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Resolving mutually-coherent point sources of light with arbitrary statistics
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We analyze the problem of resolving two mutually coherent point sources with arbitrary quantum statistics,
mutual phase, and relative and absolute intensity. We use a sensitivity measure based on the method of moments
and compare direct imaging with spatial-mode demultiplexing (SPADE), analytically proving advantage of the
latter. We show that the moment-based sensitivity of SPADE saturates the quantum Fisher information for all
known cases, even for non-Gaussian states of the sources.
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I. INTRODUCTION

The problem of resolving two point sources has been
intensively studied as a model problem for optical system
resolution characterization for more than a century. For a
long time, only visual observation of the light coming from
the sources was available; thus, resolving criteria, such as
Rayleigh criterion, were based on characteristics of intensity
distribution resolvable by the human eye [1,2]. However, it is
possible to resolve sources beyond visual resolution criteria
by performing a full statistical analysis of the intensity distri-
bution in the image plane [3]. One can estimate the separation
of the two sources from this measurement, and the efficiency
of this estimation can be evaluated based on the Cramér-Rao
bound, which is expressed in terms of the Fisher information
(FI). We refer to spatially resolved intensity measurements as
direct imaging (DI). This technique often leads to a vanishing
FI in the limit of small separations; this feature, known as
Rayleigh’s curse [4], implies that a larger number of measure-
ments is needed to resolve smaller separations. At the same
time, an analysis of the quantum FI (QFI), which provides
the ultimate resolution limit, showed that, in most cases, one
can increase the resolution and avoid Rayleigh’s curse by
choosing a better measurement than DI [4].

A good example of such a measurement is spatial-mode
demultiplexing (SPADE) [4,5]. SPADE proposes to decom-
pose the field in the image plane into spatial modes and
to measure the intensity in each of these modes. With the
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appropriate choice of the measurement modes, all the infor-
mation about the parameters is often encoded into a small
number of modes. This allows us to use faster and less noisy
detectors than array detectors required for DI. The resolution
of SPADE for uncorrelated thermal sources was widely stud-
ied theoretically [6–11] and experimentally [12–14]. The FI
of this measurement, calculated in the limit of small pho-
ton numbers, was proved to saturate the ultimate bound set
by the QFI [5,15]. Recently, another measure of resolution
was proposed—a sensitivity measure based on the method
of moments [16,17]. This measure allowed us to analyze the
problem of resolving bright uncorrelated thermal sources and
proved SPADE to saturate the ultimate limits without the
need to assume low source intensities [8,9]. Moreover, the
moment-based approach gives a practical way to determine
a bound on the sensitivity of specific measurements which
can be saturated by a parameter retrieval method that does
not require complicated data processing. Since this method
is based only on the mean values of the observables, it can
be effectively implemented with slow detectors, not resolving
individual pulses.

While early results focused on incoherent sources, the role
of the mutual coherence of the sources was the subject of
recent discussions [18–25]. Despite these studies, there are
still gaps in knowledge in this area. This is especially true for
bright sources since most of the cited research is based on the
assumption of low intensity of the detected signal. Neverthe-
less, the study of the QFI of partially correlated thermal light
shows a significant influence of the brightness of the sources
on resolution limit [15,26]. Thus, for practical application of
SPADE, it is important to develop its description for the case
of bright sources and to identify a practical estimator for the
separation from the measurement results.

In this paper, we focus on the fundamentally and practi-
cally important case of a pair of perfectly mutually coherent
sources. Within this framework, in contrast to previous works
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FIG. 1. On the left: conceptual scheme for generating a general
two-mode coherent state based on a beam splitter with transmissivity
T = cos2 θ and a phase shifting element φ. On the right: optical
scheme for the estimation of the separation of the sources, where
κ is the transmissivity of the imaging system, and photon counting is
performed in the measurement modes fm(�r) with corresponding field
operators âm.

[5,7,8,15,21], we consider the most general quantum state of
the emitted light and make no assumption about the absolute
and relative brightness and relative phase of the sources. Using
the method of moments, we analyze the sensitivity of DI and
SPADE for the estimation of the separation of the sources. We
present an upper bound for the resolution of the DI technique
and analytically prove an advantage of the SPADE approach
for a wide range of parameters and various quantum states.
Considering a multiparameter estimation approach, we ana-
lytically find the separation estimation sensitivity with and
without prior knowledge about the brightness of the sources.
We show that antibunching of the radiation of the sources
leads to an increase of the sensitivity, but at the same time, the
ignorance of the brightness of the sources wipes out any pos-
sible profit from nonclassical statistics of the sources. Finally,
we show that the calculated sensitivity saturates the QFI for
those cases where it is known. On top of traditional examples
of coherent and thermal states, these include non-Gaussian
states of the sources such as entangled Fock states, for which
the QFI of separation estimation is maximal [15]. Obtained
results can be easily generalized to other parameter estimation
problems based on photon counting and mutually coherent
probes or a single-mode probe, like coherent imaging [27] or
even distributed quantum sensing [28].

The outline of the paper is as follows. In Sec. II, we intro-
duce the model of the sources and describe detection of the
emitted light. Section III describes the method of moments
and presents the sensitivities for the single- and multiparame-
ter cases. In Secs. IV and V, we analyze the sensitivity coming
from relative and total intensity measurements, respectively.
In Sec. VI, we compare the obtained sensitivity with the QFI.

II. SOURCES AND DETECTION MODELS

We consider an optical scheme for parameter estimation,
where two pointlike sources emit light, which passes through
a diffraction-limited imaging system (see the right part of
Fig. 1). Then the parameters of the sources, such as the sep-
aration d , are estimated from measurements of the diffracted
light.

A. Emitted field

Point sources emit light in the orthogonal modes with field
operators ŝ1,2. We only consider mutually coherent sources,
meaning that the absolute value of the first-order degree of co-
herence of the emitted light is |g(1)| = 1. One can always find
a single mode (called the principal mode) that fully describes
this field configuration. Thus, the most general mutually co-
herent state of the modes ŝ1,2 can be considered the result of
splitting some mode ŝ0 on an asymmetric beam splitter with
transmissivity T = cos2 θ and adding a phase φ to one of the
output modes ŝ1,2 (see the left part of Fig. 1). The first-order
coherency matrix of the modes ŝ1,2 reads

〈ŝ†
j ŝk〉 =

[
NS cos2 θ NS

2 sin 2θ exp(iφ)
NS
2 sin 2θ exp(−iφ) NS sin2 θ

]
, (1)

where NS = Tr(ρ̂0ŝ†
0ŝ0) is the average number of emitted pho-

tons, and the parameter θ is responsible for the asymmetry
of source intensities, i.e., the ratio between the brightness
of the sources is given by 〈ŝ†

2ŝ2〉/〈ŝ†
1ŝ1〉 = tan2 θ . For con-

creteness, we assume the parameter θ to be within a range
0 � θ � π/4, where θ = π/4 corresponds to equally bright
sources and θ = 0 to all light in mode ŝ1. The parameter

γ = 〈ŝ†
1ŝ2〉/

√
〈ŝ†

1ŝ1〉〈ŝ†
2ŝ2〉 = exp(iφ) is often referred to as the

degree of mutual coherence between modes, and in our case,
it has modulus equal to one.

Note that no assumptions about state ρ̂0 of the mode ŝ0

was made so far: If it is in the coherent state, then the state of
the modes ŝ1,2 is uncorrelated; for thermal statistics of ρ̂0, the
modes ŝ1,2 are classically correlated; for Fock states of ŝ0, the
output modes are entangled.

For further description of the parameter estimation in terms
of the method of moments, we will only need the two first
moments for the state ρ̂0: the average photon number NS and
its variance �N2

S . Thus, a sufficient description of the emitted
field is provided by the set of parameters {NS , �NS , θ , φ}.

B. Field detection

The emitted light goes through an imaging system with
finite aperture that has a transmissivity κ and point spread
function (PSF) u0(�r). Within the paraxial approximation, we
can assume that the transmissivity κ does not depend on
the positions of the sources. In the image plane, the light is
detected either directly (DI) or via SPADE. Both cases can be
described as measurement over some field modes fm(�r) with
corresponding operators âm, where for DI, fm(�r) are localized
pixel modes, and for SPADE, fm(�r) are more general nonlo-
calized modes, for example, the Hermite-Gauss modes. Then
the parameters of interest are estimated from the measured
numbers of photons in the detection modes Nm = 〈â†

mâm〉.
We analyze the estimation of the separation of the sources d
with and without prior knowledge of the number of emitted
photons NS .

Passing through the lossy optical system can be described
as a mixing of the field modes with vacuum modes [15]. Con-
sidering also the vacuum mode from the beam splitter defined
by the parameter θ (see Fig. 1), the field operators of the
measurement modes can be represented as âm = Amŝ0 + ˆ̃vm,
where Am are complex coefficients and ˆ̃vm are nonnormalized
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nonorthogonal combinations of the field operators of vacuum
modes that are orthogonal to the mode ŝ0 (for the proof, see
Appendix A). Thus, in the measurement modes, any normally
ordered average has the following property:

〈: F (â†
m, ân) :〉 = 〈: F (A∗

mŝ†
0, Anŝ0) :〉, (2)

where : X̂ : denotes normal ordering, and F is an arbitrary
analytical function of the field operators. Accordingly, the
average number of detected photons in the mth measurement
mode reads

Nm = 〈â†
mâm〉 = |Am|2NS. (3)

Specifically for the scheme in Fig. 1, the coefficients:

Am = √
κ

∫
d�r f ∗

m(�r)[u0(�r − �r1) cos θ

+ u0(�r − �r2) exp(iφ) sin θ ], (4)

depend on the source positions �r1,2, their intensity asymmetry
(as given by θ ) and mutual phase φ, the transmissivity κ and
the PSF u0(�r) of the imaging system, and the shapes of the
measurement modes fm(�r).

III. MOMENT-BASED SENSITIVITY

To estimate the resolution of the considered optical
scheme, we calculate the moment-based sensitivity (hence-
forth, we will refer to it simply as sensitivity). Within the
framework of the method of moments, the error in the esti-
mation of a set of parameters {qα} from the optimal linear
combinations {Yα} of the mean values {Xm} of commuting
observables {X̂m} is related to the sensitivity matrix [17]:

Mαβ =
∑
m,n

(�−1)mn
∂Xm

∂qα

∂Xn

∂qβ

, (5)

where �mn = 〈X̂mX̂n〉 − XmXn is the covariance matrix of the
observables. The inverse sensitivity matrix gives covariances
for the estimators:

cov (q̃α, q̃β ) = 1

μ
(M−1)αβ, (6)

where μ is the number of measurement repetitions (assumed
to be large), and q̃α are the unbiased estimators based on
Yα . This approach significantly simplifies measurement results
processing and allows us to avoid inferring parameters from
the full photon counting statistics, e.g., maximum likelihood
estimation.

Generally, estimators that include all moments of the ob-
servables {X̂m} can have lower variances, i.e., the following
chain of inequalities holds [17]:

M({qα}, {X̂m}) � F ({qα}, {X̂m}) � FQ({qα}), (7)

where M({qα}, {X̂m}) is the sensitivity matrix in Eq. (5),
F ({qα}, {X̂m}) is the FI matrix, FQ({qα}) is the QFI matrix
[29], and the matrix inequality A � B means that �aT A�a �
�aT B�a for any given column vector �a. Thus, the sensitivity can
be considered a lower bound for the FI. It was shown that the
sensitivity of photon counting in Hermite-Gauss (HG) modes
saturates the QFI for the estimation of the separation between
equally bright uncorrelated thermal sources [8].

Using the expression in Eq. (5), one can calculate the
sensitivity of photon counting in spatial modes fm(�r), i.e.,
use X̂m = â†

mâm as observables . Thus, using the property in
Eq. (2) and Eq. (3), one can find the elements of the photon
number covariance matrix:

�mn = δmnNm + hNmNn, (8)

where h = (�N2
S − NS )/N2

S = g(2) − 1, with g(2) the degree
of second-order coherence. The matrix in Eq. (8) can be an-
alytically inverted with the Sherman-Morrison formula [30],
obtaining

(�−1)mn = δmnN−1
m − h

1 + hND
, (9)

where ND = ∑
m Nm is the total number of detected photons.

Then the sensitivity matrix in Eq. (5) can be expressed as

Mαβ = ND

∑
m

1

εm

∂εm

∂qα

∂εm

∂qβ

+ 1

�N2
D

∂ND

∂qα

∂ND

∂qβ

, (10)

where εm = Nm/ND is the relative photon number, and

�N2
D =

∑
mn

�mn = ND(1 + hND) (11)

is the variance of the total number of detected photons.

A. Single-parameter estimation

If all parameters except the separation d are known, the
sensitivity matrix in Eq. (10) reduces to a single number:

Md = ND

∑
m

1

εm

(
∂εm

∂d

)2

+ 1

�N2
D

(
∂ND

∂d

)2

. (12)

The inverse of this quantity gives the variance of the separa-
tion estimator d̃:

�d̃2 = 1

μ
(Md )−1 = 1

μ

1

NDMε + MD
. (13)

The expression in Eq. (12) has two terms. The first term
equals NDMε, where

Mε =
∑

m

1

εm

(
∂εm

∂d

)2

(14)

does not depend on the state ρ̂0 of the principle mode (that
does not mean that it is independent of the state of the sources
which is also determined by θ and φ) but strongly depends
on the measurement basis { fm(�r)}. Here, Mε can be called
the sensitivity per detected photon of relative intensity mea-
surements. In the limit of small photon numbers where only
a single photon is detected in the image plane, the probability
of finding it in the mth mode equals εm. Thus, in this limit, Mε

coincides with the FI of postselected single-photon detection
outcomes.

The second term:

MD = 1

�N2
D

(
∂ND

∂d

)2

, (15)

does not depend on the individual signals Nm but only on the
total number of detected photons ND; thus, it stays the same
for any measurement basis { fm(�r)} if all photons in the image
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plane are detected. This additional sensitivity MD occurs due
to the interference of mutually coherent sources and the sub-
sequent dependence of the total number of registered photons
ND on the separation d . The variance of the total number of
detected photons in Eq. (11) depends on the quantum statistics
of the source and grows with source bunching.

The expression in Eq. (15) has a self-consistent struc-
ture representing the simple error-propagation formula. In the
small photon number limit, it equals the FI of measuring ND;
thus, in this limit, the sensitivity in Eq. (12) fully coincides
with the FI. In the next subsection, we show that the sensi-
tivity MD, coming from the total number of detected photons,
vanishes if the brightness of the sources NS is unknown.

B. Two-parameter estimation

To better understand the physical meaning of the quantities
Mε and MD, let us consider the two-parameter problem, where
both the separation d and the emitted number of photons
NS are unknown and treated as parameters to be estimated.
The sensitivity matrix in Eq. (10) for the estimation of the
parameters qα = {d, NS} reads

Mαβ =
[

NDMε + MD
1

�N2
D

∂ND
∂NS

∂ND
∂d

1
�N2

D

∂ND
∂NS

∂ND
∂d

1
�N2

D

(
∂ND
∂NS

)2

]
, (16)

where ∂εm/∂NS = 0 is considered. In this case, the variance
of the separation estimator d̃ is given by

�d̃2 = 1

μ
(M−1)11 = 1

μ

1

NDMε

. (17)

This formula shows that, without knowing the number of
emitted photons NS , one can benefit only from measurements
of relative intensities εm. Comparing it with Eq. (13), one can
see that knowing the number of emitted photons NS increases
the sensitivity of separation estimation by the sensitivity MD

obtained from the total detected number of photons. This fact
fits well with the conclusions of the discussion about the effect
of the partial coherence of thermal sources on the resolution
[19,23]. From Eq. (17), one can conclude that ignorance of the
brightness of the sources NS wipes out any possible advantage
from nonclassical statistics of the sources that are only present
in the term MD.

If one uses bucket detection which corresponds to the
detection of all the photons in the image plane and can be
described in this particular case as a single mode measurement
in the principal mode, then the only relative intensity ε0 = 1
does not depend on the parameter; thus, Mε = 0. One cannot
estimate separation from this measurement without knowing
the number of emitted photons NS . If NS is known, then as
expected, full sensitivity of bucket detection is provided by
total photon number detection Md = MD.

Note that following the standard metrological approach,
the position of the centroid (�r1 + �r2)/2 and the orientation
of the pair of sources are assumed to be known prior to the
measurement. Often these parameters, if unknown, can be
estimated with an additional preparatory measurement. How-
ever, one should keep in mind that such an estimation has a
finite precision, and for an asymmetric source, it is correlated
with the estimation of the separation itself [31].

Moreover, we remark that, even though the structure of
the sensitivity expression in Eq. (10) is quite intuitive, it was
derived specifically for the single-mode (fully coherent) case
and does not necessarily hold for other cases. For example, the
estimation sensitivity for the separation of incoherent thermal
sources depends nonlinearly on the brightness of the sources
[8], although the total number of detected photons does not
depend on the separation in this case.

It is worth mentioning that the used property in Eq. (2)
is valid for a quite general class of parameter estimation
schemes, where the parameters are encoded in an arbitrary
number of mutually coherent modes, which are subjected to
correlated parameter-dependent linear losses. Therefore, the
formula in Eq. (10) for the sensitivity matrix of photon count-
ing is valid for this wider class of systems since the explicit
form of coefficients Am in Eq. (4) was never used. Thus,
the developed approach can be used for other problems, like
coherent imaging [27] or quantum sensing in a continuous-
variable entangled network in the single-mode regime [28].

IV. SENSITIVITY OF RELATIVE INTENSITY
MEASUREMENTS Mε

Now let us separately consider the two parts of the sep-
aration estimation sensitivity in Eq. (12). The sensitivity of
the relative intensity measurement Mε does not depend on the
quantum state ρ̂0 but strongly depends on the measurement
basis { fm(�r)}. As we already mentioned, it equals zero for
bucket detection in the principal mode. Here, we consider two
more measurement bases.

A. Direct imaging

By DI, we mean the measurement of the intensity distribu-
tion in the image plane. This distribution reads

I (�r) = κNS
[
u2

0(�r − �r1) cos2 θ + u2
0(�r − �r2) sin2 θ

+u0(�r − �r1)u0(�r − �r2) sin 2θ cos φ
]
, (18)

where the PSF u0(�r) is assumed to be real. Then the sensitivity
of a relative intensity measurement in the continuous limit can
be calculated as

MDI
ε =

∫
1

i(�r)

[
∂i(�r)

∂d

]2

d�r, (19)

with i(�r) = I (�r)/ND, where the total number of detected pho-
tons is given by

ND =
∫

I (�r)d�r = κNS (1 + χδ). (20)

In turn, we introduced the parameters:

χ = sin 2θ cos φ, (21)

being the amplitude of the interference term in Eq. (18), and
δ is the overlap between the images of the sources:

δ =
∫

u0(�r − �r1)u0(�r − �r2)d�r. (22)

The expression in Eq. (20) is valid for any measurement basis
in which one can decompose the image mode. Hereinafter, we
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FIG. 2. Normalized sensitivity per emitted photon of relative
intensity distribution direct measurement MDI

ε . The top panel cor-
responds to the sources with equal intensity and parameter χ =
{1, 1/2, 0, −1/2, −1, −0.99}; the bottom panel shows the asymmet-
ric case and χ = {0.87, 0.43, 0, −0.43, −0.87, −0.86}.

consider a soft aperture model with a Gaussian PSF:

u0(�r) =
√

1

2πσ 2
exp

(
− |�r|2

4σ 2

)
, (23)

where σ is the width of the PSF. This results in an overlap:

δ = exp

(
− d2

8σ 2

)
. (24)

The sensitivity in Eq. (19) can be calculated analytically in
the cases of in-phase (φ = 0) and antiphase (φ = π ) sources:

MDI
ε

∣∣
φ=0,π

= 1

4σ 2(1 + χδ)

(
1 − χδ + d2

4σ 2

χδ

1 + χδ

)
, (25)

and in the case of fully asymmetric sources (θ = 0, which
is equivalent to the centroid estimation of a single source),
giving the well known result [4,32]:

MDI
ε

∣∣
θ=0 = 1

4σ 2
. (26)

For other values of φ and θ , the sensitivity MDI
ε is calculated

numerically.
The variable Mε corresponds to the sensitivity per detected

photon. The sensitivity per emitted photon is instead given by
NDMε/NS . We additionally normalize this value over trans-
missivity κ and multiply by 4σ 2 to remove dependence on
these parameters. A plot of the resulting normalized sensitiv-
ity:

Mε = 4σ 2

κ

NDMε

NS
, (27)

for the case of DI, is presented in Fig. 2.
On the top panel of Fig. 2, one can see that direct measure-

ment of the relative intensity distribution in the case of equally

bright sources leads to low sensitivity for small separations
and, as expected, to Raleigh’s curse, i.e., vanishingly small
sensitivity for infinitesimally small d . In the case of asymmet-
ric sources, the first moment of the intensity distribution, i.e.,
the center of mass of the image, does not coincide with the
geometrical center between sources. Assuming the position of
the geometrical center between the sources and the brightness
of both sources to be known, one can recover the separation
between the sources from the center of mass of the image,
which can be accurately measured with DI. Accordingly,
Raleigh’s curse does not occur for DI of asymmetric sources
(bottom of Fig. 2), although the sensitivity is relatively small
for small separation, unless the sources are nearly in antiphase
configuration.

B. Spatial-mode demultiplexing

Another imaging technique under study is SPADE. It was
shown that the sensitivity of photon counting in HG modes
saturates the QFI for the estimation of the separation between
two equally bright incoherent thermal sources in the case
of a Gaussian PSF [8]. This measurement also beats DI in
the asymmetric case (unequally bright sources), though the
optimality of the HG basis was never proved for this case.

Here, we analyze the sensitivity of photon counting in
HG modes in the case of fully coherent bright sources in an
arbitrary quantum state. As before, we assume to know all
the source parameters except the separation [in Eqs. (12) and
(16)] and the total brightness NS [only in Eq. (16)]. Thus, the
reference system and the measurement basis can be chosen
aligned with the image centroid and orientation, i.e., the mea-
surement HG mode basis reads

fm(x, y) = 1√
2mm!

Hm

(
x√
2σ

)
u0

(√
x2 + y2

)
, (28)

where Hm are Hermite polynomials, and the source positions
read �r1,2 = {±d/2, 0}. Calculating the overlaps with the im-
age modes, we find that the coefficients Am in Eq. (4) are given
by

AHG
m = √

κ[(−1)m cos θ + exp(iφ) sin θ ] βm

(
d

4σ

)
, (29)

where

βm(x) = exp

(
−x2

2

)
xm

√
m!

. (30)

This allows us to find the mean photon numbers in the mea-
surement modes in Eq. (3):

NHG
m = NS[1 + (−1)mχ ] β2

m

(
d

4σ

)
. (31)

These can be normalized with respect to the total number of
detected photons ND in Eq. (20) to calculate the sensitivity
in Eq. (14) of the separation estimation from the measured
relative photon numbers εm. In the case of infinitely many
measured HG modes, this sensitivity reads

MHG
ε = 1

4σ 2(1 + χδ)

(
1 − χδ + d2

4σ 2

χδ

1 + χδ

)
. (32)
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FIG. 3. Normalized sensitivity per emitted photon of relative
intensity measurements in Hermite-Gauss (HG) modes MHG

ε .

Note that MHG
ε depends only on the combination χ of the

parameters θ and φ.
We observe that the expression for the sensitivity of

SPADE MHG
ε in Eq. (32) coincides with the sensitivity of DI

MDI
ε in the cases of in-phase, antiphase in Eq. (25), and fully

asymmetric sources in Eq. (26). It is possible to show that
these are the only cases for which MHG

ε = MDI
ε . In the general

case (see Appendix B),

MHG
ε � MDI

ε . (33)

Accordingly, measurements in the HG basis are al-
ways more (or equally) sensitive than DI for separation
estimation.

In Fig. 3, we plot the normalized sensitivity in Eq. (27)
of the relative intensity measurement in the HG modes. One
can see that Raleigh’s curse is still present for the symmetric
in-phase (χ = 1) and antiphase (χ = −1) cases since SPADE
for these cases is as sensitive as DI. Note, however, that even a
small deviation from the symmetric antiphase case (χ = −1)
leads to a significant sensitivity increase for small separations
(see dashed line in Fig. 3).

The sensitivity in Eq. (32) in the case χ = 0 (that corre-
sponds to the mutual phase φ = π/2) does not depend on the
separation d and coincides with the sensitivity in the case of
weak uncorrelated thermal sources [9], which in turn coin-
cides with QFI [15]. However, for incoherent thermal sources,
the QFI per emitted photon drops with a growing number of
photons, when MHG

ε for correlated sources does not depend
on NS for any photon statistics of the source.

V. SENSITIVITY OF TOTAL INTENSITY
MEASUREMENT MD

Having an expression for the total number of detected
photons in Eq. (20), we analytically determine the total photon
number sensitivity in Eq. (15):

MD = κNS

4σ 2

δ2χ2

(1 + δχ ) + hκNS (1 + δχ )2

(
d

2σ

)2

. (34)

Since the total intensity is basis invariant, the sensitivity from
measuring it does not depend on the detection basis. The
expression in Eq. (34) also includes all quantum states of
the sources (if the sources are mutually coherent) via the
coefficient h = g(2) − 1 = (�N2

S − NS )/N2
S . From Eq. (34), it

is obvious that antibunched states of ŝ0 (h < 0), leading to
entanglement in modes ŝ1,2, provide a better sensitivity than
bunched states (h > 0) of ŝ0, which corresponds to classical
correlations in ŝ1,2. This is a natural result since a lower
photon number variance in ŝ0 leads to a smaller variance of
ND and hence a higher sensitivity of the ND measurement.

Here, we consider the sensitivity of separation estimation
from a measured total intensity ND for different quantum
statistics of the sources. We are interested in the normalized
sensitivity per emitted photon:

MD = 4σ 2

κ

MD

NS
. (35)

The characteristics of the source statistics only appear in the
combination hκNS . Furthermore, MD depends on χ and the
separation d . To explore the impact of the source statistics, we
study various common initial states.

A. Fock state

We consider first the most sensitive case, when the mode
ŝ0 is maximally antibunched, i.e., it is in the Fock state, re-
sulting in the entanglement of the modes ŝ1,2. In this case,
h = g(2) − 1 = −1/NS , and the combination hκNS = −κ . On
the left panel of Fig. 4, we plot the sensitivity MD in Eq. (35)
with κ = 0.2 (the used model of linear losses requires κ � 1).
Note that, for the Fock state, the sensitivity per emitted photon
does not depend on the number of photons NS .

B. Coherent state

If the mode ŝ0 is in the coherent state, then the states of
the modes ŝ1,2 are uncorrelated. For this case, the parameter
h = 0. Although coherent and Fock states have very different
statistical properties, in both cases, after propagation through
a loss channel, the photon number variance is linear over the
initial number of photons; thus, the sensitivity per emitted
photon does not depend on the source intensity for both of
these cases. The normalized sensitivity for the case of a co-
herent source is plotted in the middle panel of Fig. 4.

C. Thermal state

Finally, we consider a thermal state of the mode ŝ0, which
leads to correlated thermal states in modes ŝ1,2. For thermal
statistics, h = 1. In the small photon number limit (NS → 0),
the sensitivity per emitted photon MD coincides with the
coherent case, and for high photon number (NS → ∞), it
vanishes (MD → 0). We plot the normalized total photon-
number sensitivity for correlated thermal sources for κNS =
1.5 in the right panel of Fig. 4.

For all the considered cases, the total photon-number
sensitivity is high in the case of small separation between
symmetric antiphase sources (χ = −1). This occurs due
to destructive interference of mutually coherent antiphase
sources, which leads to zero intensity in the image plane if
equally bright sources coincide and nonzero total intensity in
the presence of finite separation between the sources. For any
other case, the sensitivity MD vanishes for zero separation. In
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FIG. 4. Normalized sensitivity of total photon number detection MD. From left to right: Fock (κ = 0.2), coherent and thermal state
(NS = 1.5/κ) of the mode ŝ0.

the case of χ = 0, the total photon number ND in Eq. (20) does
not depend on the parameter, and MD = 0.

VI. COMPARISON WITH QFI

Here, we analyze the full separation estimation sensitivity
Md = NDMε + MD and its normalized version:

Md = 4σ 2

κ

Md

NS
= Mε + MD. (36)

We compare the sensitivity of SPADE, which proved to al-
ways be better or equal to that of DI, with the ultimate limit
set by the QFI.

A. Fock state

The first example we consider is a Fock state of the mode
ŝ0. Plots of the SPADE sensitivity for split Fock states are
presented in the left panel of Fig. 5.

Of particular interest are the examples of the Fock state
split on a symmetric beam splitter (θ = π/4) with added
phase φ = 0 or π . Then the states of the sources take the
form:

|ψ〉(±)
s1s2

= 1√
2NS

NS∑
j=0

√(
NS

j

)
(±1)NS− j | j〉s1 |NS − j〉s2 . (37)

The analytical expression obtained for the SPADE sensitivity
MHG

d coincides with the QFI for these states [15]. Note that
one of these states corresponds to the maximal QFI of sepa-
ration estimation [as seen from Fig. 5, for small separations,
state |ψ〉(−)

s1s2
is optimal, for larger, |ψ〉(+)

s1s2
] [15]. For other

values of the mutual phase φ or asymmetrically split Fock
states, the QFI has not been calculated explicitly.

B. Coherent state

Since for Poisson photon number statistics different de-
tection events are independent, we can consider results in
the small photon number limit without losing any generality.
The QFI for an arbitrary mutual coherence γ was explicitly
calculated in Ref. [23] in the single-photon subspace, and
its analytical expression for any γ = exp(iφ) fully coincides
with the sensitivity Md calculated for Poisson statistics (h =
0). The same result was recently obtained for arbitrarily bright
coherent sources in Ref. [26]. The dependence of the nor-
malized QFI and MHG

d on the separation are presented in the
middle panel of Fig. 5, coinciding with each other.

We also plot the sensitivity of DI for symmetric sources
with Poisson statistics in Fig. 6. Comparing this plot to the
middle panel of Fig. 5, we clearly see that the choice of HG
modes (SPADE) results in a significant advantage over pixel
modes (DI). The special case of symmetric antiphase sources
(χ = −1) leads to the collapse of the DI sensitivity and to
Raleigh’s curse once mutual phase slightly deviates from π .

C. Thermal state

Another example we consider is that of correlated ther-
mal sources. The QFI for arbitrarily bright correlated thermal
sources that are in-phase or antiphase is calculated in
Ref. [15]. A more general case with arbitrary Gaussian
sources is considered in Ref. [26]. The QFI obtained in these
papers for equally bright sources coincides with the sensitivity

FIG. 5. Normalized full separation estimation sensitivity MHG
d via spatial-mode demultiplexing (SPADE) in Hermite-Gauss (HG) basis.

From left to right: Fock (κ = 0.2), coherent and thermal state (NS = 1.5/κ) of the mode ŝ0. Cases with known quantum Fisher information
(QFI) are highlighted in gray; QFI and MHG

d coincide for all of them.
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FIG. 6. Normalized full separation estimation sensitivity of di-
rect imaging (DI) MDI

d for equally bright sources with Poisson
statistics.

MHG
d introduced here. With increasing intensity of the cor-

related thermal source, the sensitivity per photon Md drops
tending to Mε (Fig. 3).

Figure 5 shows that source statistics do not strongly in-
fluence the sensitivity if the sources are mutually coherent.
We notice that the resulting sensitivity of SPADE MHG

d is
continuous as a function of χ , which is not the case for DI.

VII. CONCLUSIONS

We presented a general approach to analyze parameter
estimation problems based on photon counting in mutually
coherent modes. The sensitivity based on the method of mo-
ments showed to be a very efficient and practical tool for
analyzing this class of problems. In contrast to the traditional
approach based on FI, moment-based sensitivity allows us
to consider the sources with arbitrary quantum statistics and
provide a simple estimator for the parameters that does not
require measurement of high-order moments.

Specifically, we have considered in detail the problem of
separation estimation of two mutually coherent sources. Cal-
culating the moment-based sensitivity, we analytically proved
an advantage of SPADE measurement over DI for the consid-
ered class of states. Moreover, we showed that the sensitivity
of SPADE saturates the QFI for those cases where the latter
is known. This even includes some examples of non-Gaussian
entangled states, although they are not fully described by the
first two moments, which we used to compute the sensitivity.

We showed that the sensitivity consists of two terms that
correspond to the relative photon numbers in the detected
modes and to the total number of detected photons, respec-
tively. The first term only depends on the measurement basis,
while the second one depends on quantum statistics of the
sources. Moreover, the second term vanishes in case of un-
known brightness of the sources, wiping out any advantage
from the antibunching of the sources. The sensitivity from the
total photon number measurement is also negligible for in-
tense bunched states due to the high noise in the total number
of photons.

Finally, the moment-based sensitivity approach and the
results obtained in this paper can be applied to other parameter
estimation problems with mutually coherent or single-mode
sources, like coherent imaging or distributed quantum sensing
with mutually coherent probes.

FIG. 7. Conceptual scheme for describing evolution of the field
in the imaging system.
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APPENDIX A: FIELD EVOLUTION

To connect the field operators of the measurement modes
âm and the field operator of the principal mode ŝ0, one can rep-
resent light transformation in the imaging scheme as in Fig. 7.
Due to the finite size of the imaging system, part of the light
emitted by the sources is lost to the environment. These losses
can be described as mixing light with environmental vacuum
modes v̂1,2 [8,15]. Since both sources are losing light to a
common environment, modes v̂1,2 are mutually nonorthogo-
nal.

The beam splitter θ and the phase element φ describe the
transition from principal mode ŝ0 to the modes of the sources
ŝ1,2. Assuming the beam splitter to introduce no additional
phase to the modes, this transformation takes form:(

ŝ1

ŝ2

)
=

[
1 0
0 exp(iφ)

](
cos θ − sin θ

sin θ cos θ

)(
ŝ0

v̂0

)
, (A1)

where v̂0 is the field operator of a vacuum mode.
The considered imaging system performs linear trans-

formation of the field, i.e., the field operators âm of the
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measurement modes fm(�r) can be expressed as

âm = x(1)
m ŝ1 + x(2)

m ŝ2 + v̂′
m, (A2)

where x(1,2)
m are complex coefficients, and v̂′

m are nonnormal-
ized combinations of the field operators of vacuum modes.

We find coefficients x(1)
m by considering situations where

mode ŝ2 is in the vacuum state. For this, we represent linear
losses on the finite aperture of the imaging system as mixing
mode ŝ1 with the vacuum mode v̂1 [15]. Then the state of the
field in the detection plane is fully described by the single
mode u0(�r − �r1) (called the image mode) with the field oper-
ator:

ĉ1 = √
κ ŝ1 + √

1 − κ v̂1, (A3)

with κ being system transmissivity. Mode u0(�r − �r1) can be
decomposed over the orthogonal set of measurement modes
{ fm(�r)}; thus, the field operators of the measurement modes
in case of a single light source ŝ1 is represented as

â(1)
m =

[∫
f ∗
m(�r)u0(�r − �r1)d�r

]
ĉ1 + v̂(1)

m . (A4)

Substituting here Eq. (A3) and comparing the result with
Eq. (A2), we arrive at

x(1)
m = √

κ

∫
f ∗
m(�r)u0(�r − �r1)d�r. (A5)

In a similar way, we find coefficients x(2)
m by considering mode

ŝ1 being in a vacuum state, obtaining the final result:

âm = √
κ

∑
j

[∫
f ∗
m(�r)u0(�r − �r j )d�r

]
ŝ j + v̂′

m. (A6)

Then using Eq. (A1), we arrive at

âm = Amŝ0 + ˆ̃vm, (A7)

where ˆ̃vm are nonnormalized nonorthogonal combinations of
the field operators of vacuum modes, and

Am = √
κ

∫
d�r f ∗

m(�r)[u0(�r − �r1) cos θ

+ u0(�r − �r2) exp(iφ) sin θ ]. (A8)

APPENDIX B: PROOF OF SPADE ADVANTAGE OVER DI

Theorem.

�M = MHG
d − MDI

d � 0, (B1)

i.e., separation estimation sensitivity with SPADE measure-
ments in the HG basis outperforms DI for any pair of mutually
coherent sources. The inequality in Eq. (B1) is saturated only
in cases φ = 0, φ = π , or θ = 0.

Proof. To estimate the difference in Eq. (B1), one can
rewrite the sensitivity in the following way:

Md =
∑

m

1

Nm

(
∂Nm

∂d

)2

− h

1 + hND

(
∂ND

∂d

)2

, (B2)

where the second term is independent of the measurement
basis. Then

�M = MHG
0 (θ, φ) − MDI

0 (θ, φ), (B3)

where

M0(θ, φ) =
∑

m

1

Nm

(
∂Nm

∂d

)2

. (B4)

From the equality MDI
ε |φ=0 = MHG

ε |φ=0, it follows that

MDI
0 (θ, 0) = MHG

0 (θ, 0) (B5)

since the difference between Mε and M0 is basis independent.
At the same time, MHG

0 depends only on the parameter combi-
nation χ = sin 2θ cos φ. Then for any φ � π/2, one can use
the following chain of equalities:

MHG
0 (θ, φ) = MHG

0 (θ1, 0) = MDI
0 (θ1, 0), (B6)

where sin 2θ1 = sin 2θ cos φ. One can redo all the follow-
ing analysis for φ � π/2 using the fact that MDI

ε |φ=π =
MHG

ε |φ=π ; therefore, results are true for any value of φ.
Thus, the difference in sensitivity can be expressed as

�M = MDI
0 (θ1, 0) − MDI

0 (θ, φ). (B7)

For continuous DI, the formula in Eq. (B4) takes the form:

MDI
0 (θ, φ) =

∫
1

Iθ,φ (�r)

[
∂Iθ,φ (�r)

∂d

]2

d�r, (B8)

where Iθ,φ (�r) = |Eθ,φ (�r)|2, and

Eθ,φ (�r) = u0(�r − �r1) cos θ + u0(�r − �r2) exp(iφ) sin θ. (B9)

A simple transformations leads to

MDI
0 (θ, φ)

= 2 Re

( ∫ {
E∗

θ,φ (�r)

Eθ,φ (�r)
[E ′

θ,φ (�r)]2 + |E ′
θ,φ (�r)|2

}
d�r

)
,

(B10)

where E ′
θ,φ (�r) stands for the derivative with respect to the

separation d . Using the inequality:

Re

[∫
g(x)dx

]
�

∫
|g(x)|dx, (B11)

for the first term in Eq. (B10), we find that

MDI
0 (θ, φ) � 4

∫
|E ′

θ,φ (�r)|2d�r. (B12)

Since Eθ1,0(�r) ∈ R, then Eq. (B10) in this special case
simplifies to

MDI
0 (θ1, 0) = 4

∫ ∣∣E ′
θ1,0(�r)

∣∣2
d�r. (B13)

By using the explicit expression for the electric field in
Eq. (B9), we can calculate the integral from the right part of
Eq. (B12). The result depends only on χ = sin 2θ cos φ. This
means that the right parts of Eqs. (B12) and (B13) are equal,
resulting in

�M

4
�

∫ ∣∣E ′
θ1,0(�r)

∣∣2
d�r −

∫
|E ′

θ,φ (�r)|2d�r = 0. (B14)
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FIG. 8. Sensitivity per emitted photon of relative intensity measurement. Comparison of direct imaging (DI) with the spatial-mode
demultiplexing (SPADE) technique.

The inequality in Eq. (B11) is only saturated if g(x) =
|g(x)|, i.e.,

E∗
θ,φ (�r)

Eθ,φ (�r)
[E ′

θ,φ (�r)]2 =
∣∣∣∣E∗

θ,φ (�r)

Eθ,φ (�r)
[E ′

θ,φ (�r)]2

∣∣∣∣, (B15)

for any �r. This equality holds only in cases φ = 0, φ = π , or
θ = 0.

In Fig. 8, you can find a comparison of the DI and SPADE
sensitivities, built with fixed combinations χ = sin 2θ cos φ

but with a different ratio between parameters φ and θ . These
plots illustrate all given relations between MHG

d and MDI
D .
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[21] Z. Hradil, J. Řeháček, L. Sánchez-Soto, and B.-G. Englert,
Quantum Fisher information with coherence, Optica 6, 1437
(2019).

[22] K. Liang, S. A. Wadood, and A. Vamivakas, Coherence effects
on estimating two-point separation, Optica 8, 243 (2021).

[23] S. Kurdzialek, Back to sources—the role of losses and coher-
ence in super-resolution imaging revisited, Quantum 6, 697
(2022).

[24] Z. Hradil, D. Koutný, and J. Řeháček, Exploring the ultimate
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[31] J. Řehaček, Z. Hradil, B. Stoklasa, M. Paúr, J. Grover, A. Krzic,
and L. L. Sánchez-Soto, Multiparameter quantum metrology
of incoherent point sources: towards realistic superresolution,
Phys. Rev. A 96, 062107 (2017).

[32] C. Fabre, J. B. Fouet, and A. Maître, Quantum limits in the
measurement of very small displacements in optical images,
Opt. Lett. 25, 76 (2000).

043010-11

https://doi.org/10.1038/s41567-019-0743-x
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1364/OL.25.000076

