 1.0, Weyl points are created on the (k, = 0, k, = 7) line. As A% increases, the Weyl points move in the k, = 7 plane and annihilate

on the (k, = 0, k, = ) line at A(} =1.1.

bulk-band crossing of a Kramers pair at the I'j; point. The
topological phase transition that occurs as the twist angle is
decreased is not simple as a pair annihilation between VB8
and VBY. As the twist angle is decreased, the gap between
edge-state-originated bands gets smaller and thus they shift
relatively upward, while the bulk-state-originated band stays.
Therefore, the nontrivial structure moves to the next and next
band as the twist angle is decreased. Actually, another gap
closing occurs between VB9 and VB10 and there are midgap
edge states in the lower-energy region VB9 in Fig. 18.

APPENDIX F: NONCENTROSYMMETRIC 2D
TOPOLOGICAL PHASE TRANSITION

A moiré system does not have the inversion symmetry and
we have found that a topological phase transition occurs in
twisted Biy(Te;_,Sey)s. In this Appendix, we explain how
a topological phase transition occurs in a general noncen-
trosymmetric 2D system. We consider a topological phase
transition between a topological insulator (TI) phase and a
normal insulator (NI) phase in time-reversal 7 symmetric sys-
tems. Generally, when a topological phase transition occurs, a
gap closing must occur in the bulk-band dispersion [55,56].
First, we briefly review the case of a centrosymmetric TI. In a
phase transition occurs from a NI to a TI in a centrosymmetric
system, the bulk gap closing occurs at one of (or an odd num-
ber of) the TRIM. When a surface band spectrum is drawn,
the gap closing is seen as a gap closing of the bulk continuous
spectra at one of the TRIM of the surface BZ because TRIM
of 3D BZ are projected on TRIM of the surface BZ. In the
TI phase, a corresponding surface state emerges around the
TRIM in which the gap closing occurred. In noncentrosym-
metric systems, the bulk gap closing occurs at a generic k
point. In 3D case, the gapless phase has finite width in the
parameter space, which is a Weyl semimetal (WSM) phase.
In the 2D case, the gap closing occurs only on the critical
point in the parameter space. Because the bulk gap closing

occurs at a generic k point, a gap closing in the surface band
spectrum should also be seen at a generic k in the surface BZ.
Reference [70] clarified that, in noncentrosymmetric 2D sys-
tems, k points where the gap closing can occur are restricted
by crystalline symmetries. However, it has not been clearly
described how a corresponding surface state emerges from
the gap-closing point in the surface band spectrum. Therefore,
here we demonstrate the emergence of the surface state in
topological phase transition in noncentrosymmetric 2D sys-
tems, and explain the relation between the surface state and
the crystalline symmetries.

As explained above, in a 3D system, a topological phase
transition in a noncentrosymmetric system is described as a
NI-WSM-TI transition. Therefore, we start from a 3D model
that describes a NI-WSM-TI transition, and by focusing a
particular 2D momentum plane in the model we discuss the
bulk and surface band spectra in a noncentrosymmetric 2D
system. We use the inversion-broken TI/NI multilayer model
given in Refs. [71,72], and it is a 4 x 4 model written as

H = vt (kyor — ko) + V1,

+ An(R)Te + Ar(k)(e®t, + e *r ). (FI)
The four components consist of surface states on the top
surface of the TI layer with spin up and down (4, #,%), and
those on the bottom surface (b4, byx). The o, . and 1, ,
are Pauli matrices for spin and top and bottom surfaces, re-
spectively, where 74+ = (7, £ ity)/ V2. We assume a twofold
rotation symmetry about the z axis (Cy,), and thus the Ay (k)
and Ar (k) are written as

Ar(k) = A + 85k; + 87k,
An(k) = A} + Syk; + 53k (F2)

To draw the surface band spectrum, we transform the
model into an equivalent lattice periodic model. The lattice
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periodic model is
H = vt (sinkyo, — sink,0,) + Vr,
+Ar(OT + Ay, +e ), (F3)
where Ay (k) and A7 (k) are written as
Ar(k) = A) +285.(1 — cosky) + 287.(1 — cosky),
An(k) = A% + 285 (1 — cosky) + 283 (1 — cosk,).  (F4)

By taking A% as a tuning parameter, this model shows the
NI-WSM-TT transition. We fix the other parameters as

V=02 v=04 &5=060, & =0.20,
o g <1 L 01 1/2 )
MO s - - 1-vee )

. _5x<] Lo 1/2 )
rer & -8 1—/1-v2r)
A =1.042(8 — &)1 — /1 =VZ/v2). (F5)

J

Here, 83, 87, and AY are determined to fix the transition
points at A} = 1.0 and 1.1. When A% < 1.0, the model is a
normal insulator (Fig. 19). When A% = 1.0, Weyl points are
created as pairs on the (k, = 7, k, = 0) line (Fig. 19). Due to
the time-reversal symmetry, a pair of Weyl points are created
each of positive and negative k, region and thus four Weyl
points are created in total. When 1.0 < A} < 1.1, the Weyl
points move on the k, = 7 plane, and when A9 = 1.1, they
annihilate on the (k; = 7, k, = 0) line. When A(% > 1.1, the
model is a strong topological insulator.

By focusing on a particular 2D momentum space in the
3D BZ of this model, we can discuss a topological phase
transition and surface states in a noncentrosymmetric 2D
system. To consider a time-reversal symmetric system, the
focused 2D plane must be a time-reversal invariant plane
(VY k € {2D plane}, —k € {2D plane}). Here we focus on two
planes, k, = 0 and k, = 0. To draw the surface band spectrum
with Green’s function method, we transform the lattice peri-
odic model into a real space representation as

2 e lrty 1t lr—y Aty rrelr—y 2 o lr+x rrilr—x rrelr+x e r—x

+ V@t — by, = blb )+ (AN + 285+ 283) b+ 1]b ) — SN (Wbyy e + 1D by 10D, )

Y (4t t t t 0 x Y\ (st i 0 t
- SX/(tﬁrbﬁrer + tlrb¢r+y + tTrbTrfy + tirbirfy) + (AT + 2‘ST + 28;‘)(tTrbTr+z + t¢rb¢r+z) - ST (tTrbTthJrz + tlrblr+x+z

i i i i i i
F By s OB ) = S By By + By e 1By )| + e (F6)

where r is the unit-cell index and a cubic cell with a lattice
constant 1 is assumed.

We obtain surface band spectrum with the real-space lattice
periodic Hamiltonian as shown in Fig. 20. First, we focus
on the k, = 0 plane. The y direction is removed by fixing
ky, and the surface band spectrum is calculated in a ribbon
with a periodic x direction and a finite-z direction. The bulk
gap closing occurs at A% = 1.1, which is the point where
the Weyl points in 3D BZ touch the k, = 0 plane. This is
a topological phase transition point between 2D NI and TI,
and when A‘} > 1.1, we can see topological edge states that
connect the valence and conduction band spectra. Next, we
focus on the k, = 0 plane. In this case, we consider a ribbon
with a periodic y direction and a finite-z direction. Also in
this case, a topological phase transition occurs when the Weyl
points in 3D BZ touch the k, = 0 plane, A% > 1.0. These
results correspond to looking at a particular k slice of the
surface state of the 3D WSM. It should be noted that the
energies of the surface states are different in the left and
right edges in both cases. The emergence of the surface state
with edge-dependent energies is consistent with two natural
requirements in properties of surface states: (i) edge state
should emerge from a gap-closing point of the bulk band
spectrum, (ii) a Dirac cone of a time-reversal protected surface
state should be located on a TRIM. At the same time, this edge
dependence indicates asymmetry of the left and right edges. If
the gap closing of the bulk band spectrum occurs on a generic
point in the surface BZ, the bulk Hamiltonian is not allowed

(

to have a symmetry that exchanges the left and right edges.
Consequently, the position in 2D BZ where a gap-closing
point can appear is restricted by crystalline symmetries of the
bulk Hamiltonian, which is consistent with Ref. [70].

In conclusion of this Appendix, we have shown the edge
dependence of the emergence of the surface states and its
relation with symmetries of the bulk Hamiltonian, and demon-
strated it with an easy model.

APPENDIX G: TWISTED BHZ MODEL

In this Appendix, we propose a twisted Bernevig-Hughes-
Zhang (BHZ) model as a simple model to describe the
essential behavior of twisted bilayer Bi,(Te;_,Se,)s.

The BHZ model is a well-known effective model of a 2D
topological insulator, i.e., a quantum spin Hall insulator. The
BHZ model is given with two orbitals and two spin, and the
Hamiltonian is typically written as

Hgyyz (k)
= (M — Bk*)t,00 + Ak, 1,0, + Ak, 7,00

(M — BK?) Ak~

Ak* —(M — BK?)

—Akt ’
—(M — BK?)

(G

(M — Bk?)
—Ak™
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FIG. 20. Phase diagrams of noncentrosymmetric 2D systems and surface band spectra obtained by focusing on the k, = 0 plane (top) and
k, = 0 plane (bottom) of the 3D BZ of the WSM (F3). In each phase diagram, the top and bottom density plots are the surface band spectra of

the left and right edges, respectively.

where k* = k, =+ iky, k* = k7 + k7, and the basis is ordered as
[1,1), 12, 1), 11, 1), |2, 1). This model has the time-reversal
symmetry 7 and a rotation symmetry around z axis Cy (per-
pendicular to the 2D system), and the operators are given as

T = IU\’C, C(; = . (G2)

This model describes a topological insulator when MB > 0
and a normal insulator when BM < 0.

By introducing a moiré scale oscillation in M, we ob-
tain a twisted BHZ model. To make the model realistic, we
transform the basis. We assume that one of the two orbitals

is located on the upper layer, and the other on the lower
layer, and spin is located on each orbital. This assumption
restricts the time-reversal and the rotation operators to be
block diagonal with intralayer blocks. We also assume that
the moiré oscillating term M should be an interlayer element.
To satisfy these assumptions, we transform the Hamiltonian
with a unitary matrix

1 . . .
U = 5510+ in)(on = o) + (m = i5)(0y + )
1 0 —i O
I {0 1 0 —i
“2lo - o0 1) (G3)
i 0 -1 0
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and obtain a new representation of Hamiltonian

Hyyz(k) = U' Hgpz (k)U

=M — Bkz)tzay + Ak, t.00 + AkyTy00

Ak~

Ak~
i(M — Bk?)

—i(M — BK?)
i(M — BK?)

Y GH

—i(M — BK?) Akt

where the new basis is written as |1, 1) — ]2, 1), 2, ) +
i), i,y —12,1), 12, 1) + 11, ). In this representa-
tion, the time-reversal and the rotation operators are written
as

7— = —‘L'yO'()IC, Cg = (GS)

By assigning Hgz (k) to h2”° (k) in Eq. (B20), we ob-
tain a Hamiltonian of the twisted BHZ model. By tuning M
for three sampling points, we can design a moiré superlattice
system with topological and normal insulator domains.

Note that the basis ordering makes a physical differ-
ence in a strict sense due to the momentum twisting in
Egs. (B17)-(B19), although it makes no physical difference
in an untwisted case. However, the difference is negligible
in the small twist angle limit when we consider an effective
model around the I" point in the atomic BZ. We calculate with
Hpgpz (k), but it is confirmed that almost the same results can
be obtained by calculating with Hgpz (k).

Twisted BHZ model

6=0.80°, (Mas,MasMac)=(0.20,-0.30,0.40)

(a) (b) (¢ (d)
P
0.1 4 (ea
’ VB1

VB

Energy (eV)
o

VB2

o~
4]
S~

(

Figure 21 shows an example of the twisted BHZ model
with 6 = 0.80°, A = 1, B = 0.1, and stacking dependent M
that is set to (Mya, Mag, Mac) = (0.2, —0.3, 0.4). Because
MB < 0 only in the AB-stacking area, the topological in-
sulator domain should appear around the AB-stacking area,
as is in twisted bilayer Biy(Te;_,Se,)s. It can be seen that
the expected ring-shape edge-state-originated states VBI1-
3 and their angular momentum ordering are obtained as
shown in Figs. 21(b)-21(d). There are also moiré topologi-
cal bands VB6 and VB7 [Fig. 21(g)], and a corresponding
moiré-scale helical edge state is obtained as shown in
Fig. 21(h). Because the wave functions of the VB6 [Fig. 21(e)]
and VB7 [Fig. 21(f)] are edge-state originated and bulk-
state originated, respectively, the obtained moiré-scale helical
edge state is an edge state from edge state. These results
indicate that the twisted BHZ model is a good simple
model that reproduces the properties of twisted bilayer
Bi,(Te;_,Se,)s. Furthermore, it is also shown that the edge
state from edge state is not specific for twisted bilayer
Bi, (Te;_,Sey )3, but is a general phenomenon in similar moiré
systems.
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FIG. 21. Example of the twisted BHZ model (0 = 0.80°, A =1, B =0.1). The stacking dependent M is set to (Maa, Map, Msc) =
(0.2, —0.3, 0.4). (a) Moiré band dispersion. (b)—(f) Real-space plot of the wave functions (upper layer, spin up) at the I" point for VBI,
VB2, VB3, VB6, and VB7. (g) Magnified view of the VB6 and VB7 and Wilson loop spectra of them. (h) Moiré edge-state spectrum.
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