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Deterministic particle flows for constraining stochastic nonlinear systems
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Devising optimal interventions for constraining stochastic systems is a challenging endeavor that has to
confront the interplay between randomness and dynamical nonlinearity. Existing intervention methods that
employ stochastic path sampling scale poorly with increasing system dimension and are slow to converge. Here
we propose a generally applicable and practically feasible methodology that computes the optimal interventions
in a noniterative scheme. We formulate the optimal dynamical adjustments in terms of deterministically sampled
probability flows approximated by an interacting particle system. Applied to several biologically inspired
models, we demonstrate that our method provides the necessary optimal controls in settings with terminal,
transient, or generalized collective state constraints and arbitrary system dynamics.
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I. INTRODUCTION

Most biological and physical systems are continuously
subjected to noise arising either from intrinsic fluctuations of
their constituents, or from external environmental variations
at multiple timescales [1–4]. The stochastic nature of these
influences confers on these systems complex behavior [5–7],
but also renders them remarkably unpredictable—by generat-
ing noise induced transitions [8,9], intervening in intracellular
communication [10], and compromising the precision of bio-
logical functions.

Yet, concrete understanding of characteristics, properties,
and functions of biological processes often requires external
interventions either by precise steering of state trajectories,
or by enforcing design constraints that limit their evolution.
Characteristic examples of such interventions in systems bi-
ology include modulating transcription pathways to decrease
response time [11], improving stability of epigenetic states
in gene regulatory networks [12], or modifying cell differ-
entiation in multicellular organisms [13]. One then may be
interested in statistical properties of constrained trajectories
(e.g., for computing averages of macroscopic observables)
or in obtaining precise control protocols that implement the
imposed limitations.

In most settings, the optimality of the imposed inter-
ventions plays critical role. Performing unreasonably strong
perturbations may damage the underlying biological tissue, or
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result in dynamical changes that considerably deviate from
physiological biological functions. Translated to mathematics
this implies the requirement for the interventions to induce the
minimum possible deviation from the typical evolution of the
unconstrained system.

Such problems can usually be posed as stochastic optimal
control problems. This research area has recently attracted the
interest in the context of stochastic thermodynamics [14–17]
and quantum control [18,19], i.e., for estimating the free en-
ergy differences between two equilibrium states [20,21], or
for identifying optimal protocols that drive a system from
one equilibrium to another in finite time [17]. Similar prob-
lems appear also often in chemistry, biology, finance, and
engineering, required for computation of rare event probabil-
ities [22,23], state estimation of partially observed systems
[24–26], or for precise manipulation of stochastic systems
to target states [27,28] with applications in artificial selec-
tion [29,30], motor control [31], epidemiology [32], and
more [33–38]. Albeit the prior developments, the problem
of controlling nonlinear systems in the presence of random
fluctuations remains still considerably challenging.

Central role in (stochastic) optimal control theory plays the
Hamilton-Jacobi-Bellman (HJB) equation [39], a nonlinear
second-order partial differential equation (PDE), character-
izing the value function of the control problem required for
computing the optimal controls. Existing approaches for de-
vising optimal interventions can be broadly divided into two
classes: the first class treats the HJB equation directly, while
a second class optimizes the interventions iteratively by em-
ploying stochastic path sampling. Directly treating the HJB
often involves space discretizing PDE solvers, that in general,
scale poorly with system dimension [40,41]. By introduc-
ing certain structural assumptions for the control problem
in Ref. [27], Kappen proposed the path integral (PI) control
formalism that linearizes the HJB, and via the Feynman-
Kac formula reduces the solution of the stochastic control

2643-1564/2022/4(4)/043035(17) 043035-1 Published by the American Physical Society

https://orcid.org/0000-0002-3553-8658
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043035&domain=pdf&date_stamp=2022-10-17
https://doi.org/10.1103/PhysRevResearch.4.043035
https://creativecommons.org/licenses/by/4.0/


DIMITRA MAOUTSA AND MANFRED OPPER PHYSICAL REVIEW RESEARCH 4, 043035 (2022)

problem to the computation of a path integral. Thereafter,
several methods have either treated the linearized HJB with
function approximations [42], or employed path integral ap-
proximation methods [43–45]. The second class of methods
optimizes the interventions directly in iterative schemes. A
subset of those methods is inspired by the PI-control literature,
but instead of focusing on approximating the (exponentiated)
value function, they directly optimize the controls by employ-
ing information theoretic metrics [22,46–49]. In particular,
the path integral cross-entropy (PICE) method [46,47], em-
ploys importance sampling to generate paths from a stochastic
system with a provisional control and applies appropriate
reweighting to iteratevely converge to the optimal interven-
tions.

In this paper, we borrow ideas from the inference for-
mulation of optimal control [50–53], and take a new look
at the problem by providing a sample based solution that
nevertheless avoids stochastic path sampling. More precisely,
we reformulate the optimal controls in terms of the solutions
of two forward (filtering) equations, and employ recent de-
terministic particle methods for propagating probability flows
[54], properly adapted to fit our purposes. Building on the
theory of time-reversed SDEs [55], we obtain an exact rep-
resentation of the optimally adjusted drift of the underlying
stochastic system in terms of the logarithmic gradient of two
forward probability flows. The latter are estimated from an in-
teracting particle approximation to the logarithmic gradient of
sampled densities using a variational formulation developed
in the field of machine learning.

We show that we can successfully intervene in a series
of biologically inspired systems in time constrained settings,
subjected to terminal, path, and generalized collective state
constraints. We further demonstrate how various problem pa-
rameters influence the estimated interventions, and compare
our framework to the already established path integral cross
entropy method [46].

II. DETERMINISTIC PARTICLE FLOW CONTROL:
THEORETICAL BACKGROUND

A. Constraining stochastic systems with deterministic forcing

Biological and physical systems are often subjected to
intrinsic or extrinsic noise sources that influence their dy-
namics. Characteristic examples include molecular reactions
and chemical kinetics [56], populations of animal species,
biological neurons [57], and evolutionary dynamics [58,59].
Stochastic differential equations (SDEs) effectively capture
the phenomenology of the dynamics of such systems by both
considering deterministic and stochastic forces affecting their
state variables Xt ∈ Rd following:

dXt = f (Xt , t )dt + σdWt . (1)

In Eq. (1), the drift f (·, ·) : Rd × R → Rd is a smooth typ-
ically nonlinear function that captures the deterministic part
of the driving forces, while W stands for a d-dimensional
vector of independent Wiener processes acting as white noise
sources, representing contributions from unaccounted degrees
of freedom, thermal fluctuations, or external perturbations. We
denote the noise strength by σ ∈ R. For the sake of brevity,
we consider here additive noise, but the formalism easily

generalizes for multiplicative and nonisotropic noise, i.e., for
a state dependent diffusion matrix σ (x, t ) (See Ref. [60], Sec.
IV). In the following, we refer to this system as the uncon-
trolled system.

Under multiple independent realizations, the stochastic na-
ture of Eq. (1) gives rise to an ensemble of trajectories starting
from an initial state X0 = x0. This ensemble captures the likely
evolution of the considered system at later time points. We
may characterize the unfolding of this trajectory ensemble in
terms of a probability density pt (x) for the system state Xt ,
whose evolution is governed by the Fokker-Planck equation

∂ pt (x)

∂t
= ∇ ·

[
− f (x, t )pt (x) + σ 2

2
∇pt (x)

]
= L f pt (x),

(2)

with initial condition p0(x) = δ(x − x0), and L f denoting the
Fokker-Planck operator.

Due to the stochastic nature of the system of Eq. (1), exact
pinpointing of its state at some later time point T is in general
not possible. Yet, often, we desire to drive stochastic systems
to predefined target states within a specified time interval.
Characteristic examples include designing artificial selection
strategies for population dynamics [29], or triggering phe-
notype switches during cell fate determination [28]. Similar
needs for manipulation are also relevant for nonbiological,
but rather technical systems, e.g., for control of robotic or
artificial limbs [61,62]. In all these settings, external system
interventions become essential.

Here, we are interested in introducing constraints C to the
system of Eq. (1) acting within a predefined time interval
[0, T ]. The set of possible constraints C comprises terminal
χ (XT ), and path constraints U (x, t ), for t � T , depending on
whether the desired limiting conditions apply for the entire
interval, and/or only at the terminal time point. The path con-
straints U (x, t ) : Rd × R → R penalize trajectories (paths)
to render specific regions of the state space more (un)likely
to be visited, while the terminal constraint χ (x) : Rd → R
influences the system state XT at the final time T .

To incorporate the constraints C into the system, we de-
fine a modified dynamics, the controlled dynamics, through
a change of probability measure of the path ensemble P f

induced by its uncontrolled counterpart. More precisely, we
define the path measure Q∗, induced by the controlled system,
by a reweighting of paths X0:T generated from the uncon-
trolled one [Eq. (1)] over the time interval [0, T ] (Ref. [60],
Sec. I Eq. (2)). Path weights are given by the likelihood ratio
(Radon-Nikodym derivative)

dQ∗

dP f
(X0:T ) = χ (XT )

Z
exp

[
−

∫ T

0
U (Xt , t )dt

]
, (3)

where Z is the normalizing constant

Z =
〈
χ (XT ) exp

(
−

∫ T

0
U (Xt , t )dt

)〉
P f

, (4)

and 〈·〉P f denotes the expectation over paths of the uncon-
trolled system.

By a direct calculation (see Ref. [60], Sec. I) it can be
shown that the infinite dimensional path measure Q∗ is the
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solution of the variational problem

Q∗

= arg min
Q

{
KL(Q||P f ) +

∫ T

0
〈U (Xt , t )〉Q dt − ln χ (XT )

}
,

(5)

where KL(Q||P f ) stands for the relative entropy [Kullback-
Leibler (KL) divergence] between the controlled and the
uncontrolled path measures.

It can be shown that the optimal path measure Q∗
is induced by a time- and state-dependent perturbation
u(x, t ) : Rd × R → Rd of the deterministic forces f (x, t )
acting on the uncontrolled system [46]. Thus we express the
controlled dynamics as a space- and time-dependent perturba-
tion of the uncontrolled system

dXt = ( f (Xt , t ) + u(Xt , t )) dt + σdWt

= g(Xt , t ) dt + σdWt . (6)

To identify the optimal interventions, using the explicit
result for the KL divergence between the control and uncon-
trolled path measures, we recast the optimization problem of
Eq. (5) to the minimization of the cost functional J

J .=

min
u

〈∫ T

0

(
1

2σ 2
‖u(Xt , t )‖2 + U (Xt , t )

)
dt − ln χ (XT )

〉
Q

.

(7)

The first part of the cost functional penalizes large interven-
tions u(x, t ), and results from minimizing the relative entropy
between the path measures induced by the controlled and un-
controlled dynamics, KL(Q||P f ). The second term constrains
the transient behavior of the system through the path costs
U (x, t ), while χ (XT ), influences only the terminal system
state.

Finding exact optimal controls for general stochastic
control problems amounts to solving the Hamilton-Jacobi-
Bellman (HJB) equation (see Ref. [39]), a nonlinear, partial
differential equation (PDE) that is in general computationally
demanding to treat directly.

The control cost formulation of Eq. (7) gives rise to a clus-
ter of stochastic control problems known as Kullback-Leibler
(KL) control [63] or path integral (PI) control [27,51] in the
literature (see Ref. [60], Sec. II for details). For this class of
problems the logarithmic Hopf-Cole transformation [64], i.e.,
setting J (x, t ) = − ln(ϕt (x)), linearizes the Hamilton-Jacobi
Bellman equation [27], and the optimally perturbed drift sim-
plifies into (see Ref. [60], Sec. II)

g(x, t ) = f (x, t ) + σ 2∇ ln ϕt (x), (8)

where the function ϕt (x) is a solution to the backward PDE

∂ϕt (x)

∂t
+ L†

f ϕt (x) − U (x, t )ϕt (x) = 0, (9)

with terminal condition ϕT (x) = χ (x), and L†
f denoting the

adjoint Fokker-Planck operator. For U (x, t ) ≡ 0, Eq. (9)
reduces to the Kolmogorov backward equation for the un-
controlled system. This formulation of the controlled drift

has been derived also in the field of statistical mechanics by
applying the Doob’s h transform [23,65–68]. Yet, due to the
intractability of the logarithmic gradient of ϕt (x) for most
practical problems, the drift of Eq. (8) has been applied only
on simple systems.

Although the controlled drift admits a well defined ex-
pression in the terms of the solution of the backward partial
differential equation of Eq. (9), direct solutions with space
discretizing schemes [40,41] often suffer from high computa-
tional complexity with increasing dimensionality and become
inefficient for most practical settings. On the other hand,
stochastic path sampling frameworks building on the equiv-
alence between path reweighting and optimal control, like the
path integral cross entropy method [46,47], follow iterative
procedures that progressively converge to the optimal con-
trols. (Note also recent neural network advances towards this
direction [69,70].)

B. Constrained flows from time-reversed SDEs

Here, to circumvent the need for backward-in-time in-
tegration of the backward PDE, we express the optimal
interventions u(x, t ) in terms of two forward probability flows.
To that end, we consider a factorization for the path probabil-
ity density qt (x) arising from the controlled system into two
terms that account for past and future constraints separately
[68],

qt (x) ∝ �t (x)ϕt (x). (10)

In Eq. (10), ϕt (x) fulfills the backward PDE [Eq. (9)],
and embodies prospective (future) constraints to the time t ,
while �t (x) denotes a (non-normalized) forward probability
flow that accounts for concurrent and retrospective (past)
constraints, and is the solution of the forward PDE

∂�t (x)

∂t
=L f �t (x) − U (x, t )�t (x)

= − ∇ · ( f (x, t )�t (x)) + σ 2

2
∇2�t (x) − U (x, t )�t (x).

(11)

In the absence of path constraints [U (x, t ) ≡ 0], Eq. (11)
reduces to the Fokker-Planck equation for the uncontrolled
system. On the other hand, in the presence of path constraints
[U (x, t ) �= 0] the resulting evolution equation becomes more
complicated. By integrating Eq. (11) at time t over a small
time interval δt , we obtain

�t+δt (x) = eδt (L f −U (x,t ))�t (x) (12)

= e−δtU (x,t )eδtL f �t (x) + O((δt )2), (13)

in terms of operator exponentials [71]. This formulation ad-
mits an interpretation as the concatenation of two processes:
the propagation of the density described by the uncontrolled
Fokker-Planck equation [Eq. (2)], followed by a multiplica-
tion of the resulting density by a factor e−δtU (x,t ). This second
process, is known in filtering problems for stochastic dynam-
ics [72], where the current estimate of the system state Xt

results from a multiplication of the likelihood of the noisy
observations e−δtU (x,t ) with the density capturing the prior
belief of the state Xt . Hence, we call equation Eq. (11) the
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forward filtering equation. In turn, the factorization of Eq. (10)
is reminiscent to the representation of smoothing densities for
hidden Markov models as products of forward and backward
messages.

A direct calculation shows that the factorized probability
flow qt (x) [Eq. (10)], i.e., the probability flow characteriz-
ing the evolution of the constrained system state, fulfills the
Fokker-Planck equation

∂qt (x)

∂t
= Lgqt (x) = −∇ · (g(x, t )qt (x)) + σ 2

2
∇2qt (x),

(14)

with initial condition q0(x) = �0(x), and Lg denoting the
Fokker-Planck operator for the optimally adjusted drift g(x, t ).

The factorization of Eq. (10) allows for a new representa-
tion of the optimal drift g(x, t ) by eliminating the backward
flow ϕt (x) in favor of �t (x)

g(x, t ) = f (x, t ) + σ 2(∇ ln qt (x) − ∇ ln �t (x)). (15)

The new formulation of the optimal drift still requires the
logarithmic gradient of the constrained flow qt (x), and there-
fore does not allow for direct simulation of controlled paths.
Yet, this formulation of the optimal drift turns Eq. (14) into
an equation resembling a Fokker-Planck equation, but with a
negative diffusion term

∂qt (x)

∂t
= ∇ · [(σ 2∇ ln �t (x) − f (x, t ))qt (x)] − σ 2

2
∇2qt (x).

(16)
By introducing the backward time variable τ = T − t , and
setting q̃τ (x) = qT −τ (x) we obtain a new Fokker–Planck
equation with properly signed diffusion

∂ q̃τ (x)

∂τ
= −∇ · [(σ 2∇ ln �T −τ (x) − f (x, T − τ ))q̃τ (x)]

+ σ 2

2
∇2q̃τ (x), (17)

with initial condition q̃0(x) ∝ �T (x)χ (x).
Hence, we have represented the optimal control

u∗(x, t ) = σ 2(∇ ln q̃T −t (x) − ∇ ln �t (x)), (18)

as the difference of the logarithmic gradients of two probabil-
ity densities (score functions).

This result suggests a possible numerical strategy for ob-
taining the optimal interventions: First, solve the forward
filtering equation for �t (x) [Eq. (11)] using, e.g., sequential
Monte Carlo methods [73], and estimate the logarith-
mic gradients ∇ ln �T −τ (x). Subsequently, sample stochastic
paths of the SDE associated with the Fokker–Planck equa-
tion [Eq. (17)] and use the trajectories to approximate the
logarithmic gradient ∇ ln q̃T −t (x) (Fig. 1). In fact, a similar
approach was recently used to solve so-called Schrödinger
bridge problems [35,74]. The latter can be also be understood
as a specific control problem for SDEs with only control
energy costs [i.e., U (x) ≡ 0] in the cost functional [Eq. (7)],
but in addition the probability densities q0(x) and qT (x) at
initial and final times are specified as extra constraints. In
contrast to these approaches, we apply and generalize a recent
deterministic, particle framework for solving Fokker-Planck
equations introduced by the authors in Ref. [54] to solve

FIG. 1. Schematic of forward and time-reversed probability
flows for deriving state- and time-dependent dynamical interventions
u(x, t ). We initially sample the flow �t (x) for the time interval [0, T ].
By employing the logarithmic gradient (score) of �t (x), we evolve
the time-reversed constrained probability flow q̃τ (x). The optimal
state- and time-dependent dynamical interventions u(x, t ) result from
the difference of the logarithmic gradients of the two probability
flows.

generic path integral control problems of the type of Eq. (7).
This new technique avoids stochastic path sampling and re-
duces significantly temporal fluctuations, delivering thereby
accurate Fokker-Planck equation solutions for relatively low
number of employed particles [54]. In addition, the computa-
tion of the logarithmic gradients is already an integral part of
the method for computing the deterministic particle dynamics.

C. Deterministic particle flow (DPF) control

To sample the forward densities �t (x) and q̃τ (x), we build
on the idea that a Fokker-Planck equation can be rewritten
as a Liouville equation [75] for an ensemble of determinis-
tic dynamical systems where the logarithmic gradient of the
ensemble density acts as an additional force. In particular,
for an SDE with drift f (x, t ) and diffusion σ , we rewrite the
Fokker-Planck equation [Eq. (1)] for the probability density
pt (x) of the system state in the form (see Ref. [54] for details)

∂ pt (x)

∂t
= −∇ ·

[(
f (x, t ) − σ 2

2
∇ ln pt (x)

)
pt (x)

]
. (19)

For a known density pt (x), this equation describes the evo-
lution of an ensemble of independent systems with each
ensemble member following the deterministic dynamics:

dX (t )

dt
= f (X (t ), t ) − σ 2

2
∇ ln pt (X (t )). (20)

Note that here individual trajectories {X (t )}T
t=0 are distinct

from solutions of the underlying SDE, since each particle
follows pure deterministic dynamics.

To obtain a solution of the Fokker-Planck equation, we
approximate the density pt (x) by an empirical distribution of
N ensemble members (“particles”) {X (i)(t )}N

i=1 via

p̂t (x) ≈ 1

N

N∑
i=1

δ(x − X (i)(t )). (21)
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Based on this empirical representation of the density pt (x),
we approximate its logarithmic gradient with a statistical es-
timator S (x, p̂t ) ≈ ∇ ln pt (x), obtained from the solution of a
variational formulation of the score function (see Ref. [60],
Sec. VI). Thus we express the resulting dynamics of indi-
vidual particles in terms of a system of ordinary differential
equations (ODEs)

dX (i)(t )

dt
= f (X (i)(t ), t ) − σ 2

2
S (X (i)(t ), p̂t ). (22)

While this approach is sufficient to solve control prob-
lems without path costs (U (x, t ) ≡ 0), the extra sink term
−U (x, t )�t (x) in the forward filtering PDE (Eq. (11)) in the
presence of path constraints requires an additional numerical
technique. Thus, to incorporate path costs, we employ the
formulation of the two stage process given by Eq. (12), and
combine our Fokker-Planck deterministic particle solver with
a deterministic particle filter method, the ensemble transform
particle filter [72]. To simulate such a two stage process for
each small time interval δt , we first propagate the particles
following the dynamics of Eq. (22) to auxiliary positions Y (i)

t
and assign to each particle i a weight 	i:

	i(t ) ∝ e−δtU (Y (i)
t ,t ). (23)

To transform the weighted particles to unweighted ones,
we employ the ensemble transform particle filter [72]. This
method solves an optimal transport [76] problem to provide
the minimal necessary deterministic shifts required to trans-
form an ensemble of weighted particles into an ensemble of
uniformly weighted ones, minimizing the expected distance
between the two ensembles (see Ref. [60], Sec. V).

D. Guiding probability flows to extreme terminal states

In settings where the terminal target state lies outside of
the typical values of the uncontrolled system, the sampled
forward flow �t (x) fails to provide sufficient evidence in the
vicinity of the terminal point. Thereby the ensuing logarithmic
gradient estimation ∇ ln �t (x) is inaccurate.

For conservative systems, i.e., when the drift is a gradient
of a potential f (x) = −∇V (x), and for terminal constraints
defined by a delta function, i.e., χ (x) = δ(x − x∗), we address
this issue by proposing an additional modified forward sam-
pling that incorporates the extreme terminal constraint in the
forward dynamics. To that end, we employ a d-dimensional
Brownian Bridge (B) dynamics. Brownian bridges are Brow-
nian motions, i.e., diffusions with vanishing drift f (x) ≡ 0,
conditioned on the terminal state x∗ (see Ref. [60], Sec. III
Eq. S.39).

To maintain the correct path statistics, we employ the Gir-
sanov’s change of measure formula to reweight the biased
forward paths. More precisely, we obtain the correct path
probability measure of the controlled process PB

f by reweight-
ing the Brownian bridge path measure PB

0 with the likelihood
(Ref. [60], Sec. III)

dPB
f

dPB
0

(X0:T ) ∝ exp

[
−

∫ T

0
UB(Xt )dt

]
, (24)

with

UB(x) = 1

2σ 2
( f 2(x) + σ 2∇ · f (x)). (25)

Hence, to simulate constrained paths of an SDE with drift
f (x) = −∇V (x) and extreme terminal constraints, we trans-
form the extreme terminal constraint to a path constraint UB(x)
for an appropriate Brownian bridge process that already in-
corporates the terminal state x∗. In particular, we employ the
modified forward equation

∂�t (x)

∂t
= L f0�t (x) − UB(x)�t (x), (26)

that generates paths with correct statistics that reach the ter-
minal target by imposing the path constraint UB(x) to the
Brownian bridge forward dynamics with drift f0 [Eq. (S.39)].
We term this variant of our framework guided deterministic
particle flow (gDPF) control.

III. EVALUATION OF OPTIMAL DYNAMICAL
INTERVENTIONS

To illustrate our formalism in action, we computed optimal
intervention protocols for biologically inspired systems by
employing the proposed deterministic particle framework, and
compared the obtained controls to those computed with the
path integral cross entropy method (PICE) (see Refs. [60], Sec.
VII, and [46]). We tested our method on systems of increasing
complexity and dimensionality, with conservative and non-
conservative forces, as well as in settings with terminal, path,
or collective state constraints.

To design the optimal interventions u(x, t ) we employed
the presented method in two alternative variants: (i) the de-
terministic particle flow control (DPF), where the forward
density follows the dynamics of Eq. (11) and (ii) the guided
deterministic flow control (gDPF), in which the forward
density evolves according to an appropriately reweighted
Brownian bridge dynamics, as described in Sec. II D.

To evaluate the quality of the obtained controls, we con-
sidered the design of optimal interventions for inducing state
transitions to multistable conservative and nonconservative
systems (Sec. III B), for artificially manipulating molecular
phenotypes on adaptive landscapes (Sec. III C), and for syn-
chronizing finite-size networks of Kuramoto phase oscillators
(Sec. III D). We quantified the quality of the identified in-
terventions in terms of employed control energy [‖u(x, t )‖2

2],
reflecting the optimality of the computed control, as well as in
terms of deviations from terminal [(x∗ − XT )2] and path con-
straints [U (Xt , t )], characterizing thereby the effectiveness of
the devised interventions to enforce the intended constraints.
Unless explicitly mentioned otherwise, all metrics were eval-
uated by considering 1000 independent stochastic trajectories
controlled with each method.

A. Incorporating terminal and path constraints
on conservative systems.

We considered a two dimensional nonlinear system evolv-
ing in the presence of deterministic forces derived from a
potential gradient f (x) = −∇V (x), with associated potential
V (x, y) = ((1 − x)2 + (y − x2)2) (Fig. 2), while white noise
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Deterministic particle flow (DPF) control provides optimal interventions to drive the controlled system to target state (grey
cross). (a) A controlled trajectory starting from state x0 = (−1, 1) reaches the target x∗ = (1, 1) at time T = 0.7 (blue-yellow line), while
an uncontrolled trajectory remains in the vicinity of initial condition x0 during the same time interval (orange line). (b) Mean and standard
deviation of the marginal densities of 1000 controlled trajectories employing interventions computed with our framework DPF (purple) and
with PICE (grey). Orange line indicates mean of 1000 uncontrolled trajectories, while shaded area captures the associated standard deviation.
For estimating the controls, we employed N = 400 particles for DPF, and Npice = 500 for PICE. (c.) Comparison of (upper) (logarithmic)
control energy ‖u(x, t )‖2

2, and (lower) deviation from the terminal point ‖XT − x∗‖2 for each controlled trajectory with interventions
computed according to DPF (magenta) and PICE (grey). (d) (Logarithmic) control energy (upper) improves moderately, and terminal error
(lower) remains constant for increasing particle number N . The number of inducing points in the logarithmic gradient estimation conveys
negligible difference in control energy and terminal error (inducing point number magenta: M = 50, green: M = 100). Grey line indicates the
performance of PICE in the same setting. [(e)–(h)] Same as (a)–(d) with additional path constraint U ((x, y), t ) = β(y − 1)2, with β = 103.
Average iteration number required for PICE was 250 in the non path-constrained setting, and 300 for the path constrained one.

fluctuations perturb its deterministic evolution. The governing
system equation was

dx = −∇V (x)dt + σdW. (27)

Changes along one dimension of Eq. (27) are often accom-
panied by changes along covarying dimensions as dictated by
the landscape gradient. Thus attempts to modify the system
state only along a single axis, lead to undesired variations
along the covarying dimensions. To demonstrate this, we con-
trolled stochastic trajectories initiated at state x0 = (−1, 1)
with target state x∗ = (1, 1). The designed interventions by
DPF with only terminal constraints χ (x) = δ(x − x∗) suc-
cessfully drove the system to the intended target [Figs. 5(a)
and 5(b)]. Nevertheless, although the initial and terminal state
along the second dimension remained the same, without in-
troducing additional path constraints, the system underwent
considerable transient fluctuations along the second dimen-
sion (y) as indicated both by the nonconstant mean of the
simulated paths (μq̂t ), as well as by the increasing dispersion

of paths from the mean, captured by the standard deviation σq̂t

[Fig. 5(b)].
To limit the fluctuations along the covarying second state

β, we introduced path constraints

U ((x, y), t ) = β (y − 1)2

with β = 103, that penalized transient deviations from the
intended value of y [Fig. 5(e)]. The necessary interventions,
identified by DPF with path constraints, successfully steered
the system towards the predefined target, reducing thereby
considerably the fluctuations along the second axis (Figs. 5(e)
and 5(f) and supplementary Fig. S-5 in Ref. [60]). Compared
to the path integral control framework (PICE), for both scenar-
ios, our method delivered results with comparable dissipated
control energy, and was considerably more precise in terms of
terminal errors [Figs. 5(e) and 5(f)].

Evaluating the performance of both methods for increas-
ing particle number N employed for the estimation of the
required interventions u(x, t ), revealed that DPF provided
controls on par with PICE already for N = 500 particles and,

043035-6



DETERMINISTIC PARTICLE FLOWS FOR CONSTRAINING … PHYSICAL REVIEW RESEARCH 4, 043035 (2022)

by design, only with a single iteration. In contrast, PICE
required on average 250 and 300 iterations for the path uncon-
strained and the path constrained settings, respectively. The
proposed method presented a relatively stable performance
for increasing number of particles, with small improvement in
terms of the exerted control energy, whereas the path integral
cross entropy method improved substantially when more par-
ticles where employed in the computations, and consequently
matched the performance our approach. Considering the de-
viation from the terminal state, DPF was consistently more
precise and accurate in reaching the target as indicated both by
considerably smaller terminal errors [Figs. 5(d) and 5(h)], and
by smaller deviations of individual terminal states around the
average (see also supplementary Fig. S8 in Ref. [60]). Both
the exerted control energy and terminal error do not show
considerable improvement for increasing inducing point
number employed in the logarithmic gradient estimator (ma-
genta for M = 50; green for M = 100).

B. Controlling state transitions of conservative and
nonconservative systems

We further employed the proposed framework to de-
vise interventions that reliably induced switching between
equilibrium states in a time constrained scheme for an one-
dimensional conservative system, and for a two-dimensional
nonconservative one. For both settings, the unconstrained
system either performs the transition between the two equi-
librium states at not prescribed instances, or completely fails
to reach the target, when the transition paths to that state
strongly deviate from typical system trajectories (Fig. 3 and
supplementary Figs. S-3 and S-4 in Ref. [60]).

For the one-dimensional bistable system ( f (x) = 4 x − x3)
starting from the stable state at x0 = −1, we provided opti-
mal interventions under the objective of driving the system
towards a predefined target x∗ at time T = 1. We applied both
variants of the presented method [DPF (Sec. II C) and gDPF
(Sec. II D)], and explored two complementary scenarios: one
with typical, x∗ = 0 [Figs. 3(a)–3(d)], and one with extreme,
x∗ = 1 [Figs. 3(e)–3(h)], target states for the uncontrolled
system at time T . Notice that the state x∗ = 0 is an unstable
equilibrium.

For the typical target state x∗ = 0, all three employed meth-
ods (DPF: magenta, gDPF: yellow, PICE: grey) successfully
biased the controlled system towards the target x∗ [Fig. 3(a)].
In fact, the distributions of simulated independent controlled
stochastic trajectories delivered by each framework strongly
agreed throughout the entire time interval [0, T ] [Fig. 3(b)].

Considering the control energy dissipated by each method,
DPF, on average, provided slightly larger interventions
[Fig. 3(c)]. Yet, both variants of our approach (DPF and
gDPF) induced control trajectories that were consistently
more precise in reaching the terminal state [Fig. 3(c)].

Comparing the distributions of terminal errors, DPF was
both more accurate in reaching the target, as mediated by a
smaller average value over the 1000 realizations (grey bar),
but also more precise, as indicated by the smaller dispersion
of terminal errors around the average. This demonstrates that
although DPF slightly overestimated the required controls,
it provided sufficient force to lead the trajectories faithfully

onto the target. In contrast, PICE relatively underestimated
the necessary interventions, resulting in more energy effi-
cient controls that nevertheless moderately deviated from
the target.

Importantly, these results suggest that a single iteration
of either variants of the proposed method (DPF or gDPF)
provide comparable controls to the iterative PICE framework
(grey).

For the extreme (not typical) terminal state x∗ = 1, the
guided probability flow deterministic control (gDPF) and
the path integral cross entropy method (PICE) successfully
pushed the system to the target [Fig. 3(e)]. The distributions
of controlled trajectories [Fig. 3(f)] from the two frameworks
showed strong agreement, while the control costs and terminal
state precision were qualitatively similar to those obtained for
the typical target state.

Notice that the deterministic particle flow control (DPF),
the simple variant of our method, is inappropriate for this
setting for a reasonable number of employed particles repre-
senting the forward flow. Since the target x∗ is an extreme
system state for time T , it is highly unlikely that particles
representing the forward flow �t (x) will reach it. Thus the
estimation of logarithmic gradients of the forward flow �t (x)
in the vicinity of x∗ will be inaccurate, since the particles will
not provide sufficient evidence for gradient estimation in that
region.

Departing from gradient systems, onwards we consider
triggering transitions between stable states in a time-reliable
way for a nonconservative system. To that end, we employed
DPF for controlling a two dimensional phenomenological
model of the cell fate division module of a gene regulatory
network [77] with self-excitation and cross inhibition (see
Appendix A). We applied our method to induce transitions
to the system between its coexisting stable states.

Similar to the conservative setting examined previously,
the DPF successfully mediated the necessary interventions
for the transition between the stable states [Fig. 4(a)]. We
considered three noise conditions with σ = {1.0, 1.25, 1.5}
and compared again the deterministic particle flow con-
trol (DPF) with the path integral cross entropy method
(PICE). The transient statistics computed over 1000 con-
trolled trajectories for each framework agreed for all
noise conditions (Fig. 4(b) and supplementary Fig. S-9 in
Ref. [60]).

Control costs and terminal error precision were comparable
for the two approaches, with DPF performing slightly better
in terms of dissipated control energy for increasing noise
strength [Fig. 4(c)]. Both methods had comparable control ac-
curacy in reaching the target that deteriorated moderately for
increasing noise amplitude. However, while DPF was consid-
erable more accurate and precise for the low noise conditions,
for larger noise amplitudes the accuracy of both methods in
reaching the terminal point x∗ became comparable [Fig. 4(d)].

Taken together, DPF (and gDPF where necessary for
conservative systems) successfully provided the necessary
controls for reaching the targets in both conservative and
nonconservative systems and under various noise conditions.
The provided interventions were on par with the established
iterative PICE framework in terms of dissipated control en-
ergy, and moderately more precise in reaching the target.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Equivalence of dynamical interventions delivered by deterministic particle flow control (DPF), guided deterministic particle flow
control (gDPF), and PICE, for typical (top) and atypical (bottom) terminal conditions. (Top) (a) Controlled trajectories simulated by employing
dynamical interventions delivered by deterministic particle flow control (magenta), guided deterministic particle flow control (orange), and
path integral cross entropy method (grey). All trajectories started from initial point x0 = −1 (left silver circle) and reached the target x∗ = 0
at time T = 1. (b) Transient mean μt and standard deviation σt over 1000 independent trajectories controlled with each framework. (c) Total
control energy ‖u(x, t )‖2, and (d) deviation from terminal point for 1000 independent controlled trajectories with interventions computed
according to each framework. Grey horizontal lines in (c) and (d) denote mean values over all realizations. The proposed methods result in
slightly more expensive control costs, but are more consistent in precisely reaching the terminal state. (Bottom) Same as upper row for target
x∗ = 1 only for gDPF and PICE. Here DPF is not applicable since the forward probability flow does not reach the atypical target point x∗ = 1.

C. Evolutionary control through artificial selection

Building upon the evolutionary stochastic control formal-
ism recently introduced by Nourmohammad et al. [29], we
employed the deterministic particle flow control to devise
artificial selection protocols for molecular phenotypes. The
obtained interventions optimally drove the simulated evolu-
tionary process to desired phenotypic states. In this setting,
experimentally imposed path constraints become relevant for
preventing undesirable outcomes on covarying phenotypes.

For an evolving population, the main evolutionary drivers
comprise fitness and mutation forces that continuously
adjust the composition of phenotypes in the population, while
genetic drift perturbs the whole process stochastically. We
described the evolution of the mean phenotypes dx of the

population by the overdamped Langevin equation [78]

dx = C · ∇F (x)dt + �dW, (28)

with F (x) denoting the adaptive fitness landscape in the pres-
ence of natural selection [78]. With � we denote the noise
amplitude arising from genetic drift, that equals the trait
covariance matrix C rescaled by the inverse effective pop-
ulation size n, � = C1/2n−1. The gradient of the landscape
f (x) = C · ∇F (x) defines the adaptive pressure under natu-
ral selection. For quadratic phenotypic landscapes [58] the
resulting selection forces have the form f (x) = −C · Lx,
where L ∈ Rn×n is the matrix of the selection coefficients.

Equation (28) describes the evolutionary dynamics of
populations in the presence of natural selection towards an
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FIG. 4. Optimal interventions effectively drive the nonconservative system to the target state for different noise amplitudes. (a) Indi-
vidual trajectory controlled by DPF (green-yellow) starting from stable state x0 = (1.996, 0) successfully reaches the target x∗ = (1, 1) at
T = 0.5, while the uncontrolled trajectory (grey) fails to leave the basin of attraction of x0 = (1.996, 0). (b) Agreement between controlled
densities of 1000 independent controlled trajectories driven by DPF (magenta) and PICE (grey) for noise amplitude σ = 1.5. (c) Dissipated
control energy and (d) terminal error for increasing noise strength σ for the two control frameworks. For increasing noise DPF delivers more
efficient, but moderately less precise controls than PICE. Further parameters: particle number: N = 600 inducing point number: M = 20,
discretization time step dt = 10−3.

evolutionary optimum identified by the landscape peak, adher-
ing thereby to physiological and environmental constraints.
Yet, to study the outcomes and dynamics of adaptive evolu-
tion, intervention protocols are required that drive phenotypes
towards evolutionary nonoptimum states x∗, or through evo-
lutionary trajectories that deviate from landscape gradients.
These interventions are implemented through artificial selec-
tion, which we formulate here as a time- and state-dependent
perturbation u(x, t ) on the dynamics under natural selection,
and apply the proposed method to obtain the necessary con-
trols.

For most evolutionary processes, changes along one phe-
notypic axis are often accompanied with changes along
covarying phenotypic traits. Thus attempts to bias and en-
hance selective forces towards a specific direction, may lead to
possibly undesired variations along the covarying traits. How-
ever, cross-phenotype correlations are often underestimated
in experimental setups, where individual traits are assumed
independent. Here, we apply the proposed method on an evo-
lutionary process of two covarying phenotypes with the target
to modify only the prevalence of a single trait (x) in the pop-
ulation, while keeping the prevalence of the second trait (y)
unchanged. To that end, we employed controllers that either
neglect or consider the actual cross-phenotype correlations of
the uncontrolled process.

We steered phenotypic trajectories initiated from the
evolutionary optimum at x0 = (0, 0) towards a target at
x∗ = (0.5, 0). The designed interventions by DPF assuming
both the correct and the misspecified model with only terminal
constraints χ (x) = δ(x − x∗) successfully drove the system
to the intended target (Figs. 5(a) and 5(b) and supplementary
Fig. S-1 in Ref. [60]). We found that both the average transient
deviations from the optimal y value [Fig. 5(d)], and from the
target (Fig S-1) were comparable for the processes steered
by a correct and a misspecified controller independent of the
cross-phenotype correlations. However as indicated by the
marginal mean of the controlled trajectories [Figs. 5(a) and

5(b), purple lines] the transient densities of the two controlled
processes did not necessarily overlap, especially for large
correlation values. Yet, the exerted control efforts of both
controller variants were on the same level [Fig. 5(c)].

Similarly to the numerical experiments of Sec. III A, al-
though the initial and terminal state are equal along the second
dimension, as expected, without introducing additional path
constraints, the phenotypic trait along the second dimension
(y) considerably covaried with the first trait [Fig. 5(b)]. To
limit the fluctuations along the covarying second phenotypic
trait, we introduced path constraints

U ((x, y), t ) = β y2

with β = 103, that penalized transient transient deviations
from the second trait’s target value [Fig. 5(e)]. The neces-
sary interventions, identified by DPF with path constraints,
reduced considerably the fluctuations along the second axis
for processes controlled by either the misspecified or the cor-
rect controller [Figs. 5(c) and 5(d)]. The terminal error, the
deviations from the optimal y value, and the dissipated control
energy were on the same level for both controller variants.

D. Controlling collective states: synchronization control
of stochastic Kuramoto oscillators

To further demonstrate the generalizability of the proposed
framework, we considered a system where the constraints do
not explicitly penalize regions of the state space, but rather
pertain the collective state of a system of interacting stochastic
units. Specifically, we applied our method for synchronizing
finite size networks of stochastic Kuramoto phase oscillators
(see Appendix B for the evolution equations and Ref. [60],
Sec. IX for further details). We performed systematic stud-
ies on a prototypical network of two interacting oscillators
(Figs. 6–8), and a network of K = 6 (Figs. 9 and 10)
heterogeneous oscillators with all-to-all uniform coupling
(Fig. S-2 and Ref. [60], Sec. IX).
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(a) (b)

(c)

(d)

FIG. 5. Deterministic particle flow (DPF) control steers an evolutionary process of molecular phenotypes to a non (evolutionary) optimum
state. [(a) and (b)] Transient mean of marginal densities of 1000 controlled trajectories, μqt

x and μqt
y , of controlled trajectories of an evolutionary

process with covarying phenotypes with correlation (a) �xy = 0.25, and (b) �xy = 0.75 starting from phenotypic state x0 = (0, 0) and reaching
the target x∗ = (0.5, 0) (green cross) at time T = 1.0. The employed interventions were computed with the correct model (solid lines) or
with a misspecified model that assumed zero cross-phenotype correlations �xy = 0. (dashed line) imposing: (i) only terminal constraints
(purple lines) and (ii) both terminal and path constraints (light blue lines lines). The path constraint U ((x, y), t ) = βy2, with β = 103 was
set to limit the fluctuations around the y axis. The white line and grey shaded region indicate the mean and standard deviation of 1000
uncontrolled trajectories evolving under natural selection from the same initial state x0. [(c) and (d)] Comparison of (c) dissipated control
energy ‖u(x, t )‖2

2, and (d) path deviations from target along the second (y) phenotype axis
∫

((Xt )y − y∗)dt when steering the evolutionary
processes with (top) anticorrelated and (bottom) correlated phenotypes with increasing (in absolute value) correlation coefficient �xy from
left to right, with �xy = ±{0.25, 0.50, 0.75}. The employed interventions followed the same model and constraint assumptions as in (a) and
(b) with “cor” and “mis” denoting results from computed controls employing the correct and the misspecified dynamical model, respectively.
Further parameters: particle number: N = 1000, inducing point number: M = 50, discretization time step: dt = 10−3.

To accommodate synchronization control with our frame-
work, we considered a time constrained setting where we
applied DPF for an interval [0, T ] (time units). An alternative
“online” approach described in Ref. [60], Sec. IX alternates
computation of controls within small time intervals with sim-
ulation of controlled trajectories over those intervals.

We implemented the synchronization constraint as a path
constraint that promotes synchrony without any further re-
quirement for the terminal state, and characterized the level
of synchronization in terms of the Kuramoto order parameter
for phase coherence R(θt , t ) ([60], Sec. IX):

R(θt , t ) = 1

K

∣∣∣∣∣
K∑

j=1

eiθ ( j)
t

∣∣∣∣∣. (29)

To that end, we employed the following path constraint that
promotes order parameter values closer to 1, i.e., closer to a
synchronous state

U (θt ) = β(1 − R(θt , t )),

with θt ∈ RK denoting the vector of oscillator phases, and β ∈
R a scaling constant.

For all considered networks of interacting Kuramoto os-
cillators, we applied interventions ui(θt , t ) on the phases
θ = {θ (i)}K

i=1 of all network nodes. Further considerations of
optimally selecting a subset of nodes to control were out of
the scope of the current article.

For a prototypical network of K = 2 interacting oscil-
lators with weak coupling (J = 1.2), DPF induced rapid
synchrony, whereas the uncontrolled oscillators became pro-
gressively incoherent as indicated both by observing their
phases [Fig. 6(a)] and the transient values of their phase-
coherent order parameter R [Fig. 6(b)]. DPF provided fairly
strong control inputs at the beginning of the simulation to fully
align the phases of the oscillators [Fig. 6(c)] and subsequently
delivered only moderate controls to maintain synchrony coun-
teracting the effect of noise.

DPF successfully induced synchrony for different lev-
els of coupling and under two different noise conditions
σ = {0.5, 1.0} [Fig. 7(a)]. For strongly coupled oscillators
where the uncontrolled network progressively synchronizes
solely due to the interactions, DPF synchronized the oscilla-
tors faster—indicated by earlier reaching the order parameter
R = 1 value compared to their uncontrolled counterparts—
and prevented spontaneous desynchronsation events that
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FIG. 6. Synchronization control of two coupled Kuramoto phase oscillators. (a) Evolution of phases (θi) of two controlled (purple) and two
uncontrolled (green) Kuramoto oscillators mutually coupled with coupling J = 1.2 and noise amplitude σ = 1.0. (b) Evolution of Kuramoto
phase-coherence order parameter R for the controlled (purple) oscillators indicates a fast transition to synchrony (R = 1), while the identical
uncontrolled oscillators become progressively incoherent, indicated by a strongly fluctuating order parameter (green). The orange line denotes
the expected long time average value of the order parameter for noninteracting oscillators considering finite size scaling effects. The grey
line marks the level of R = 1 indicating a completely synchronous state. (c) Control input provided to each oscillator. Further parameters:
particle number: N = 2000, inducing point number: M = 80, natural frequencies: ωi = 0, initial condition: θ (i) ∼ N (3, 0.52), and T = 1.5
(time units).

occurred in the uncontrolled networks especially in the pres-
ence of strong noise [Fig. 7(b)].

To quantify these effects further, we analysed the onset
of synchronization t syn and the percentage of time spent in
the synchronized state of the examined controlled and uncon-
trolled networks for increasing coupling J .

For each network realization, we defined the onset of
synchronization t syn as the first time point when the phase-

coherence order parameter exceeded the value R � 0.99 and
remained above that value for a minimal duration of τ s =
20 × dt = 0.02 time units. For uncontrolled networks with
weak couplings, we considered only the subset of realizations
that reached the synchronous state [indicated as a ratio by
the grey annotations in Fig. 8(a)]. To quantify the robust-
ness of synchronization in each network, we estimated the
percentage of time the network remained synchronized after
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FIG. 7. Synchronization control of a network of two coupled Kuramoto phase oscillators for different coupling strengths. (a) Time
averaged phase-coherence order parameter (R) of controlled (purple) and uncontrolled (green) networks under different noise conditions
[σ = 0.5 (triangles) and 1.0 (circles)]. The proposed method (DPF) effectively synchronizes the controlled oscillators already for vanishing
coupling strength between them. (b) Evolution of Kuramoto order parameter R for networks with coupling J = 2.0 and two noise conditions
[σ = 0.5 (top) and 1.0 (bottom)] for controlled (purple) and uncontrolled (green) oscillators. The control induces fast transition to synchrony
(R = 1), while the identical uncontrolled oscillators either synchronize slower (for low noise), or become only partially synchronized (for
strong noise). Individual lines indicate evolution of the order parameter in 20 realizations of the network starting from same initial conditions
and from a single computation of the required controls for each setting (where relevant). Dotted black lines denote the mean over the 20
realizations. Further parameters: particle number N = 2000, inducing point number: M = 80, natural frequencies: ωi = 0, initial condition:
θ (i) ∼ N (3, 0.52) and T = 1.5 (time units).
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FIG. 8. Onset of synchronization and percentage of time in synchronized state after synchrony onset reveal the effectiveness of determin-
istic particle flow control to induce robust synchronization on a network of K = 2 oscillators. (a) Onset of synchronization for controlled
(purple) and uncontrolled (green) networks quantified as the first time t syn the phase-coherence order parameter exceeds R � 0.99 and remains
over that value for duration τ s = 20 × dt = 0.02 time units. Grey annotations denote the percentage of the examined networks that reached the
synchronous state for duration τ s. Absence of annotation indicates that all examined networks reached synchrony. (b) Percentage of simulation
time the networks spontaneously spent in synchronized state (R � 0.99) after synchrony onset t syn. Both figures consider two different noise
conditions [σ = 0.5 (triangles) and 1.0 (circles)]. Further parameters: particle number N = 2000, inducing point number: M = 80 and T = 1.5
(time units). For each noise condition dots denote average over 3 control computations with different initial conditions with 20 controlled
trajectories for each (60 total controlled trajectories for each point).

the synchronization onset by counting the time points when
the order parameter spontaneously exceeded the R = 0.99
threshold after t syn.

For both noise conditions and independent of coupling
strength J , networks controlled by DPF reached the syn-
chronous state considerably faster than their uncontrolled
counterparts [Fig. 8(a)], and consistently remained synchro-
nized for the entire simulation, as mediated by the percentage
of time spent in the synchronized state after the synchroniza-
tion onset t syn. More precisely, while a subset of uncontrolled
weakly coupled networks synchronized for at least τ s = 20
time units, as expected due to the presence of noise they
failed to remain in that synchronized state as indicated in
Fig. 8(b). For stronger couplings desynchronization was less
pronounced, yet still more frequent than in their controlled
counterparts.

For K = 6 interacting heterogeneous oscillators and for
network characteristics (coupling strength J = 1.0 and noise
amplitude σ = 1.0) that render the uncontrolled system only
partially synchronizable [Fig. 9(b), bottom], state feedback
control delivered by DPF successfully drove the oscillators to
a fully synchronized state [Fig. 9(b), top]. As indicated by the
evolution of the Kuramoto order parameter for each of the 20
realizations shown in Fig. 9(b), our framework not only deliv-
ered sufficient controls to rapidly synchronize the oscillators,
but also provided the necessary interventions to maintain the
phase synchronization [Fig. 9(c)]. In fact, as indicated by the
nonfluctuating order parameter R for most realizations, only
2 network instances underwent spontaneous noise-induced
desynchronizations late in the simulations, which nevertheless
were partially recovered.

Similar to the smaller network, the six oscillator net-
work was successfully synchronized for a range of coupling
strengths [Fig. 10(a)] and for both noise conditions. Compared
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FIG. 9. Synchronization control of a finite-size network of
K = 6 interacting Kuramoto phase oscillators. (a) Evolution of
phases θ (i) of a controlled network and (b) an identical uncontrolled
network. The phases of the oscillators quickly synchronize when
controlled by DPF and remain synchronized throughout the entire
simulation interval [0, T = 0.5]. In the absence of control the phases
of the oscillators become increasingly incoherent. (c) Evolution of
Kuramoto order parameter capturing phase coherence R for the
controlled (purple) oscillator network indicates a rapid transition
to complete synchrony (R = 1) for all 20 realizations (individual
purple lines). The order parameter of identical uncontrolled net-
works fluctuates strongly indicating partial incoherence (green).
The orange line denotes the expected long time average value of
the order parameter if the oscillators were noninteracting consid-
ering finite size scaling effects. For visual clarity, the grey line
marks the level of R = 1 indicating a completely synchronous state.
(d) Control energy spent on all K = 6 oscillators for a single con-
trol realization. Further parameters: coupling strength J = 1.0, noise
amplitude σ = 1, particle number N = 3000, inducing point number
M = 300, initial condition: θ (i) ∼ N (3, 0.52), natural frequencies:
ωi ∼ N (0, 1) discretization time step dt = 10−3 and T = 0.5
(time units).
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FIG. 10. Synchronization control of a network of six heterogeneous Kuramoto phase oscillators for different coupling strengths. (a.) Time
averaged phase-coherence order parameter (R) of controlled (purple) and uncontrolled (green) networks under different noise conditions
[σ = 1.0 (triangles) and 1.5 (circles)]. The proposed method (DPF) effectively synchronizes the controlled oscillators already for weak
coupling. (b.) Evolution of Kuramoto order parameter R for networks with coupling J = 3.0 and two noise conditions [σ = 1.0 (top) and
1.5 (bottom)] for controlled (purple) and uncontrolled (green) oscillators. The control induces fast transition to synchrony (R = 1), while
the identical uncontrolled oscillators either synchronize slower (for low noise), or become only partially synchronized (for strong noise).
Individual lines indicate evolution of the order parameter in 20 realizations of the network starting from same initial conditions and from a
single computation of the required controls for each setting (where relevant). Dashed black lines denote the mean over the 20 realizations.
Further parameters: particle number N = 3000, inducing point number: M = 300, initial condition: θ (i) ∼ N (3, 0.52), natural frequencies:
ωi ∼ N (0, 1) and T = 0.5 (time units). Each point in (a) denotes the mean over 20 realizations of a single control computation.

to uncontrolled networks with identical characteristics, the
networks controlled by DPF exhibited through all examined
settings larger phase coherence order parameter values. Al-
though in some controlled network realizations the oscillators
desynchronized spontaneously towards the end of the simu-
lation interval, the phase coherence was quickly recovered
in most cases [Fig. 10(b)]. These desynchronization events
occurred when the state of the system reached the boundaries
of the state space volume covered by the particles. They can
be prevented by either increasing the number N of employed
particles, or by resorting to an online control strategy with
interleaved control computations and state advancement as
described in Ref. [60], Sec. IX.

IV. DISCUSSION

In this paper, we introduced a novel methodological frame-
work for estimating optimal dynamical interventions for
constraining stochastic nonlinear systems. Distinctively from
previous work [27,28,46,79] that devises optimal control pro-
tocols by employing iterative optimization procedures, here,
we obtained the required interventions in a deterministic and
noniterative way. We showed that splitting the time-resolved
constraining information into retrospective and prospective
parts, allows for a representation of the optimal controls
in terms of the difference of logarithmic gradients (scores)
of two forward probability flows. By introducing statisti-
cal estimators for the logarithmic gradients of the empirical
probability densities, and by employing novel advances for
deterministic evolution of sample based probability flows

[54,72], we proposed an efficient, nonparametric approxima-
tion of the optimal controls.

We demonstrated the feasibility and potential of our frame-
work on a battery of diverse, biologically inspired systems,
and challenging settings of increasing complexity and dimen-
sionality. More precisely, we employed the proposed method
to induce switches between equilibrium states on multistable
systems (Sec. III B), to devise artificial selection protocols
on phenotypic landscapes by implementing constraints for
covarying phenotypes (Sec. III C), and to induce synchroniza-
tion on networks of stochastic phase oscillators (Sec. III D).

We compared our approach against the recently proposed
Path integral cross entropy method [46], which approximates
time dependent controls by iterative optimization based on
stochastic path sampling. Our results suggest that our one-
shot, deterministic framework is on par with the iterative path
integral cross entropy method in terms of control efficiency,
and more precise and accurate in terms of deviation from
terminal target states.

We propagated probability densities by employing recent
advances for solving Fokker-Planck equations in terms of
deterministic particle dynamics. In principle, any particle fil-
tering algorithm employing stochastic particle dynamics [80]
may be combined with the logarithmic gradient density es-
timator of Eq. S.56 to obtain a numerical approximation of
the time-reversed drift of Eq. (18) at each time step. Yet,
numerical experiments of such a method (not shown here)
showed, that the stochastic fluctuations of the particles lead to
fairly noisy control estimates over time. Hence, here, taking
advantage of the fact that the deterministic sampling frame-
work of [54] already employs the logarithmic gradient
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estimator of Eq. S.56 as a building block, we integrated this
method into the computation of the optimal interventions.

Although the representation of constrained densities with
particles is computationally more efficient compared to solu-
tions of discretized PDEs, control representations for regions
of the state space where the particles do not provide sufficient
evidence for the underlying density, will be inaccurate. While
the probability density functions for the regions of the state
space unoccupied by particles are expected to have small
values, with insufficient particle number, the estimated log-
arithmic gradient of the related densities might be inaccurate
in low probability regions. However, due to the deterministic
nature of our approach, our framework provides better repre-
sentation of the underlying densities compared to stochastic
path sampling.

While the proposed method assumes access to and con-
trollability of all dynamical variables, such a scenario might
be unrealistic for some practical problems. Interventions to
biological systems may have limited access to the system’s
state variables, or only system parameters might be accessible
for control. In these settings, a proper modification of the
methodology that additionally considers these constraints is
necessary.

We successfully employed the proposed method for
synchronization control of networks of coupled stochastic
Kuramoto oscillators. However, when path constraints are
required, the deterministic particle flow control framework
solves an optimal transport problem at every time step to
implement the path constraints as a deterministic particle
reweighting. This computation employs the Earth Mover’s
distance for an ensemble of N particles, to solve the linear
program required for the optimal transport reweighting. This
computation scales rather unfavorably for increasing particle
number as O(N3 ln N ). Here, for the networked systems we
employed an alternative solution for computing the Earth
Mover’s distance, the network simplex solver [81,82] (see also
Ref. [60], Sec. V), which has computational complexity that
scales as O(N2). Future developments of both theoretical and
computational interest will focus on a dynamical reformula-
tion of the reweighting problem.

Considering further the topic of network synchronization,
we regarded out of the scope of the present paper to explore
the possibility of controlling only a subset of network nodes
or by considering mean-field couplings. Previous attempts to
solve the same problem in a stochastic setting have considered
only the synchronization of two coupled identical Kuramoto
oscillators [83], while, here, we considered networks up to six
oscillators with differing natural frequencies. Insights from
network control theory for nonlinear systems and mean-field
control coupled with the proposed framework may provide
a more energy-efficient approach for network synchroniza-
tion. Additionally, further systematic studies that will explore
various network topologies, coupling schemes, and intrinsic
parameter heterogeneities, will provide additional insight on
the properties of our method to induce robust synchronization
to networks of interacting stochastic (phase) oscillators.

Given the broad applicability of the proposed method,
future numerical developments may further improve the
computational complexity of the method, allowing thereby
efficient computation of interventions for high dimen-

sional systems. Candidate directions for improvement involve
applying sequential solutions for the optimization problems,
employing alternative functional representations of the log-
arithmic gradients, and generalizing the guided intervention
variant of our method (gDPF) to nonconservative systems.
Major computational steps of the algorithm result from
optimization problems: the variational formulation of the log-
arithmic gradient, and the optimal transport treatment of the
particle reweighting. In both cases, iterative solvers starting
from the optimization result of the previous time step may
provide more computationally efficient solutions. Moreover,
neural network function representations for estimating the
logarithmic gradients may result in more economic com-
putations in settings, where the intrinsic dimensionality of
invariant density of the stochastic dynamics is considerably
lower than the dimensionality of the state space.

The proposed framework is moreover relevant for various
computational or applied settings, where marginal densities of
constrained diffusive systems are required, i.e., for parameter
or state estimation of such systems, or for computing the tran-
sition probabilities in extreme event calculations, and more
broadly for simulation based inference [84,85]. In those set-
tings, only the constrained path distribution qt (x) is required
instead of the precise dynamical interventions. Although not
explicitly demonstrated here, the proposed method is also
applicable for computing averages over constrained densities
or functionals over constrained paths. Since the reverse time
sampled flow q̃t (x) already provides a good representation of
the constrained density, averages over functions evaluated on
the paths of qt (x) already provide accurate estimates of the
computed quantities for equilibrium processes.

We employed the proposed framework on a prototyp-
ical scenario of devising artificial selection protocols for
molecular phenotypes inspired by [29]. The nascent field of
continuous culturing [86,87] for studying adaptive evolution
has created a growing demand for devising efficient and pre-
cise stochastic control frameworks that may be integrated in
advanced open-source platforms like EVOLVER [30]. These
platforms enable real time monitoring of cell cultures and
administer exact custom perturbations in the form of selection
pressures. By providing accurate interventions that implement
arbitrary state constraints the proposed method is well suited
for such a platform.

Taken together, the clearest advantage of our framework
is its noniterative, and deterministic nature, providing thereby
computational advantages compared to existing control meth-
ods [46,88]. Moreover, the proposed formulation for the
optimal interventions generalizes beyond particle systems and
may be easily implemented by neural networks.

A repository with a PYTHON implementation of the pre-
sented framework can be found in Ref. [100].
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APPENDIX A: PHENOMENOLOGICAL MODEL OF CELL
FATE DIFFERENTIATION

For the controlled numerical experiment with the noncon-
servative system we employed the model

dXt =
(

Xt
4

p4
1 + Xt

4 + p4
2

p4
2 + Yt

4 − Xt

)
dt + σdW (1)

t (A1)

dYt =
(

Y 4
t

p4
3 + Y 4

t
+ p4

4

p4
4 + X 4

t
− Yt

)
dt + σdW (2)

t , (A2)

with parameters p1 = p2 = p3 = p4 = 0.5, and W (1),W (2)

independent Wiener processes.

APPENDIX B: KURAMOTO MODEL

The Kuramoto model [101] employed in the numerical ex-
periments comprises a population of K � 1 phase oscillators,
with dynamics evolving according to the following system of
nonlinear coupled stochastic equations

dθ
(i)
t =

(
ωi + J

K

K∑
j=1

sin
(
θ

( j)
t − θ

(i)
t

))
dt + σdW (i)

t , (B1)

with initial conditions θ
(i)
0 , and {W (i)}K

i=1 K independent
Wiener processes. In Eq. (B1), θ

(i)
t denotes the phase of the

i-th oscillator, ωi its natural frequency. We consider the natural
frequencies ωi to arise from a Gaussian distribution g(ω) with
mean zero, and variance w2, g(w) = N (0,w2).
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