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Quantum annealing is a promising approach for obtaining good approximate solutions to difficult optimization
problems. Folding a protein sequence into its minimum-energy structure represents such a problem. For testing
new algorithms and technologies for this task, the minimal lattice-based [hydrophobic (H) or polar (P) beads]
HP model is well suited, as it represents a considerable challenge despite its simplicity. The HP model has
favorable interactions between adjacent, not directly bound hydrophobic residues. Here, we develop a novel spin
representation for lattice protein folding tailored for quantum annealing. With a distributed encoding onto the
lattice, it differs from earlier attempts to fold lattice proteins on quantum annealers, which were based upon
chain growth techniques. With our encoding, the Hamiltonian by design has the quadratic structure required for
calculations on an Ising-type annealer, without having to introduce any auxiliary spin variables. This property
greatly facilitates the study of long chains. The approach is robust to changes in the parameters required to
constrain the spin system to chainlike configurations, and performs very well in terms of solution quality. The
results are evaluated against existing exact results for HP chains with up to N = 30 beads with 100% hit rate,
thereby also outperforming classical simulated annealing. In addition, the method allows us to recover the lowest
known energies for N = 48 and N = 64 HP chains, with similar hit rates. These results are obtained by the
commonly used hybrid quantum-classical approach. For pure quantum annealing, our method successfully folds
an N = 14 HP chain. The calculations were performed on a D-Wave Advantage quantum annealer.
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I. INTRODUCTION

Quantum computers with their interacting qubits as basic
units appear very promising for optimization problems with
binary variables such as those present in spin systems. These
technologies are being developed along two main tracks:
quantum annealers [1] and gate-based systems [2]. In quantum
annealing (QA) [3–5], the idea is to encode the solution to a
given optimization problem in the ground state of a Hamilto-
nian and efficiently locate the energy minimum by exploiting
quantum fluctuations and tunneling, in analogy with the role
played by thermal fluctuations in classical simulated anneal-
ing (SA) [6]. Mapping difficult binary optimization problems
onto Ising spin glass systems goes back to the 1980s in the
context of neural networks [7,8]. For a recent review, see
Ref. [9]. In the context of QA, this approach is called quadratic
unconstrained binary optimization (QUBO).

Protein folding, going from sequence to structure by mini-
mizing an energy function, represents a difficult optimization
problem. Simplified lattice-based models for this problem
can often provide qualitatively relevant results, but remain
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computationally challenging and are therefore ideal testbeds
for novel algorithms. A pioneering QUBO formulation of the
folding problem for lattice proteins was given by Perdomo and
coworkers [10]. They considered the HP model [11], where
proteins are represented by linear chains of N hydrophobic
(H) or polar (P) beads, residing on a lattice. Their model used
binary variables encoding bead coordinates on the lattice, and
an additional set of auxiliary binary variables had to be added
in order to obtain a quadratic Hamiltonian.

An early attempt to fold a short lattice protein (N = 6) by
QA was carried out on a D-Wave (D-Wave Systems Inc.) ma-
chine [12]. This implementation relied on a growth algorithm,
where turns along the chain were mapped onto qubits. Recent
work implemented on an IBM gate-based quantum computer
used a similar encoding [13], again for a short protein chain
(N = 7). The growth algorithms offer a compact, resource-
efficient representation of the structure of a chain, but creating
a quadratic Hamiltonian requires additional spin variables and
implementing interactions such as self-avoidance becomes
tedious for long chains with this type of encoding. For a recent
review of lattice protein folding on quantum computers, see
Ref. [14].

In contrast to Refs. [12,13], here we propose a differ-
ent binary encoding for lattice proteins. In our model, all
sites of the lattice host qubits. The approach was inspired
by recent D-Wave applications for homopolymers [15], and
shares some similarities with a QUBO formulation for lattice
heteropolymers [16] which, to our knowledge, has not yet
been implemented. The energy E is such that its minimization
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makes the values of the qubits coalesce to a finite set of
active qubits defining the desired folded structure. Importantly
from the viewpoint of QA, the entire function E , including a
self-avoidance term, is manifestly quadratic, or two-local, in
the binary spin variables, without having to add any auxil-
iary spins. As a result, E retains a convenient form for long
chains. This fully distributed dynamical encoding method can
be considered as a clustering approach driven by requiring a
legal chain on the lattice. It is also somewhat reminiscent of a
molecular field theory [17] where the fields reside on a lattice
and give rise to structures through their dynamics.

We evaluate the performance of our approach using the
two-dimensional HP model [11] as a testbed. Although this
model at first sight looks simple, finding its lowest energy has
been shown to belong to the class of NP-complete problems
[18]. In particular, we consider a set of sequences with up
to 30 beads, for which the exact solutions are known from
exhaustive enumerations of all structures [19,20]. In addition,
we present results obtained for two longer sequences with
48 and 64 beads, respectively, which have been studied by
various classical methods [21–23].

In what follows, we first briefly describe the HP model and
then map the energy minimization problem for HP sequences
to a QUBO problem. We then evaluate our encoding using
both classical SA and explorations performed on the D-Wave
Advantage quantum annealer, with over 5000 qubits and 15-
way qubit connectivity [24].

II. METHODS

A. HP lattice proteins

We consider the minimal lattice-based HP model for pro-
tein folding [11], in which the protein is represented by a
self-avoiding chain of hydrophobic (H) or polar (P) beads
on a lattice. Two beads are said to be in contact if they are
nearest neighbors on the lattice, but not along the chain. A
given chain configuration is assigned an energy defined as
EHP = −NHH, where NHH is the number of HH contacts [11].
With this choice of energy, low-energy configurations tend to
exhibit a hydrophobic core of H beads. Despite the simplicity
of the model, there are HP sequences with a unique ground
state, and therefore a well-defined structure. In particular, on
a two-dimensional square lattice, it is known from exhaustive
enumerations that about 2% of all HP sequences with � 30
beads have a unique ground state [19,20].

B. Binary quadratic model for HP lattice
proteins – QUBO encoding

Given an HP sequence (h1, . . . , hN ), hi ∈ {P, H}, we wish
to determine its ground state using QA. To this end, in this
section, we present a binary encoding for HP lattice proteins,
assuming a square grid with L2 sites.

Inspired by the binary representation of homopolymers of
Ref. [15], rather than directly encoding chain configurations,
we introduce fields of binary variables along with penalty
terms. These terms serve to ensure that the final binary field
configurations correspond to proper chain configurations. To
reduce the number of binary variables, we make a checker-
board division of the lattice into even and odd sites, and use
the fact that in a valid chain configuration all even (odd) beads

share the same lattice site parity (see Fig. 1). As a result,
we may assume that even (odd) beads reside on even (odd)
lattice sites. Thus, we introduce one set of binary fields, σ

f
s ,

to describe the location of even beads, and another set for
odd beads σ

f ′
s′ . Here, the indices f and s run over even beads

and sites, respectively, while f ′ and s′ run over odd beads and
sites. We set σ

f
s = 1 if bead f is located on site s, and σ

f
s = 0

otherwise. The odd fields σ
f ′

s′ are defined in the same way.
The division into even and odd sites reduces the number of
variables required from N × L2 to ≈ N × L2/2.

Having defined the degrees of freedom, we now describe
the energy function. In our QUBO model, the total energy E
has the form

E = EHP +
3∑

i=1

λiEi, (1)

where EHP is the energy of the HP model (see above) and the
remaining three terms E1, E2 and E3 are constraint energies.
The strengths of the constraints are set by the parameters λi.

Specifically, in terms of the binary fields, the four energies
can be expressed as follows:

(i) The HP energy EHP = −NHH can be rewritten as

EHP = −
∑

| f − f ′ |>1

C(h f , h f ′ )
∑
〈s,s′〉

σ f
s σ

f ′
s′ , (2)

where the interaction strength C(h f , h f ′ ) = 1 if h f = h f ′ = H
and C(h f , h f ′ ) = 0 otherwise. In Eq. (2), the second sum runs
over all nearest-neighbor pairs of sites, 〈s, s′〉. Such a pair
always consist of one even and one odd site. The beads f and
f ′ must both be of type H for a nonzero energy contribution,
and must not, with our definition of a contact, be adjacent
along the chain.

(ii) The first constraint energy, E1, is given by

E1 =
∑

f

(∑
s

σ f
s − 1

)2

+ {same for odd parity}, (3)

and serves to ensure that each bead is located at exactly one
lattice site.

(iii) The energy E2 makes the chain self-avoiding. It is
given by

E2 = 1

2

∑
f1 �= f2

∑
s

σ f1
s σ f2

s + {same for odd parity}, (4)

and provides an energy penalty whenever two beads occupy
the same site.

(iv) The final energy, E3, has the form

E3 =
∑

1� f <N

∑
s

σ f
s

∑
‖s′−s‖>1

σ
f +1

s′

+ {same with odd/even parity interchanged}, (5)

and is responsible for connecting the beads to a chain. It pro-
vides an energy penalty whenever two adjacent beads along
chain are not nearest neighbors on the lattice.

Our model contains three parameters; λ1, λ2, and λ3

[Eq. (1)]. It is desirable that when executing the model it is
reasonably robust with respect to these parameters. This will
turn out to be the case in Sec. III when exploring the method.
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FIG. 1. Illustration of a hypothetical evolution of the binary model described in Sec. II B for the 6-bead sequence HPHPPH. Circles
represent beads, and numbers indicate bead positions along the sequence. By construction, odd/even beads can reside only on grey/white
sites. (a) Early stage. Typically, all the three constraints are violated (E1, E2, E3 > 0). (b) Intermediate stage. Some but not all of the constraints
are satisfied (in this example: E1 = E2 = 0, E3 > 0). (c) The final state, in this example corresponding to the desired minimum-energy structure
of the given sequence (EHP = −2, E1 = E2 = E3 = 0).

As indicated in Sec. I, the above binary model shares simi-
larities with the “diamond” encoding proposed in Ref. [16].
The latter method is able to reduce the number of binary
variables required for very short chains, by fixing the position
of the first bead and using the fact that odd and even beads
can be assumed to belong to different “diamond” layers. For
long chains, our choice of a freely moving chain on a simple
odd/even checkerboard is more resource-efficient, because, in
general, the search for the ground state can be carried out on
a smaller grid if the chain is freely moving. Our constraint
energies Ei also differ from those of Ref. [16]. In our case, all
three constraint energies are manifestly non-negative for both
physical and unphysical spin configurations, which makes our
method more robust to changes in the strength parameters
λi. Since the encoding in Ref. [16] was never explored, a
robustness analysis is not available there.

C. Scaling properties

The binary model introduced above uses ≈ NL2/2 spins
to describe the structure of an N-bead HP protein on an L2

grid. In order that the (in general a priori unknown) minimum-
energy structure fits inside the simulation grid, the lattice size
L has to be chosen according to the protein sequence. A safe
choice is to take L = N , in which case the number of spins
scales cubically with N . However, a typical minimum-energy
structure is compact, since it contains many attractive H-H
contacts, and fits onto a grid with L not much larger than√

N . Such a structure may therefore be found using N2 rather
than N3 spins. Note that the assumption of a square grid is
unnecessary and was only made for simplicity. For a general
grid shape, the number of spins scales as N times the number
of grid points.

Compared to our encoding, turn-based ones [12,16] pro-
vide a more economic description of the chain geometry, re-
quiring only ∼N spins. However, additional spins are needed
in order to formulate the Hamiltonian. A resource-efficient
turn-based binary model with a quadratic Hamiltonian was
proposed in Ref. [16], which in total uses ∼N2 spins. Here,
the number of spins is thus comparable to that of our model
when using a reduced grid size. However, in the turn-based
model [16], the Hamiltonian is somewhat complicated already
for N = 6, and it would be challenging to implement it for

the chain lengths studied here. In contrast, the Hamiltonian
in Sec. II B retains its simple and convenient structure as the
chain length is increased.

D. Simulated annealing

Before turning to QA, we tested this QUBO model us-
ing SA, with the system defined by the partition function
Z = ∑

{σ f
s ,σ

f ′
s′ } e−βE , where β denotes inverse temperature and

E is given by Eq. (1). All runs spanned the same set of 25
temperatures, given by β0 = 1 and βi+1 = 1.05βi. At each
temperature, 104 sweeps were performed, where one sweep
comprises, on average, one attempted update per spin variable.
The updates were single-spin flips, controlled by a Metropolis
acceptance criterion. All runs were started from random initial
spin configurations, and used a 102 grid.

For comparison, we also conducted SA runs based on the
conventional explicit-chain representation of the HP model.
Here, the energy was given by EHP, without the constraint
terms. The set of temperatures was the same as in the QUBO
SA runs. The simulations used three standard Metropolis-type
elementary moves: local one- and two-bead updates, and a
nonlocal pivot update. At each temperature, 105 sweeps were
performed, with one sweep consisting of N − 1 one-bead
moves, N − 2 two-bead moves and one pivot move. The
chains were not confined to a finite-size grid.

All SA simulations were run on a standard desktop com-
puter. For N = 30, each QUBO SA run required 21 CPU-core
seconds, whereas each explicit-chain SA run required 5 CPU-
core-seconds. To gather statistics, for each sequence, we
performed 1000 runs with each method, using different ran-
dom number seeds.

E. Hybrid quantum-classical computations

D-Wave offers access to solvers based solely on QA as well
as hybrid quantum-classical solvers. The hybrid approach
uses classical solvers while sending suitable subproblems as
queries to the quantum processing unit (QPU). The solutions
to the subproblems serve to guide the classical solvers [25].
The goal is to speed up the solution of challenging QUBO
problems by queries to the QPU. With the hybrid approach,
it is possible to tackle much larger problems, with many
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thousands of fully connected variables, than what can be dealt
with using QA alone.

We conducted hybrid quantum-classical computations for
HP chains with up to 64 beads, using D-Wave’s hybrid solver
services and a D-Wave Advantage quantum computer. All
sequences with N � 30 were folded on a 102 grid using the
default run time set by the hybrid solver, which depends on
problem size and was 4 s for N = 30. To gather statistics, a set
of 100 runs were performed for each sequence. Two additional
sequences were studied, with N = 48 and N = 64, respec-
tively, using both 102 and 152 grids. For these sequences, the
run time for the hybrid solver had to be taken larger than
the default run time, to ensure satisfactory hit rates. For a
given sequence and grid, computations were performed for
a number of different run times, to investigate the run time
dependence of the hit rate. For each choice of sequence, grid
and run time, 10 runs were performed.

F. Pure QPU computations

The 5000-qubit Advantage machine uses a Pegasus topol-
ogy with a connectivity of 15 [24]. Thus, in order to solve
a problem with higher connectivity, it has to be embedded
into the Pegasus graph. This embedding is done by forming
“chains” of qubits that act as single qubits. The strength of
the coupling between the qubits within a chain is a tunable
parameter, called the chain strength. This parameter is typi-
cally chosen slightly larger than the minimum chain strength
needed to avoid chain breaks.

D-Wave offers several so-called samplers for finding em-
beddings into the QPU topology and performing the QPU
computation. We used the DWaveCliqueSampler, designed
for dense binary quadratic models. All the computations used
a chain strength between 1 of 7.5 and the annealing time
was set to τ = 2000 μs, its maximum allowed value. The
number of output reads (annealing cycles) per run, which must
be <106/(τ/μs), was set to 490. For each system studied,
100 runs were executed, each with this number of annealing
cycles.

G. Testbed – HP sequences

As a testbed, we use a selected set of HP sequences with
4–30 beads, all of which are known from exhaustive enumera-
tions to have a unique minimum-energy structure [19,20]. The
sequences are labeled SN , where N indicates the number of
beads.

A sequence having a unique minimum-energy structure
is said to design that structure. The number of different se-
quences designing a given structure is called the designability
of the structure. Structures with high designability thus show
robustness to mutation.

For a given N � 30, the selected sequence SN is one of
those that fold to the structure with highest designability for
that N .

In addition, we included in our study two sequences with
N = 48 and N = 64, respectively, for which low-energy struc-
tures have been explored by various classical methods.

The sequences SN along with illustrations of low-energy
structures can be found in Appendix A.

FIG. 2. Run-time evolution of the HP energy EHP and the con-
straint energies E1, E2, and E3 in a QUBO SA folding simulation
for the 30-bead sequence S30 (Appendix A) on 102 grid, with λ =
(2.1, 2.4, 3.0).

III. RESULTS

Using the spin representation of Sec. II B, we wish to
find minimum-energy structures of given HP sequences by
minimizing the total energy E = EHP + ∑

i λiEi [Eq. (1)] on a
quantum annealer. As a first step toward this goal, we investi-
gate the power of the QUBO approach under classical SA, and
how it depends on the Lagrange parameters λi. We next do the
same using the hybrid quantum-classical solver. Finally, we
compare the results by using the QPU annealer only. We find
that the hybrid quantum-classical solver outperforms all the
other approaches listed above for our application, in terms of
ease of achieving 100% hit rate and consumed computer time.

A. Simulated annealing with QUBO encoding

In our binary model, the EHP energy can become substan-
tially lower than it is in any proper chain conformations. For
this QUBO approach to work, it is therefore essential that
the λi parameters that force the solutions to be “legal” are
sufficiently large. On the other hand, by choosing large λi

values, one risks making the energy landscape rugged, and
therefore the dynamics potentially slow. Hence, the λi param-
eters should be neither too large nor too small.

To gain insight into the behavior of the binary model and
its dependence on the λi parameters, we conducted a set of
classical Monte-Carlo-based SA runs (Sec. II D), using the HP
sequences S18–S30 in Appendix A. The runs had a fixed length
and were deemed successful if the final state corresponded
to the known minimum-energy structure of the given HP se-
quence. As expected, in order to have an acceptable hit rate,
it was necessary to choose the λi parameters with some care.
Nevertheless, without excessive fine-tuning, it was possible to
find a single set of parameters, λ = (2.1, 2.4, 3.0), that gave
a hit rate �0.1 for all the sequences S18–S30 (see below).
We refrained from attempting any further optimization of the
parameters, as the optimal values need not be the same on a
quantum annealer. The optimal parameters would, of course,
also depend on both HP sequence and grid size.

Figure 2 shows the run-time evolution of the four different
energy terms in one of 1000 QUBO SA runs for the sequence
S30. At the end of the run, all the three constraint energies
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FIG. 3. Parameter dependence of the fraction of correct solutions (hit rate) in the vicinity of a reference point λ∗, when using QUBO
SA and hybrid quantum-classical computation to search for the ground state of the S30 sequence (Appendix A) on a 102 grid. The hit rate is
plotted against �λi = λi − λ∗

i , keeping λ j = λ∗
j for j �= i. Lines are drawn to guide the eye. (a) QUBO SA with λ = (2.1, 2.4, 3.0). (b) Hybrid

quantum-classical computations with λ = (2.0, 3.0, 3.0). Note the difference in scale between the two panels, reflecting the difference in
performance as shown in Fig. 4.

Ei vanish, while EHP takes its known minimum value for an
HP chain with this sequence (Emin = −15). Hence, the final
spin configuration corresponds to the S30 ground state in the
HP model. The hit rate, defined as the fraction of runs ending
in the ground state, was 0.226 ± 0.013. The remaining runs
ended in spin configurations that either did not correspond to a
proper chain, or corresponded to a structure with EHP > Emin.
In the beginning of the runs, the spin system undergoes a
rapid relaxation, which brings the energies from initial values
EHP ∼ −103 and λ1E1 + λ2E2 + λ3E3 ∼ 105 to the plotted
range before the first measurement is taken (after 103 sweeps).
We note that among the three constraint energies, E1 and E3

tend to relax much more slowly than E2, as is the case in
Fig. 2. Note also that the HP energy takes values EHP < Emin

many times during the course of the run. Such values can
occur only when at least one constraint is broken.

To elucidate the λ dependence of the hit rate, we also per-
formed QUBO SA calculations for a set of additional λ near
λ = λ∗ = (2.1, 2.4, 3.0) using the sequence S30. Figure 3(a)
shows the observed the hit rates when changing one λi at a
time. In all three λi, the hit rate stays tiny until a threshold is
passed, followed by a steep increase to the maximum observed
hit rate, for λi = λ∗

i . When further increasing λi beyond λ∗
i ,

the hit rate decays, probably due to an increasingly rugged
energy landscape. This decay leads to an upper limit on the
parameter λ1, beyond which the hit rate is impractically small.
By contrast, the hit rate stays significant even for λ2 and λ3

values much larger than those in Fig. 3(a). In fact, setting λ2 =
100 or λ3 = 100, we still obtained hit rates of 0.132 ± 0.011
and 0.074 ± 0.008, respectively. Hence, overall the parameter
sensitivity is low, although λ1 must be chosen with some care.

The fact that the λ1 dependence has a different shape than
the dependences on λ2 and λ3 can be, at least in part, un-
derstood. With the single-spin updates employed, the system
cannot move from one chainlike configuration to another,
both with E1 = E2 = E3 = 0, without visiting intermediate
nonchain configurations with E1 > 0. By contrast, E2 and E3

may stay zero during such a move. These observations suggest
that the energy landscape indeed is rugged for large λ1, but not
necessarily so for large λ2 or λ3.

To explore how the hit rate of the QUBO SA approach
depends on chain length, we conducted calculations for all
the HP sequences S18–S30 in Appendix A, using λ = λ∗. As
expected, the measured hit rates show a decreasing trend
with increasing N (Fig. 4). However, the decrease is not
monotonous, indicating that the hit rate is sequence-dependent
and not a simple function of N .

For comparison, we also carried out a set of direct SA
minimizations of EHP based on conventional explicit-chain
Monte Carlo methods (Fig. 4). Despite being faster, the hit
rate is higher in these runs than it is with QUBO-based SA.
However, the difference in hit rate is modest given that state
space for explicit chains is comparatively tiny. Note the simi-
larities in shape between the hit rates obtained from these two
unrelated sets of SA calculations. These similarities suggest

FIG. 4. Fraction of correct solutions (hit rate) when searching for
the ground state of HP chains with 18 � N � 30 beads by using the
D-Wave hybrid solver with QUBO encoding (blue), SA with explicit
chains (black), and SA with QUBO encoding (red). The HP se-
quences studied can be found in Appendix A. The parameters λ were
set to (2.1, 2.4, 3.0) in the QUBO SA runs, and to (2.0, 3.0, 3.0)
when using the hybrid solver. All QUBO-based results were obtained
using a 102 grid. The hybrid computations used the default run time
for the solver (4 s for N = 30).
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FIG. 5. Hybrid quantum-classical computations for the sequences S48 and S64 (Appendix A), using λ = (2.0, 3.5, 3.0) for S48 and λ =
(3.0, 4.0, 4.0) for S64. (a) Fraction of runs that found the lowest known energy, Emin, in hybrid computations on 102 and 152 grids for the
sequences S48 (Emin = −23 [23]) and S64 (Emin = −42 [22]), plotted against run time for the hybrid solver (logarithmic scale). The horizontal
line indicates a hit rate of 0.5. (b) Example of an S64 structure with the lowest known energy (Emin = −42) that was obtained in the hybrid
computations. Filled and open symbols indicate H and P beads, respectively.

that some target structures are relatively easy or difficult to
find, independent of the method employed.

B. Hybrid quantum-classical computations

A promising alternative to pure QA is provided by hy-
brid quantum-classical methods, by which larger systems can
be studied. To assess the power of this approach, we con-
ducted hybrid computations for all the HP sequences studied
in Sec. III A, S18–S30 (Appendix A), using the default run
time for the hybrid solver. We additionally included a two
longer sequences [21], which have been extensively used as
testbeds for various (classical) methods. For these sequences,
the dependence of the hit rate on run time was explored.

As in the SA case, with the hybrid solver, a rough search
was sufficient in order to find a single λ, λ∗ = (2.0, 3.0, 3.0),
for which all the sequences S18–S30 could be correctly folded
on a 102 grid. Figure 3(b) shows the parameter dependence of
the hit rate near λ∗ when using the hybrid solver. Compared
to QUBO SA [Fig. 3(a)], the measured hit rates are markedly
higher with the hybrid solver (Fig. 4). At the same time, the λi

dependences share a similar shape in both cases. In particular,
in both cases, the hit rate is more sensitive to changes in λ1

than to changes in λ2 or λ3. As in the SA case, λ2 or λ3 can
be chosen far above the plotted range in Fig. 3, without any
major loss in hit rate. In fact, when setting λ2 = 100 or λ3 =
100, we obtained hit rates of 0.980 ± 0.014 and 0.54 ± 0.05,
respectively. Overall, the parameter sensitivity is lower with
the hybrid solver than with QUBO SA.

When comparing hit rates from our hybrid and QUBO SA
runs for the sequences S18–S30, we find that it is consistently
highest in the hybrid case (Fig. 4). In fact, the hit rate is one
across this entire set of sequences for the hybrid solver, despite
using the shortest run time that can be set for the solver.

It is important to note that when folding the sequences S18–
S30, the hybrid solver did not always make use of the QPU.
The fraction of runs that used the QPU increased with N and
was above one half for N > 21. Still, the precise contribution
of the QPU to the final results is hard to judge since the details
of the hybrid solver are not publicly available information.
Nevertheless, the ease with which these sequences could be

folded motivated us to also test the hybrid solver on two sig-
nificantly longer sequences, namely S48 and S64 (Appendix A)
with 48 and 64 beads, respectively.

For these two sequences exact results are not available, but
both belong to a set of HP sequences that have been widely
used to test novel (classical) algorithms [21]. The lowest
known energies are EHP = −23 for S48 [23] and EHP = −42
for S64 [22]. In order to obtain good results, the λi parameters
had be to adjusted for these larger chains to λ = (2.0, 3.5, 3.0)
for S48 and λ = (3.0, 4.0, 4.0) for S64. In addition, using the
default run time for the hybrid solver (6 s for S48 and 8 s for
S64), as was done for S18–S30, turned out to give unsatisfacto-
rily low hit rates for S48 and S64. Therefore, we investigated
the run time dependence of the hit rate. To this end, we carried
out computations with several different run times for both S48

and S64, using both 102 and 152 grids.
Figure 5(a) summarizes the run time dependence of the hit

rate as observed in these runs, for both sequences and grids.
For a given sequence and grid, a steep increase in hit rate can
be seen once the run time passes a threshold. While a hit rate
of unity is reachable for the systems in Fig. 5(a), a natural
measure of performance is provided by the run time required
to obtain a hit rate of 0.5, denoted by t1/2. For a given grid, the
value of t1/2 is roughly 10 times larger for S64 than for S48. An
increase in t1/2 by roughly a factor 10 is also observed when
increasing the grid size from 102 to 152 for a given sequence.
It would be interesting to further explore the dependence of
t1/2 on chain length and grid size. However, a systematic study
of this problem is beyond the scope of the present paper,
especially since such a study should also address the sequence
dependence of t1/2. For the sequences S18–S30 studied earlier,
the default run time is apparently above the threshold, as the
hit rate is 1.0.

An example of an S64 structure with the lowest known
energy that was obtained in our hybrid computations can be
found in Fig. 5(b).

C. Pure QPU computations

The QUBO problem that we wish to solve for finding
minimum-energy HP structures contains ≈ NL2/2 logical
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FIG. 6. Pure QPU computations. For every choice of sequence
and grid size studied, we conducted 100 runs with 490 annealing
cycles each. The sequences can be found in Appendix A. (a) The
hit rate on a logarithmic scale against the number of physical qubits
used for the sequences S4, S6, S7, S8, S9, and S10 for various grid
sizes, using λ = (1.0, 2.0, 1.5). The grids used can be found in
Appendix B. Statistical errors are in many cases comparable with
or smaller than the symbol sizes. (b) The minimum-energy structure
for the sequence S14, which was successfully recovered on a 42 grid,
using λ = (2.0, 7.0, 4.0). Filled and open symbols indicate H and P
beads, respectively.

qubits. Moreover, the system is almost fully connected, im-
plying that its embedding into the QPU topology requires
a significant amount of additional qubits. Therefore, pure
QPU computation is effectively limited to relatively short HP
chains.

To explore how the performance of the pure QPU approach
depends on system size, we conducted computations for the
six sequences S4, S6, S7, S8, S9 and S10 (Appendix A), with
each sequence run on several different grids. The grids used,
which include nonsquare rectangular ones, can be found in
Appendix B, along with the numbers of logical and physical
qubits involved. The number of physical qubits grows to a
good approximation quadratically with the number of logical
qubits, as illustrated in Appendix B.

Figure 6(a) shows the fraction of all annealing cycles that
recovered the known minimum-energy structure, for these
systems, plotted against the number of physical qubits em-
ployed. The parameters λi and the annealing time were the
same for all systems, whereas the chain strength was chosen
individually for each system, for best performance (among the
values 1.0, 1.5,. . . , 4.5, 5.0). Albeit with some scatter, the
hit rate shows a roughly exponential decay with the number
of physical qubits used. In part, this deterioration of perfor-
mance with increasing system size may stem from integrated
Hamiltonian control errors, which will reduce the probability
of finding the ground state of the intended Hamiltonian [26].
Remedies to this problem are being explored [26].

In Fig. 6(a), the hit rate falls off most rapidly for the
shortest chain studied, with N = 4. This behavior is likely an
artifact due to suboptimal λi parameters, which, for simplicity,
are kept the same for all systems. In fact, for the largest N = 4
system with 192 physical qubits, a significantly higher hit rate
(≈0.02) was observed when changing λ1 from its value 1.0 in
Fig. 6(a) to 1.5.

The longest sequence that was successfully folded in our
pure QPU computations was S14 with 14 beads (Appendix A).
This sequence, whose minimum-energy structure can be seen

in Fig. 6(b), was studied using a 42 grid, which required 112
logical and 1214 physical qubits. The chain strength was set to
7.5. To our knowledge, this is the largest protein successfully
folded using a quantum computer. However, the ground state
was only recovered in one of a total of 100 × 490 annealing
cycles. This number of cycles is larger than the number of
distinct conformations available to a chain with 14 beads on a
42 grid, which is 416. On the other hand, it is tiny compared
to the 2112 ≈ 5.2 × 1033 states of the binary system, the vast
majority of which do not correspond to proper chain configu-
rations. Finally, we note that our S14 system is similar in size
to the largest system solved in a recent benchmarking study of
the D-Wave Advantage machine using exact cover problems,
which contained 120 logical qubits [27].

It is possible that the pure QPU results can improved
by further tuning of the simulation parameters. However,
at present, we conclude that pure QPU computation cannot
match classical SA or the hybrid quantum-classical approach
(Secs. III A and III B).

IV. SUMMARY AND OUTLOOK

We have developed a novel mapping of the two-
dimensional HP lattice protein model onto a quantum
annealer, which is successfully explored on the D-Wave Ad-
vantage system. This simplified model for protein structures is
known to represent a difficult optimization problem when de-
termining structure using classical methods. As benchmarks
for success, we used HP chains with sizes ranging from N = 4
to N = 30, for which the exact solutions are known from
exhaustive enumerations. For larger problems, with N = 48
and N = 64, we compared with the best known solutions ob-
tained by classical means. The approach allows us to explore
the largest chains studied so far on a quantum annealer, and
consistently provides high percentages of correct solution on
multiple runs. However, the success of our approach relies
upon using the hybrid variant provided by D-Wave. The per-
formance of pure QA is less impressive with a drastic decrease
in success rate as the system size is increased. These calcula-
tions were therefore limited to chains with at most N = 14.

Our approach differs from previous attempts based upon
growth algorithms, as it maps the problem onto a lattice spin
system where the spins, or qubits, are present throughout
the lattice. In comparison to earlier work, this representa-
tion greatly facilitates the handling of interactions, including
self-avoidance. In particular, with this encoding, the energy
function can be written in a quadratic form without adding
any auxiliary spins.

The encoding requires penalty terms for the global energy
minimum of the spin system to correspond to a proper chain.
The method is robust to changes in the strengths of the penalty
terms, which require only a modest amount of tuning.

For convenience, we have focused on the HP model with
its minimal two-letter alphabet. To extend the approach to
models with larger alphabets, such as the 20-letter Miyazawa-
Jernigan model [28], is straightforward, as it amounts to
simply changing the interaction parameters in Eq. (2). More-
over, although the checkerboard division into even and odd
sites may have to be modified or abandoned, the method can
be applied to an arbitrary graph. In particular, it can be directly
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FIG. 7. Ground states for all the sequences SN in Appendix A with N � 30 [19,20] except S14 [whose ground state can be found in
Fig. 6(b)]. Also shown is an S48 structure, which is one of the structures with the lowest known energy for this sequence found using the hybrid
solver. A low-energy structure for the sequence S64 can be found in Fig. 5(b).
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applied to three-dimensional grids, including the tetrahedral
one used in Ref. [13].

Finally, we note that a similar approach could be applicable
to gate-based quantum computers. This could potentially take
the form of a quantum variational algorithm or a quantum
search algorithm.
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TABLE I. The HP sequences studied. The sequences are labeled
SN , where N indicates the number of beads. All SN with N � 30 have
a known, unique minimum-energy structure [19,20]. The minimum
energy is denoted by Emin. For all N � 30, the sequence SN is chosen
among those having the most highly designable structure for this
N as its unique minimum-energy structure. For the additional and
longer sequences S48 and S64, the ground states are unknown. Here,
the Emin values, marked with an asterisk, are the currently lowest
known energies, found with classical methods [22,23]. Low-energy
structures for the different sequences can be found in Figs. 5(b) (S64)
and Figs. 6(b) (S14), and Appendix A (all other SN ).

Name Sequence Emin

S4 HPPH −1
S6 HPPHPH −2
S7 PHPPHPH −2
S8 HPHPHPPH −3
S9 HHPPHPPHP −3
S10 HPPHPPHPPH −4
S14 HHHPPPHPPHPPPH −5
S18 HHHPPHPPHPHPPHPHPH −9
S19 PHPHPHPPHPHPPHPPHHH −9
S20 HPHPHPPHPHPPHPPPPHHH −9
S21 PHHPPHPHPPHPHPPHPPHHH −10
S22 HPPHPPHPHPPHPHPPHPPHHH −11
S23 PPHHHHPPHPPHPHPPHPHPPHP −10
S24 HPPPPHPPHPHPPHPHPPHPPHHH −11
S25 PHPHPHPHPPHPHPHPPHPPHHHHH −13
S26 HHHHPPHHPPHPHPPHPHPPHHPPHH −14
S27 PHPHPHPHPPHPHPHPPHPPPPHHHHH −13
S28 PPHHHPPHPPHPHPHPPHPHPPHPPHHH −13
S29 PHPHPHPPHHPPHPHPPHPPHHHHPPHHH −15
S30 PPHHHHPPHPPHPHPPHHPPHPHPHPPHHH −15
S48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPP −23∗

HHPPHHPPHPPHHHHH
S64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPP

HHPPHPPHHPPHHPPHPHPHHHHHHHHHHHHH −42∗

TABLE II. The grids used when obtaining the data in Fig. 6(a) for
the sequences S4, S6, S7, S8, S9 and S10 (Appendix A), along with the
numbers of logical and physical qubits needed. The embeddings into
the QPU topology were generated using DWaveCliqueSampler.

Sequence Grid Logical qubits Physical qubits

S4 3 × 2 12 36
3 × 3 18 54
4 × 3 24 90
5 × 3 30 114
4 × 4 32 154
5 × 4 40 192

S6 3 × 2 18 54
3 × 3 27 102
4 × 3 36 172
4 × 4 48 278
6 × 3 54 314

S7 4 × 3 42 202
4 × 4 56 382
6 × 3 63 429

S8 4 × 3 48 278
4 × 4 64 436

S9 4 × 3 54 314

S10 4 × 3 60 408
5 × 3 75 586

APPENDIX A: HP SEQUENCES AND STRUCTURES

This appendix provides sequence and structure information
for the HP model proteins studied in our hybrid quantum-
classical and pure QPU computations. Table I lists all the HP
sequences studied, and Fig. 7 shows low-energy structures.

FIG. 8. Relation between the numbers of physical and logical
qubits in pure QPU calculations for the sequences S4, S6, S7, S8,
S9 and S10 on different grids [Fig. 6(a), Appendix B]. The curve
represents a fit of the form f (x) = ax + bx2 (a = 1.85, b = 0.093).
The embeddings into the QPU topology were generated using
DWaveCliqueSampler.
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APPENDIX B: DETAILS OF THE PURE QPU
COMPUTATIONS

This appendix provides details of the pure QPU computa-
tions discussed in Fig. 6. Table II shows the grid sizes and

the numbers of logical and physical qubits used. Figure 8
illustrates the relation between the numbers of logical and
physical qubits.
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