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The Schrieffer-Wolff transformation aims to solve degenerate perturbation problems and give an effective
Hamiltonian that describes the low-energy dynamics of the exact Hamiltonian in the low-energy subspace of an
unperturbed Hamiltonian. This unitary transformation decoupling the low-energy and high-energy subspaces
for the transformed Hamiltonian can be realized by quantum circuits. We give a fully quantum algorithm
for realizing the SW transformation. We also propose a hybrid quantum-classical algorithm for finding the
effective Hamiltonian on NISQ hardware, where a general cost function is used to indicate the decoupling
degree. Numerical simulations without or with noise and experiments on quantum computer ibmq_manila are
implemented for a Heisenberg chain model. Our results verify the algorithm and show its validity on near-term
quantum computers.
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I. INTRODUCTION

Understanding and controlling quantum many-body sys-
tems is of crucial importance in modern physics [1–3]. With
the exponential growth of Hilbert space, it is difficult to
perform accurate analytical calculations as the system size in-
creases. In most applications, a description of the low-energy
properties is sufficient, thus the study of the low-energy effec-
tive Hamiltonian (Heff ) plays an important role in many-body
physics [4]. The Schrieffer-Wolff transformation (SWT) was
originally proposed in Ref. [5], where the Kondo model is
obtained from the Anderson impurity model in the strong
coupling regime with a unitary transformation. SWT extracts
Heff from the exact Hamiltonian by decoupling the low-energy
and high-energy subspaces. It is regarded as the operator ver-
sion of the degenerate perturbation theory [6]. For instance,
with SWT one can infer that the half-filled Fermi-Hubbard
model is equivalent to the Heisenberg model in the strong
coupling limit [7,8], where the perturbation theory approach
becomes impractical [9]. Being widely applied and developed
in many kinds of quantum problems [10–24], SWT also has
different names across various fields: the Foldy-Wouthuysen
transformation in relativistic quantum mechanics [25], Fröh-
lich transformation in electron-phonon interaction [26], and
k · p method in semiconductor physics [27].

SWT provides a systematic perturbative method for com-
puting Heff at any order [6]. The transformation is performed
by a unitary operator defined as U = eS , where S is an
anti-Hermitian operator and is called the generator. The coef-
ficients in the Taylor series of S can be derived order by order
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through an inductive formula, which is hard for high orders.
What’s more, the calculation is carried out in the space of the
whole system, which scales up exponentially and thus makes
such a procedure impractical on classical computers for large
systems. In most applications, only the second-order Heff [28]
is considered.

Quantum computation has attracted much attention in re-
cent years. It has been proved that quantum computers are ca-
pable of handling problems which are intractable for classical
computers [29,30]. While the fault-tolerant universal quantum
computer [31,32] may not be feasible in the near term, noisy
intermediate-scale quantum (NISQ) computers are possible
candidates for applications in various fields including many-
body quantum physics [33]. Starting with the variational
quantum eigensolver (VQE) [34], which is a variational quan-
tum algorithm [35], to estimate the ground state of a given
Hamiltonian using shallow circuits, many useful quantum al-
gorithms for NISQ computers have been proposed [36–39].

In this paper, we propose two quantum algorithms to re-
alize SWT and obtain the effective Hamiltonian. The first
algorithm constructs the unitary U directly using a quantum
circuit under the observation that U is composed of two re-
flection operators acting on the unperturbed and perturbed
Hamiltonians. The reflection operators effectively apply a
phase flip to the high-energy eigenstates, and U addition-
ally applies a conditional phase change to the state. This
method makes use of the quantum phase estimation (QPE)
algorithm to distinguish the states corresponding to low- and
high-energy eigenspaces, and thus may require circuit depths
exceeding the limits of hardware available in the NISQ era.
Therefore, we propose the second algorithm for NISQ de-
vices. It is a hybrid quantum-classical algorithm based on the
variational algorithm. The cost function is designed such that
it can reach the minimum when the evolution of a state within
the low-energy subspace of the unperturbed Hamiltonian is
independent of time. The parameterized cost function can be
measured using a quantum computer, and the parameters are
to be optimized with a classical algorithm. To demonstrate the
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effectiveness of our second algorithm, we performed numer-
ical simulations using QuESTlink [40] and qasm_simulator
as well as experiments on the IBMQ quantum computer
ibmq_manila, with the example of a four-qubit Heisenberg
chain with long-distance entanglement between the two ends.

This paper is organized as follows. In Sec. II, we give
a brief introduction to SWT. Next, in Secs. III and IV, we
describe the two quantum algorithms to construct SWT, re-
spectively. The proof-of-principle numerical simulations and
experiments are presented in Sec. V. This paper ends with a
conclusion in Sec. VI.

II. SCHRIEFFER-WOLFF TRANSFORMATION

In degenerate perturbation theory, we consider a Hamilto-
nian H = H0 + εV , where H0 is the unperturbed Hamiltonian
with well-separated low- and high-energy levels, and εV is the
perturbation which brings the split of the spectra. The SWT is
a unitary transformation that maps the total Hamiltonian H
to the low-energy effective Hamiltonian Heff , which acts on
the low-energy subspace of H0 and reproduces the low-energy
spectrum of H .

The unperturbed Hamiltonian H0 can be written into
low-energy and high-energy levels according to the spectral
decomposition

H0 =
M∑

i=1

E (0)
i

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣ + N∑
i=M+1

E (0)
i

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣, (1)

with eigenvalues E (0)
1 � · · · � E (0)

M < E (0)
M+1 � · · · � E (0)

N .
Here N is the dimension of the system’s Hilbert space and M
is the dimension of the low-energy eigenspace of H0, denoted
as P0. Define P0 as the projector on P0,

P0 =
M∑

i=1

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣, (2)

and Q0 = I − P0 is its complement.
The low-energy and high-energy spectra are separated by

the gap:

� = E (0)
M+1 − E (0)

M . (3)

It is assumed that εV is small and satisfies

‖εV ‖ <
�

2
, (4)

where ‖ · ‖ is the operator norm. Since the perturbation shifts
the eigenvalues of H0 by at most ‖εV ‖, there will still be
a positive gap between the low-energy and the high-energy
spectra.

So, the total Hamiltonian can be written as

H =
M∑

i=1

Ei|φi〉〈φi| +
N∑

i=M+1

Ei|φi〉〈φi|, (5)

with its eigenvalues E1 � · · · � EM < EM+1 � · · · � EN .
Denote P as the M-dimension low-energy eigenspace of H
and define P as the projector on P , then Q = I − P is its
complement. Thus the total Hamiltonian can be expressed as
a block-diagonal form

H = PHP + QHQ. (6)

P and P0 can be connected with a unitary U ,

UPU † = P0, (7)

which is exactly the SWT. Likewise, we can find

UQU † = Q0. (8)

It has been proved in Ref. [6] that U can be constructed by
reflection operators RP0 and RP ,

U = √
RP0 RP, (9)

where RP0 = 2P0 − I and RP = 2P − I . Note that in some
places U is defined as U = eS , where S is called the generator
of the transformation [15,41].

Using Eqs. (6)–(8), the transformed Hamiltonian H ′ can be
reexpressed as [42]

H ′ = UHU †

= UPHPU † + UQHQU †

= P0UHU †P0 + Q0UHU †Q0, (10)

which indicates that H ′ is block-diagonal with respect to P0

and Q0. Project H ′ onto P0 yields the low-energy effective
Hamiltonian

Heff = P0UHU †P0, (11)

whose M eigenvalues are the same as the M lowest eigenval-
ues of H .

To obtain Heff , one needs to find U . In the following, we
propose two quantum algorithms to find Heff . The first algo-
rithm is for universal fault-tolerant quantum computers and
the second one is a hybrid approach based on the variational
approach and thus is suitable for near-term quantum devices.

III. THE QUANTUM ALGORITHM FOR SWT

In many models, the Hamiltonian H can be decomposed
into Pauli terms

H =
Nh∑
i=1

hiσi, (12)

and the term number Nh increases polynomially with the sys-
tem size n, e.g., the Heisenberg model and Fermi-Hubbard
model [43]. For each σi, we can construct a density ma-
trix ρi = (σi + 1)/2n, thus σi = 2nρi − 1. Then, the effective
Hamiltonian in Eq. (11) becomes

Heff =
Nh∑
i=1

hi(2
nP0UρiU

†P0 − P0). (13)

Notice that ρi is a quantum state which can be prepared with a
quantum computer, the idea is to apply U to the state, perform
projective measurement onto P0, and then obtain P0UρiU †P0

(by postselection according to the measurement result). For
large systems, ρi is highly mixed and can be realized with
the Monte Carlo method. For instance, for σ z

1 = Z ⊗ I⊗(n−1),
ρz

1 = (σ z
1 + 1)/2n = |0〉〈0| ⊗ (I/2)⊗(n−1). This state can be

sampled by initializing the first qubit in |0〉 and the others in
|0〉 or |1〉 with equal probability. For a general Pauli operator
σi, we can find a unitary V that satisfies σi = V σ z

1V †, thus
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we have ρi = V ρz
1V

†, which can be efficiently sampled with
a variance ∝ 1

Ns
, where Ns is the number of sampling times.

The full tomography of each P0UρiU †P0 is unrealistic when
the system size is large, therefore we need an ansatz of the
effective Hamiltonian Heff = ∑

τ∈A gτ τ . Here A is a subset of
Pauli operators that can be generated with prior knowledge
of H based on perturbation theory [44–48], renormalization
[49–51], etc. Then,

gτ =
Nh∑
i=1

hi[Tr(τP0UρiU
†P0) − 2−nTr(τP0)], (14)

where n is the qubit number. In general, we can realize the
projective measurement onto P0 using QPE [52]: We use QPE
to measure the eigenenergy of the unperturbed Hamiltonian,
but the final measurement is adapted for distinguishing two
subspaces P0 and Q0 instead of specific eigenenergies. The
total number of expected values evaluated for constructing
Heff is Nh × |A|. Therefore, by taking an ansatz in which
|A| is polynomial, the overall cost for reconstructing Heff is
polynomial. Next, we show that U is equivalent to an oracle
which does conditional phase rotations to some states.

Given an arbitrary state, it can be written in the basis of the
eigenspace of H ,

|�〉 =
N∑

i=1

αi|φi〉, (15)

thus eiH |�〉 = ∑N
i=1 αieiEi |φi〉. As RP = 2P − I and P is the

projector on the low-energy eigenspace, RP is effectively a
reflection operator that does a phase flip to the eigenstates
corresponding to the high-energy space, namely,

RP |�〉 =
M∑

i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉. (16)

The same applies for RP0 .
On a quantum computer, we could use QPE to realize the

unitary operator RP ,

|+〉⊗l ⊗ |�〉 = 1√
2l

2l −1∑
x=0

|x〉 ⊗
N∑

i=1

αi|φi〉

UQPE−→
N∑

i=1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉, (17)

where l is the number of ancilla qubits, UQPE = ∑2l −1
x=0 |x〉

〈x| ⊗ e−iHtx, t is chosen such that eigenvalues of Ht are within

the interval [0, 2π ), and fi(k) = 1
2l

∑2l −1
x=0 ei( 2πk

2l −Eit )x. As the

amplitude fi(k) is concentrated at k � 2l Eit
2π

, we could make a

phase flip to the states with Ei > E (0)
M + �/2, by applying the

unitary gate
∑kth−1

k=0 |k〉〈k| − ∑2l −1
k=kth

|k〉〈k| on ancilla qubits,

where kth = � 2l (E (0)
M +�/2)t

2π
. Then we apply U −1

QPE to get

1√
2l

2l −1∑
x=0

|x〉 ⊗
(

M∑
i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉
)

(18)

up to a small error due to the finite resolution of QPE (i.e., 2l

is finite). Performing Hadamard transform and measuring the
ancilla qubits with result |0〉⊗l , we get Eq. (16). We then apply
RP0 to RP |�〉 to get RP0 RP |�〉.

As U = √
RP0 RP , if eigenvalues and eigenvectors of

RP0 RP are eiθ j and |ψ j〉, i.e.,

RP0 RP |�〉 =
∑

j

β je
iθ j |ψ j〉, (19)

we have

U |�〉 =
∑

j

β je
i
θ j
2 |ψ j〉. (20)

Here, an arbitrary state |�〉 is written in eigenvectors of the
double reflection operator. Therefore, we could use QPE to

realize the phase ei
θ j
2 :

|+〉⊗m ⊗ |�〉 = 1√
2m

2m−1∑
x=0

|x〉 ⊗
∑

j

β j |ψ j〉

U ′
QPE−→

∑
j

β j

2m−1∑
k=0

g j (k)|k〉 ⊗ |ψ j〉, (21)

where m is the number of ancilla qubits, U ′
QPE =∑2m−1

x=0 |x〉〈x| ⊗ (RP0 RP )x and g j (k) = 1
2m

∑2m−1
x=0 ei( 2πk

2m +θ j )x.

Because g j (k) is concentrated at k � − 2mθ j

2π
, the phase θ j is

(approximately) stored on the ancilla qubits. We then ap-
ply the phase gate

∑2m−1
k=0 e−i πk

2m |k〉〈k| before applying U ′−1
QPE.

Therefore, the overall effect of all these steps applies a phase

of ei
θ j
2 to the state |ψ j〉 and thus effectively realizes U |�〉.

To summarize, the whole procedure of this algorithm con-
sists of two phases to realize U |�〉: first, applying RP (RP0 )
to a state and then U , which can be implemented with quan-
tum circuits of the same structure. The pseudocodes and the
quantum circuit can be found in Appendix A. This algorithm
has a gate complexity of O(2m(2lNt + l2) + m2), where Nt is
the number of gates in the Trotterization, with details also
given in Appendix A. We define the error of this algorithm
as the 2-norm between the ideal and actual states. The total
error εtot is estimated as 2m+2(2l+1εt + εl ) + εm, where εt

is the error of Trotterization, εl is O(1/
√

2l (EM+1 − EM )t ),
and εm is O(2−m/2). εtot can decrease exponentially with the
number of ancilla qubits, and to control the error we need
to take l > 2m. The detailed error analysis can be found in
Appendix B.

As this algorithm needs to apply a concatenated QPE,
which uses deep circuits and a reasonable number of ancilla
qubits for high resolutions of energy and phase, it is not feasi-
ble until large-scale error-protected quantum computers come
to exist. In the next section, we introduce a hybrid algorithm
which is suitable for near-term quantum devices.

IV. THE HYBRID QUANTUM-CLASSICAL
ALGORITHM FOR SWT

If UHU † is block diagonal with respect to P0 and Q0,
we can infer that H is block diagonal with respect to P and

043023-3



ZHANG, YANG, XU, AND LI PHYSICAL REVIEW RESEARCH 4, 043023 (2022)

Q, where P = U †P0U and Q = U †Q0U are projectors trans-
formed by inverse SWT. Under this condition, a state within
the subspace of P should remain in the subspace as it evolves.
Therefore, we can design a cost function as the following:

Lt (�θ ) = − 1

M

M∑
i, j

∣∣〈φ(0)
i

∣∣U (�θ )e−iHtU †(�θ )
∣∣φ(0)

j

〉∣∣2, (22)

where |φ(0)
i 〉 and |φ(0)

j 〉 are the basis states in P0 and U (�θ ) is
constructed by a parameterized quantum circuit. We remark
that we can use the Monte Carlo method to evaluate the cost
function rather than measure each term in it. We find the
global minimum of the cost function Lt,min is −1, obtained
when H is block diagonal with respect to P and Q, i.e., U (�θ )
is exactly the unitary transformation U that realizes the SWT.
However, to minimize this cost function using a quantum
computer, one needs to implement e−iHt , which usually re-
quires deep circuits to achieve high accuracy.

Now we introduce an alternative cost function. When
U (�θ ) = U , Lt,min = −1, and thus is invariant when the time
t changes. Therefore, we rewrite Lt in the form of a Taylor
series about t :

Lt = A + Bt + Ct2 + Dt3 + · · · . (23)

Extracting the coefficients A, B, and C, we have

A = −1, (24)

B = 0, (25)

C = 1

M

(
M∑

i=1

〈
φ

(0)
i

∣∣U (�θ )H2U †(�θ )
∣∣φ(0)

i

〉

−
M∑
i, j

∣∣〈φ(0)
i

∣∣U (�θ )HU †(�θ )
∣∣φ(0)

j

〉∣∣2). (26)

The derivation is given in Appendix C. When U (�θ ) = U ,
because Lt,min is time independent, all the coefficients except
A must be 0.

In fact, we find that when C = 0, Lt = −1 exactly
holds for all t , which means the effective model is exact.
Technically, C = 0 is equivalent to the complete block diag-
onalization of H with respect to P and Q. The proof can be
found in Appendix D. It implies that if C = 0, the coefficients
of the higher order Taylor series must also be 0. Therefore, if
there exists U (�θopt) such that C = 0, we know U (�θopt) = U .
With this, we can reconstruct the cost function as the absolute
value of C,

L(�θ ) = |C|

= 1

M

∣∣∣∣∣
M∑

i=1

〈
φ

(0)
i

∣∣U (�θ )H2U †(�θ )
∣∣φ(0)

i

〉

−
M∑
i, j

∣∣〈φ(0)
i

∣∣U (�θ )HU †(�θ )
∣∣φ(0)

j

〉∣∣2∣∣∣∣∣, (27)

which has the global minimum 0. Note that we make L(�θ )
the absolute value of C to avoid the case where it becomes
negative with experimental noise.

Now we have the final version of the cost function. Starting
from an initial parameter set �θ0, our hybrid algorithm opti-
mizes the set �θ such that L(�θ ) reaches minimum after several
iteration cycles. In each cycle, L(�θ ) is measured using a quan-
tum computer, and a classical algorithm is used to optimize �θ
based on L(�θ ). The iteration continues until L(�θ ) reaches its
minimum. Then we obtain the corresponding U (�θ ) as a good
approximation of U .

To implement the hybrid algorithm, the basis set {|φ(0)
i 〉}

of the unperturbed Hamiltonian H0 must be known. The
Hamiltonian H is decomposed into Pauli terms H = ∑

l hlσ
l ,

thus L(�θ ) has O(NhM ) terms and each term has the form
〈φ(0)

i |U (�θ )σ lU †(�θ )|φ(0)
j 〉, which can be measured using a

quantum computer [53,54]. In the following section, we
demonstrate the hybrid algorithm using an example of a one-
dimensional Heisenberg model.

V. SIMULATION AND EXPERIMENT

We demonstrate the effectiveness of the hybrid algorithm
with experiments on an IBMQ quantum device. We choose
a spin model to verify our methods in Sec. IV. The system
is an antiferromagnetic Heisenberg chain with modulated in-
teraction strengths [55]. Two spins at the ends of the chain
are weakly coupled to other spins on the chain. If the chain
with two ends removed has a nondegenerate ground state
and an energy gap above the ground state, two end spins are
effectively coupled through the chain: According to the per-
turbation theory, two end spins are directly coupled in the
effective model. We will reconstruct the effective model of
the Heisenberg chain with experiments on IBMQ devices.

A. Model

The unperturbed Hamiltonian is the chain with two end
spins decoupled, i.e.,

H0 = 2
N−2∑
i=2

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
, (28)

where N is the total number of spins. The perturbation is the
interaction between end spins and the rest of the chain, i.e.,

V = σ x
1 σ x

2 + σ
y
1 σ

y
2 + σ z

1σ z
2

+ σ x
N−1σ

x
N + σ

y
N−1σ

y
N + σ z

N−1σ
z
N . (29)

Thinking that end spins 1 and N are removed from the
system, the Hamiltonian of spins 2 to N − 1 is H0. Then, if the
ground state of H0 (without considering spins 1 and N) is non-
degenerate, the unperturbed ground-state subspace of all spins
is fourfold degenerate. Let |GS〉 be a state of spins 2 to N − 1
and the nondegenerate ground state of H0, the ground-state
subspace of all spins has the basis {|μ〉 ⊗ |GS〉 ⊗ |ν〉 | μ, ν =
0, 1}. If N = 4, the subsystem ground state is the singlet state
|GS〉 = 1√

2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉); in general, we can obtain

the ground state |GS〉 via VQE.
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With perturbation, usually the ground state splits into sin-
glet ground state and triplet excited states because of the
symmetry of the Heisenberg interaction. So, the effective
Hamiltonian acting in this low-energy subspace is equivalent
to Heisenberg interaction between spins 1 and N . The effec-
tive ground state of the subspace of spins 1 and N is then

1√
2
(|01〉1,N − |10〉1,N ). The entanglement between two sepa-

rated spins comes from repeated nearest-neighbor interactions
in the Heisenberg chain.

B. Ansatz

Here we adopt an empirical ansatz to construct the trans-
formation U . If H0 and V commute, they are simultaneously
(block) diagonalizable by a unitary transformation, and U is
identity. So this commutative situation is trivial. If H0 and V
do not commute, we can express the commutator as a linear
combination of Pauli operators,

[H0,V ] = i
M∑

j=1

α jσ
( j), (30)

where αi is a real scalar coefficient. Note that usually the num-
ber of Pauli operators M in the linear combination increases
polynomially with the system size. Given the commutator, we
approximate the generator S with an operator in the form [41]

η =
M∑

j=1

η jσ
( j). (31)

Supposing coefficients η j are small, we can approximate
U = eS with the ansatz transformation

U (�θ ) =
∏
j=1

eiσ ( j)θ j , (32)

where parameters θ j are optimized according to our algorithm
in Sec. IV.

Taking N = 4 in the model, we find that U has 12 terms.
By removing parameters that have little impact on the cost
function, U is simplified to six terms to reduce circuit depth.
Considering the symmetry of the system, we keep three pa-
rameters. Finally, the ansatz is

U (�θ ) = eiσ z
2 σ

y
3 σ x

4 θ1/2eiσ z
2 σ x

3 σ
y
4 θ2/2eiσ y

2 σ x
3 σ z

4 θ3/2

eiσ z
1 σ x

2 σ
y
3 θ3/2eiσ y

1 σ x
2 σ z

3 θ2/2eiσ x
1 σ

y
2 σ z

3 θ1/2, (33)

and the corresponding circuit is drawn as Fig. 5 in
Appendix A.

C. Measurement circuits

As mentioned before, one needs to measure the transition
amplitude 〈φ(0)

i |U (�θ )σ lU †(�θ )|φ(0)
j 〉, where |φ(0)

j 〉 is one of the
four basis states of the ground-state subspace. We can measure
the transition amplitude using a Hadamard test circuit [53].
To minimize the gate number, which is important in NISQ
devices, we measure the transition amplitude in the following
way. We consider two cases. In the first case, when i = j, the
transition amplitude is the expected value of σ l in the state
U †(�θ )|φ(0)

j 〉, which can be directly measured: We prepare the

state |φ(0)
j 〉, then apply the transformation U †(�θ ) and finally

TABLE I. All possible combinations of |φ (0)
i 〉 and G. |�〉 ≡

|0〉 ⊗ |GS〉 ⊗ |0〉

〈φ (0)
i | |φ (0)

j 〉 G

〈�| σ x
1 |�〉 σ x

1

〈�| σ x
N |�〉 σ x

N

〈�| σ x
1 σ x

N |�〉 σ x
1 σ x

N

〈�|σ x
1 σ x

N |�〉 σ x
1 σ x

N

〈�|σ x
1 σ x

1 σ x
N |�〉 σ x

N

〈�|σ x
N σ x

1 σ x
N |�〉 σ x

1

measure σ l . In the second case, when i �= j, we always have
|φ(0)

j 〉 = G|φ(0)
i 〉, where G = 1, σ x

1 , σ x
N , σ x

1 σ x
N . Then the tran-

sition amplitude becomes〈
φ

(0)
i

∣∣U (�θ )σ lU †(�θ )
∣∣φ(0)

j

〉
= 〈

φ
(0)
i

∣∣U (�θ )σ lU †(�θ )G
∣∣φ(0)

i

〉
= 〈

φ
(0)
i

∣∣ I + G

2
U (�θ )σ lU †(�θ )

I + G

2

∣∣φ(0)
i

〉
− 〈

φ
(0)
i

∣∣ I − G

2
U (�θ )σ lU †(�θ )

I − G

2

∣∣φ(0)
i

〉
− i

〈
φ

(0)
i

∣∣ I − iG

2
U (�θ )σ lU †(�θ )

I + iG

2

∣∣φ(0)
i

〉
+ i

〈
φ

(0)
i

∣∣ I + iG

2
U (�θ )σ lU †(�θ )

I − iG

2

∣∣φ(0)
i

〉
. (34)

According to the above equation, the transition amplitude be-
comes a linear combination of expected values of σ l in states
I±G

2 |φ(0)
i 〉 and I±iG

2 |φ(0)
i 〉 [54]. We can measure these expected

values by preparing these four states (up to the normalization
factor). In our case, because the transition amplitude is always
real, we only need to prepare states I±G

2 |φ(0)
i 〉. See Table I for

combinations of |φ(0)
i 〉 and G.

D. Implementation and results

Now we demonstrate our algorithm on an IBM quantum
device ibmq_manila, a five-qubit superconducting quantum
computer with readout error rates 2.02% ∼ 3.53%, single-
qubit gate error rates 0.02% ∼ 0.03%, and CNOT gate error
rates 0.55% ∼ 1.23% during our experiments.

In each experiment, the initial parameter vector �θ0 was set
to zero and the SPSA [56] algorithm was used to optimize
parameters in each cycle of the iteration. The optimization
process continued until the cost function stopped declining
in several successive iterations. During the experiment, the
Clifford data regression (CDR) error mitigation technique
[57], which is a simplified version of Clifford data learning
[58], was used to improve the result. Each circuit was run for
104 shots.

The amplitudes obtained in quantum computer were used
to construct Heff . This is equivalent to the full tomography of
each Uσ lU † in the subspace P0. In this experiment, Heff is a
4 × 4 matrix with the element in row i and column j given
by 〈φ(0)

i |U (�θ )HU †(�θ )|φ(0)
j 〉, which is also used to evaluate

the cost function. With Heff , one can use the VQE approach
to compute the low-energy spectra. However, considering the
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FIG. 1. Eigenvalues of Heff experimentally measured using ex-
perimentally obtained parameters.

case that the dimension of Heff is far less than H , we may
be able to efficiently diagnolize Heff to obtain the spectrum.
In this work we simply diagnolize Heff using a classical
computer.

The results are shown in Fig. 1. As the iteration goes,
the energies of the four eigenstates gradually approach the
correct values with significant fluctuations. This is largely
attributed to the high read out error of the quantum device,
as can be supported by Fig. 2, where we classically compute
the effective energy using the same set of parameters. We see
smoother curves and the results are more close to the exact
values.

We summarize the results in Fig. 3, where we show the
final energies obtained from both numerical simulations and
experiments. The numerical simulations in the noise-free case
were conducted using QuESTlink [40], a packaged quantum
emulator, and a noisy case was considered and simulated
using qasm_simulator. The fidelity of the low-energy states
with respect to the exact reference state, calculated by diago-
nalization of Heff in each case, is reflected as the color of each
short line.

One thing needed to be noted is that to reduce the circuit
depth, we use a simple ansatz which can well approximate the
exact reference states but is not a perfect choice. As can be
seen from the second column in Fig. 3, there is a small gap
between the exact solutions and the simulated results. Better
results are expected with a more complex ansatz.

In addition, the error mitigation technique relies on a good
estimation of the noise. The CDR approach estimates the error

FIG. 2. Eigenvalues of Heff classically computed using experi-
mentally obtained parameters.

FIG. 3. The final energies in the low-energy spectrum and the
fidelity of the obtained states with respect to the exact solutions.
From left to right: Exact energies, results from simulations with no
noise, simulations with noise model from ibmq_manila, and experi-
ments on ibmq_manila. Horizontal solid line shows the energy value,
with color indicating the fidelity with respect to the corresponding
reference state.

information by measuring a set of observables using a circuit
very close to the original one but with only Clifford gates. On
IBMQ, circuits are running in batches, so we performed CDR
circuits once in each batch. During the experiment, however,
the error fluctuates and deviates from the calibrated data and
thus weakens the effect of error mitigation. The third column
in Fig. 3 shows the final energies obtained from numerical
simulations on qasm_simulator with a simplified noise model
generated from the real-time calibration information of the
ibmq_manila device (a function provided by IBMQ). Error
mitigation was performed where the error information comes
directly from the real-time calibration data. We see that with
a better description of the error model, error mitigation per-
forms better and the final results are more close to the exact
values.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed two quantum algorithms to
realize the SWT. The first algorithm constructs the SWT using
a quantum circuit and evaluates the effective Hamiltonian
with projection measurement. This method scales polynomi-
ally with the problem size and is suitable for fault-tolerant
quantum computers. The second algorithm is a hybrid al-
gorithm applicable to NISQ devices. This method is based
on the variational algorithm, but instead of constructing a
cost function to minimize the energy, our cost function is
derived by using the block diagonalization property of the
Hamiltonian. By optimizing the parameters, the cost function
gradually approaches zero and the effective Hamiltonian can
be obtained directly from the elements of the cost function. To
verify this algorithm, we implemented it numerically and on
an IBM quantum device using the example of a Heisenberg
chain model with long-distance entanglement. The simulated
results are very close to the exact values, and on a noisy
device, we obtain the final states with over 95% fidelity. To
improve the results, some delicately designed error mitigation
techniques can be applied.

Note that this method is not limited to finding the ground-
state energy of a many-body system but is able to find any
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energy interval of interest as long as they have no energy-
level crossings with others under perturbation. The interested
readers can refer to Appendix E for a generalized description.
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APPENDIX A: THE QUANTUM CIRCUITS FOR THE TWO
ALGORITHMS AND PSEUDO CODES

FOR THE FAULT-TOLERANT ALGORITHM

Let Ca(V 2a−1
) be a controlled-V gate with the ath ancilla

qubit as the control qubit. The pseudo codes are given in
Tables II and III.

The quantum circuit of the procedure is shown in Fig. 4.
The gate complexities are listed in Table IV.

Figure 5 shows the quantum circuit used in our hybrid
quantum-classical algorithm.

APPENDIX B: ERROR ANALYSIS
FOR THE FAULT-TOLERANT ALGORITHM

Let |a〉 be the ideal state and |b〉 be the actual state. De-
fine ε = ‖|a〉 − |b〉‖ as the error, where ‖·‖ is the 2-norm.
It is easy to see that ε is invariant under unitary trans-
formations. Besides, ε is additive, i.e., the total error can
be upper bounded by the sum of errors through the whole
process.

1. The error in realizing the reflection operator

For RP , the controlled unitary gate is e−iHt . Using the
Trotterization, we can realize Ut such that ‖Ut − e−iHt‖ =
εt , where εt � ‖H‖2t2

2nT
for the first-order Trotterization [60].

Therefore, ‖(Ut − e−iHt )|�〉‖ � εt , which is estimated as
O( ‖H‖2t2

nT
).

Next, assuming the time evolution e−iHt is exact, we con-
sider the error εl between the actual state and the ideal state
of the whole system (including data qubits and ancilla qubits)
without projective measurement, which includes the error of
states with ancilla qubits in |0〉⊗l and the failure probability,
i.e., the measurement result of ancilla qubits is not |0〉⊗l .
Owing to the invariance under unitary transformations, the

TABLE II. Quantum algorithm for realizing RP|�〉.

1: Input arbitrary state |�〉, l ancilla qubits initialized to |0〉, V = e−iHt , kth = � 2l (E (0)
M +�/2)t

2π
.

2: |0〉⊗l |�〉 � Initial state.

3: → 1√
2l

2l −1∑
x=0

|x〉 ⊗ |�〉 � Hadamard transform.

4: → 1√
2l

2l −1∑
x=0

|x〉 ⊗ V x
N∑

i=1

αi|φi〉

=
N∑

i=1

αi
1√
2l

2l −1∑
x=0

|x〉 ⊗ e−iEitx|φi〉 � Apply Ca(V 2a−1
) (a = 1, · · · , l ) gates.

5: →
N∑

i=1

αi
1√
2l

2l −1∑
x=0

(
2l −1∑
k=0

1√
2l

ei 2πxk
2l |k〉) ⊗ e−iEitx|φi〉

=
N∑

i=1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉 � Quantum Fourier transform.

6: →
M∑

i=1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉 −
N∑

i=M+1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉 � Apply gate
∑kth−1

k=0 |k〉〈k| − ∑2l −1
k=kth

|k〉〈k| on ancilla qubits.

7: → 1√
2l

2l −1∑
x=0

|x〉 ⊗ V x (
M∑

i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉) � Inverse quantum Fourier transform.

8: → 1√
2l

2l −1∑
x=0

|x〉 ⊗ (
M∑

i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉) � Apply Ca(V †2a−1
) (a = 1, · · · , l ) gates.

9: → |0〉⊗l ⊗ (
M∑

i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉) � Hadamard transform.

10: →
M∑

i=1

αi|φi〉 −
N∑

i=M+1

αi|φi〉 � Measure the ancilla qubits with result |0〉⊗l .

11: Output RP|�〉 = ∑M
i=1 αi|φi〉 − ∑N

i=M+1 αi|φi〉.
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TABLE III. Quantum algorithm for realizing SWT.

1: Input arbitrary state |�〉, m ancilla qubits initialized to |0〉, V = RP0 RP .
2: |0〉⊗m|�〉 � Initial state.

3: → 1√
2m

2m−1∑
x=0

|x〉 ⊗ |�〉 � Hadamard transform.

4: → 1√
2m

2m−1∑
x=0

|x〉 ⊗ V x
∑

j

β j |ψ j〉

=
∑

j

β j
1√
2m

2m−1∑
x=0

|x〉 ⊗ eiθ j x|ψ j〉 � Apply Ca(V 2a−1
) (a = 1, · · · , m) gates.

5: →
∑

j

β j
1√
2m

2m−1∑
x=0

(
2m−1∑
k=0

1√
2m

ei 2πxk
2m |k〉) ⊗ eiθ j x|ψ j〉

=
∑

j

β j

2m−1∑
k=0

gj (k)|k〉 ⊗ |ψ j〉 � Quantum Fourier transform.

6: →
∑

j

β j

2m−1∑
k=0

gj (k)|k〉 ⊗ ei
θ j
2 |ψ j〉 � Apply phase gate

∑2m−1
k=0 e−i πk

2m |k〉〈k| on ancilla qubits.

7: → 1√
2m

2m−1∑
x=0

|x〉 ⊗ V x
∑

j

β je
i
θ j
2 |ψ j〉 � Inverse quantum Fourier transform.

8: → 1√
2m

2m−1∑
x=0

|x〉 ⊗
∑

j

β je
i
θ j
2 |ψ j〉 � Apply Ca(V †2a−1

) (a = 1, · · · , m) gates.

9: → |0〉⊗m ⊗
∑

j

β je
i
θ j
2 |ψ j〉 � Hadamard transform .

10: →
∑

j

β je
i
θ j
2 |ψ j〉 � Measure the ancilla qubits with result |0〉⊗m.

11: Output U |�〉 = ∑
j β jei

θ j
2 |ψ j〉.

|0〉 H •

QFT W QFT−1

• H

...
|0〉 H • • H

|0〉 H • • H

|Ψ〉 / V 20
V 21 · · · V 2l−1

V †2l−1 · · · V †21
V †20

FIG. 4. The quantum circuit to realize RP and U applying to a state |�〉. To realize RP , V = e−iHt and the number of ancilla qubits is
l . The W gate makes a phase flip for those k � kth ancilla qubit states |k〉, which is composed of at most l multiqubit controlled Z gates. To
realize U , V = RP0 RP and the number of ancilla qubits is m. The W gate applies a conditional phase e−i πk

2m to |k〉, which is composed of m
phase shift gates with phase shift − π

2m 2 j−1 on the jth ancilla qubit.

TABLE IV. Gate counting. Here Nt is the number of gates in the Trotterization. We take the first-order Trotteriza-
tion to realize the controlled-V when implementing Rp. Then Nt is O(2nNhnT ), where nT is the trotter number.

RP U

Hadamard transform l m
Controlled-V O(2l Nt ) O(2m(2l Nt + l2))
QFT O(l2) O(m2)
W � l m
QFT−1 O(l2) O(m2)
Controlled-V † O(2l Nt ) O(2m(2l Nt + l2))
Hadamard transform l m
Total O(2l Nt + l2) O(2m(2l Nt + l2) + m2)
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q 4
pr

ep
ar

e
|ψ
〉

q 3 Rz (θ1) Rz (θ2)

q 2 Rx π
2

) • • Rx −π
2

)
H • •

q 1 H • • H Rx π
2

) • • Rx −π
2

)

Rz (θ3)

Rx π
2

)
Rz (θ3) Rx −π

2

)
H • •

• • H Rx π
2

) • • Rx −π
2

)

• •

Rx π
2

)
Rz (θ2) Rx −π

2

)
H Rz (θ1) H

m
ea

su
re

〈σ
l 〉

• • H Rx π
2

) • • Rx −π
2

)

• • • •

FIG. 5. The quantum circuit used in our experiments. In preparation, state |ψ〉 is |φ(0)
i 〉 or I±G

2 |φ (0)
i 〉 (up to a normalization factor). In

measurement, we measure the expectation of σ l . The ansatz circuit is between these two blocks.

error between |a〉 and |b〉 in step 6 of Algorithm A is the same
as that in step 9. Therefore,

|a〉 ≡
M∑

i=1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉

−
N∑

i=M+1

αi

2l −1∑
k=0

fi(k)|k〉 ⊗ |φi〉, (B1)

|b〉 ≡
N∑

i=1

αi

⎛
⎝kth−1∑

k=0

fi(k)|k〉 −
2l −1∑
kth

fi(k)|k〉
⎞
⎠ ⊗ |φi〉, (B2)

where l is the number of ancilla qubits and fi(k) =
1
2l

∑2l −1
x=0 ei( 2πk

2l −Eit )x.
For M + 1 � i � N , 0 � Eit < 2π and let 2πki

2l be the best
l bit approximation to Eit which is less than Eit . The differ-
ence between 2πki

2l and Eit satisfies 2π ( ki
2l + δ) = Eit such that

0 � δ < 1
2l . Let 2θk = 2πk

2l − Eit = 2π
2l (k − ki − 2lδ), when

−2l−1 < k − ki � 2l−1 we have −π
2 < θk < π

2 .

| fi(k)|2 =
∣∣∣∣ 1

2l

1 − ei2θk2l

1 − ei2θk

∣∣∣∣
2

=
∣∣∣∣ 1

2l

sin 2lθk

sin θk

∣∣∣∣
2

<

(
1

2l

1
2
π

∣∣ π
2l (k − ki − 2lδ)

∣∣
)2

= 1

4(k − ki − 2lδ)2 , (B3)

where the inequalities | sin 2lθk| � 1 and | sin θk| > 2
π
|θk| are used. Therefore, we have

kth−1∑
k=0

| fi(k)|2 <

kth−1∑
k=0

1

4(k − ki − 2lδ)2 �
kth−1∑
k=0

1

4(k − ki )
2

<

∫ kth

0

1

4(k − ki )
2 dk = 1

4

(
1

ki − kth
− 1

ki

)
<

1

4

1

ki − kth
. (B4)

Similarly, for 1 � i � M, 0 � Eit < 2π and let 2πki
2l be the best l bit approximation to Eit which is greater than Eit . The

difference between 2πki
2l and Eit satisfies 2π ( ki

2l − δ) = Eit such that 0 � δ < 1
2l . Let 2θk = 2πk

2l − Eit = 2π
2l (k − ki + 2lδ), when
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−2l−1 � k − ki < 2l−1 we have −π
2 < θk < π

2 .

| fi(k)|2 <
1

4(k − ki + 2lδ)2 . (B5)

Thus, we have

2l −1∑
kth

| fi(k)|2 <

2l −1∑
k=kth

1

4(k − ki + 2lδ)2 �
2l −1∑
k=kth

1

4(k − ki )
2

<

∫ 2l −1

k=kth−1

1

4(k − ki )
2 dk = 1

4

(
− 1

2l − 1 − ki
+ 1

kth − 1 − ki

)
<

1

4

1

kth − 1 − ki
. (B6)

The upper bound of εl is∥∥∥∥∥∥
⎛
⎝ M∑

i=1

αi

⎛
⎝2l −1∑

k=0

fi(k)|k〉
⎞
⎠ ⊗ |φi〉 −

N∑
i=M+1

αi

⎛
⎝2l −1∑

k=0

fi(k)|k〉
⎞
⎠ ⊗ |φi〉

⎞
⎠ −

N∑
i=1

αi

⎛
⎝kth−1∑

k=0

fi(k)|k〉 −
2l −1∑
kth

fi(k)|k〉
⎞
⎠ ⊗ |φi〉

∥∥∥∥∥∥
=
∥∥∥∥∥∥

M∑
i=1

αi

⎛
⎝2

2l −1∑
kth

fi(k)|k〉
⎞
⎠ ⊗ |φi〉 −

N∑
i=M+1

αi

(
2

kth−1∑
k=0

fi(k)|k〉
)

⊗ |φi〉
∥∥∥∥∥∥

=
⎛
⎝4

M∑
i=1

|αi|2
2l −1∑
kth

| fi(k)|2 + 4
N∑

i=M+1

|αi|2
kth−1∑
k=0

| fi(k)|2
⎞
⎠

1
2

<

(
4

M∑
i=1

|αi|2 1

4

1

kth − 1 − ki
+ 4

N∑
i=M+1

|αi|2 1

4

1

ki − kth

) 1
2

<

(
M∑

i=1

|αi|2 1

kth − 1 − kM
+

N∑
i=M+1

|αi|2 1

kM+1 − kth

) 1
2

�

⎛
⎝ M∑

i=1

|αi|2 1⌊
2l (E (0)

M +�/2−EM )t
2π

⌋
− 1

+
N∑

i=M+1

|αi|2 1⌊
2l (EM+1−E (0)

M −�/2)t
2π

⌋
− 1

⎞
⎠

1
2

� max

⎧⎪⎪⎨
⎪⎪⎩

1√⌊
2l (E (0)

M +�/2−EM )t
2π

⌋
− 1

,
1√⌊

2l (EM+1−E (0)
M −�/2)t

2π

⌋
− 1

⎫⎪⎪⎬
⎪⎪⎭, (B7)

where kth = � 2l (E (0)
M +�/2)t

2π
, kM = � 2l EMt

2π
, kM+1 = � 2l EM+1t

2π
�, and kM < kth � kM+1. Therefore, we can estimate εl as

O

(
1√

2l (EM+1 − EM )t

)
, (B8)

which decreases exponentially with the number of ancilla qubits. The above derivation does not include the special cases kM =
kth (kM+1 = kth − 1). Note that

| fi(k)|2 = 1

22l

1 − cos ( 2π
2l (k − ki ± 2lδ)2l )

1 − cos ( 2π
2l (k − ki ± 2lδ))

= 1

2l
F2l (

2π

2l
(k − ki ± 2lδ)) � 1, (B9)

where Fn(x) is the Fejér kernel and Fn(x) < n. For the two cases, | fM (kth)|2 = | fM+1(kth − 1)|2 = 1
2l F2l (2πδ) � 1. Then the

error is O(( 1√
2l (EM+1−EM )t

) + |αM |2) or O(( 1√
2l (EM+1−EM )t

) + |αM+1|2). If both cases are satisfied, the error is O(( 1√
2l (EM+1−EM )t

) +
|αM |2 + |αM+1|2). We can increase the number of ancilla qubits to avoid such cases.

As a result, the total error (including the failure probability) when realizing RP |�〉 is 2l+1εt + εl , which is denoted as εR.
Similarly, for RP0 , εt0 is O( ‖H0‖2t2

nT
), and εl0 is O( 1√

2l �t
). The total error of RP0 |�〉 is simplified as εR, too.
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2. The error in realizing U

For U , the controlled unitary gate is RP0 RP . From Appendix B 1, we see the error of RP0 RP |�〉 is 2εR. Next, we assume
RP0 RP is perfectly realized. Similarly as in Appendix B 1, we define

|a〉 ≡
∑

j

β j

2m−1∑
k=0

g j (k)|k〉 ⊗ ei
θ j
2 |ψ j〉, (B10)

|b〉 ≡
∑

j

β j

2m−1∑
k=0

g j (k)|k〉 ⊗ e−i πk
2m |ψ j〉, (B11)

where m is the number of ancilla qubits and gj (k) = 1
2m

∑2m−1
x=0 ei( 2πk

2m +θ j )x.

−2π � θ j < 0 and let −k j be the best m bit approximation to θ j which is less than θ j . The difference between − 2πk j

2m and θ j

satisfies 2π (− k j

2m + δ) = θ j such that 0 � δ < 1
2m . Then

|g j (k)|2 =
∣∣∣∣∣∣

1

2m

1 − e
i2π

(
k−k j
2m +δ

)
2m

1 − e
i2π

(
k−k j
2m +δ

)
∣∣∣∣∣∣
2

=
(

1

2m

sin π
( k−k j

2m + δ
)
2m

sin π
( k−k j

2m + δ
)
)2

= 1

22m

1 − cos (2π2mδ)

1 − cos
(

2π
2m (k − k j + 2mδ)

) , (B12)

∣∣∣e−i πk
2m − ei

θ j
2

∣∣∣2 = 2 − 2 cos

(
−πk

2m
− θ j

2

)
= 2 − 2 cos

( π

2m
(k − k j + 2mδ)

)
. (B13)

Thus the extra error εm due to the finite ancilla qubits is∥∥∥∥∥
∑

j

β j

2m−1∑
k=0

g j (k)|k〉 ⊗ e−i πk
2m |ψ j〉 −

∑
j

β j

2m−1∑
k=0

g j (k)|k〉 ⊗ ei
θ j
2 |ψ j〉

∥∥∥∥∥
=
(∑

j

|β j |2
2m−1∑
k=0

|g j (k)|2
∣∣∣e−i πk

2m − ei
θ j
2

∣∣∣2
) 1

2

=
(∑

j

|β j |2
2m−1∑
k=0

1 − cos (2π2mδ)

22m
2

1 − cos
(

π
2m (k − k j + 2mδ)

)
1 − cos

(
2π
2m (k − k j + 2mδ)

)
) 1

2

�
(∑

j

|β j |2
2m−1∑
k=0

4

22m

1 − cos
(

π
2m (k − k j + 2mδ)

)
2 sin2

(
π
2m (k − k j + 2mδ)

)
) 1

2

<

(∑
j

|β j |2
2m−1∑
k=0

4

22m

1
2

π2

22m (k − k j + 2mδ)2

2 4
π2

π2

22m (k − k j + 2mδ)2

) 1
2

=
(∑

j

|β j |2
2m−1∑
k=0

1

22m

π2

4

) 1
2

=
(

1

2m

π2

4

) 1
2

= π

2m/2+1
. (B14)

Therefore, the total error of the algorithm is given by

εtot ∼ 2m+2εR + εm

∼ 2m+2(2l+1εt + εl ) + εm, (B15)

where εt is O( ‖H‖2t2

nT
), εl is O( 1√

2l (EM+1−EM )t
), and εm is O( 1√

2m ).
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APPENDIX C: DETAILED STEPS OF THE TAYLOR EXPANSION OF Lt

The Taylor series of e−iHt is

I − iHt − 1
2 H2t2 + O(t3). (C1)

Substituting this into Eq. (22) yields

Lt = − 1

M

M∑
i, j

∣∣∣∣〈φ(0)
i

∣∣U (I − iHt − 1

2
H2t2 + O(t3))U †

∣∣φ(0)
j

〉∣∣∣∣
2

= − 1

M

M∑
i= j

∣∣∣∣1 − it
〈
φ

(0)
i

∣∣UHU †
∣∣φ(0)

i

〉 − 1

2
t2
〈
φ

(0)
i

∣∣UH2U †
∣∣φ(0)

i

〉 + O(t3)

∣∣∣∣
2

− 1

M

M∑
i �= j

∣∣∣∣−it
〈
φ

(0)
i

∣∣UHU †
∣∣φ(0)

j

〉 − 1

2
t2
〈
φ

(0)
i

∣∣UH2U †
∣∣φ(0)

j

〉 + O(t3)

∣∣∣∣
2

= − 1

M

M∑
i= j

[
(1 − 1

2
t2
〈
φ

(0)
i

∣∣UH2U †
∣∣φ(0)

i

〉
)2 + t2

〈
φ

(0)
i

∣∣UHU †
∣∣φ(0)

i

〉2]

− 1

M

M∑
i �= j

∣∣−it
〈
φ

(0)
i

∣∣UHU †
∣∣φ(0)

j

〉∣∣2 + O(t3)

= − 1

M

M∑
i= j

(1 − t2
〈
φ

(0)
i

∣∣UH2U †
∣∣φ(0)

i

〉 + t2
〈
φ

(0)
i

∣∣UHU †
∣∣φ(0)

i

〉2
)

− 1

M

M∑
i �= j

t2
∣∣〈φ(0)

i

∣∣UHU †
∣∣φ(0)

j

〉∣∣2 + O(t3)

= − 1 + t2

M

(
M∑

i=1

〈
φ

(0)
i

∣∣UH2U †
∣∣φ(0)

i

〉 − M∑
i, j

∣∣〈φ(0)
i

∣∣UHU †
∣∣φ(0)

j

〉∣∣2) + O(t3). (C2)

APPENDIX D: EQUIVALENCE OF THE COMPLETE
BLOCK DIAGONALIZATION OF H

Recall that P is the projector in low-energy subspace P
of H , Q is its orthogonal complement which represents the
high-energy subspace projector. They can be written as

P =
M∑

i=1

U †
∣∣φ(0)

i

〉〈
φ

(0)
i

∣∣U =
M∑

i=1

|φi〉〈φi|, (D1)

Q =
N∑

i=M+1

U †
∣∣φ(0)

i

〉〈
φ

(0)
i

∣∣U =
N∑

i=M+1

|φi〉〈φi|. (D2)

With Eq. (D1), C can be converted to

C =
M∑

i=1

〈φi|H2|φi〉 −
M∑
i, j

|〈φi|H |φ j〉|2

=
M∑

i=1

〈φi|H2|φi〉 −
M∑
i, j

〈φi|H |φ j〉〈φ j |H |φi〉

= Tr(PH2P) − Tr(PHPHP), (D3)

where the trace operation acts on the Hilbert space of whole
system.

Define

HP = PHP, (D4)

HQ = QHQ, (D5)

HPQ = PHQ, (D6)

HQP = QHP. (D7)

The Hamiltonian can be divided into

H = HP + HQ + HPQ + HQP, (D8)

and its square is

H2 = H2
P + HPHPQ + H2

Q + HQHQP + HPQHQ

+ HPQHQP + HQPHP + HQPHPQ. (D9)

So, we have

PH2P = H2
P + HPQHQP. (D10)

Substituting Eq. (D4) and Eq. (D10) into Eq. (D3), we get

C = Tr(PH2P) − Tr(PHPPHP)

= Tr(H2
P ) + Tr(HPQHQP ) − Tr

(
H2

P

)
= Tr(HPQHQP ). (D11)
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Therefore, C = 0 if and only if HPQ is a zero matrix which
indicates H is completely block-diagonal with respect to P
and Q.

APPENDIX E: GENERAL CASE OF SWT

In a general situation, the unperturbed Hamiltonian is

H0 =
K∑

i=1

E (0)
i

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣ + K+M∑
i=K+1

E (0)
i

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣

+
N∑

i=K+M+1

E (0)
i

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣, (E1)

with eigenvalues E (0)
1 � · · · � E (0)

K < E (0)
K+1 � · · · �

E (0)
K+M < E (0)

K+M+1 � · · · � E (0)
N . The projector onto the

eigenspace of eigenvalues E (0)
i ∈ [E (0)

K+1, E (0)
K+M ] reads

P0 =
K+M∑

i=K+1

∣∣φ(0)
i

〉〈
φ

(0)
i

∣∣. (E2)

Here the energy gap is

� = min
{
E (0)

K+1 − E (0)
K , E (0)

K+M+1 − E (0)
K+M

}
. (E3)

Through the same assumption Eq. (4), the total Hamiltonian
can be written as

H =
K∑

i=1

Ei|φi〉〈φi| +
K+M∑

i=K+1

Ei|φi〉〈φi| +
N∑

i=K+M+1

Ei|φi〉〈φi|,

(E4)

with eigenvalues E1 � · · · � EK < EK+1 � · · · � EK+M <

EK+M+1 � · · · � EN . The eigenspace P is spanned by
H’s eigenstates with eigenvalues Ei ∈ (E (0)

K+1 − �/2, E (0)
K+M +

�/2). Then the effective energy spectra, from EK+1 to EK+M ,
can be obtained following the same method.
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