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Robust nonequilibrium surface currents in the three-dimensional Hofstadter model
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Genuinely two-dimensional robust crosscurrents—which flow against the natural direction of heat flux—
have been missing since the discovery of their one-dimensional counterpart. We provide a setup to realize
them on a cubic three-dimensional (3D) lattice hosting a Hofstadter model coupled to two heat baths with
different temperatures. We show that these currents exhibit dissipative robustness; they are stable against the
presence of impurities and tilting of the gauge field in certain nonequilibrium configurations. Moreover, we find
protected boundary currents with genuinely 3D robustness, i.e., they are only stable if tunneling can occur in
all three spatial directions. The model also presents generic surface currents, which are robust for both bosonic
and fermionic systems. We identify the underlying qualitative mechanism responsible for the robustness of the
surface currents and the crucial role played by certain discrete symmetries.

DOI: 10.1103/PhysRevResearch.4.043032

I. INTRODUCTION

The fascinating world of exotic quantum phenomena in
condensed matter physics has traditionally been associated
with low-dimensional systems, i.e., those existing in one and
two dimensions [1–3]. This has been true not only for quan-
tum phase transitions, but also for transport phenomena [4–6].
The advent of topological quantum computing on the one
hand [7–10], and topological insulators and superconductors
on the other [11–13], provides the opportunity to find captivat-
ing new quantum properties in systems in three dimensions
and even formally in higher dimensions [14,15]. A particu-
larly interesting avenue of research in this direction concerns
the emergence of such phenomena in open quantum systems
far from equilibrium [16–27], since these may exhibit novel
behavior that cannot occur in closed systems.

In this paper, we address an open problem in the study
of transport in three-dimensional lattices that are out of ther-
modynamic equilibrium due to coupling to thermal baths at
different temperatures. The subject of our study will be the
current created by such a temperature gradient when the sys-
tem has reached the steady state, so that its entropy remains
constant. For a two-dimensional (2D) Hofstadter lattice model
of bosons, a one-dimensional edge current was recently found
flowing in the opposite direction to the natural arrow of heat
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flow, and for this reason is called a crosscurrent [20]. This
exotic edge current, which has also been observed in other
2D models [28] (see Refs. [29–31] for quasi-one-dimensional
studies), is robustly protected by symmetry properties with
respect to the presence of point-like defects, and remains
stable for a wide range of reservoir coupling strengths [28].
Such crosscurrents were first thought to be an intrinsically
one-dimensional phenomenon. Since then, the possibility of
observing a truly two-dimensional crosscurrent that is stable
in the presence of dissipation has remained open. Here, we
fill this gap by constructing an explicit realization of a 2D
crosscurrent as a boundary current of a three-dimensional
(3D) Hofstadter lattice (see Fig. 1). Moreover, we demonstrate
the existence of robust surface currents that are stable with
respect to defects in the presence of dissipation, regardless
whether they are crosscurrents or not.

The boundary currents we consider here are descendants
of the exotic surface physics that appears in 3D topological
insulators [11–13,32–38], the main difference being that the
latter are closed quantum fermionic systems as opposed to the
open bosonic and fermionic systems that we consider. Typ-
ically, these 3D topological models can be divided into two
generic categories. One hosts a layered structure of connected
2D topological nontrivial systems, in such a way that their
exotic transport properties in 3D are inherited from the non-
trivial 2D properties of each layer. However, there also exist
systems with robust boundary states which are of genuinely
3D origin. For time-reversal invariant (TRI) models, these two
classes correspond to the socalled “weak” and “strong” 3D
topological insulators [12,32], respectively. For the case of 3D
lattices with broken time-reversal (TRB) symmetry, layered
models are easy to construct, the 3D integer Hall effect being
the simplest instance [39–45]. However, observing truly 3D
robust boundary states for TRB systems is more challenging,
and the most studied model, the so-called Hopf insulator
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FIG. 1. Schematic of the 3D Hofstadter model coupled to hot and
cold reservoirs, with respective temperatures Th > Tc, along the X
axis. The coefficients tX,Y,Z indicate tunneling amplitudes along the
three spatial directions and each face of the unit cell is crossed by
the magnetic fluxes bX , bY , and bZ depending on orientation of the
gauge field.

[46–48], presents topologically protected boundary modes but
its topological features are unstable to the emergence of extra
energy bands.

By extending the ideas previously developed in
Refs. [20,28] for 2D topological systems coupled to thermal
baths, in this work we show that it is indeed possible to
induce genuinely 3D robust boundary transport in TRB
systems. Namely, the robust surface currents we observe
arise from a genuinely three-dimensional effect and are
not the result of stacking two-dimensional models with
corresponding one-dimensional robust edge currents. In this
regard, we obtain the following notable results:

(i) We find robustness of boundary currents, allowing for a
surface crosscurrent, under perturbations created by the pres-
ence of a variety of defects in the 3D lattice, including point-,
surface-, and volume-like defects.

(ii) This robustness is induced by the fulfillment of certain
symmetries in such perturbations.

(iii) For particular gauge field orientations, there are 2D
layered symmetries which can stabilize an unstable layered
current (or vice versa), creating a 3D stabilization effect.

(iv) Moreover, there is a genuine 3D symmetry inde-
pendent of any field orientation, which protects the surface
currents without any reference to their layered structure.

In the next section, we introduce our 3D lattice model
coupled to thermal baths and detail the solution for its
non-equilibrium steady state (NESS). Following Ref. [28],
we focus on the regime of weak system-bath coupling
where the boundary currents become dominant. In this
regime, the NESS is well approximated by the solution
of a Lindblad master equation. In Sec. III, we describe
our results for the nonequilibrium current distribution ob-
tained within this framework. Section IV is devoted to our
conclusions.

II. MODEL

The Hofstadter model in three dimensions describes a cu-
bic lattice of LX × LY × LZ sites in the presence of a gauge

field, governed by the Hamiltonian ĤS = Ĥ0 + ĤX + ĤY +
ĤZ , with (h̄ = kB = 1)

Ĥ0 =
∑
x,y,z

ω0â†
x,y,zâx,y,z, (1)

ĤX = −tX
2

∑
x,y,z

ei2πbZ yâ†
x,y,zâx+1,y,z + H.c., (2)

ĤY = −tY
2

∑
x,y,z

ei2πbX zâ†
x,y,zâx,y+1,z + H.c., (3)

ĤZ = −tZ
2

∑
x,y,z

ei2πbY xâ†
x,y,zâx,y,z+1 + H.c. (4)

Here, â†
x,y,z creates a particle on lattice site (x, y, z), tX,Y,Z

denote the hopping amplitudes in the three orthogonal di-
rections, and b = (bX , bY , bZ ) is an effective “magnetic” flux
vector on the three faces of the unit cell, as illustrated in Fig. 1,
as a result of the presence of the gauge field. Unless otherwise
indicated, we set tX = tY = tZ = t . The on-site energy shift ω0

is chosen to be large enough to ensure that all single-particle
eigenenergies are positive, but its value is otherwise immate-
rial: we take ω0 = 10t in the following.

The system lattice is coupled to independent reservoirs, hot
at one end, x = 1, and cold at the other end, x = LX , with
temperatures Th = β−1

h and Tc = β−1
c and chemical potentials

μh and μc, respectively. We consider a system-reservoir inter-
action of the bilinear form

ĤSB =
∑
j∈∂S

∑
q

gq j (â
†
j b̂q j + b̂†

q j â j ), (5)

with ∂S the boundary of the system, and gq j = 0 if j /∈ {x =
1} ∪ {x = LX }. Here, b̂†

q j creates a particle in mode q of the
reservoir coupled to the lattice site j. We assume that system
and reservoir operators, â and b̂, satisfy the same canoni-
cal commutation or anticommutation relations, depending on
whether we consider bosonic or fermionic systems, respec-
tively. The total Hamiltonian is given by

Ĥ = ĤS + ĤSB + ĤB, (6)

with

ĤB =
∑
j∈∂S

∑
q

�q j b̂
†
q j b̂q j . (7)

For sufficiently long times the lattice system reaches a non-
equilibrium steady state (NESS). Assuming that the coupling
between system and reservoir is weak enough, and following
the same steps as in [20] for the 2D case within the Born-
Markov and secular approximations [49–51], the NESS of the
Hofstadter system can be well approximated by the stationary
solution of a Gorini-Kossakowski-Lindblad-Sudarshan master
equation

Lρ̂ = −i[Ĥ, ρ̂] +Lhρ̂ +Lcρ̂ = 0. (8)

The dissipators for the hot and cold baths are given respec-
tively by

Lh = γ
∑

α

sα (n̄h(ωα )D[ĉ†
α] + [1 ∓ n̄h(ωα )]D[ĉα]), (9)

Lc = γ
∑

α

rα (n̄c(ωα )D[ĉ†
α] + [1 ∓ n̄c(ωα )]D[ĉα]), (10)
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with D[L̂]• = L̂ • L̂† − 1
2 {L̂†L̂, •} and n̄h,c(ω) =

[eβh,c (ω−μh,c ) ∓ (−1)]−1, where the minus sign is for fermions
and the plus sign is for bosons. Furthermore, ĉα = ∑

j Ujα â j

denotes a canonical ladder operator of the diagonalized 3D
Hofstadter Hamiltonian, ĤS = ∑

α ωα ĉ†
α ĉα , where Ujα is the

unitary matrix comprising the one-particle eigenvectors of ĤS .
For simplicity, we have assumed that the reservoir spectral
density is constant within the frequency range of interest (our
results are independent of this choice). The coefficients sα and
rα describe the dimensionless coupling strength of eigenmode
α to the hot and cold baths, respectively:

sα =
LY∑

y=1

LZ∑
z=1

|U(1,y,z),α|2, rα =
LY∑

y=1

LZ∑
z=1

|U(LX ,y,z),α|2. (11)

The current operators are defined via the continuity equa-
tion [52] for the particle density n̂x,y,z = â†

x,y,zâx,y,z along the
three spatial dimensions:

ĴX
x,y,z = i

tX
2

ei2πbZ yâ†
x,y,zâx+1,y,z + H.c.,

ĴY
x,y,z = i

tY
2

ei2πbX zâ†
x,y,zâx,y+1,z + H.c.,

ĴZ
x,y,z = i

tZ
2

ei2πbY xâ†
x,y,zâx,y,z+1 + H.c., (12)

so that

i[ĤX , n̂x,y,z] = ĴX
x−1,y,z − ĴX

x,y,z,

i[ĤY , n̂x,y,z] = ĴY
x,y−1,z − ĴY

x,y,z,

i[ĤZ , n̂x,y,z] = ĴZ
x,y,z−1 − ĴZ

x,y,z. (13)

The mean currents can be obtained by computing the corre-
lation matrix 〈ĉ†

α ĉα′ 〉, which can be done in a straightforward
way by using the master equation (8). The NESS correlation
matrix takes the value [20,28]

〈ĉ†
α ĉα′ 〉 = δαα′

sα n̄h(ωα ) + rα n̄c(ωα )

sα + rα

, (14)

so that only diagonal correlations in the eigenmode basis
survive. In Ref. [28] it was shown that, for a 2D model, the
solution of the Lindblad master equation gives an excellent
approximation to the current distribution in the weak-coupling
regime. Similarly, therefore, here we expect Eq. (14) to yield
accurate values for the currents so long as tX,Y,Z � γ . Our
approximations are also valid if one of them vanishes, say
tZ = 0, so long as the other two satisfy this condition, tX,Y �
γ .

III. RESULTS

A. Symmetries and boundary currents

A perfect 3D Hofstadter lattice, without any defect,
presents several symmetries depending on the orientation
of the magnetic flux vector b. We will be particularly in-
terested in symmetries of Ĥ which interchange the hot
and cold baths relative locations, as they have a nontriv-
ial action on the NESS. For instance, if b = (0, 0, bz ),
the Hamiltonian is invariant under the symmetries �̂�̂yz,

�̂R̂y(π ), and �̂R̂z(π ). Here, �̂ is the time-reversal op-
eration (the same as complex conjugation, in this case),
�̂yz is a spatial reflection across the yz plane cutting the
center of the lattice, �̂yzâx,y,z�̂

†
yz = âLx+1−x,y,z, and R̂y,z(π )

are π -rotations about the x and y axes, respectively, from
the center of the lattice, R̂y(π )âx,y,zR̂y(π )† = âLx+1−x,y,Lz+1−z,
and R̂z(π )âx,y,zR̂z(π )† = âLx+1−x,Ly+1−y,z. These are essen-
tially 2D symmetries embedded in the 3D lattice, and they
arise for particular orientations of b or particular values of
tX,Y,Z but not for arbitrary directions of the magnetic field.
Nevertheless, for a general b, the Hamiltonian is always in-
variant under �̂Î , where Î is a spatial inversion transformation
with respect to the center of the lattice Î âr Î† = âR−r, with
r = (x, y, z) and R = (Lx + 1, Ly + 1, Lz + 1).

The master equation is also invariant under these sym-
metries, because the Liouvillian (8) inherits them from the
Hamiltonian within the Born-Markov-secular (BMS) approx-
imation. Of course, the total Liouvillian is not invariant
because it describes the evolution of an open system and
these symmetries involve the time-reversal operation, �.
Therefore, only a kind of weak symmetry can be expected,
in the sense of Ref. [53]. Each of the aforementioned
symmetries, Ŝ, is a weak symmetry [53] for both the Hamil-
tonian part LH (ρ) := [H, ρ] and dissipative part LD(ρ) :=
L(ρ) + iLH (ρ) of the Liouvillian: namely, ŜLH,D(ρ)Ŝ−1 =
LH,D(ŜρŜ−1). Note, however, that the total Liouvillian L =
−iLH +LD is not invariant: since Ŝ is antiunitary, the Hamil-
tonian contribution flips sign. Nevertheless, since [LH ,LD] =
0 under the BMS approximation, the NESS is annihilated by
both LH and LD individually. Therefore, a weak symmetry
Ŝ of LH and LD is sufficient to ensure that the NESS is also
invariant under Ŝ.

Since the aforementioned weak symmetries interchange
the reservoirs, the invariance of Ĥ also ensures that the di-
mensionless couplings (11) obey sα = rα . As a result, the
mode occupations given by Eq. (14) become independent of
sα and rα , being given simply by the average of the reservoir
distribution functions:

n(ωα ) = 1
2 [n̄c(ωα ) + n̄h(ωα )]. (15)

This is a function of the frequency ωα only, and leads to
a steady-state correlation matrix that is independent of the
spatial orientation of the reservoirs. In such a case, the induced
current is highly suppressed in the bulk and flows essentially
on the boundary of the 3D lattice. To understand this, let us
resort to a semi-classical picture [54–56].

Under periodic boundary conditions, the 3D Hofstadter
Hamiltonian can be written in the form

Ĥ =
∑

k∈MBZ

a†
k · H(k) · ak, (16)

with k = (kX , kY , kZ ) the quasimomentum, ranging inside
the magnetic Bruillouin zone (MBZ), a†

k = (â†
1k, â†

2k, . . .),
and a hermitian matrix H(k) whose dimension and struc-
ture depend on b. For instance, for rational fluxes b =
(pX /qX , pY /qY , pZ/qZ ), the number of eigenvalues ωα (k) of
H(k) (energy bands) is given by the lowest common denomi-
nator of the three fractions [39–42].
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FIG. 2. Bosonic current distribution for a “tilted” field configuration with b = (0, 0.1, 0.1). Arrows indicate the direction of the current,
with the length of the arrows proportional to the magnitude of the current. The length of the arrows is scaled relative to the largest current value
within each plot. The right panel shows the topmost plane, demonstrating the existence of 2D crosscurrents flowing from the hot reservoir
(x = 1) to the cold reservoir (x = LX ).

The action of a force F modifies the semiclassical equa-
tion for the velocity vα of a Bloch wavepacket in the band
ωα (k) as

vα = ∂ωα (k)

∂k
− F × Fα (k). (17)

Here, Fα (k) = ∇ ×Aα is the Berry curvature vector,
defined in terms of the Berry connection, Aα (k) =
i〈uα (k)|∇k|uα (k)〉, with H(k)|uα (k)〉 = ωα (k)|uα (k)〉.

Under these conditions, we can generate a boundary by
introducing a confining potential V (r) in the semiclassical
equation (17) for vα . Assuming that the potential varies slowly
on the scale of the lattice, the energy of the wavepacket
in the semiclassical approximation is simply ωα (k) + V (r)
[55]. Moreover, the potential induces a confining force F =
−∇V (r), which approximately vanishes in the bulk and be-
comes very large near the edge of the confined region, so that

v(bulk)
α 	 ∂ωα (k)

∂k
, v(edge)

α 	 ∇V (r) × Fα (k). (18)

Since F is normal and points inward from the confining
boundary, a circulating current is induced along this edge
with direction given by the orientation of the Berry curvature
vector, Fα (k) = ∇ ×Aα , which depends on the band α, the
direction of b, and the specific value of k.

Thus, if there is an invariance under any of the symmetries
which guarantee that the NESS occupation number n only
depends on energy, we may estimate the current density by
[55]

I(r) =
∑

α

∫
MBZ

d3k n[ωα (k) + V (r)]vα (r, k). (19)

Now, inside the confined region V (r) 
 ωα (k), and

I(r) 	
∑

α

∫
MBZ

d3k n[ωα (k)]
[
v(bulk)

α + v(edge)
α

]
. (20)

Since there is no privileged direction of v(bulk)
α on each energy

shell (because of the invariance under the aforementioned

symmetries), ωα (k) = ωα (−k) and hence ∂ωα (k)
∂k = − ∂ωα (−k)

∂k .
Therefore, the contribution of v(bulk)

α to the integrand is odd
and integrates to zero. This cancellation of bulk currents is
referred to as the erasure effect [20,28]. The remaining contri-
bution to the current close to the edge is thus given by

I(r) 	
∑

α

∫
M.B.Z.

d3k n[ωα (k)]v(edge)
α . (21)

The monotonically decreasing behavior of n(ω) as a function
of energy [Eq. (15)] creates an imbalance of the contributions
to I(r) within the Brillouin zone in regions where v(edge)

α ∝
∇V (r) = 0. Thus, Eq. (21) predicts a net circulating surface
current. As a result, any magnetic flux vector b nonparallel to
the temperature gradient induces a surface crosscurrent.

Figure 2 illustrates the surface crosscurrents for a cuboid
geometry in the bosonic case. Here, and in all the following
examples, we take the reservoir temperatures to be Th = t
and Tc = 0.01t , and for bosons always set μα = 0. For visual
clarity, we display relatively small systems but large enough
to avoid finite-size effects. Qualitatively similar results are
obtained for other temperature values and larger lattices. The
left panel of Fig. 2 demonstrates that all currents are restricted
to the boundary of the system and vanish in the bulk. The right
panel of Fig. 2 zooms in on the topmost boundary of the sys-
tem, demonstrating that particles and energy flow against the
temperature gradient within a two-dimensional surface. The
occurrence of such two-dimensional crosscurrents represents
the first main result of this work.

B. Robustness under defects

The erasure effect of the bulk currents sustains the appear-
ance of the chiral current in the symmetric situation, but it
is spoiled in the nonsymmetric case because the occupation
number is no longer only a function of energy alone. This
situation arises when the lattice is not perfect, e.g., due to
the presence of defects. A defect is modeled here by a point-
like impurity that induces a large on-site energy shift, i.e., a

043032-4



ROBUST NONEQUILIBRIUM SURFACE CURRENTS IN … PHYSICAL REVIEW RESEARCH 4, 043032 (2022)

FIG. 3. Robustness of bosonic boundary currents to defects (gray circles), (a)–(c) in the three-dimensional case with tX = tY = tZ = t and
(d)–(f) in the two-dimensional case with tZ = 0 and tX = tY = t . (a), (d) Tilted magnetic field, b = (0.1, 0.1, 0.1), with defects symmetric
under the reflection �̂xy. (b,e) Vertical magnetic field, b = (0, 0, 0.1), with defects symmetric under the rotation R̂y(π ). (c), (f) Tilted magnetic
field, b = (0.1, 0.1, 0.1), with defects symmetric under the lattice inversion Î .

term â†
r âr added to the Hamitonian, where  � ω0, t and

r is the position of the impurity. Nevertheless, if the defect
configuration complies with any of the protecting symmetries,
such that (15) remains valid, the surface current will be stable.

For instance, in the case tZ = 0, the system reduces to a lay-
ered stack of independent 2D Hofstadter lattices. The surface
current is robust provided that the defect configuration satis-
fies either of the two symmetries �̂�̂yz or �̂R̂z(π ) [20]. This
is independent of the orientation of b, as shown in Fig. 3(d).
However, if b is not orthogonal to the temperature gradient,
any nonzero tZ spoils the stability of currents in 2D protected
by �̂�̂yz, as this operation ceases to be a symmetry of the 3D
Hofstadter Hamiltonian. This is illustrated in Fig. 3(a), where
a chaotic current pattern throughout the edges and bulk of the
system is induced by the defects. The 2D symmetry �̂R̂z(π )
is even more fragile as any b not parallel to some lattice vector
destabilizes the boundary currents in 3D.

Remarkably, we also find the converse situation: starting
from a stack of independent 2D Hofstadter layers with un-
stable currents, we can make them stable by switching on
tZ . This is shown in Figs. 3(b) and 3(e), where there are
two defects connected by the rotation R̂y(π ). Since �̂R̂y(π )
is not a symmetry of the model for tZ = 0, the defects de-
stroy the edge currents [Fig. 3(e)]. However, for b aligned
to the Z direction, �̂R̂y(π ) becomes a symmetry for tZ =
0, and this produces a genuinely 3D stabilization effect
[Fig. 3(e)].

C. Robustness under defects and arbitrary magnetic tilting

In the previous examples, the protecting symmetries reduce
in fact to 2D symmetries in planes, which may lead to sta-
ble situations depending on the orientation of b. Therefore,
those 2D symmetries are unstable under tilting of b from
directions orthogonal or parallel to those planes. In order to
obtain a surface current that is unconditionally symmetry-
protected in our 3D lattice, we must employ a genuine 3D
symmetry. As discussed in Sec. III A, such a symmetry is �Î .
Perturbating defects which comply with this symmetry do not
spoil the surface current for any orientation of b or values
of tX,Y,Z = 0. This is illustrated in Fig. 3(c), where defects
placed on opposite corners of the cuboid do not destroy the
boundary currents despite the genuinely 3D field configu-
ration, b = (0.1, 0.1, 0.1). Instead, the edge currents simply
detour around the impurity sites. When the tunneling in the Z
direction is switched off, however, the defects strongly disrupt
the current pattern on the planes to which they are confined
[Fig. 3(f)].

We note that the point-like character of the defects em-
ployed so far does not play any relevant role in the robustness
of the currents. Surface and volumetric defects can be intro-
duced leading to stable currents, provided that the protection
symmetry is satisfied; see Fig. 4, for example. Here, as
in Fig. 3, we observe that the introduction of defects in a
symmetric configuration leads to the emergence of counter-
propagating currents that “shield” the impurities. This can be
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FIG. 4. Bosonic current distribution in the presence of bulk de-
fects (gray circles), with magnetic field b = (0, 0.1, 0).

understood as a manifestation of the erasure effect [20,28],
since the defects effectively generate a new boundary within
the system.

D. Fermionic lattices

In the fermionic case, the situation is the same as for bosons
at relatively high temperatures Tc,h � tX,Y,Z , where particle
exchange statistics plays little role. In contrast, fermions and
bosons behave very differently when one of the reservoirs
is at very low temperature, as in our examples. In this case,
the existence of surface currents depends strongly on the
value of the chemical potential, which, via the nonequilibrium
distribution function (15), selects the portions of the single-
particle spectrum that contribute significantly to the current
pattern. In Fig. 5(a) we show that, for μ 
 ω0, the fermionic
system behaves similarly to the bosonic one: the current is
fully localised on the surface of the system. These fermionic
surface currents enjoy the same robustness against symmetric
defects as in the bosonic case. This behavior is explained by
the erasure effect described in Sec. III A.

Close to half-filling, however, the situation is quite differ-
ent as shown in Figs. 5(b) and 5(c). Here, the terminology
half-filling refers to the case μ = ω0, which would correspond
to exactly half-filled bands at zero temperature. If the tunnel-
ing in one direction is significantly weaker, e.g., tZ 
 tX,Y ,
the system behaves like a set of weakly coupled 2D layers,
each hosting edge modes near energy ω ≈ ω0. These modes
are the predominant carrier of currents when the system is
half-filled, leading to currents localized near the boundaries as
shown in Fig. 5(b) [20]. These currents are robust against any
distribution of impurities in the bulk of the system, irrespec-
tive of their symmetries [28]. However, tunneling between the
layers causes hybridization of the 2D band structure [40,41]—
apart from at very specific values of the field and tunneling
amplitudes [43]. This hybridization destroys the edge modes
and thus fermionic surface currents typically do not appear
for isotropic tunneling when one of the reservoirs is at low
temperature [Fig. 5(c)].

IV. CONCLUSIONS

In summary, we have studied the distribution of currents
within a 3D Hofstadter lattice driven far from equilibrium by
weakly coupled particle reservoirs at very different temper-
atures. We have found dissipatively robust surface currents,
which are stable against the introduction of defects in con-
figurations that respect certain nonequilibrium symmetries. In
particular, we demonstrated the existence of surface crosscur-
rents flowing against the temperature gradient within a 2D
manifold on the boundary of the system. These results rep-
resent the 3D generalization of the robust boundary currents
in 2D models reported in Refs. [20,28].

Notably, however, we find new effects in 3D that cannot
be understood in terms of the quasi-2D physics of concate-
nated layers. Specifically, in the bosonic case, we have found
that the presence of tunneling in all three directions pro-
vides additional stability to certain defect configurations that
would otherwise destroy the boundary currents [Fig. 3]. We
also found strikingly different behavior for fermions when
one reservoir is at low temperature. Here, the existence of
three-dimensional tunneling tends to destroy the edge modes
responsible for boundary currents [Fig. 5]. Remarkably, there-

FIG. 5. Fermionic currents under a vertical magnetic field, b = (0, 0, 0.4). (a) Edge currents emerge due to the erasure effect far from half
filling, with chemical potential μ = ω0 − 4t . (b) The edge currents are strongly disrupted near half-filling, μ = ω0. (c) Same as (b) but with
weaker tunneling in the Z direction, tZ = 0.1t . The currents are now concentrated near the boundary as the system becomes quasi-2D.

043032-6



ROBUST NONEQUILIBRIUM SURFACE CURRENTS IN … PHYSICAL REVIEW RESEARCH 4, 043032 (2022)

fore, in three dimensions these surface effects are more typical
of the bosonic system than the fermionic one, in contrast to the
usual intuition from topological physics in 2D.

Our results could be experimentally tested in photonic [57]
or cold-atom [58,59] systems, in which synthetic realisations
of the Hofstadter Hamiltonian have already been achieved, or
even in solid-state systems where the 3D quantum Hall effect
was recently observed [45]. This would further augment the
panoply of exotic boundary phenomena that can be explored
in higher-dimensional quantum systems out of equilibrium.
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