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Yielding, shear banding, and brittle failure of amorphous materials
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Widespread processes in nature and technology are governed by the dynamical transition whereby a material
in an initially solid-like state, whether soft or hard, then yields. Major unresolved questions concern whether any
material will yield smoothly and gradually (“ductile” behavior) or fail abruptly and catastrophically (“brittle”
behavior); the roles of sample annealing, disorder, and shear band formation in the onset of yielding and
failure; and, most importantly from a practical viewpoint, whether any impending catastrophic failure can be
predicted before it happens. We address these questions by studying theoretically the yielding of slowly sheared
athermal amorphous materials, within a minimal mesoscopic lattice elastoplastic description. Our contributions
are fourfold. First, we elucidate whether yielding will be ductile or brittle, for any given level of sample annealing
prior to shear. For highly annealed samples, we find brittle yielding for all samples sizes. For poorly annealed
samples we uncover an important dependence on the size of the sample of material being sheared, with ductile
yielding for small samples, and brittle yielding only for large system sizes. Second, we show that yielding
comprises two distinct stages: a prefailure stage, in which small levels of strain heterogeneity slowly accumulate
within the material, followed by a catastrophic brittle failure event, in which a shear band quickly propagates
across the sample via a cooperating line of (individually) localized plastic events. Third, we provide an exact
expression for the slowly growing level of strain heterogeneity in the prefailure stage, expressed in terms of the
macroscopically measured stress-strain curve and the sample size, and in excellent agreement with our simulation
results. Fourth, we elucidate the basic mechanism via which a shear band then nucleates, in terms of the onset
of cooperativity between plastic events. We furthermore provide an expression for the probability distribution
of shear strains at which failure occurs, expressed in terms of the sample size and the disorder inherent in the
sample, as determined by the degree of annealing prior to shear.

DOI: 10.1103/PhysRevResearch.4.043037

I. INTRODUCTION

Amorphous materials [1,2] include yield stress fluids [3,4]
and soft glassy materials [5] such as dense colloids, emul-
sions, foams and microgels, as well as hard materials such as
molecular and metallic glasses [6,7]. When experiencing low
loads or small deformations, such materials typically behave
in a solid-like way. At higher loads or larger deformations,
they then yield plastically. Indeed, numerous processes in
nature and technology are governed by the dynamical tran-
sition whereby a material in an initially solid-like state yields,
whether suddenly or gradually. Examples include the restart-
ing of a pipeline of waxy crude oil [8]; the rising of bubbles in
radioactive sludge [9]; the spreading of fresh cement [10,11];
the yielding of food during chewing [12]; the catastrophic
material failure of metallic glasses [7]; geological processes
such as landslides and lava flows [13,14]; and the reshaping
of biological tissue under internal stresses caused by active
processes such as cell division or cell death [15–17].
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In the context of yield stress fluids and soft glassy mate-
rials, a common rheological protocol consists of subjecting
a sample at some time t = 0 to the switch-on of a shear of
some strain rate γ̇ , which is held constant thereafter. A typical
shear stress response �(γ = γ̇ t ) then shows an initially elas-
tic solid-like regime in which the stress increases linearly with
strain γ , followed by a stress maximum. This signifies the
onset of yielding, and the stress then declines towards a con-
stant in the final steadily flowing state. The flow field across
the sample often becomes highly heterogeneous as yielding
sets in [18–25]: shear bands form, with layer normals in the
flow-gradient direction. These bands can take hours finally
to heal away, leaving a homogeneously fluidized ultimate
flowing state. Exploiting recently developed techniques for
tracking the motions inside a fluid [26–28], experiments have
mapped the complicated spatiotemporal processes involved
[18–25,29–37]. Besides the gradual yielding and fluidization
just described, some soft materials instead fail suddenly, via
brittle fracture [38–43].

Alongside the complex fluids and soft solids just described,
some notably similar phenomenology is seen in harder mate-
rials such as polymeric and metallic glasses [6,44–47]. These
likewise show initially solid-like behavior at low strains,
followed by yielding with a strong associated tendency for
strain localization and shear banding [7]. But whereas yield
stress fluids can then flow indefinitely post-yield without
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losing their ability to return to a solid state when later
unloaded, in metallic glasses the formation of shear bands typ-
ically leads to brittle yielding and catastrophic sample failure,
thereby limiting the material’s strength. Different scenarios
for its onset have been discussed [7,48,49]. These include
homogeneous nucleation [50], in which local plastic events
triggered within the material under shear spatially cooperate
to form a system-spanning shear band, once a percolation
threshold for their link-up has been achieved as a function
of increasing stress. The stress needed for this can be rather
large; however, so in practice shear bands often nucleate het-
erogeneously at stress concentrations, for example, around
any indentations on the sample’s surface [51–53]. The impor-
tant role of sample size in modifying shear banding formation
and brittle yielding has also been studied [54,55]. In particular,
the yield strength of metallic glasses has been found to in-
crease with decreasing sample size: a phenomenon suggested
to arise from the reduced number of sites for shear band
nucleation as system size decreases.

Theoretical studies of yielding in amorphous materials
have ranged from microscopic through mesoscopic and up to
the continuum level. In the context of continuum modeling
of the rheology of complex fluids, it can be predicted within
a minimal set of generalized constitutive assumptions that a
state of initially homogeneous shear must generically become
unstable to the formation of shear bands once the maximum
of stress as a function of strain is attained, and the material
first starts to flow [56–62]. For samples subject instead to a
constant applied shear stress, shear bands are likewise gener-
ically predicted to form as the initial creep regime terminates
and the sample yields. These predictions have been confirmed
experimentally [18–25], by molecular simulations [63–69]
and in several specific constitutive models of complex fluids
rheology [61,62,70–77].

At the level of microscopic and mesoscopic modeling,
much attention has been devoted to understanding the dynam-
ical properties of the finally flowing shear state, in which the
stress has attained a (statistically) steady state as a function of
applied strain. (Any such state may or may not be attainable
in practice for a given sample, being sometimes preempted by
catastrophic sample failure.) A unifying picture has emerged
in which local plastic events triggered within the material by
the applied shear cooperate to form avalanches that flicker
intermittently across the system, with power-law statistics.
Their dependence on strain rate, system size, and temperature
has been carefully characterized [78–89].

Beyond this steadily flowing state, attention is increasingly
turning to understanding the initial onset of yielding after a
shear is first switched on. Several approaches have been put
forward, studying dynamical yielding within a replica field
theory [90–92]; as a critical point in an elastoplastic model
[74,93]; as a directed percolation transition [64,65]; within
a random first-order transition theory for the glass transition
[94]; as a Gardner transition [95]; as a spinodal point [96];
and within particle simulations that seed initial weak spots
[97]. Yielding in oscillatory shear has been studied using
particle simulations [98–100], in elastoplastic models [101],
and in energy landscape models [102]. Yielding following
creep under an applied load was studied using particle sim-
ulations in Ref. [103]. Microscopic precursors to yielding

have recently been observed experimentally in soft materials
[104–106].

With this backdrop, it is clear that yielding represents a
problem of central importance to several areas of physics, with
the observation of common phenomenologies across multiple
classes of material stimulating a search for universal expla-
nations. In the twin contexts of soft matter physics and fluid
dynamics, yielding is crucial to the question of how complex
fluids flow. In statistical physics, it represents a nonequilib-
rium phase transition that is only just starting to be understood
from first principles. In materials physics, it is core to un-
derstanding a material’s ultimate strength in principle, and to
improving material performance in practice. In active matter,
its role in the reshaping of biological tissues remains to be
elucidated.

A question of key significance to the practical perfor-
mance of a material is whether it will yield smoothly and
gradually (“ductile” behavior) or instead fail abruptly and
catastrophically (“brittle” behaviour) [107–109]. The influ-
ence of annealing and disorder in the sample prior to shear,
and its role in determining the formation of shear bands
during yielding and failure, is increasingly being appreciated
[69,107–111]. And from a practical viewpoint, perhaps the
most important question is whether any impending sudden
catastrophic failure can be anticipated, before it actually oc-
curs, in terms of an identifiable material property. In this
paper, we address these questions within a lattice elasto-
plastic model [2] that contains only minimal assumptions,
and should therefore capture the mechanics of quasistatically
sheared athermal amorphous materials in a universally generic
way.

Our first contribution will be to carefully elucidate whether
yielding is ductile or brittle, for any given level of sample
annealing prior to shear. For highly annealed samples we find
brittle yielding for all system sizes. In contrast, for poorly
annealed samples we demonstrate an important dependence of
the nature of yielding on the size of the sample being sheared,
with ductile yielding for small samples and brittle yielding
only for sizes larger than have previously been studied theoret-
ically. We thereby resolve an apparent contradiction between
the recent work of Refs. [107,108], on the one hand, and that
of Ref. [109] on the other.

Indeed, recent studies of mean-field elastoplastic mod-
els of quasistatically sheared athermal amorphous materials
[107,108] have suggested ductile and brittle yielding to be
separated by a “random critical point”. In this scenario, the
underlying stress-strain relation �(γ ) is posited to display a
qualitative change in form as the degree to which the sample
has been annealed prior to shear increases: for poorly annealed
samples, �(γ ) has an overshoot but not an overhang, and
yielding proceeds in a smoothly ductile way, whereas for
highly annealed samples, it additionally develops an over-
hang, leading to catastrophic brittle yielding, with the stress
dropping precipitously once this overhang is reached. Ductile
and brittle yielding are thereby separated by a critical point,
at which the stress-strain curve switches between these two
qualitatively different forms with increasing annealing. Par-
ticle simulations and studies of two-dimensional (2D) lattice
elastoplastic models beyond mean field have been argued to
be consistent with this scenario [107].
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In contrast, calculations performed beyond mean field
within an athermal 1D elastoplastic model [109] reported a
discontinuous stress drop for any level of sample annealing,
however small, provided a stress drop indeed exists. They
thereby predicted that yielding will always be brittle in slowly
sheared athermal amorphous materials, contradicting the crit-
ical point scenario of Refs. [107,108].

Our paper demonstrates that the scenario of Ref. [109],
explored in that paper in a simplified 1D elastoplastic model,
also obtains in the limit of infinite system size in 2D
lattice elastoplastic models comprising N × N elastoplastic
elements. We achieve this by simulating a range of sample
sizes that has not (to this authors’ knowledge) been attained
in any previous study, from N = 64 to N = 4096. We thereby
suggest that evidence for the random critical point scenario of
Refs. [107,108], beyond mean field, may be a finite size effect,
potentially amenable to further finite size analysis along the
lines of that in Ref. [112].

Our next contribution will be to show that yielding com-
prises two distinct stages: a prefailure stage, in which small
levels of strain heterogeneity slowly accumulate across the
sample, followed (in large or highly annealed samples) by a
catastrophic brittle failure event, in which a macroscopic shear
band suddenly propagates across the sample.

In the prefailure regime, we provide an exact analytical
expression for the slowly growing level of strain heterogeneity
across the sample, expressed in terms of the macroscop-
ically measurable stress-strain curve and the sample size.
We show this to be in excellent agreement with our simu-
lation results. We also perform the counterpart analysis for
a mean-field elastoplastic model, again obtaining excellent
agreement between our analytical predictions and simulation
results.

Finally, we shall elucidate the mechanism of catastrophic
material failure, in which a shear band nucleates and spreads
quickly across the sample. Our basic observation is that a
single element first yields plastically and elastically propa-
gates its stress to other elements via the Eshelby propagator,
creating further yielding events in turn, which cooperatively
percolate along a line [113]. In simulating a 2D lattice with
periodic boundary conditions, our findings necessarily pertain
to homogeneous nucleation. Although in practice failure often
occurs via heterogeneous nucleation of shear bands at stress
concentrations around surface imperfections, elucidating the
basic physical mechanisms of homogeneous nucleation is
an essential prerequisite to progress in also understanding
heterogeneous nucleation, and to determining the ultimate
theoretical limit of material strength in the absence of surface
imperfections.

We provide an expression for the probability distribution
of shear strains at which a shear band appears and material
failure occurs, in terms of the disorder inherent in the sample,
as determined by the degree of annealing prior to shear. This
expression shows good agreement with our simulation results
for highly annealed samples, with progressively less good
agreement for less well annealed samples. Importantly, this
analytical result for the strain at which catastrophic failure
occurs depends only on a single parameter characterising the
level of initial sample annealing, together with the system
size. Our findings thereby provide a possible route to predict-

ing the brittle failure of highly annealed amorphous materials,
before it actually occurs. This is an important prediction that
we hope will stimulate further work to validate or disprove
it, both experimentally and in particle simulations of soft and
hard amorphous materials.

For highly annealed samples, we demonstrate a weak pro-
gression towards increasing sample strength with decreasing
sample size, consistent with the trend observed in metallic
glasses [55]. The finding of shear band nucleation in our 2D
elastoplastic model is consistent with the insight of Wyart and
coworkers in Ref. [108], who outlined arguments for band
nucleation in an elastoplastic model based on classical ideas
of fracture mechanics [114].

The paper is structured as follows. In Sec. II we introduce
two elastoplastic models to be studied: a 2D lattice model with
force balance, and its mean-field counterpart. These models
have been widely studied in the existing literature. In Sec. III
we present our results for the predictions of these models for
yielding in athermal quasistatic shear. We start in Sec. III A
by showing that, beyond mean field, yielding is always brittle
in the limit of large system size. In contrast, for small systems
(or in mean field), yielding is brittle only for highly annealed
samples, and instead appears ductile for poor annealing. In
Sec. III B we elucidate the physics of the “prefailure” regime,
in which small amounts of strain heterogeneity slowly ac-
cumulate as a result of local plastic events that are initially
largely uncorrelated. Section III C concerns the catastrophic
brittle failure event that follows. Here a shear band of highly
correlated plastic events nucleates and spreads quickly across
the sample, leading to a discontinuous drop in the macro-
scopic stress. In Sec. IV, we discuss the implications of our
results for experiments and molecular simulations. Section V
gives conclusions and perspectives for future work.

Before describing the model to be simulated, we make the
following remarks to ensure that our terminology is unam-
biguous.

First, we use the term “brittle” to characterize abrupt yield-
ing in which the stress drops suddenly from its maximum
value that pertains just before yielding, to a final post-yield
value, during a single event in which the strain becomes lo-
calized along a system-spanning shear band. We call yielding
“ductile” if the fall in stress happens more gradually, or as
a series of several smaller sudden drops, as a function of
the applied strain. This terminology is consistent with that as
used in Ref. [107]. We note, however, that the term brittle is
sometimes reserved to describe yielding via crack propagation
in the absence of significant plasticity, whereas significant
plasticity does occur inside a forming shear band. In places
where we use the term “brittle”, therefore, readers concerned
with this distinction may prefer to read it as “quasibrittle”.

Second, we use the term “shear banding” both in the
sense typically adopted in the rheology literature (to mean
a sustained coexistence of macroscopic bands flowing with
different shear rates), and as used in the metallic glass liter-
ature (to mean the formation of a highly localized band of
deformation), noting that these phenomena indeed also share
many notable similarities. In any place where the distinction
is not clear from the context, we shall clarify this explicitly.
We note further that the formation of a shear band in studies
with periodic boundary conditions (as the vast majority of
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theoretical works use) is likely in practice to be associ-
ated with the formation of a crack with new free surfaces,
in an experimental system where the boundaries can move
apart.

Third, we use the term “nucleation” to denote the onset
of shear banding in metallic glasses for consistency with the
use of the term in that literature, rather than necessarily to
mean the thermally activated crossing of a barrier leading to
the formation of a new phase or pattern. (These phenomena
clearly nonetheless share notable similarities in their stochas-
tic nature.)

II. ELASTOPLASTIC MODEL

Because amorphous materials lack any long range crys-
talline order, their behavior cannot be understood in terms
of (for example) the motion of defects in a background lat-
tice structure. Instead, it has been attributed to the generic
presence of structural disorder (think of a disordered arrange-
ment of foam bubbles, for example), metastability (for foam
bubbles to rearrange, the soap films must first stretch, which
typically incurs an energy cost much greater than kBT ), and
broken ergodicity (because of these energy barriers, the bub-
bles cannot rearrange in the absence of an externally applied
shear).

A popular modeling approach is to distill these ingredi-
ents into a mesoscopic description that bridges the gap in
length scales between a material’s constituent microscopic
substructures (foam bubbles, emulsion droplets, etc), and its
emergent macroscopic flow behavior. The basic idea is to
consider any macroscopic sample of material to comprise
many mesoscopic elastoplastic elements, each representing
a patch of several (e.g.,) foam bubbles. Each element is as-
sumed to load elastically in shear, in between intermittent
local plastic events. In any plastic event, a local energy bar-
rier to particle rearrangements is surmounted, and stress is
released.

In what follows we shall simulate the behavior in shear of
a 2D lattice elastoplastic model [2,115], which has a single
elastoplastic element on each of N × N lattice sites. Each
element is assigned a local elastic shear strain l , a corre-
sponding local shear stress kl , and a local yield energy E .
In between local plastic yielding events, the strain of each
element affinely follows the globally applied strain γ , cor-
responding to elastic loading with l̇ = γ̇ . For any element,
this elastic loading continues until its strain energy reaches the
yield threshold, 1

2 kl2 = E . Beyond this threshold, the element
yields stochastically at a rate τ0.

When any element yields, it adopts a new local strain
chosen at random from a Gaussian distribution lw. The small
value of lw is not important to the physics that follows and
we set lw = 0.02 throughout. (As discussed below, we work
in units in which the local yield strain lc ≡ √

2E/k = 1 for
all elements.) This yielding of an element at any lattice site
models a local plastic yielding event within the material:
physically, this might correspond to the sudden rearrangement
of a few particles, say. Just after any such local yielding
event, the stress across the 2D lattice will not be divergence
free: i.e., force balance will be violated. Force balance is

then immediately reimposed via the Eshelby stress propagator
in 2D [116,117]. In this way, the change in plastic stress
experienced locally at any lattice site is propagated elasti-
cally to the surrounding medium. Specifically, the propagated
elastic displacement field u resulting from a plastic event that
results in a local stress change S is given at wavevector q in
Fourier space by [116]

u = 1

kq2
(I − q̂q̂).iq.S. (1)

The associated elastic stress follows as k
2 (∇u + ∇uT). As is

common practice in the literature on elastoplastic models, we
consider only the shear component of this.

We consider throughout the limit of quasistatic shear,
γ̇ τ0 = 0, such that local yielding in fact occurs instanta-
neously once threshold is reached. Furthermore, in having
assumed that the yielding rate of any element is zero until the
yield threshold is reached, we are considering the athermal
limit of zero temperature. Accordingly, the protocol studied
here is that of “athermal quasistatic shear” (AQS), as consid-
ered widely in the literature on sheared amorphous materials.
We assume inertia to be negligible throughout and, as is
standard in studies of elastoplastic models, consider the stress
propagation that follows any local yielding event to be well
approximated by that in a homogeneous elastic medium.

To initialize the sample prior to shear, we assign each
element a local shear strain l , chosen at random from a dis-
tribution that has zero mean and standard deviation l0. We
then immediately impose force balance across the lattice.
This imposition of force balance reduces the standard devi-
ation of this initial distribution of local strains by a factor
equal to the square root of the sum over all lattice sizes of
the square of the Eshelby propagator. Throughout most of
the paper, our numerical results will pertain to a Gaussian
distribution of initial local strains. To demonstrate that our
conclusions are robust with regards the shape of this distribu-
tion, however, we shall also perform calculations with a beta
distribution of initial local strain values. To make a connection
with some recent particle based simulations [118,119], we
shall furthermore consider a variant of our model in which
all elements have zero initial local strain and instead have
different local yield stress values, distributed with Weibull
statistics.

Small (resp. large) values of the parameter l0 are taken
to correspond to highly (resp. poorly) annealed samples. In
a physical preparation protocol, a high degree of annealing
could correspond (say) to equilibration at a low tempera-
ture (only just above the glass transition temperature), or
to slow cooling from an initially high to zero temperature,
or to ageing for a long time at a low temperature (below
the glass transition temperature), before quenching to zero
temperature. (Conversely, poor annealing would correspond
to equilibration at a higher temperature before quench, faster
cooling, or a shorter ageing time.) We do not model any
of these annealing processes explicitly, but rather take the
value of the single parameter l0 as a proxy for the level of
annealing, as is standard practice in studies of elastoplastic
models.
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FIG. 1. Maps of sites that have yielded at least once (black) and never yielded (white) after floor(2.0p) plastic events have occurred
in total since the start of the deformation, with p = 7.5, 9.0, · · · 13.0 from left to right for decreasing levels of initial sample annealing,
l0 = 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, from top to bottom. System size N × N = 512 × 512 in each map.

So far, we have described the “full”, spatially aware elasto-
plastic model, with explicit force balance via an Eshelby
propagator, in two spatial dimensions (2D). To simulate a
mean-field version of this model, we randomly shuffle the
location of all elements on the lattice after each yielding
event and the subsequent force rebalancing step. This is not
the same as simply not implementing force balance, because
the propagation of stress during force balance changes the
distribution of local strains.

At any strain step, our numerical algorithm is as follows.
First, we query how much elastic strain �γ must be applied
in order to take the least stable element just above its yield-
ing threshold. This amount of strain is then applied to every
element on the lattice, li → li + �γ , and the global strain
variable incremented by the same amount, γ → γ + �γ .
The least unstable element, now just above threshold, is then
yielded. Force balance is then reimposed across the lattice.
This may lead to other elements then exceeding their local
thresholds. Any such elements are then yielded, and force bal-
ance is reimposed again. This process is repeated iteratively
until no elements are left above yield after rebalancing. We
then proceed to the next strain step. If, in any strain step, the
amount of elastic strain needed to take the least stable element
above threshold falls below �γ = 0.001, the strain increment
is set to this minimal value.

Throughout we use units in which the elastic constant
k = 1, and adopt the same yield energy threshold E for
for all elements, chosen such that the yield strain of each
element lc ≡ √

2E/k = 1, as noted above. The physical pa-
rameters that remain to be explored are then l0, which sets
the degree of initial sample annealing prior to shear (recall

that small values of l0 correspond to highly annealed sam-
ples), and the size of the sample of material being sheared,
as set by the linear size N of the two-dimensional N × N
lattice.

The macroscopic stress is defined as the average across the
lattice of the local elemental stresses

� = k

N2

N2∑
i=1

li. (2)

III. RESULTS

The basic physics that we shall consider is summarized
in Fig. 1, which shows a collection of state snapshots, each
pertaining to a system of size N = 512 for the model with
full 2D force balance. Each snapshot shows as a black dot the
lattice sites that have undergone at least one plastic yielding
event since shearing commenced. Unyielded sites are shown
in white. Rows downwards correspond to progressively less
well annealed samples. Columns left to right show the sys-
tem’s state after an increasing number of plastic events have
occurred since shearing started.

At early strains after shearing starts, only a few plastic
events occur, scattered throughout the sample in a largely
uncorrelated way. These lead to a low level of strain hetero-
geneity slowly accumulating across the sample. We shall call
this the “prefailure” regime. This regime then terminates (for
large samples or strong initial annealing) in a catastrophic brit-
tle failure event, in which plastic events spread quickly across
the sample in a highly correlated way, in the form of a shear
band, and the macroscopic stress signal drops discontinuously.
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FIG. 2. Stress-strain curves of the lattice elastoplastic model.
(a) Mean-field model for a lattice size N × N = 4096 × 4096, with
decreasing levels of sample annealing in curves downwards: l0 =
0.025, 0.050, 0.075 · · · 0.350. (b) Full model with explicit force bal-
ance, for the same parameters as in (a). (c) Full model, but now
for a smaller lattice size 256 × 256. (d) Full model for two different
annealing levels l0 = 0.025 (upper curves) and l0 = 0.200 (lower
curves) for system sizes N = 64, 128, 256, 512, 1024, 2048, 4096 in
black, red, green, blue, violet, cyan, and orange respectively. Inset
shows a zoom of the curves for l0 = 0.200. The curves for l0 = 0.200
are at any N averaged over 8 × 4096/N runs, each with a different
random number seed.

A. Yielding is always brittle for large system sizes

We shall start by confirming that the scenario of
Refs. [107,108] also holds in the mean-field version of the
elastoplastic model simulated here, before then showing that it
does not apply beyond mean field. See the stress-strain curves
in Fig. 2(a). These show a discontinuous stress drop for highly
annealed samples (small values of l0), but a continuous stress
drop for poor annealing (larger l0). (For the largest values of
l0, the stress rises monotonically with strain.) As sketched in
Fig. 2(b) of Ref. [108], the discontinuous stress drop for strong
annealing can be understood (in mean field) to stem from an
underlying stress-strain curve that has an overhang, with the
stress falling discontinuously from the curve’s upper to lower
branch once the overhang is reached.

The distinction between the regime of discontinuous stress
drop for highly annealed samples and of continuous stress
drop for poorly annealed samples is further explored in Fig. 3.
We define the net stress drop during a shear simulation, for any
given level of initial sample annealing, to be the difference
between the maximum stress (maximized over all strains)
and the (statistically) steady state stress approached as strain
γ → ∞. We report this net stress drop as a function of the
annealing parameter l0 via the solid lines in Fig. 3(a). We
now further consider only the discontinuous part of this stress
drop, defined as the maximum stress drop in any single strain
increment. We report this quantity via the dashed lines in
Fig. 3(a). The difference between these two drops is plotted
in Fig. 3(c). As can be seen, a discontinuous stress drop exists
for high levels of sample annealing, with l0 < l∗

0 ≈ 0.1. Its
amplitude then falls continuously to zero as l0 rises towards
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FIG. 3. Drop in stress-strain curves as a function of the an-
nealing parameter l0, with smaller values of l0 corresponding to
better annealed samples. [(a),(c)] In the mean-field model. [(b),(d)]
In the full model with force balance. [(a),(b)] Solid lines: total
stress drop (maximum stress minus steady state stress). Dashed
lines: discontinuous part of the stress drop (maximum stress drop
in any single strain increment). [(c),(d)] Difference between total
stress drop and discontinuous part of stress drop. Sample sizes N =
128, 256, 512, 1024, 2048 in black, red, green, blue, violet respec-
tively. For each value of N , drops are averaged over 8 × 4096/N
runs, each run with a different value of the random number seed.

l∗
0 . For poorly annealed samples (l0 > l∗

0 ), there is no discon-
tinuous stress drop, at least for large systems. This behaviour
furthermore shows only a rather weak dependence on system
size N .

So far, then, we have confirmed the scenario reported in
earlier mean-field studies of elastoplastic models [108], with
brittle yielding for strong annealing (l0 < l∗

0 ), ductile yielding
for poor annealing (l0 > l∗

0 ), and a “random critical point”
separating these at l0 = l∗

0 .
We now move beyond mean field and propose that

the route to reconciling the apparent contradiction between
Refs. [107,108] (brittle yielding for high annealing and ductile
yielding for poor annealing), and Ref. [109] (brittle yielding
for all levels of annealing, provided a stress drop indeed oc-
curs), as discussed in Sec. I above, lies in a careful study of
the size of the sample being sheared.

To demonstrate this, we shall simulate our 2D elastoplastic
model of N × N elastoplastic elements with Eshelby force
balance, for a previously unprecedented range of system sizes
from N = 64 to 4096. For small N we shall recover the obser-
vation of Refs. [107,108], of brittle yielding for high annealing
and ductile yielding for poor annealing. This distinction is
however not governed by a critical point in our simulations.
For large N we shall recover the scenario of Ref. [109],
with brittle yielding for all levels of annealing, provided a
stress drop indeed exists. In this way, we suggest that the
scenario found in the earlier studies of 2D elastoplastic models
[107,108], which apparently confirmed the random critical
point found in mean field, may be a finite size effect.
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The reconciliation just described is substantiated in Figs. 2
and 3, as follows. Figure 2(b) shows stress-strain curves
computed within the 2D elastoplastic model with full force
balance, for a large system size N × N = 4096 × 4096.
Curves with decreasing maximum stress values correspond
to decreasing levels of annealing. As can be seen, the stress
drop is discontinuous not only for the highly annealed sam-
ples, but also (or very nearly so, for this N = 4096) even
for poorly annealed samples. In contrast, simulating the same
annealing levels for a small system size N = 256 in Fig. 2(c)
shows a convincingly discontinuous single stress drop only
for strong annealing. In poorly annealed samples, the stress
instead declines continuously, when averaged over many runs
with different random number seeds. (In any single run, it
decreases via a cumulative series of smaller discontinuous
drops.) Figure 2(d) shows two collections of curves: the upper
collection for strong annealing, and the lower collection for
weak annealing, with each collection showing a full sequence
of system sizes, N = 64, 128, 256 · · · 4096. For the highly
annealed case, the stress drop is discontinuous even for small
N . For the poorly annealed case, the stress drop is gradual and
continuous for small N , but becomes increasingly steeper with
increasing N .

This is explored further in Fig. 3, in which panel (b) shows
as solid lines the net stress drop (from the maximum stress
value to the steady state) as a function of the annealing param-
eter l0, averaged over many runs at each l0. The discontinuous
part of the stress drop, also averaged over many runs at each
l0, is shown as dashed lines. As can be seen, the discontinuous
stress drop persists across the full range of l0 in this non-mean-
field system, even for poorly annealed samples (high l0). This
is to be contrasted with the vanishing of the discontinuous
stress drop at the critical point l0 = l∗

0 ≈ 0.1 in the mean-field
model. We therefore conclude that the critical point of the
mean-field model does not inform the yielding behavior of the
non-mean-field model.

Subtracting the discontinuous part of the stress drop from
the net stress drop for the non-mean-field model in panel (d),
we see that the difference between the net and the discontin-
uous part of the stress drops shifts progressively to zero as
the limit of infinite system size N → ∞ is approached. In the
limit N → ∞, therefore, we expect the entire stress drop to
occur discontinuously in a single strain increment, however
poorly annealed the sample, corresponding to brittle yielding.

For very poorly annealed samples, with a broad initial
distribution of local strains, the stress rises monotonically with
strain, with no stress overshoot or drop. Indeed, in this case,
significant plasticity occurs early in any simulation, because
elements in the positive-l wing of the initial strain distribution
exceed their local threshold already at small strains. This is
true even for large N and clearly would be described as ductile
rather than brittle behavior. However, whether it would be de-
scribed as yielding is a moot point, because yielding describes
the progression with increasing strain from an initially elastic
state to a finally plastic one.

1. Robustness to shape of initial local strain distribution

So far, the elements in our elastoplastic model have all
had the same local yield strain lc, but different initial local

strain values drawn from a Gaussian distribution. From this
it follows that the values of the initial stress needed to in-
duce a local yielding event—the “stress-to-yield” values—are
also drawn from a Gaussian distribution. Recent atomistic
simulations [118,119] have, however, indicated that the dis-
tribution of the stress-to-yield values, approaches zero as a
power law, in the limit of small stress-to-yield. In order to test
the robustness of our predictions to the shape of the initial
distribution of stress-to-yield values, we now consider two
alternative initial conditions, aimed at capturing the statistics
reported in Refs. [118,119].

The first of these keeps the yield stress values fixed across
sites, at lc = 1, but replaces the Gaussian distribution of initial
strain values with a β distribution. This has a probability
density function given by

f (l ) = �(2α)

2�2(α)

(
1 + l

2

)α−1(1 − l

2

)α−1

, (3)

for −1 � l � 1, with f (l ) = 0 outside this region. Here �

is the standard Gamma function. The β distribution has zero
mean, is symmetric about this mean, and decays (for α > 1)
towards the yield strain lc = 1 as a power law with exponent
α − 1. This results in a power-law decay of the distribution
of stress-to-yield values, close to yield, as seen in the particle
simulations [118,119]. After drawing the initial local strain
values from this distribution we then impose force balance
across the material before shear is applied. The other aspects
of our simulation remain as described in Sec. II.

As usual, we model the degree of annealing by the variance
l2
0 of the distribution of initial local strain values: a well-

annealed sample has a small l0, and a poorly annealed sample
a large l0. The exponent α of the β distribution is related to its
variance via

α = 1

2

(
1

l2
0

− 1

)
. (4)

The condition α > 1, needed for the distribution to decay near
threshold, holds as long as l0 < 1/

√
3 ≈ 0.5774.

Stress-strain curves for different levels of annealing for
this beta distribution, with l0 values chosen to match the
variances considered for a Gaussian distribution in Figs. 2(a)
and 2(b), are shown in Figs. 4(a) and 4(b). Consistent with
our observations in Fig. 2, we find a discontinuous stress drop
for highly annealed samples for all sample sizes. For poorly
annealed samples, we instead find a continuous stress drop for
small and moderate system sizes, with the drop then tending
to a discontinuous one in the limit of large system size. This
is further explored in Fig. 4(c), which shows the total and
(separately) the discontinuous part of the stress drop. The
difference between these are shown in Fig. 4(d), and found to
decay slowly as system size increases. In the limit of infinite
system size, therefore, the entire stress drop is predicted to be
discontinuous, corresponding to brittle yielding.

In our second alternative to a Gaussian distribution of ini-
tial local strains, we remove the randomness from the initial
local strains, taking the initial strain of each element to be
zero. We instead now adopt a distribution of initial local
yield strain values lc. For these we assume a Weibull distri-
bution, which represents a generalization of the exponential
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FIG. 4. Stress-strain and stress drop curves of the lattice elasto-
plastic model with the initial stresses distributed according to a
beta distribution as in Eq. (3). (a) Stress-strain curves for a lat-
tice size N × N = 2048 × 2048, with decreasing levels of sample
annealing in curves downwards: l0 = 0.025, 0.050, 0.075 · · · 0.350.
(b) Stress-strain curves for two different annealing levels l0 = 0.025
(upper curves) and l0 = 0.1 (lower curves) for system sizes N =
128, 256, 512, 1024, 2048 in black, red, green, blue, and violet re-
spectively. Inset shows a zoom of the curves for l0 = 0.1. The curves
for l0 = 0.1 are at any N averaged over 8 × 4096/N runs, each with a
different random number seed. (c) Solid lines: total stress drop (max-
imum stress minus steady state stress). Dashed lines: discontinuous
part of the stress drop (maximum stress drop in any single strain in-
crement). (d) Difference between total stress drop and discontinuous
part of stress drop. Sample sizes N = 128, 256, 512, 1024, 2048 in
black, red, green, blue, violet respectively. For each value of N , drops
are averaged over 8 × 4096/N runs, each run with a different value
of the random number seed.

distribution, and which fits the form of the stress-to-yield
curves obtained in Refs. [118,119], near threshold. The prob-
ability density function is

f (l ) = k

λ

(
l

λ

)k−1

e−(l/λ)k
. (5)

This has two parameters: a scale factor λ and an exponent k �
1, with the exponential distribution corresponding to k = 1.
The scale parameter simply determines the units of stress. We
choose to work in units such that the mean of the distribution
is equal to 1, which is equivalent to choosing

λ = 1

�(1 + 1/k)
. (6)

This leaves us with the single parameter k, which sets the
exponent of the power-law decay lk−1 of the stress-to-yield
values, close to zero. It is related to the variance l2

0 of the
distribution by

l2
0 = �(1 + 2/k)

�2(1 + 1/k)
− 1. (7)

Accordingly large values of k correspond to small l0 and so to
well annealed samples. We consider values of l0 so as to match
the values of the variance used previously for the Gaussian
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FIG. 5. Stress-strain and stress drop curves of the lattice elasto-
plastic model with fixed initial stress and the yield stresses distributed
according to a Weibull distribution as in Eq. (5). Panels (a)–(d) have
the same parameter values as their direct counterparts in Fig. 4.

and β distributions. At any l0, we invert Eq. (7) numerically
to find the corresponding value of k. To ensure that the final
state of steady flow is independent of the initial condition,
after any element’s first local yielding event we choose its new
yield strain from a Weibull distribution of unit mean and fixed
variance l2

w = 0.25. Otherwise our algorithm is as described
in Sec. II.

The resulting stress-strain curves are shown in Figs. 5(a)
and 5(b). The net stress drop and discontinuous part of the
stress drop are shown in Figs. 5(c) and 5(d). All the key
features found previously for a Gaussian distribution are pre-
served, with brittle failure for highly annealed samples, and a
slow progression from ductile to brittle failure with increasing
system size for poorly annealed samples.

Having shown the same qualitative behavior for three
different shapes of the distribution of initial stress-to-yield
values, we suggest that our physical conclusions are robust
with respect to that shape.

B. “Prefailure” stage: Slow accumulation
of strain heterogeneity

Returning to Fig. 1, we recall that yielding comprises
two regimes. In the first regime, plastic events arise sporad-
ically in a way that is (at least initially) relatively spatially
uncorrelated. For highly annealed samples (upper rows in
Fig. 1), these plastic events occur very infrequently; for poor
annealing (lower rows), they are more frequent. In the second
regime, a macroscopic shear band spreads quickly across the
sample and the sample fails suddenly. In this section we aim
to understand the first regime, before sudden failure occurs.

In this first regime, the occurrence of plastic events
throughout the sample leads to a progressive accumulation
of strain heterogeneity. This can be understood most easily
within a simplified one-dimensional description in which we
consider our N × N lattice in x and y to comprise an array of
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N streamlines arranged across the y direction, along each of
which we project down the x coordinate by integrating over
the N elements along x. (We could equally instead consider
an array of N streamlines across x, integrating over the N
elements along y.)

It is worth noting that this equivalence between x and
y holds on account of the π/2 rotational symmetry of the
Eshelby propagator, in tandem with the fact that, in common
with most numerical studies of elastoplastic models, we have
ignored a term that would advect elements with the shear
flow. Had we included advection, with a flow direction x
and flow-gradient direction y, we anticipate that the strain
heterogeneity discussed in this prefailure regime would arise
across the flow-gradient direction y, with the system’s state
remaining relatively invariant in x: any heterogeneity with
wavevector along the x direction would be advected to finally
have its wavevector indeed along y.

Consider then (in our model in which x and y are equiva-
lent) a plastic event having just occurred on a given streamline
at some y. This causes a loss of stress on that streamline of
1/N . (The streamline stress is defined as the average of the
local elemental stresses along that streamline.) This stream-
line is therefore now out of force balance with the others: in a
balanced system, the stress is the same across all streamlines.
In the force balance step that immediately follows, therefore,
the streamline on which the plastic event just occurred must
strain forwards slightly to recover the same stress as all the
other streamlines. Every streamline furthermore then strains
backwards (by a lesser amount) to respect the fact that some
stress has been lost from the system in the plastic event. The
physics just described in words is what indeed results after
imposing a full Eshelby 2D propagator, and then projecting
down the result to one dimension.

Accordingly, after a given strain γ has been applied (on
spatial average) across sample as a whole, any streamline of
constant y (or of constant x) in Fig. 1 that has experienced
a higher number of plastic events than the average number
across the whole sample will have strained forwards a little
more than the average γ . Those that have experienced statisti-
cally fewer events will have strained forwards a little less than
γ .

Let us therefore now define the strain heterogeneity δγ (γ )
as the standard deviation of the strain across the y direction,
having first integrated across x. This is plotted as a function of
the average strain γ applied to the sample as a whole since
shearing commenced in Fig. 6. Results are shown for the
mean-field model in panel (a) and for the 2D lattice model
with force balance in (b). The solid lines are the strain het-
erogeneity measured from our simulations. The dashed lines
are the results of the analytical calculation that we shall now
present in order to understand these simulation results.

Let us start by considering the distribution of local strains
as first initialized, denoted P̃(l, t = 0). Recall that in most of
our numerical results this is a Gaussian of width l0. (Robust-
ness against switching to a beta or Weibull distribution has
been demonstrated above. Indeed, the analytical arguments
that follow below do not depend upon a particular choice for
the shape of the distribution.) As described in Sec. II, we then
immediately impose force balance. This narrows the width of
the Gaussian by a factor equal to the square root of the sum
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FIG. 6. (a) Black solid lines: Growth of the small standard devi-
ation of strain across the sample δγ as a function of overall imposed
strain γ in the prefailure regime, measured from simulations of a
mean-field elastoplastic model with a lattice size N × N = 4096 ×
4096 for decreasing levels of sample annealing in curves leftwards:
l0 = 0.050, 0.075, 0.100 · · · 0.350. Red-dashed lines: analytical pre-
diction for this quantity according Eq. (25). (b) As in panel (a),
but now with full force balance, and with the analytical prediction
(red-dashed lines) given by Eq. (24). (Once any solid line turns
sharply upwards, catastrophic failure has set in.)

across all lattice sites of the square of the 2D Eshelby propaga-
tor. We denote this renormalized distribution by P(l, t = 0). It
represents the state of the system immediately before shearing
commences.

In what follows, consider the evolution of the probability
distribution P(l, t ) as a function of the time t or (almost)
equivalently the accumulating strain γ = γ̇ t applied to the
lattice as a whole. We also consider the associated macro-
scopic stress � = ∫

dl l P(l, γ ) and the strain variable itself,
γ . Our strategy will be to examine how these quantities evolve
in a perfectly homogeneous “base state” in which the strain
remains everywhere equal to γ , with no strain heterogeneity,
and then to elucidate via a linear stability analysis the fate
of small amplitude heterogeneous perturbations to this base
state.

An evolution equation for the probability density function
of local strains, P(l, t ), can be written as follows (for the
moment suppressing any space dependencies in our notation):

∂t P(l, t ) + γ̇ ∂lP = −r(l )P + Y (t )Pw(l ). (8)

Here r(l ) is the yielding rate of an element with local strain
l . Recall that r = 0 for |l| < 1 and r = 1 for |l| > 1. The
average rate of plastic yielding across the lattice Y (t ) =∫

dl r(l ) P. The second term on the left-hand side of Eq. (8)
accounts for the elastic loading of elements with strain rate γ̇ .
The first term on the right-hand side accounts for their “death”
due to plastic yielding, and the second for their “rebirth” into
new traps, with a post-yielding local strain selected from a
distribution Pw(l ) of zero mean and small width lw.

Premultiplying Eq. (8) across by l and averaging over
l then gives an evolution equation for the macroscopic
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stress �,

�̇ = γ̇ −
∫

dl l r(l )P,

= γ̇ [1 − P(l, t )|l=1]. (9)

In moving from the first line to the second, we have recog-
nized that in the limit of quasistatic shear explored in this
paper, γ̇ → 0, each element will yield instantaneously once
it reaches its threshold l = 1.

We now switch independent variables from the time t since
shearing commenced at t = 0 to the strain γ = γ̇ t applied to
the sample as a whole since t = 0, with γ̇ the corresponding
strain rate. We then have

d�

dγ
= 1 − P(l, γ )|l=1. (10)

In the early stages of the deformation, before significant
numbers of elements have yielded, the distribution P(l, γ ) can
be written to good approximation as

P(l, γ ) = P(l − γ , γ = 0) for l < 1,

P(l, γ ) = 0 for l > 1. (11)

This encodes the fact that the stress distribution shifts affinely
upwards with elastic loading, up to the yield threshold l = 1
at which elements “die”, and remains relatively unperturbed
by the “rebirth” of elements via plastic rearrangements until
significant numbers of elements have yielded, in the later
stages of deformation.

Our equation of motion, now specialized to the early stages
of quasistatic shear, can therefore be written as

d�

dγ
= 1 − P(l − γ , γ = 0)l=1. (12)

As written, Eqs. (8) to (12) appear to neglect the effect of
force rebalancing. This can be included by considering a shear
strain γ that is now not just the homogeneous strain averaged
over the sample as a whole, but an effective heterogeneous
strain that also accounts for any shears that arise internally
during force balancing, and which lead also to a heteroge-
neous distribution P.

Let us now incorporate this in our simplified 1D approach.
As noted above, our tactic is to consider an initially homo-
geneous “base state” in which the strain remains everywhere
equal to the globally applied strain γ , with no heterogeneity;
and then to study the fate of small heterogeneous perturbations
to this base state. Accordingly, we write

�(y, t ) = �0(t ) +
∑

k

δ�k (t ) exp(iky),

γ (y, t ) = γ0 +
∑

k

δγk (t ) exp(iky),

P(l, y, t ) = P0(l, t ) +
∑

k

δPk (l, t ) exp(iky), (13)

in which (�0, γ0, P0) denote the base state and (δ�k, δγk, δPk )
the small perturbations. Although we have decomposed the
perturbations into Fourier modes, each of wavevector k, the
governing equation of motion in fact contains no space-
differential operators. (This is a property of the Eshelby

propagator projected down to 1D [116].) Accordingly, each
k − mode will behave in the same way and we now drop the
subscript k.

Substituting the base state plus small perturbations into
Eq. (12), expanding in powers of the small perturbations and
retaining only terms of first order then gives a linearized
equation of motion for the perturbations,

dδ�

dγ
= dδγ

dγ
[1 − P0(l − γ , γ = 0)l=1]

− δγ ∂γ P(l − γ , γ = 0)|l=1

− δP(l − γ , γ = 0)l=1. (14)

Force balance dictates that the stress must remain uniform
across streamlines, and accordingly that δ� = 0. Inserting
this into Eq. (14), and rearranging, gives

dδγ

dγ
= f (γ )δγ + δg(γ ), (15)

in which

f = ∂γ P(l − γ , γ = 0)|l=1/[1 − P0(l − γ , γ = 0)l=1],
(16)

and

δg = δP(l − γ , γ = 0)l=1/[1 − P0(l − γ , γ = 0)l=1]. (17)

Equation (15) constitutes a linearized equation of motion
governing the growth of the strain heterogeneity δγ as a
function of strain γ applied to the sample as a whole since
the inception of shear. Its solution is

δγ (γ ) =
∫ γ

0
dγ ′δg(γ ′) exp

[∫ γ

γ ′
dγ ′′ f (γ ′′)

]
. (18)

Inserting into this the forms of f and g from Eqs. (16) and (17)
gives, after some manipulation,

δγ (γ ) = 1

1 − P0(l − γ , γ = 0)l=1

×
∫ γ

0
δP(l − γ ′, γ = 0)l=1dγ ′. (19)

The integral on the right-hand side of Eq. (19) represents
the seeding of strain heterogeneities from the fact that the
distribution of local strains P as initialized before shear com-
mences and subsequently advected along by shear, is not quite
the same across all streamlines, due to the finite number of
elements N on each streamline. It is this phenomenon that
is represented by the third term on the RHS of Eq. (14). It
arises from the disorder inherent to the amorphous material,
as encoded here in the initial distribution of local strains: Any
streamline that happens to be initialized with a distribution
of strains with a slightly higher average than that across all
streamlines will suffer more plastic yielding and so strain
more than the other streamlines as the level of shear applied
externally to the sample as a whole increases.

To investigate this heterogeneous seeding further, we
rewrite this integral in Eq. (19) as

δc(γ ) = δ

∫ 1

l=1−γ

dl P(l, γ = 0). (20)
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We recognize this to be the standard deviation across stream-
lines of the cumulative fraction of elements with initial local
strains between l = 1 − γ and l = 1, i.e., of elements that
yield within the first γ strain units.

To compute this standard deviation, we note that among the
N elements on any streamline, a fraction

c(γ ) =
∫ 1

l=1−γ

dl P(l, γ = 0). (21)

will have strains initially in that interval, and a fraction 1 − c
will have strains initially outwith that interval. The probability
of n elements having a strain in that interval is therefore given
by the binomial distribution

B(n; c, N ) = N!

n!(N − n)!
cn(1 − c)N−n, (22)

which has normalized standard deviation

δc = 1

N1/2
c1/2(1 − c)1/2. (23)

Finally, recognizing that the cumulative fraction c of elements
with initial strain in the interval 1 − γ and 1 will be the
fraction that yield in the first γ strain units, we can relate c
to the macroscopic stress and strain variables, �0 and γ0 via
c = γ0 − �0. This follows from the fact that the stress �0(γ0)
after γ0 strain units will be lower than the strain γ0 by an
amount equal to the fraction of elements that have plastically
yielded. This can indeed be proved by a straightforward inte-
gration of Eq. (10).

The prefactor to the integral in Eq. (19) reflects that the
innately seeded heterogeneity just discussed will further be
amplified via the rebalancing of force in each strain step.
Indeed, any streamline that suffers a little more plastic yield-
ing will strain forward a little more in order to recover force
balance, and so be susceptible to even further plastic yield-
ing. Comparing this “amplification” prefactor of Eq. (19)
with Eq. (12), we see that it is simply equal to the inverse
slope of the loading curve of stress as a function of strain,
1/(d�0/dγ0).

Putting the above results together gives, finally,

δγ (γ̄ ) = 1

d�/dγ

1

N1/2
(γ − �)1/2(1 − γ + �)1/2. (24)

We have now dropped the subscript 0, because the stress and
strain in the homogeneous base state equal the macroscopi-
cally measured ones, to excellent approximation, in the early
time regime in which the strain heterogeneity remains small
and our linear calculation is valid.

We pause to emphasise the significance of this result. It
predicts how strain heterogeneity develops within the sample
as a function of the strain applied on average to the sample as a
whole, in the early “prefailure” phase of the yielding process.
The factor 1/(d�/dγ ) represents an amplification factor, due
to the imposition of force balance at each strain step. This
amplifies the innate statistical variation across streamlines in
the initial seeding of elemental strains, due to the disorder
inherent to the initial condition, which is described by the
remaining terms. Importantly, Eq. (24) has been recast in
terms of the macroscopic global strain and stress, γ and �. In

this way, the degree of strain heterogeneity within the sample
is related to the externally measured rheological signals.

In the absence of force balance, i.e., in the mean-field
elastoplastic model—the amplification factor described above
will be missing, but the disorder innate to the initial condition
remains. In mean field, therefore, the strain heterogeneity is
predicted to grow instead simply as

δγ (γ̄ ) = 1

N1/2
(γ − �)1/2(1 − γ + �)1/2. (25)

This is plotted by red dashed lines in Fig. 6(a) and shows
excellent agreement with our simulation results (black-solid
lines) for the growth of strain heterogeneity as a function of
overall applied strain in the mean-field model.

Our prediction of Eq. (24) for the 2D lattice elastoplastic
model with force balance is plotted by red dashed lines in
Fig. 6(b). The corresponding simulation data is shown by
black-solid lines. Excellent agreement is again found between
the two early in the yielding process. It is worth noting,
however, that in this regime the difference between the mean
field and full models is anyway relatively small, because the
spatial correlations arising via force balance have not yet
had chance to build. At larger strains, once the heterogeneity
is better developed, the analytical prediction and simulation
results quantitatively differ from each other. This is to be
expected, for two reasons. First, once the heterogeneity be-
comes appreciable the linear assumption of the above analysis
breaks down. Second, once significant numbers of plastic
events occur, the base state will differ from the simple one
assumed in our calculation, which simply takes the elastically
shifted counterpart of the initial distribution. Nonetheless, the
amplification predicted by the factor 1/(d�/dγ ) arising from
force balance is indeed present in the simulation data for the
2D lattice model [note the upturning black lines in the top
right of Fig. 6(b)], and absent in mean field [note the nearly
flatlining black lines in the top right of Fig. 6(a)].

For very poorly annealed samples, for which there is no
stress overshoot as a function of strain, the amplification factor
1/(d�/dγ ) pertaining to this prefailure regime still predicts
a divergence in strain heterogeneity, at the level of this linear
calculation, as the stress � approaches as constant at large
strains γ → ∞, such that d�/dγ → 0. Although nonlinear
effects that become relevant once the amplitude of the strain
heterogeneity becomes significant will then be expected to
regularise any divergence, the (initially) leftmost curve of
Fig. 6(b) indeed confirms that appreciable strain heterogeneity
arises even for these very poorly annealed samples.

We recall finally that the 1/
√

N scaling in Eqs. (24) and
(25) stems from the fact that the distribution of local strains is
not quite the same across all streamlines, due to the finite num-
ber of elements N on each streamline. In the limit N → ∞,
this difference is predicted to approach zero, giving zero strain
heterogeneity in this prefailure regime (before catastrophic
failure then takes over, as explored below). This is a direct
consequence of the assumption made almost ubiquitously in
studies of elastoplastic models: that the origin of any initial
heterogeneity indeed lies in the disorder inherent to the mate-
rial. In deformation geometries with a heterogeneous stress
field, as pertains for example to a soft material sheared in
a curved rheometer, strain heterogeneity would additionally
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FIG. 7. Initial development of a shear band for values of the
annealing parameter l0 = 0.025, 0.050, 0.075 in panels downwards,
and a system size N = 512. (Left) In the full 2D elastoplastic model,
with xband denoting the coordinate (x or y) along which the band
spreads, shifted such that the initial plastic event is at the origin.
(Right) In our simplified 1D elastoplastic model, also with N = 512.
As can be seen, in each case the band develops via two “fronts” that
spread out in opposite directions along xband (or its counterpart x1D).

arise from that stress heterogeneity, and would be expected
to exceed that arising from the disorder in the large N limit.
Our calculation has assumed a regime in which heterogeneity
arising from disorder exceeds that arising from systematically
varying stress fields.

C. Catastrophic brittle failure stage

1. 2D lattice elastoplastic model

Now we turn to a discussion of the catastrophic failure
event, in which a shear band spreads quickly across the sam-
ple. Our particular aims are to predict and understand its onset
in highly annealed samples

The left panels of Fig. 7 show in more detail the initial
development of the shear band along each of the top three
rows in Fig. 1, for values of the annealing parameter l0 =
0.025, 0.050, 0.075 respectively, corresponding to highly an-
nealed samples. Each of these left panels in Fig. 7 shows the
coordinate along the banding direction, xband, at which plastic
events occur at successive iterations n of the model dynamics
after the final strain step before banding occurs. (Recall that
at each iteration we reimpose force balance, then yield any
elements that are taken above yield in consequence.) The
coordinate xband = y for l = 0.025 and 0.075 and xband = x
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FIG. 8. (a) Growth of the standard deviation of strain across the
sample δγ as a function of overall imposed strain γ in the prefail-
ure then failure regime. Failure occurs at the sharp sudden upturn.
Simulations are performed with a lattice size N × N = 256 × 256
and an initial level of sample annealing l0 = 0.050, for 128 different
values of the random number seed. (b) Cumulative probability dis-
tribution of failure strains, extracted from data in (a). Failure strain
for each data set defined as strain at which δγ = 0.1. (c) Average
failure strain γ ∗ as a function of the annealing parameter l0 (recall
that small l0 corresponds to strong annealing), for system sizes
N = 64, 128, 256, 512, 1024, 2048, 4096 in curves black, red, green,
blue, violet, cyan, orange upwards at the right. γ ∗ defined as strain at
which Pcumul = 0.5.

for l = 0.050 in Fig. 1. xband is then shifted in Fig. 7 such that
the plastic event that initiates the band lies at the origin. In the
early stage of banding in highly annealed samples, most plas-
tic events occur at the same value of the coordinate orthogonal
to xband, with only a small number at the immediately adjacent
coordinate value (not shown). This justifies the 1D treatment
of banding that will follow.

Figure 8(a) shows the strain heterogeneity δγ across the
sample as a function of the spatially averaged strain γ , for a
series of 128 runs, each with a different random number seed,
again in a highly annealed system. In each run, δγ initially
grows slowly in the “prefailure” regime, then shows a sharp
sudden upturn as a band nucleates. For each of the 128 runs,
we define the strain at which failure occurs as that at which δγ

crosses the given threshold, δγ = 0.1. We plot the cumulative
distribution Pcumul of these failure strains in panel (b). We
finally extract from it the average failure strain, γ ∗, defined as
the strain at which the cumulative distribution equals 1/2, and
plot γ ∗ as a function of the level of the annealing parameter l0
in (c), for several different system sizes. The same data for the
average failure strain, γ ∗ are plotted in Fig. 9 as a function of
the system size, for different values of l0.

For strongly annealed samples (small l0), the failure strain
decreases (noticeably) with decreasing levels of sample an-
nealing (increasing l0), and decreases (very weakly) with
increasing sample size N . This can be understood as follows.
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FIG. 9. Average failure strain as a function of the linear sys-
tem size N of the two-dimensional N × N lattice model for several
values of the annealing parameter. Black curves are for strong
annealing, with weaker annealing, l0 = 0.000, 0.025, 0.050, 0.075,

0.100, 0.125, in curves downwards. Red curves are for weaker
annealing, with weaker annealing, l0 = 0.150, 0.175, 0.200, 0.225,

0.250, 0.275, 0.300, 0.325, 0.350 in curves upwards. The green-
dashed line, for the strongly annealed case of l = 0.025, is a fit to
the form γ ∗ = 0.965 − 0.00646 log N .

For these highly annealed samples, the initial distribution of
local strains is narrow. As the strain applied to the sample as a
whole increases, this distribution shifts upwards. Eventually,
the single element at its outmost rightward reach (largest
l) fails. Once this happens, all other elements are by now
near enough the yielding threshold themselves that the effect
of the first element yielding will be to trigger a percolating
cascade of further yielding events, resulting in a shear band.
Therefore, the failure strain in this regime of strong annealing
will simply be that at which the first element yields. This in
turn is equal to one (the yielding threshold itself) minus the
largest local strain initially present in the sample. This largest
initial strain will increase with decreasing initial annealing,
because the initial distribution is broader, and increase with
increasing system size, because there are more elements in the
sample to populate the extreme wings of the distribution. The
arguments presented in words in this paragraph are encoded in
the term P(l − γ , γ = 0)l=1dγ in the calculation that follows
in Sec. III C 3 below.

For weakly annealed samples, the failure strain increases
with decreasing levels of sample annealing (increasing l0) and
increases with increasing sample size N . This can be under-
stood as follows. For these poorly annealed samples, the initial
distribution of local strains is broad. As this distribution shifts
upwards with increasing applied strain, elements start to yield.
As the first few do so, however, an insufficient fraction of other
elements are themselves close enough to threshold to provide
a percolating onwards path along which further events can be
triggered. Indeed, because of the breadth of the distribution in
this regime, a large stress needs to accumulate in the sample
as a whole before there is a percolating path for a shear band
through the system. This becomes more pronounced the larger
the distribution breadth (larger l0) and the further the shear
band has to propagate (larger N).

2. Simplified 1D elastoplastic model

Our aims now are to understand the mechanism of shear
band propagation in Figs. 1 and 7, to predict the probability
distribution of applied strains γ at which banding sets in,
as reported in Fig. 8(b), and thereby finally to predict the
average failure strain γ ∗ in Fig. 8(c). To this end, we shall
first simulate a simplified elastoplastic model comprising a
single streamline of elements arranged along the direction
along which the band spreads. For strong annealing, we will
find this simplified 1D simulation to predict the banding dy-
namics of the 2D model actually rather well. We shall then
perform a simple 1D analytical calculation, inspired by this
1D simulation, aimed at capturing the observed behavior.

Our simplified 1D elastoplastic model comprises N elasto-
plastic elements arranged along a single line in the direction
x1D along which shear banding occurs. (x1D is therefore the
counterpart of xband in the 2D model.) The dynamics of the
1D model are chosen closely to mirror those of the 2D model,
as follows. Prior to shear, each element is initialized with a
local strain drawn from the same distribution as pertained
immediately prior to shear in the 2D model. We then apply
shear as follows. At each strain step, we first enquire which is
the least stable element, and how much strain must be added
to take it just over threshold. We then add that much strain
to all elements, and to the global strain variable. That least
stable element is now just above threshold, and is yielded.
All elements then have their strain adjusted according to a
1D stress propagator that we discuss in the next paragraph,
centered on the element that has just yielded. This process of
stress propagation may then take some other elements above
threshold. Those elements are then yielded, and the strain
of all elements again adjusted via a superposition of our 1D
stress propagators, each centred on one of the newly yielded
elements. This process is repeated iteratively until no elements
are left above threshold. We then proceed to the next strain
step.

The 1D propagator to which we referred in the previous
paragraph is calculated from the full Eshelby propagator of the
2D lattice by taking the values of this function along one di-
mension only, at the origin of the other dimension. Therefore,
if the stress propagator following an event at x = x0, y = y0 on
the 2D lattice is Ẽ (x − x0, y − y0), the stress propagator fol-
lowing an event at y = y0 on the 1D lattice is Ẽ (0, y − y0) ≡
E (y − y0). We observe numerically that the function E (y) is
well fit to the form 0.309y−2 for y > 2 and y 	 N , up to
smaller variations on the spacing of the lattice site. For values
of y approaching N , E departs from the power-law decay to
obey the periodic boundary conditions, E (1) = 0.079.

In the regime of strong annealing (small l0), each run of
this 1D model shows a failure event that closely resembles
that seen in the full 2D simulation with matched l0, at least
qualitatively. This can be seen by comparing each left panel
of Fig. 7 for the 2D model with its counterpart in the right
panel for the 1D model. For any l0, we run this 1D code N
times, each with a different random number seed, to account
for the fact that there are N streamlines in the 2D model. The
minimum failure strain across these N separate runs is then
taken as the prediction of the 1D model for the strain at which
failure would occur in the 2D model. Running that N-fold
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FIG. 10. (a) Solid lines: Cumulative probability distribution of
failure strains in the full 2D simulation with a lattice of size N × N =
512 × 512, calculated over many runs, each with a different random
numbers seed. Dashed lines: Corresponding distributions for the sim-
plified 1D model with N = 512. Dotted lines: Distribution predicted
using Eqs. (28) and (33). Annealing parameter l0 = 0.025 (black),
l0 = 0.050 (red), and l0 = 0.075 (green) in curve groups leftwards.
(b) Corresponding average failure strain plotted as a function of l0,
for the 2D model (solid line), 1D model (dashed line), and predicted
using Eqs. (28) and (33) (dotted line). Recall that strongly annealed
samples correspond to small l0.

simulation M times, we construct finally the cumulative prob-
ability distribution of failure strains Pcumul(γ ), across those M
runs. From this we calculate finally the average failure strain
γ ∗.

The cumulative distribution of failure strains is shown
for three different levels of annealing in Fig. 10(a). Solid
lines show results for the 2D model, and dashed lines for
the 1D model. For the most highly annealed samples, the
correspondence between the 1D and 2D models is excellent.
For less well annealed samples, we find progressively less
good agreement. The average failure strain is shown as a
function of the annealing parameter l0 in Fig. 10(b), by the
solid and dashed line for the 2D and 1D models respectively.
As can be seen, the average failure strain of the 1D model
agrees reasonably with that for the 2D model even for samples
as poorly annealed as l0 ≈ 0.1, with full agreement in the
strongly annealed limit, l0 → 0.

3. Simplified 1D analytical calculation

We seek finally to understand the onset of shear banding
via an analytical calculation that is inspired by our simplified
1D elastoplastic model, as follows.

In any strain increment γ → γ + dγ since the inception
of shear, the probability of any given element locally yield-
ing is P(l, γ )l=1dγ . In the early stages of shear, recall that
P(l, γ ) = P(l − γ , γ = 0) to good approximation, because
the initial distribution that pertained before shearing com-
menced has simply been shifted rightward by elastic loading,
with only small changes due to plastic relaxation, which are
neglected here. In the limit of small strain increment dγ → 0,
the probability of exactly one out of N2 elements yielding
P1(γ ) is

N2P(l − γ , γ = 0)l=1dγ . (26)

[The N2 elements can be viewed either as the elements in N
runs of our 1D code with N elements along a line; or as the
N × N elements on the counterpart 2D lattice. The probability
of two elements yielding is O(dγ 2) and can be neglected in
the limit dγ → 0.]

Let us now denote by r(γ ) the probability that, when an
element yields in the strain interval γ → γ + dγ , it leads
to a runaway shear band and therefore sample failure. The
probability that a shear band arises in γ → γ + dγ is then
N2r(γ )P(l − γ , γ = 0)l=1. Denoting by I the probability that
no shear band has arisen by a strain of γ , we have

dI

dγ
= −N2r(γ )P(l − γ , γ = 0)l=1I. (27)

This can be integrated to find I . The probability 1 − I that a
shear band will have arisen by a strain γ , i.e., the cumulative
probability distribution of failure strains, is then

Pcumul(γ )

= 1 − exp

[
−N2

∫ γ

0
dγ ′r(γ ′)P(l − γ ′, γ = 0)l=1

]
.

(28)

It remains finally for us to consider the probability r(γ )
that, when a single element yields in the interval γ → γ +
dγ , it leads to the development of a runaway shear band and
therefore to sample failure.

Imagine a shear band that has already grown to comprise n
contiguous events, centered on the plastic event that triggered
it initially. What is the probability of an event occurring sub-
sequently a distance m lattice sites away, on one side of this
band? Such a site would, at the time the band first nucleated,
have had a strain γ . It now has a strain

γ ′ = γ +
n∑

n′=1

E (m + n′), (29)

due to the effects of stress propagation from each of the n
sites that have already yielded along the band. Here E is
the stress propagator used in the 1D elastoplastic model, as
described previously. The probability of this site now yielding,
pnm, is the probability that its initial strain before shearing
commenced had been in the interval 1 − γ ′ to 1 − γ , which
can be written as

pnm = c(γ ′) − c(γ ). (30)

Here we use the same definition of the cumulative distribution
as in Eq. (20). The probability of zero elements on either side
of the band of length n then yielding is

M∑
m=1

(1 − pnm)2, (31)

in which the square accounts for the fact that there are two
sides, one to the left of the preexisting band, and one to the
right. The probability that at least one event occurs and the
band keeps spreading is then

1 −
M∑

m=1

(1 − pnm)2. (32)
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The probability of the band developing to a large number of
events Nevents, giving a runaway instability, is then

r(γ ) =
Nevents∏
n=0

[
1 −

M∑
m=1

(1 − pnm)2

]
. (33)

Inserting this expression (33) for the probability that a
single plastic event occurring at strain γ triggers a runaway
banding instability into Eq. (28), and calculating this integral
numerically, we find the cumulative distribution of failure
strains given by the dotted lines in Fig. 10(a). (We have taken
the limit of large Nevents and M, but in fact already found
good convergence to this limit by Nevents = 16 and M = 2.)
As can be seen, it shows excellent agreement with the the
cumulative distribution of failure strains extracted from the
simplified 1D elastoplastic model, which in turn shows good
agreement with the corresponding distribution for the full 2D
elastoplastic model across the range of l0 values shown, with
excellent agreement for the smallest l0. The correspondingly
predicted averaged failure strain γ ∗ is plotted as a function
of the annealing parameter l0 by the dotted line in Fig. 10(b),
along with that from the 1D model simulation (dashed line)
and the 2D model simulation (solid line).

While we believe the derivation up to Eq. (28) to be rigor-
ous, up to corrections that we have discussed, the subsequent
arguments used to obtain r(γ ) contain more severe assump-
tions. For example, Eq. (29) assumes a protoband of fully
contiguous plastic events along a line, whereas in practice,
successive events can skip over some lattice sites to leave them
unyielded. (Recall Fig. 7.) Nonetheless, as discussed in the
previous paragraph, this simple calculation gives convincing
agreement with the results of our 1D simulations, at least for
values of the annealing parameter up to l0 = 0.075, and which
in turn agree well with our full 2D simulations for the most
strongly annealed samples.

Although the expressions (28) and (33) that determine the
probability distribution of failure strains look rather com-
plicated, the quantities upon which they depend, pnm and
P(l − γ , γ = 0)l=1, are together determined completely by
the parameter l0 that describes the level of disorder in the
sample, as determined by the degree of sample annealing prior
to shear, and the system size N .

It is worth pausing to emphasise the significance of this
result, which applies for materials described by the elasto-
plastic model studied here, in the limit of strong annealing
and in quasistatic shear. It predicts the probability distribution
of applied strain values at which catastrophic sample failure
occurs, in terms of the disorder inherent in the sample prior to
shear, as determined by the degree of sample annealing, and
the system size N .

IV. DISCUSSION: IMPLICATIONS FOR EXPERIMENT
AND MOLECULAR SIMULATIONS

In this section, we discuss the implications of our findings
for experiment and molecular simulation.

Amorphous materials can be broadly subdivided into two
(limiting, idealized) subcategories: “athermal” and “thermal”.

Athermal materials comprise substructures (foam bubbles,
emulsion droplets, etc) large enough that Brownian effects can
be discarded, with energy barriers impeding bubble/droplet
rearrangement that greatly exceed kBT . Commonly stud-
ied experimental examples include dry granular packings,
dense granular suspensions, foams, and emulsions. In thermal
materials, on the other hand, the constituent substructures
and/or local energy barriers are small enough that thermal
fluctuations play an important role. Colloidal and poly-
meric glasses, colloidal gels, molecular and metallic glasses
typically fall into this second class, although deep within
the glass phase, far below the glass transition temperature,
energy barriers will be large on the scale of kBT . The
athermal model studied here is accordingly expected to ap-
ply primarily to materials with substructures large enough
that Brownian motion can be neglected upfront, as well
as molecular and metallic glasses deep within their glass
phase.

Indeed, at any finite temperature T , the timescale for
spontaneous particle rearrangement in the absence of shear
τthermal is expected to scale as τ0 exp(E/kBT ), with E the
typical energy barrier to rearrangement, and τ0 the mi-
croscopic timescale for local intracage particle motion. In
shear, groups of particles are expected to reach the thresh-
old for local yielding on a timescale τshear that scales as√

E/k/γ̇ , i.e., as the time required to strain of order
√

E/k
at a strain rate γ̇ . (Recall that k is the local modulus.)
Once the threshold is reached, yielding is then expected to
take place on the microscopic timescale τ0. The protocol
of athermal quasistatic shear studied here pertains to the
regime of well separated rates τ−1

thermal 	 τ−1
shear 	 τ−1

0 . In fully
thermal materials, treating τ−1

thermal and τ−1
shear as well sepa-

rated will not be valid. Indeed, as one moves way from
the athermal limit and towards the thermal regime, activated
processes will play an increasing role, avalanches associated
with yielding are likely to start to overlap, and the yielding
transition may be somewhat smoothed compared with that
explored here. This would be an interesting topic for future
study.

In the context of hard materials, the trend towards increas-
ing fracture toughness with decreasing system size that we
find for moderately to well annealed samples is consistent
with experiments on nanoglass and metallic glasses [55],
where it was suggested to arise from the reduced number
of sites for the nucleation of shear bands as system size
decreases. Increasing ductility with decreasing sample size
was also reported experimentally in Ref. [120], with smaller
samples being argued to require a larger stress for the nu-
cleation of shear bands. A trend towards increasing ductility
with decreasing sample size in samples subject to compressive
loading was also discussed in [54], along with an important
difference between failure in compressive and tensile load-
ing, which remains an open challenge for future theoretical
work. Decreasing fracture toughness with decreasing “fictive
temperature” (increasing annealing) [121] has recently been
reported in metallic glasses [122].

In the context of soft materials, our theoretical predic-
tions are consistent with and indeed potentially explain the
widespread experimental observation that these materials typ-
ically yield in a less abrupt way than hard materials. A key
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finding of our paper has been that abrupt yielding tends to
occur, for modestly annealed samples, in the limit of infinite
system size (compared with the typical size of a material’s
constituent molecular or mesoscopic particles) and slow shear
rate (compared with the inverse of the intrinsic material
timescale). In comparison with hard materials, soft materials
typically have much larger constituent mesostructures: the
droplets in an emulsion are much larger than the constituent
particles of a metallic or molecular glass glass, for example.
Accordingly, their associated timescales are typically much
slower. The crossover to the abrupt yielding that we predict for
large system sizes and slow shear rates is accordingly likely
to be accessed only at larger system sizes and slower shear
rates for soft materials than hard materials, quite possibly
outside the window explored in many existing experimental
works.

Nonetheless, a growing body of experimental data increas-
ingly shows that soft materials can also show brittle failure
[38–43]. Such observations are emerging rapidly in the light
of new experimental techniques that can now directly ac-
cess the microscopic precursors to sudden failure [104–106].
Our results predicting the way a microscopic precursor—
an initially localized plastic event—leads to a cooperatively
growing shear band are particularly pertinent in the context
of these new techniques. This connection with be explored in
further detail in future work.

We have also made detailed quantitative predictions for the
slow initial growth of strain heterogeneity within a material
after shearing first commences, prior to any regime of final
catastrophic material failure. Of particular relevance to ex-
periment is our elucidation of the way in which this strain
heterogeneity within a sample is predicted via the macro-
scopically measurable external rheological signals of strain
and stress. This prediction is directly testable in flow ve-
locimetry experiments of the kind that have been pioneered
in studies of shear banding in soft materials such as emulsions
and gels in recent years [26]. Specifically, such experiments
are now capable of measuring the degree of strain rate het-
erogeneity across the sample as a function of time, and
time-integrating this signal to obtain the growing degree of
strain heterogeneity. This can then be directly compared with
our prediction in Fig. 6(b) and Eq. (24) above by perform-
ing in-tandem measurements of the macroscopic stress-strain
curve.

Our findings also have important implications for the in-
terpretation of molecular simulations (in silico experiments)
of low temperature glasses, for example as reported in
Ref. [112]. In particular, the data in Fig. 3(a) of that paper
are consistent with the scenario reported here for moderately
or poorly annealed samples, with ductile yielding for small
system sizes and a trend towards brittle yielding for larger
system sizes. Our paper predicts that the same simulation
curves reported for even more strongly annealed samples
should show a crossover towards brittle yielding at smaller
system sizes. This prediction is directly testable, and is indeed
consistent with some very recent molecular simulation results
[123].

We have already made detailed discussion of our paper
in relation to the molecular simulations of Ref. [107] in
Sec. III A above, and we shall not repeat this here.

V. CONCLUSIONS

In summary, we have studied theoretically the yielding of
slowly sheared athermal amorphous materials. Our principal
contributions have been to predict the conditions under which
yielding will be ductile or brittle; to understand the initial
growth of strain heterogeneity that is a precursor to material
failure; to elucidate the way in which the nucleation and
propagation of a shear band leads finally to catastrophic fail-
ure; and to predict the distribution of applied shear strains at
which catastrophic failure will occur, in terms of the disorder
inherent in the sample, as determined by the degree of sample
annealing, and the system size.

For highly annealed samples, we have found yielding to
be brittle for all samples sizes. In contrast, poorly annealed
samples show an important dependence on the size of the sam-
ple of material being sheared, with apparently ductile yielding
for small samples, and brittle yielding for large samples. This
has important implications for experiment, in predicting a
tendency towards increasing brittleness (for a fixed sample
size) with increasing annealing; and that materials subject to a
given level of annealing will show a different mode of failure,
depending on the size of the sample being deformed.

Our paper has shown that yielding comprises two distinct
stages: a “prefailure” stage, in which small levels of strain het-
erogeneity slowly accumulate within the material, followed
by a catastrophic brittle failure event, in which a shear band
quickly propagates across the sample via a cooperating line of
plastic events.

In the prefailure regime, we have provided an exact an-
alytical expression for the slowly growing level of strain
heterogeneity, expressed in terms of the macroscopically
measurable stress-strain curve and the sample size, and in
excellent agreement with our simulation results.

We have further elucidated the mechanism of subsequent
catastrophic material failure, in which a shear band nucleates
and spreads quickly across the sample. For highly annealed
samples, our simulations have shown that that a single element
first yields plastically and, in elastically propagating its stress
to other elements via the Eshelby propagator, creates further
nearby yielding events, leading quickly in turn to a percolating
chain of events along a line [113].

In its use of periodic boundary conditions, our paper nec-
essarily pertains to the homogeneous nucleation of a shear
band, triggered by plastic events that arise within the body
of the disordered material, and which determines the ultimate
strength of a material in the absence of surface imperfections.
Clearly, it is imperative to understand this simpler case of
homogeneous nucleation in order to elucidate the ultimate
toughness of a material without surface imperfections; and
also as a foundation on which to build an understanding of
heterogeneous nucleation. In future, it would be interesting
to simulate samples with external borders that have imper-
fections and indentations [121], to study the heterogeneous
nucleation of shear bands arising in regions of concentrated
stress. We have also limited ourselves to shear deformations,
and it would be interesting in future to consider other defor-
mation and loading protocols, such as planar extension.

It remains an open challenge to discriminate between or
unify the picture of yielding elucidated here and those put
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forward in earlier studies, for example within a replica field
theory [90–92]; as a directed percolation transition [64,65];
within a random first-order transition theory for the glass
transition [94]; as a Gardner transition [95]; as a spinodal
point [96]; and within particle simulations that seed initial
weak spots [97].
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