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Wave beaming and diffraction in quasicrystalline elastic metamaterial plates

Danilo Beli ,1,* Matheus Inguaggiato Nora Rosa ,2,† Carlos De Marqui, Jr. ,1,‡ and Massimo Ruzzene2,§

1Department of Aeronautical Engineering, Sao Carlos School of Engineering, University of Sao Paulo, Sao Carlos-SP 13563-120, Brazil
2Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder,

Boulder, Colorado 80309, USA

(Received 31 January 2022; revised 8 August 2022; accepted 25 August 2022; published 17 October 2022)

In this paper, we present evidence of directional wave behavior, i.e., beaming and diffraction, along high-order
rotational symmetries of quasicrystalline elastic metamaterial plates. These structures are obtained by placing
pillars on an elastic plate following a particular rotational symmetry arrangement, such as eightfold and tenfold
rotational symmetries, as enforced by a design procedure in reciprocal space. We estimate the dispersion
properties of the waves propagating in the plates through Fourier transformation of transient wave fields. The
procedure identifies, both numerically and experimentally, the existence of anisotropic bands characterized by
high-energy density at isolated zones in reciprocal space that follow their higher order rotational symmetry.
Specific directional behavior is showcased at the identified frequency bands, such as wave beaming (predicted in
simulations and confirmed experimentally) and diffraction (exemplified only with numerical results). This paper
expands the wave directionality phenomena beyond the symmetries of periodic configurations (e.g., fourfold
and sixfold), and opens possibilities for applications involving the unusual high-order wave features of the
quasicrystals (e.g., eightfold and tenfold) such as superior guiding, focusing, sensing, and imaging.
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I. INTRODUCTION

Periodic configurations have dominated the designs
of phononic crystals and metamaterials in past decades.
Although the wave features of architected materials are
usually associated with their crystalline symmetry and transla-
tional periodicity [1–3], nonperiodic configurations have also
been explored to achieve various wave manipulation capa-
bilities [4–6]. For example, trivial defects and topological
interfaces have been employed for flexible wave guiding [7–9]
and, also, spatially correlated unit cells (e.g., rainbow) or
disorder have shown the ability to trap waves and broadband
vibration attenuation [10,11]. In this context, quasiperiodic
phononic configurations or quasicrystals have emerged as
relevant candidates for unusual wave phenomena [12]. Their
configurations in physical space lack translational period-
icity, but long-range order as well as high-order rotational
symmetries are present [13]. The unique symmetries of qua-
sicrystals are revealed by their exotic sharp Bragg diffraction
patterns, experimentally observed by Shechtman et al. [14]
and theoretically reported in the pioneering work of Levine
and Steinhardt [15]. Investigation of properties arising from
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such unique symmetries has resulted in applications such as
lasing [16,17], superior sensing and imaging [18], guiding and
bending of waves [19], superfocusing [13], superconductivity
[20], and topological wave transport [21,22].

In the context of elastic materials, the higher order ro-
tational symmetries of quasicrystals has been shown to
induce nearly isotropic stiffness properties in lattice structures
[23,24] and continuum elastic composites [25], which results
in omnidirectional wave propagation at low frequencies. Their
mechanical isotropy can also make them less sensitive to geo-
metric and material variabilities [26]. Similar to the phononic
crystals, band gaps or pseudogaps have also been observed
in phononic quasicrystals [27]; their bands, however, usually
split in several mini bands due to their fractal nature [28]. In
addition, the dispersion properties of quasicrystals are asso-
ciated with their representation in wave number space, which
has motivated a pseudo-Brillouin-zone definition [17,29]. The
approximated dispersion, however, has been computed only
for simple quasiperiodic lattices [30,31] and, in most cases,
assuming a periodic approximation. Other works have in-
vestigated the wave-guiding capabilities of quasicrystals with
[32] or without [33,34] defects. More recently, quasiperiodic
arrangements have also been employed to pursue higher di-
mensional topological features [35], which emanate from the
existence of additional parameters (such as the phason) and
provide opportunities for topological states with corner local-
ization [36], lower dimension guiding, and pumping [37–39].
Quasiperiodic configurations for such topological phenomena
have been obtained by modulation procedures in 1D lattices
[40–42] and by the relative twisting of two periodic layers in
2D lattices [43–46].

Despite the recent interest in the dynamics of quasiperiodic
systems, their dispersion and wave directionality properties
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are still largely unexplored or scarce. Indeed, wave direc-
tionality finds applications that involve wave filtering and
guiding, ultrasonic therapy and imaging, antennas, sensors
and lenses; however, the wave fronts are currently restricted to
known crystallographic symmetries (e.g., bilayer, square and
hexagonal) [47,48]. The elastic wave directivity was initially
investigated in periodic lattice structures [49,50], and later
in periodic continuum structures with Bragg band gaps [51]
and locally resonant gaps [52,53]. As we illustrate herein,
quasiperiodic configurations expand the wave directionality
and beaming possibilities beyond the symmetries of periodic
arrangements. Inspired by previous work on quasicrystalline
composites [25], we investigate the spectral properties, with a
particular focus on their directional wave behavior, of elastic
plates whose higher order rotational symmetries are enforced
through a design procedure in reciprocal space. The disper-
sion properties of the quasicrystalline plates (i.e., eight- and
tenfold) are estimated from transient wave fields and their
3D Fourier transforms. The procedure identifies anisotropic
frequency bands where directional wave behavior is observed,
in particular, wave beaming (numerically and experimen-
tally) and diffraction (numerically). The results of this paper
highlight unexplored features of the wave behavior in qua-
sicrystalline media, i.e., directionality in high-order rotational
symmetries, and open possibilities for practical implementa-
tions in structural components and wave devices.

This paper is organized as follows: Following this introduc-
tion, Sec. II describes the design of the quasicrystalline plates,
along with the experimental setup and numerical modeling.
Next, Sec. III describes the dispersion properties, followed by
the wave-beaming phenomena in Sec. IV, and diffraction in
Sec. V. Section VI summarizes the main contributions of this
paper and outlines possible future directions.

II. QUASICRYSTALLINE PLATES

The design of the quasiperiodic elastic metamaterial plates
is based on the geometric representation in 2D wave-number
space [25,54,55]. A continuum distribution in physical space
φ(r), with r = [x, y] ∈ R2, is defined by directly assigning N
Bragg peaks in reciprocal space (k = [kx, ky] ∈ R2) as points
in the two-dimensional Fourier spectra [13]. These Bragg
peaks are angularly spaced by θN = 2π/N over a circle of
fundamental wave number k0. In this paper, only an even
number of peaks is considered to guarantee a real distribution
in physical space. Therefore, reciprocal and physical spaces
can be expressed, respectively, as

φ̂(k) =
N−1∑

n=0

δ(k − kn) and φ(r) =
N−1∑

n=0

eikn·r, (1)

where δ is the delta function that locates the wave number kn

of each Bragg peak; moreover, kn = k0[cos(nθN ), sin(nθN )],
with n = 0, ..., N − 1 and k0 = 2π/λ0 is the radius of the
design circle in reciprocal space, where λ0 is the fundamen-
tal wavelength. In this design strategy, a single parameter N
defines the rotational symmetry of the distribution in physical
space, which leads to periodic (i.e., crystalline) distributions

(1D bilayer for N = 2, square pattern for N = 4 and hexago-
nal pattern for N = 6) or quasiperiodic (i.e., quasicrystalline)
distributions with rotationally N-fold symmetry such as the
eightfold and tenfold.

For practical implementations in elastic continuum struc-
tures, a two-phase distribution is desirable and, hence, a
threshold procedure is applied to the real continuum field.
This distribution φ̄(r) assumes only two phases, which are
produced by comparing the local field level to a chosen
level φ̄0: Phase A is defined for φ(r) � φ̄0 and phase B is
defined for φ(r) > φ̄0. Based on the phase ratio, a volume
(or filling) fraction is defined by vf = vB/(vA + vB). Herein,
the metamaterial plates are designed by using a single ma-
terial with geometric thickness modulation given by φ̄(r),
where a flat plate (phase A) is partially covered on one side
by pillars (phase B). These geometries can be conveniently
manufactured using regular additive manufacturing technolo-
gies. Moreover, experimental observations can be performed
through vibration measurements on the flat side. Figure 1
summarizes the design process, from the choice of Bragg
peaks in the reciprocal space to the three-dimensional printed
plate with ten- and eightfold symmetries and vf = 0.30
(please check the Appendix for the four- and sixfold metama-
terial plates). Reference [25] details this design strategy for
other fold symmetries and volume fractions considering 2D
domains with material phase modulation and in-plane wave
behavior, i.e., Figs. 1(a) and 1(b).

The plates have a square domain in the xy plane of size
L = 0.2 m and λ0 = 5 mm, and their modulated thickness
in the z axis is given by h(r) = hA + φ̄(r)(hB − hA), where
hA = 4 mm and hB = 12 mm. In addition, they are manufac-
tured using a selective laser sintering process (in a Stratasys
machine with geometric refinement of 0.1 x 0.1 x 0.2 mm) and
polymer nylon 12 material, with nominal elastic properties:
Mass density ρn = 1500 kg/m3, elastic modulus En = 5 GPa,
and Poisson ratio νn = 0.3.

Experimental setup and numerical modeling

The experimental setup is shown in Fig. 2, where free
boundary conditions are emulated by suspending the plate
by nylon strings. The input excitation is due to a circular
piezoelectric transducer placed at the center of the flat side.
In this paper, only the flexural behavior (i.e., bending waves)
is considered, and the out-of-plane velocities of a rectangular
grid composed of 315 × 315 points on the flat side of the
plate are measured by a scanning laser Doppler vibrometer
connected to a data acquisition and signal processing unit that
stores the experimental results.

The numerical simulations are conducted using the finite
element (FE) approach within the COMSOL MULTIPHYSICS

environment, where 3D elastic solid elements with linear
strains are employed. The FE discretization results in equa-
tions of the form Mü(r, t ) + Ku(r, t ) = f (r, t ), where M is
the mass matrix, K is the stiffness matrix, u is the displace-
ment vector, and f is the externally applied load vector. The
employed meshes comprise ten elements per wavelength, i.e.,
	a = λ0/10, and for time response simulations, a time step of
	t = 1/(20 fe) is used to appropriately describe the dynamic
behavior, where fe is the excitation frequency in Hz.
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FIG. 1. Design strategy for the ten- (top row) and eightfold (bottom row) symmetries with vf = 0.30: Two-dimensional physical
distribution by assigning, respectively, ten and eight Bragg peaks (a), two-phase distribution after applying the threshold procedure and
its Fourier transform (i.e., diffraction pattern) (b): Phase A (white) and phase B (black). Three-dimensional quasiperiodic plate obtained by
extruding phase B toward z direction, which produces the geometry in (c) and the correspondent 3D printed quasiperiodic plate (d).

III. DISPERSION CHARACTERIZATION

Dispersion properties are used to understand and predict
the dynamic behavior of phononic and metamaterial structures
related to wave propagation and manipulation. For crystalline
(i.e., periodic) materials, the band structure is obtained by
enforcing Bloch conditions on the unit-cell boundaries. How-

FIG. 2. Experimental setup for time-response observations, the
PZT transducer excitation, and the SLDV measurements are placed
on the flat side of the plate, which recovers the two-dimensional wave
field for each instant of time.

ever, Bloch-Floquet theory cannot be applied to the present
quasicrystalline plates due to their lack of translational peri-
odicity. Instead, we rely on transient wave fields u(x, y, t ), and
their correspondent 3D-FT (Fourier transform), Û(kx, ky, ω),
to estimate the dispersion properties of the quasicrystalline
plates.

In both simulations and experiments, time transient analy-
ses with sinusoidal burst excitation signals are performed with
1-2 cycles for a center frequency of 25 kHz to characterize
the dispersion in a broad frequency band of interest. Next,
3D-FTs are performed on the displacement fields u(x, y, t ),
providing a representation in reciprocal space where each
coordinate (kx, ky, ω) has a wave amplitude Û(kx, ky, ω). To
reduce effects of unwanted noise at low amplitudes and to
improve visualization, the dispersion results are filtered such
that only points in the spectrum with higher wave amplitudes
are plotted (higher than 0.80 and 0.70 of the maximum value
in each frequency for numerical and experimental results,
respectively). This approach is validated based on the peri-
odic cases (i.e., four- and sixfold plates), whose bands and
band gaps are readily available from the application of Bloch
analysis, which leads to the eigenvalue problem ω(κ ),

[K̂(κ ) − ω2(κ )M̂(κ )]u(κ ) = 0, (2)

where κ is the wave vector, K̂(κ ) and M̂(κ ) are the stiff-
ness and mass FE matrices of the unit cell after applying
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FIG. 3. Band structure (a.1), (b.1) computed by applying Bloch-Floquet conditions at fourfold and sixfold unit cell boundaries. The colors
represent the wave polarizations: In plane (blue) and out of plane (red). The wave mode shapes at each locally resonant band gap are also
presented; their colors represent the displacement amplitudes: Low (blue) and high (red). The approximate band structure obtained from the
time response simulation and its Fourier transform (a.2), (b.2) are compared to the dispersion computed by Bloch-Floquet theory (green) at
�X and �K directions, respectively.

the Bloch periodicity conditions [2]. For the band-structure
computation, κ is swept over the correspondent first Brillouin
zone contour. The bending waves, which have mainly out-
of-plane motion, are distinguished by the wave polarization
computation given by pz = [

∫
u2

z dV ]/[
∫

(u2
x + u2

y + u2
z )dV ],

where ui is the displacement of the wave-mode shape at the
direction i ∈ [x, y, z]. The polarization pz is linked to the
bending wave and ranges from 0 (pure in-plane motion) to
1 (pure out-of-plane motion). The dispersion computation of
the periodic plates is also used to guide the dispersion analysis
in the quasicrystalline plates.

The dispersion results computed via Bloch-Floquet theory
are presented in Figs. 3(a.1) and 3(b.1) for the fourfold and
sixfold plates (please check their designs in the Appendix).
Three main waves are distinguished: Longitudinal (i), shear
(ii), and flexural (iii), as pointed out by the wave-mode shapes.
Three band gaps related to the pillars resonances are opened:
The first around 10 kHz is related to the flexural motion of the
pillars (I), the second around 35 kHz is related to torsional
motion coupling only to the shear wave (II), and the third
around 50 kHz is related to the second flexural mode and
opens a full band gap (III). The approximate dispersion sur-
faces computed by the time response and the 3D-FT are shown
in Figs. 3(a.2) and 3(b.2). A good agreement with the exact
dispersion Figs. 3(a.1) and 3(b.1) is observed in the propa-
gating bands and band gaps for the bending wave. For both
periodic plates, the numerical and experimental approximate
dispersion surfaces present circular wave-number contours
[insets in Figs. 3(a.2) and 3(b.2)] for almost every frequency
in the spectrum, revealing an isotropic dispersion (please see
the Appendix for a more complete dispersion characterization
of the periodic cases).

Following this validation, the dispersion behavior of the
quasicrystalline plates is first exemplified by the tenfold case
(i.e., N = 10), whose design is illustrated in Fig. 1, and with
results summarized in Fig. 4. Overall, a good agreement be-
tween numerical simulations and experimental observations

has been achieved despite a frequency shift of roughly 5 kHz,
which we attribute to uncertainties in the properties of the
3D printed material. The dispersion surfaces for the flexural
waves are characterized by a tenfold rotational symmetry
that manifests throughout the majority of the bands, as high-
lighted by the contours displayed for selected frequencies. In
particular, several bands of highly anisotropic contours are
identified, which are characterized by ten separated peaks
of high amplitude in reciprocal space forming the tenfold
symmetry. We note that the rotational symmetry twists by
θN/2 = 18o in certain frequency ranges shown in Fig. 4(b), for
example, around 22, 26, and 35 kHz. One transition example
is highlighted by the selected contours of Fig. 4(c), changing
from a given tenfold symmetry arrangement (pink marker) to
an almost circular contour (green marker) and then to another
tenfold symmetric arrangement (blue marker), but twisted by
θN/2 = 18o with respect to the previous case (pink marker).
This behavior is confirmed by the experimental results of
Figs. 4(e) and 4(f), and highlights how the dispersion proper-
ties of the quasicrystalline plates are characterized by several
bands that preserve the N-fold symmetry of the design and
may present different anisotropy directions.

The dispersion behavior for the eightfold elastic metama-
terial plate, whose design is presented in Fig. 1, is shown in
Fig. 5, where numerical and experimental results are also in
a good agreement despite a frequency shift of 2 kHz. The
dispersion surfaces for the bending waves have an eightfold
rotational symmetry that appear especially above 20 kHz, as
highlighted by the contours displayed for selected frequen-
cies. The contours are characterized by eight peaks (traces)
of high amplitude in reciprocal space shaping the eightfold
symmetry. Similar to the tenfold case, the eightfold dispersion
has a rotational symmetry twist by θN/2 = 22.5o in certain
frequency ranges (i.e., the peaks (traces) change the orien-
tation) as shown in Fig. 5(b), for example, around 39 kHz.
This transition is highlighted by the selected contours of
Fig. 5(c), changing from a given eightfold symmetry arrange-
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FIG. 4. Dispersion properties of the tenfold quasicrystal plate obtained by numerical simulations (a)–(c) and experiments (d)–(f). Approx-
imated dispersion surfaces obtained by 3D Fourier transform of the time response: 3D view (a), (d) and sectional view on κxω plane (b), (e).
Contours at specific frequencies showing the transition between two bands twisted by θN/2 (c), (f).

ment (pink marker), to an almost circular contour (green
marker), and then to another eightfold symmetric arrangement
(blue marker), but twisted by θN/2 = 22.5o with respect to the
previous case (pink marker). This behavior is also captured
by the experimental results of Figs. 5(e) and 5(f). Therefore,
the eightfold metamaterial plate also presents several bands
following the quasicrystal symmetry that may have differ-

ent anisotropic orientations; however, for the same frequency
range, it presents a smaller number of anisotropic bands when
compared to the tenfold case.

In summary, the quasicrystalline plates (ten- and eightfold)
present zones of high anisotropy characterized by N = 10 or
N = 8 peaks of high amplitude in reciprocal space that fol-
lows their rotational symmetry. The periodic (or crystalline)

FIG. 5. Dispersion properties of the eightfold quasicrystal plate obtained by numerical simulations (a)–(c) and experiments (d)–(f).
Approximated dispersion surfaces obtained by 3D Fourier transform of the time response: 3D view (a), (d) and sectional view on κxω plane
(b), (e). Contours at specific frequencies showing the transition between two bands twisted by θN/2 (c), (f).
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FIG. 6. Wave-propagation analysis at 45 kHz for the fourfold (top) and sixfold (bottom) metamaterial plate. Snapshot (a) and RMS of
the displacement field over time (b) and the wave-number contour at the excitation frequency obtained by the 3D-FT (c). The wave-number
contour (d) and the correspondent normalized group velocity pattern (e): Approximate results obtained by the approach presented in Eq. (4)
and the results computed by using the Bloch-Floquet theory (red line).

plates (i.e., four- and sixfold), however, exhibit continuous
and highly isotropic bands with almost circular contours
(please see the Appendix). The periodic plates are charac-
terized by identical pillars repeated periodically in space,
therefore they produce only a few and well-defined local-
resonant gaps for the flexural wave: One around 10 kHz
and another around 48 kHz. On the other hand, the qua-
sicrystalline plates are characterized by numerous different
pillars, of different resonance frequencies, which are arranged
in space according to their higher order rotational symme-
try. Hence, the anisotropic N-fold symmetric bands of the
quasicrystalline plates seem to emerge from a combination
of multiple local resonances that interact and interfere on a
higher-order symmetric pattern. As a result, the continuous
bands of the periodic plates are split into several minibands
in the quasicrystalline cases, the number of which seems to
increase with N . This behavior is reminiscent of the fractal
nature of spectra in quasiperiodic lattices, usually represented
via a Hofstadter butterfly spectrum that ranges from periodic
lattices with few continuous bands to quasiperiodic lattices
with infinite subbands [40–42,56].

IV. WAVE DIRECTIONALITY

Next, we illustrate in more detail the wave directionality
associated with the anisotropic frequency bands identified in
the previous section. For such analysis, the transient behavior
at selected frequencies is observed by computing the response
to narrow-band sinusoidal burst signals (the number of exci-
tation cycles is adjusted for each frequency so the excitation
signal ends as the wave reaches the boundaries of the plate).
The directional behavior is further elucidated by estimating
the group velocity at the excitation frequencies.

For periodic materials, the wave-propagation directions at
a given frequency can be characterized by the group velocity,
i.e., cg = ∇κω(κ ), where ω(κ ) represents the dispersion of the
Bloch bands [2]. This implies that the waves propagate along
directions normal to the wave number contour at a constant
frequency. In the absence of periodicity, we attempt to nu-
merically estimate the group velocities of the quasicrystalline
plates based on the dispersion results reported in the previous
section. The computation procedure relies on the estimation of
the wave number contours for each frequency, their represen-
tation in cylindrical coordinates, and a derivative computation
through a finite difference approximation. This procedure is
validated against traditional computations using the Bloch-
Floquet theory for periodic configurations. The wave-number
contour is estimated using the approximate dispersion results
(3D-FT), and for a direction given by the angle α ∈ [0 2π ],
the approximate wave number at the frequency ω j is given by
the weighted average,

κα (ω j ) =
∑

i κri
[
Ût (κri, ω j )

]β

∑
i

[
Ût (κri, ω j )

]β
, (3)

where β is the weighted parameter applied on the normalized
Fourier coefficients Ût (β = 5 has been used in this paper),
and κri = (κ2

xi + κ2
yi )

1/2 is the radial wave number at the direc-
tion α. Therefore, the group velocity for an angular direction
α is numerically computed through the finite difference,

cα (ω j ) = ∂ω j

∂κα

≈ ω j+1 − ω j

κα (ω j+1) − κα (ω j )
, (4)

with ω j+1 → ω j .
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FIG. 7. Directional wave behavior for the tenfold metamaterial plate at different excitation frequencies: 9.3 kHz (a), 15 kHz (b), 30 kHz
(c), 35 kHz (d), and 45 kHz (e). The first row corresponds to the RMS of the wave field averaging across all time, the second row corresponds to
the RMS of the wave number contours averaging across all frequencies, and the third row corresponds to the estimated group velocity contour
at the center frequency

FIG. 8. Directional wave behavior for the eightfold metamaterial plate at different excitation frequencies: 15 kHz (a), 25 kHz (b), 30 kHz
(c), 35 kHz (d), and 45 kHz (e). The first row corresponds to the RMS of the wave field averaging across all time, the second row corresponds to
the RMS of the wave number contours averaging across all frequencies, and the third row corresponds to the estimated group velocity contour
at the center frequency.
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The procedure to obtain the group velocity contours is
illustrated and validated in Fig. 6 for the fourfold and sixfold
configurations. The approximate wave-number contours as
well as the group velocity contours obtained from the approx-
imate dispersion surfaces (blue dashed lines) are compared to
the contours computed using the Bloch-Floquet theory (red
lines). A good agreement between the results is achieved
for the selected frequencies. In addition, the group velocity
contours are correlated to the rotational symmetry and to the
wave propagation patterns depicted in the snapshot and time
root mean square (RMS) results. While the fourfold plate ex-
hibits omnidirectional wave propagation at 45 kHz, the sixfold
plate presents a slightly anisotropic wave propagation with a
hexagonal shape in the group velocity at the same frequency.
These results validate the group velocity information obtained
through the transient wave-field dispersion data, which we
exploit in the following for the quasicrystalline plates.

Figure 7 displays the numerical predictions for the tenfold
metamaterial plate. Each column corresponds to a different
excitation frequency in the range from 9.3kHz to 45kHz;
the panels in the first row display the RMS of the time
response, while the second row displays the RMS wave num-
bers computed by using the 3D-FT of the response. The
third row displays the approximate group velocity contours
at the excitation frequency, which are in good agreement with
the observed wave fields. Specifically, at 9.3kHz [Fig. 7(a)]
the waves propagate preferentially along ten symmetric di-
rections in a wave-beaming fashion. The Fourier transform
shows ten Fourier peaks that characterize such behavior, while
the group velocity further confirms the preferential direc-
tions of wave propagation. At the excitation frequency of
15kHz [Fig. 7(b)], a transition between two anisotropic bands
[Figs. 7(a) and 7(c)], wave propagation is not strongly di-
rectional, as confirmed by the almost circular contour in the
reciprocal space, and by the smoother group velocity plot.
For 30 kHz [Fig. 7(c)], we observe another directional wave
beaming which occurs along directions twisted by θN/2 = 18o

with respect to the case in Fig. 7(a). Another transition at
the excitation frequency of 35kHz is illustrated in Fig. 7(d),
followed by another directional case at 45kHz in Fig. 7(e).
These results confirm the tenfold symmetrical wave beaming
occurring at the identified anisotropic bands, also evidencing
the twisting in the orientation of the wave directionality for
different frequencies. Similarly, wave directionality results
for the eightfold metamaterial plate are presented in Fig. 8.
From 15 kHz to 35 kHz [Figs. 8(a)–8(d)], the reciprocal
spaces show eight Fourier peaks; however, the resulting di-
rectional behavior is not as strong as the tenfold case, with the
strongest directionality manifesting at a higher frequency of
45 kHz. The video animation of the time response simulation
at 45 kHz is provided in the Supplemental Material (SM)
[57].

The numerically predicted tenfold wave beaming around
30 kHz [Fig. 7(c)] is also experimentally confirmed in Fig. 9.
Despite a shift in frequency, a good agreement is observed
between numerical and experimental wave-field results at the
different time snapshots of Figs. 9(a,b) and Figs. 9(d,e). Both
dynamic responses exhibit directionality along tenfold sym-
metric directions, in agreement with the group velocity pattern
depicted in Fig. 7(c). Finally, good agreement is also observed

FIG. 9. Wave beaming for the tenfold quasicrystalline plate: Nu-
merical simulation at 30 kHz (a)–(c) and experimental observation
at 24.8 kHz (d)–(f), snapshot of the time response at t1 (a), (d) and
at t2 (b), (e) with t2 > t1. And RMS of the wave-number contours
averaging across all frequencies: Numerical (c) and experimental (f).
A good agreement between simulation and experiment is achieved
in the snapshots of the time response and in the RMS wave numbers
contours.

between the numerical Fig. 10(c) and experimental Fig. 10(f)
RMS wave number contours obtained from the 3D-FT. The
video animations of the time responses for the simulation
at 30 kHz and experiment at 24.8 kHz are provided in the
SM [57].

V. WAVE DIFFRACTION

In this section, the directionality associated with the higher
order symmetries is further exploited in the context of wave
diffraction through numerical simulations. Diffraction occurs
when a wave passes through an aperture or an obstacle, and
has been largely employed in focusing, lensing, and antennas
[58]. The combination of different apertures, i.e., metagrat-
ings, has been used to create specific wave fronts with required
orientations [59]. However, wave branches with angles larger
than 45◦ in relation to the incident wave are usually difficult
to be created. Diffraction in quasiperiodic configurations, for
instance, can open possibilities for superior directivity control
in multiple angles as well as for loudspeakers with high qual-
ity perception [60]. In the following explorations, we focus
on the tenfold symmetric plate whose directional behavior is
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FIG. 10. Wave diffraction at 9.3 kHz in the tenfold quasiperiodic metamaterial plate. The first row shows the different scenarios where a
plane wave is excited (red line) with width bs = 0.02 m (a), (b) or bs = 0.06 m (c), (d) in the lower homogeneous portion, and aligned (a),
(c) or twisted by θ = θN/2 (b), (d) in relation to one of the Bragg peaks in reciprocal space at 9.3 kHz (insets). The panels in the second row
depicts the RMS of the displacement field averaged across all time, with the inset representing a snapshot of the time response. The third row
depicts the RMS of the wave-number contour averaged across all frequencies: κy > 0 for the quasicrystal plate and κy < 0 for the uniform
plate. The blue circles correspond to the spectral peaks in the dispersion of the tenfold plate at 9.3 kHz, see Fig. 7(a). Diffraction patterns with
focusing from one to four branches have been created.

stronger when compared to the eightfold plate, as highlighted
in the previous section.

To illustrate the diffraction behavior, the upper half of the
quasicrystal domain considered in the previous section (ten-
fold, x = [−0.1, 0.1] m and y = [0, 0.2] m) is combined to
a uniform plate (x = [−0.1, 0.1] m and y = [−0.075, 0] m)
with constant thickness hU = 4 mm. Low reflection conditions
are imposed at the plate boundaries to minimize backscat-
tering. A line-source excitation is centered at the bottom of
the uniform plate (x = 0 and y = −0.075 m), so the incident
wave propagates along the positive y direction until it reaches
the interface with the quasicrystalline domain (y = 0). The
diffraction is illustrated by employing a sinusoidal burst exci-
tation signal with 15 cycles for a center frequency of 9.3 kHz,
corresponding to the first strong beaming behavior reported in
Fig. 7.

The numerical results are summarized in Fig. 10 for dif-
ferent conditions that showcase different possible scenarios
illustrated in the top row; the middle row displays the RMS
of the wave field (a snapshot for each case is provided in
the correspondent insert), while the bottom row displays the
RMS of the reciprocal space content (the upper half, κy > 0,
corresponding to the waves propagating in the quasicrystal,
and the bottom half, κy < 0, corresponding to the incident
wave in the homogeneous plate). The results in Figs. 10(a)
and 10(b) correspond to a narrow line source of width 20 mm,
which provides a broad wave-number content for κx for the
incident wave, while in Figs. 10(c) and 10(d), a wider line
source of 60 mm produces an incident wave with narrower
wave number content for κx. Also, in Figs. 10(a) and 10(c),
the quasicrystalline plate is designed with the conventional
procedure described in Sec. II, while in Figs. 10(b) and 10(d)
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FIG. 11. Design strategy for the four- (top) and sixfold (bottom) elastic metamaterial plate with vf = 0.30: Two-dimensional physical
distribution φ by assigning four or six Bragg peaks, two-phase distribution φ̄ after applying the threshold procedure and its Fourier transform:
Phase A (white) and phase B (black). The three-dimensional plates are constructed by extruding phase B toward z direction, which produces
the modulated thickness (pillars) and the correspondent 3D printed plates.

the design peaks, and the plate symmetry, are twisted by
θN/2 = 18o as depicted in the inserts of the first row. These
different conditions are selected to illustrate a wealth of pos-
sibilities for wave diffraction that result in different numbers
and orientations of directional branches propagating in the
quasicrystalline plate.

The results are interpreted based on the intersection of
the wave-number content of the incident wave (bottom half
of FT panels) and the symmetry peaks of the dispersion at
the excitation frequency (blue dots in upper half of the FT
panels). In Fig. 10(a), the wave-number content of the incident
wave reaches a zone between two Bragg peaks, which are
mainly excited as evidenced by the 2D FTs. Three directional
branches are observed to propagate in the plate and their
directions are in agreement with the group velocity plots of
Fig. 7(a). For the same plate with narrower wave number
content of the incident wave Fig. 10(c), only the central region
between the same peaks gets excited, resulting in a single
branch propagating into the quasicrystalline portion. When
the plate is twisted Figs. 10(b) and 10(d), the high symme-
try points of the dispersion (blue circles) and the associated
directional branches also get twisted. The broader excita-
tion in reciprocal space produces four propagating branches
Fig. 10(b), while the narrower excitation produces only 2
Fig. 10(d), and their directions are accordingly twisted by
θN/2 = 18o with respect to those in the group velocity plot

of Fig. 7(a). The video animations of the time response simu-
lations for the different wave diffraction cases are provided in
the SM [57]. These results highlight how multiple scenarios
for wave diffraction can be envisioned by controlling the
quasicrystal orientation and the source width, which can shift
the wave behavior from beaming (i.e., multifocal) to focusing
(i.e., unifocal).

VI. CONCLUSIONS

The spatial design of phononic crystals and acoustic-
elastic metamaterials is based on translational periodicity, and,
hence, their wave phenomena, such as the directionality, are
restricted to the crystallographic symmetries (e.g., two-, four-
and sixfold). In this paper, the wave beaming and diffraction
were expanded to high-order rotational symmetries, such as
eight- and tenfold, by employing quasiperiodic elastic meta-
material plates. Their spectral contents were numerically and
experimentally investigated using an approximate dispersion
surface obtained from the time response and its Fourier trans-
form. In particular, for the tenfold plate, the wave behavior
becomes highly anisotropic in some frequency zones and,
therefore, high-order wave directionality was observed on
the dynamic response, e.g., beaming (numerically and ex-
perimentally) and diffraction (numerically). The experimental
observations facilitate the implementation of quasicrystalline
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FIG. 12. Dispersion properties and contours at specific frequencies of the four- (a) and sixfold (b) elastic plate obtained by numerical
simulations and experiments. Numerical and experimental results (3D spectrum and wave number contours) are in good agreement.

configurations in wave devices and structural components.
Moreover, it opens possibilities for applications involving the
unusual wave front directivity with high-order symmetry (e.g.
eightfold, tenfold, and so on), such as focusing, sensing, and
imaging beyond the symmetries provided by the periodic con-
figurations.
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APPENDIX: EXTRA RESULTS FOR THE PERIODIC
(crystalline) PLATES

The design strategy to conceive the four- and sixfold elastic
metamaterial plates by assigning the respective number of
Bragg peaks in reciprocal space is illustrated in Fig. 11. The
geometric (L, λ0, hA, and hB) and material (ρn, En, νn, and
ηn) properties as well as the volume fraction (vf = 0.30)
are the same used in the eight- and tenfold quasicrystalline
metamaterial plate presented in Sec. II. The 3D square and
hexagonal unit cells are also depicted with the respective

043030-11



BELI, ROSA, DE MARQUI JR., AND RUZZENE PHYSICAL REVIEW RESEARCH 4, 043030 (2022)

3D elastic plate models. Their numerical and experimental
approximate dispersion surfaces are shown in Fig. 12, where

almost omnidirectional wave number contours are observed
for the complete frequency spectrum.
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