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Multimagnon quantum many-body scars from tensor operators
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We construct a family of three-body spin- 1
2 Hamiltonians with a superextensive set of infinitely long-lived

multimagnon states. A magnon in each such state carries either quasimomentum zero or fixed p0 �= 0, and energy
�. These multimagnon states provide an archetypal example of quantum many-body scars: they are eigenstates
at finite-energy density that violate the eigenstate thermalization hypothesis, and lead to persistent oscillations in
local observables in certain quench experiments. On the technical side, we demonstrate the systematic derivation
of scarred Hamiltonians that satisfy a restricted spectrum-generating algebra using an operator basis built out of
irreducible tensor operators. This operator basis can be constructed for any spin, spatial dimension, or continuous
non-Abelian symmetry that generates the scarred subspace.
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I. INTRODUCTION

Dynamics based on elementary local moves need not be
ergodic. Examples abound in frustrated magnets [1,2], kinet-
ically constrained systems [3], spin and molecular glasses
[4–6], and systems with multipole conservation laws [7,8].
In isolated quantum systems, this breakdown of ergodicity
can be detected through athermal eigenstates that violate the
eigenstate thermalization hypothesis (ETH) [9–13].

Recent experiments in Rydberg simulators [14–16] have
brought a particular class of such Hamiltonians into promi-
nence, namely, those with quantum many-body scars [17–54].
Generic initial states thermalize under time evolution by
scarred Hamiltonians because almost all eigenstates satisfy
the ETH. Quantum many-body scars are the special atypical,
highly excited eigenstates that do not satisfy the ETH. The
number of scarred eigenstates usually scales as a polynomial
of the system volume. If one prepares a state restricted to the
scarred manifold, then it exhibits persistent coherent oscilla-
tions without thermalization.

A unifying feature of the Hamiltonian relevant to the
Rydberg experiment [14] and a subclass1 of other scarred
Hamiltonians in the literature [20,21,32,33,39–41] is that the
scarred states (approximately) (i) form a harmonic ladder (or
tower) with frequency �, and (ii) are generated by repeated
application of a quasiparticle annihilation operator (or ladder
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1Scars can come in isolation without any clear structure or fixed

energy gaps. Alternatively, scars can be generated by multiple inde-
pendent ladder operators, each adding different energies, so that the
scars do not form a simple tower.
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operator) Q− on a simple low-entanglement base eigenstate
|ψ0〉:

|ψn〉 = (Q−)n|ψ0〉, n � 0. (1)

That is, the Hamiltonian H satisfies a spectrum-generating
algebra (SGA) [32,33] in the scarred manifold W spanned by
the states |ψn〉,

[H, Q−]W = −�Q−W. (2)

Note that the majority of the literature uses a creation operator
Q+ to generate the scar tower.

Coherent states in W oscillate in time and exhibit perfect
periodic revivals. If the operator Q− is a sum of single-site
operators and the state |ψ0〉 is a product state, then the coher-
ent state is also a product state which can be easily prepared
in quench experiments. The bipartite entanglement entropy
of the scarred eigenstates also scales at most logarithmically
with the subsystem size [39,55], so that the scars can be
numerically identified as the low-entanglement outliers, as in
Fig. 1.

In this paper, we extend the theory of exact quantum many-
body scars in two ways. Consider quasiparticle creation and
annihilation operators that satisfy the SU(2) algebra

Q+ = (Q−)†, Qz = [Q+, Q−]/2. (3)

Our first result (Sec. III) is that a Hamiltonian H that satisfies
Eq. (2) has a natural representation in the Q-SU(2) spherical
tensor basis

H =
∑
k=0

∑
φk

k∑
q=−k

cφk
q T q

(k),φk
. (4)

Above, q and k are the component and rank of a spherical
tensor T q

(k),φk
, φk labels the representation, and cφk

q are complex
coefficients. The spherical tensor basis is advantageous in two
respects. First, the constraint equations for these coefficients
are simplified by the property that [Q±, T q

(k),φk
] ∝ T q±1

(k),φk
, so
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FIG. 1. The half-chain entanglement entropy density plotted
against the energy density of each eigenstate of Hπ [given by
Eq. (72)] in the p = 0 (with 55 scarred states marked by squares) and
p = π (with 45 scarred states marked by circles) momentum sectors
at L = 18. Other than these outlying states, the entropy density is a
smooth function of the energy density, indicating that the model is
otherwise thermalizing.

that commutation with Q− is a permutation in the spherical
tensor basis. Further, if |ψ0〉 is a highest-weight state with
fixed z magnetization, the equations for different k and q
components separate. Each of these equations involve smaller
numbers of coefficients (Table I), making analytical solutions
feasible. Second, the number of nontrivial equations is set
by the maximum q and the corresponding k in Eq. (4) [see
Eq. (25)]. By restricting these values in the expansion, one
may explore degrees of freedom in operator space more effi-
ciently as the range of the operators increases.

The Hamiltonians H constructed using the spherical ten-
sor formalism need not annihilate the states in the scarred
manifold term by term. They may therefore lie beyond the
projector-embedding formalism introduced by Shiraishi and
Mori [18] (SM) and used in Refs. [26,29,56] to construct
scarred models. In addition, H can be naturally classified by
a restricted spectrum-generating algebra (RSGA), as formu-
lated in Ref. [32].

Our second result (Sec. IV) is that Hamiltonians of the
form in Eq. (4) can have multimagnon states as scarred states.
Specifically, using up to three-body terms, we design periodic
one-dimensional (1D) spin-s Hamiltonians with any number
of p = 0 magnons and one or more fixed p0 �= 0 magnons
atop the fully polarized state, where p is the (quasi)momentum
of a magnon. We focus on the s = 1

2 case in the main text and
discuss s > 1

2 in Appendix D.
The multimagnon states on L-site chains are of the form

|ψn,N (p0)〉 = (S−)n[Q−(p0 �= 0)]N
L−1⊗
i=0

|↑〉i,

Q−(p) =
L−1∑
i=0

e−ipri S−
i , Q−(p = 0) ≡ S−. (5)

A straightforward computation (Sec. IV B) identifies two pro-
jectors that locally annihilate the multimagnon states with any
number of p = 0 magnons and up to one magnon with a given
momentum p0.2 One of the two projectors furthermore anni-
hilates states with multiple p0 magnons. The corresponding
SM Hamiltonian thus has a scar pyramid with (degenerate)
scarred manifolds that are equally spaced in energy in equally
spaced quasimomentum sectors.

Section IV D derives scarred Hamiltonians that lie beyond
the SM formalism. In particular, the family of Hamiltoni-
ans involving next-nearest-neighbor Dzyaloshinskii-Moriya
(DM) interaction terms and rank-2 tensors

HA =
∑

μ=x,y,z

JDM2
μ HDM

2 (μ) +
5∑

λ=1

JRT
λ HRT(λ) (6)

annihilate multimagnon states with any number of p = 0 and
p0 = π magnons. These scarred states are identified as low-
entanglement outliers in Fig. 1. In quench experiments, these
scarred states lead to perfect and persistent revivals of fidelity
for a family of initial period-2 product states. In the presence
of nearest-neighbor Heisenberg or Dzyaloshinskii-Moriya in-
teraction terms, the multi p0 = π magnon states are no longer

2As the SM Hamiltonians conserve total z magnetization, all single-
magnon states are also eigenstates.

TABLE I. A comparison of (the bounds of) the total number of equations that determine HA and the number of coefficients that enter each
of these equations for different choices of operator basis and base states. Consider a 1D spin s = 1

2 chain and up to K-local and range-(K − 1)
operators. Iterated commutators of HA with S− yield up to 2K + 1 equations in any basis [Eq. (22)], each involving up to 3 × 4K−1 coefficients.
This applies to both the Pauli basis and the spherical tensor basis for an arbitrary |ψ0〉. For a base state that has fixed z magnetization,
equations for different q decouple, leading to Eq. (29). The q = 0 equation contains the most terms, but is still algebraically smaller as N
becomes large [Eq. (31)]. If |ψ0〉 is a highest-weight state with fixed z magnetization, we can further separate coefficients of different k,
leading to Eq. (39). In the table, kmax is the rank of the representation with maximal multiplicity for a given N and K .

Operator basis (and base state) Max. no. of equations Max. no. of coefficients per equation

Pauli 4sK + 1 = 2K + 1
∑K

N=1

(K−1
N−1

)
3N = 3 × 4K−1

Spherical tensor (any |ψ0〉) 2K + 1 3 × 4K−1

Spherical tensor (|ψ0〉 with fixed z magnetization)
∑2K

n=0(n + 1) = (2K + 1)(K + 1) �
∑K

N=1

(K−1
N−1

)
3N N−1/2

Spherical tensor (|ψ0〉 with highest weight
∑K

k=0(k2 + 1) = (2K2 + K + 6)(K + 1)/6
∑K

N=1

(K−1
N−1

)
dN,kmax

and fixed z magnetization)
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perfect scars. We study the concomitant decay of the fidelity
oscillations in Secs. V B and V C.

There are a few examples of scar pyramids generated by
multiple ladder operators in the literature. These differ from
our construction in detail: the ladder operators are either
multisite or nonlocal [33,34,37], or are derived from the mul-
tiple ladder operators of non-Abelian symmetries like SU(3)
[39,41,57]. The base states in these and other [21,32,34]
constructions are furthermore the highest- and lowest-weight
states under the Casimir operator S2, unlike the scarred
states with N = 1. More strikingly, the scarred states for
1 < N, n < L − 1 are neither eigenstates of the Casimir oper-
ators S2 nor Q2(p); the analogous situation for a single scarred
tower is only realized in the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model [20,33,55] and its q-deformed and higher-rank
symmetry generalizations [39].

Our construction applies mutatis mutandis to cases where
the operator Q− is not the lowering operator of the bare
spin-SU(2) algebra. In Refs. [21,34], scarred towers were gen-
erated by creating p0 = π (bi)magnon excitations on top of a
fully polarized state |ψ0〉, i.e., |ψn〉 = (Q−)

n|ψ0〉 with either
Q− = ∑

i(−1)iS−
i or Q− = ∑

i(−1)i(S−
i )2/2. In Appendix E,

we show that such scar towers are embedded by a linear com-
bination of the corresponding Q-SU(2) tensor operators. We
also present a method for generating complete bases of tensor
operators associated with a chosen continuous non-Abelian
symmetry, and apply it to SU(3).

In what follows, we briefly review (Sec. II) the RSGA
conditions and a symmetry-based framework [39] for obtain-
ing scarred Hamiltonians. Then, after presenting the tensor
operator formalism (Sec. III) and a family of models with
magnon scarred states (Sec. IV), we numerically simulate two
particular models from the family (Sec. V). Generalizations
and technical details are relegated to the Appendixes.

II. SYMMETRY-BASED FRAMEWORK AND RSGA

A ladder operator Q− and a Hamiltonian H which satisfies
the SGA in Eq. (2) can be furnished from generators of Lie
groups [39–41,57,58]. For H to be scarred, it must break the
symmetry associated with the group. We make extensive use
of one such framework [39] which employs this principle.

A key element of this framework is a set of spectrum-
generating operators (SGOs) furnished by the generators of
the Lie group G. To be specific, in the case that G =SU(2), the
associated set of SGOs {Q+, Q−, Qz = [Q+, Q−]/2} satisfy
the usual commutation relations

[Qz, Q±] = ±Q±. (7)

Then, a tower of target states |ψn〉 in the form of Eq. (1) can
be embedded as scars in a model with the following three
components:

H = Hsym + HSG + HA. (8)

(1) Hsym is a SU(2)-symmetric term that contains multi-
plets of degenerate eigenstates which transform as irreducible
representations (irreps) of the symmetry group SU(2). The
multiplets are labeled by their eigenvalues under Qz and the
Casimir operator Q2 = {Q+, Q−}/2 + (Qz )2.

(2) The degeneracy of these multiplets is lifted to equally
spaced towers by the spectrum-generating term HSG = �Qz.

(3) Finally, the symmetry-breaking term HA preserves the
target states as scars by annihilating them

HA|ψn〉 = 0, ∀ n � 0 (9)

and connecting eigenstates across different symmetry sectors
of Hsym so that the rest of the energy spectrum is generic and
thermalizing.

A base state |ψ0〉 need not be chosen to be an eigenstate
of Q2. For instance, in Eq. (5), {|ψ0,N (p0)〉} may be regarded
as a set of base states, and those with 1 < N < L − 1 are not
eigenstates of S2, which restricts the form of Hsym.

Scarred Hamiltonians satisfying a SGA can be further clas-
sified under the RSGA framework [32]. Suppose

H0 ≡ H, Hn+1 ≡ [Hn, Q−], ∀ n � 0. (10)

Given |ψ0〉 and Q−, a Hamiltonian H is said to exhibit a
restricted spectrum-generating algebra of order M (RSGA-M)
if it satisfies

(i) H |ψ0〉 = E0|ψ0〉,
(ii) H1|ψ0〉 = [H, Q−]|ψ0〉 = −�Q−|ψ0〉,
(iii) Hn|ψ0〉 = 0, ∀ n ∈ {2, 3, . . . M}

(iv) Hn

{�= 0 if n � M,

= 0 if n � M + 1.

(11)

III. TENSOR OPERATORS AS AN OPERATOR BASIS

In this section, we introduce the irreducible tensor op-
erator formalism for constructing scarred Hamiltonians. To
be specific, consider a spin-s periodic chain with L sites.
We take Q− = S− = ∑L−1

i=0 S−
i as the total lowering operator,

and |ψ0〉 = |ψ0,N (p0)〉 [defined in Eq. (5)] as base states. In
Appendix E, we present generalizations to other Q−.

A. Definitions and basic properties

The essential algebraic properties of tensor operators
[59,60] follow from their transformations under spatial rota-
tions. Under infinitesimal rotations, a vector operator T μ with
component μ = x, y, or z transforms as

[T μ, Sν] = i
∑

λ=x,y,z

εμνλT λ, (12)

where εμνλ is the Levi-Civita symbol.
Cartesian tensors are tensor products of vector operators

T μ1...μn = T μ1
1 . . . T μn

n . (13)

They can be decomposed into spherical tensors that transform
irreducibly under infinitesimal rotations. This leads to the
defining commutation relations[

Sz, T q
(k)

] = qT q
(k),[

S±, T q
(k)

] =
√

(k ∓ q)(k ± q + 1)T q±1
(k) ,

(14)

∑
μ=x,y,z

[
Sμ,

[
Sμ, T q

(k)

]] = k(k + 1)T q
(k), (15)
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where k is the rank of the tensor and
q = −k,−k + 1, . . . , k − 1, k denotes the 2k + 1 com-
ponents. Operators of different k and q are trace orthogonal.

Notice that the transformation of T q
(k) under commutation

with Sμ is identical to that of an angular momentum eigen-
state | j = k, m = q〉 under the action of Sμ. Specifically, in
Eq. (14), commutators with S± act like ladder operators for
T q

(k) of the same rank, and commuting T q
(k) with Sz yields an

eigenvalue q. The k = 0 operators are scalars that commute
with every component of Sμ and transform like j = 0 singlet
states. The k = 1 vector operators in the spherical basis have
the representation

T 0
(1) = T z, T ±1

(1) = ∓ (T x ± iT y)√
2

(16)

and transform like j = 1 triplet states.
Henceforth, we discuss irreducible spherical tensors and

may simply refer to them as tensors for brevity, unless other-
wise specified.

B. Hamiltonians and constraints

Hamiltonians in a translationally invariant spin-s system
can be expressed in terms of spherical tensor operators. Much
like Cartesian tensors in Eq. (13), a K-local term in the Pauli
basis can be decomposed into a sum of spherical tensors, i.e.,

Sμi+1
i+1 Sμi+2

i+2 . . . Sμi+K
i+K =

K∑
k=0

∑
φk

k∑
q=−k

aφk
q T q

(k),φk ,i
, (17)

where i, i + 1, . . . , i + K are site indices and φk label the
multiple representations of tensors of a given rank for k < K .
Appendix A outlines such a procedure for a spin- 1

2 chain.
Since a translationally invariant sum of spherical tensors

T q
(k),φk

=
L−1∑
i=0

T q
(k),φk ,i

(18)

is itself a spherical tensor with the same q, k, and φk , we may
write

H = Hsym + HSG + HA

=
K∑

k=0

∑
φk

k∑
q=−k

cφk
q T q

(k),φk
, (19)

where cφk
q are complex coefficients. We emphasize that T q

(k),φk

are K local and that the number of these operators is in-
dependent of L for a fixed K . Since (T q

(k) )
† = (−1)qT −q

(k) ,

the Hermiticity of H implies (cφk
q )∗ = (−1)qcφk

−q. In the
symmetry-based framework of Sec. II, Hsym is a linear combi-
nation of the k = 0 scalars, HSG = �Sz is a k = 1 vector, and
the rest of the k > 0 tensors can appear in HA.

We now consider the constraints on {cφk
q }, which are im-

posed by the condition HA|ψn〉 = 0 for all n � 0. Note that it
can be expanded as

HA|ψn〉 ≡ HA(S−)n|ψ0〉

=
n∑

r=0

n!

(n − r)!r!
(S−)n−rhr |ψ0〉, (20)

where {hn} is the set of iterated commutators defined by

h0 ≡ HA, hn+1 ≡ [hn, S−], ∀ n � 0. (21)

By considering the expansions with successively larger n � 0,
we see that the constraints reduce to

hn|ψ0〉 = 0, ∀ n � 0. (22)

In terms of the tensors, they explicitly read as

K∑
k=0

∑
φk

k∑
q=−k+n

cφk
q l−(k, q, n)T q−n

(k),φk
|ψ0〉 = 0, (23)

where

l−(k, q, n) =
(

(k + q)!(k − q + n)!

(k − q)!(k + q − n)!

)1/2

. (24)

If HA contains tensors with q � q∗ and the tensor with q∗
has rank k∗,

hn = 0, ∀ n � (q∗ + k∗) + 1. (25)

The maximal rank of a one-body tensor is k = 2s. Thus, a
K-body tensor has maximal rank 2sK which yields 4sK + 1
equations from the iterated commutators. Hence, for a spin-s
Hamiltonian, the maximum number of nontrivial constraints
is 4sK + 1. We note that Eqs. (22) and (25) are equivalent to
the RSGA conditions (iii), (iv) in Eq. (11), where the order of
the RSGA is identified as M = k∗ + q∗, with M � 4sK as the
upper bound.

C. Advantages of the basis

There are three main advantages to using spherical tensors
to solve the constraint equations in Eq. (23). We discuss how
each of them simplifies the equations and summarize them in
Table I.

First, the coefficients cφk
q are easy to analytically compute

for the largest values of k, |q|. Higher n equations only involve
cφk

q with larger q, hence, smaller number of coefficients. The
equations become trivial after a maximum n given by Eq. (25).
For instance, if we consider only tensors up to k = 1 in the
expansion of HA, the n we need to consider can be as small
as n = 2. In contrast, the coefficient of an operator Oa in a
reducible basis generically appears in every equation up to
n = 4sK .

Second, in solving Eq. (23) for HA, the coefficients of the
scalar (k = 0) operators can be disregarded. The coefficients
cφ0

0 determine Hsym = ∑
φ0

cφ0
0 T 0

(0),φ0
and are only constrained

by the requirement that |ψ0〉 is an eigenstate of Hsym. The
number of coefficients that can be disregarded this way is
given by

K∑
N=1

(
K − 1

N − 1

)
dN,0, (26)

where

dN,k =
N∑

m=k

(−1)m+N N!(2m)!(2k + 1)

m!(N − m)!(m − k)!(m + k + 1)!
(27)

is the multiplicity of spin-k representations that are formed
from the N th tensor power of spin-1 representations or, in

043006-4



MULTIMAGNON QUANTUM MANY-BODY SCARS FROM … PHYSICAL REVIEW RESEARCH 4, 043006 (2022)

our context, the number of rank-k tensor operators from the
Kronecker product of N one-body spin operators [61]. At
large N ,

dN,k ∼ 3N N− 3
2
(
k + 1

2

)
exp −3(k + 1

2 )2

4N
. (28)

Third, for certain choices of |ψ0〉, Eq. (23) is zero for each
q and k. This increases the total number of constraint equa-
tions,3 but each of them involve far fewer coefficients, making
an analytical solution more feasible.

When the base state |ψ0〉 has fixed z magnetization, each
term in the q sum in Eq. (23) is individually zero. That is,

K∑
k=0

l−(k, q, n)
∑
φk

cφk
q T q−n

(k),φk
|ψ0〉 = 0. (29)

Consider an angular momentum eigenstate | j, m〉 with
m = − j, . . . , j. Using Eq. (14), one can show that

〈 j′, m′|T q
(k)| j, m〉 ∝ 〈 j′, m′|| j, m; k, q〉 ∝ δm′,m+q. (30)

Equation (29) follows as T q1

(k1 ),φk1
|ψ0〉 and T q2

(k2 ),φk2
|ψ0〉 are lin-

early independent for any φk1 and φk2 if q1 �= q2. The q = 0,
n = 0 equation contains the most number of coefficients. At
large N , this is given by

N∑
k=0

dN,k ∼ 3N N− 1
2 , (31)

which is smaller than 3N , the total number of N-body opera-
tors.

When the base state |ψ0〉 is a highest-weight state with
fixed z magnetization [e.g., |ψ0〉 = |ψ0,0〉 in Eq. (5)], each
term in the k sum in Eq. (29) is also individually zero. Con-
sider n = 2K , so that the only nontrivial equation is

l−(K, K, 2K )
∑
φK

cφK
K T −K

(K ),φK
|ψ0〉 = 0. (32)

Since l−(K, K, 2K ) �= 0, the sum must vanish. Setting
n = 2K − 1, we similarly have

l−(K, K − 1, 2K − 1)
∑
φK

cφK
K−1T −K

(K ),φK
|ψ0〉 = 0, (33)

l−(K, K, 2K − 1)
∑
φK

cφK
K T −K+1

(K ),φK
|ψ0〉 = 0. (34)

Using Eq. (14) and the fact that S+ annihilates highest-weight
states, we can apply (S+)

M
to the left of Eq. (32) and show

3Note that in some cases, some of these equations are linearly
dependent. For example, in Appendix C, since T q

(1),φ1
|ψ0〉 yield states

with the same relative phase for all φ1 in the expansion, the real and
imaginary parts of the linear equations decouple, making the n = 2
equations redundant.

that

0 =
∑
φK

cφK
K (S+)M−1S+T −K

(K ),φK
|ψ0〉

∝
∑
φK

cφK
K (S+)M−1T −K+1

(K ),φK
|ψ0〉 ∝

∑
φK

cφK
K T −K+M

(K ),φK
|ψ0〉

⇒
∑
φK

cφK
K T q

(K ),φK
|ψ0〉 = 0

(35)

for all q ∈ {−K, . . . , K}. Likewise, using Eq. (33),∑
φK

cφK
K−1T q

(K ),φK
|ψ0〉 = 0, ∀ q ∈ {−K, . . . , K}. (36)

Setting n = 2(K − 1), we may use the above to deduce that

l−(K − 1, K − 1, 2K − 2)
∑
φK−1

cφK−1
K−1 T −(K−1)

(K−1),φK−1
|ψ0〉 = 0,

(37)

l−(K, K − 2, 2K − 2)
∑
φK

cφK
K−2T −K

(K ),φK
|ψ0〉 = 0. (38)

Repeating the line of argument from Eq. (32) to (37) for
progressively smaller n and q, we arrive at∑

φk

cφk
qa

T qb

(k),φk
|ψ0〉 = 0 (39)

for any k and |qa|, |qb| � k. Thus, each term in the k sum in
Eq. (29) is individually zero. This implies the constraints may
be solved for any fixed k and q.

IV. EMBEDDING MAGNON SCARS

In this section, we present a family of periodic 1D scarred
models constructed from the spherical tensor formalism.
These models host scarred states with any number of p = 0
magnons and one (or any number of) p0 �= 0 magnon(s).

A. Target states

The magnon states are the spin-flip excitations of the fully
polarized state

|s〉 ≡
L−1⊗
i=0

|s〉i. (40)

For s = 1
2 , which we shall discuss primarily, we denote

|s〉 = ⊗L−1
i=0 |↑〉i = |up〉. Likewise,

⊗L−1
i=0 |↓〉i = |down〉. The

creation operator of a magnon with momentum p = 2πm/L
atop |s〉 is given by

Q−(p) =
L−1∑
i=0

e−ipri S−
i , Q−(p = 0) ≡ S−, (41)

where ri is a site label, and Q+(p) = [Q−(p)]†. The target
states are parametrized by n, the number of p = 0 magnons
and N , the number of p0 �= 0 magnons

|ψn,N (p0)〉 = (S−)n[Q−(p0 �= 0)]N |up〉,
|ψ0,0(p0)〉 ≡ |up〉,
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n =
{

0, 1, . . . , L, N = 0
0, 1, . . . , L − N − 1, 1 � N � L − 1.

(42)

We regard {|ψ0,N (p0)〉} as the set of base states, and S− as the
ladder operator that generates the rest of the multiplets.

The target states are generally not eigenstates of the total
spin operator S2. The exceptions are |ψn,0(0)〉 and |ψn,1(p0)〉,
which span the j = Ls and Ls − 1 multiplets. In addition,
|ψ0,L−1(p0)〉 are also eigenstates with j = Ls − 1. This is
because we can write

[Q−(p)]L|up〉 ∝ |down〉 ⇒ [Q−(p)]L−1|up〉 ∝ Q+(p)|down〉
(43)

which is an eigenstate of S2.
Note that Q−(p0) can also be regarded as the ladder

operator for the set of base states {|ψn,0(p0)〉} within the
symmetry-based framework discussed in Sec. II. This is be-
cause the set of operators

Q+(p), Q−(p), Qz(p) = [Q+(p), Q−(p)]

2
= Sz (44)

is associated with the Lie algebra of a Q-
SU(2) symmetry with the commutation relations
[Sz, Q±(p)] = ±Q±(p) and a corresponding Casimir operator
Q2(p) = {Q+(p), Q−(p)}/2 + (Sz )2.

In the rest of the main text, we exclusively consider models
on a L-site periodic s = 1

2 chain.

B. Shiraishi-Mori annihilators

The spherical tensor formalism yields a complete ba-
sis of translationally invariant operators which includes the
subset of Shiraishi-Mori (SM) annihilators. These annihi-
lators are constructed from local configurations orthogonal
to those spanned by the target states. Note that such
operators need not be local projectors as introduced in
Ref. [18].

The minimum number of sites with local configurations
orthogonal to those spanned by the target states is three. Con-
sider three contiguous sites i, i + 1, and i + 2. It can be shown
that

|va(p0)〉i = 1

2
√

2 − cos p0 − cos2 p0

[(1 − eip0 )|↑↑↓〉i

+ (eip0 − 1)|↑↓↑〉i + eip0 (1 − eip0 )|↓↑↑〉i],

|vb(p0)〉i = 1

2
√

2 − cos p0 − cos2 p0

[(1 − eip0 )|↓↓↑〉i

+ (eip0 − 1)|↓↑↓〉i + eip0 (1 − eip0 )|↑↓↓〉i]

(45)

are orthogonal to the local configurations that appear in
{|ψn,N=0,1(p0)〉}. Thus, we can construct SM annihilators
from

PSM
1,i (p0) = |va(p0)〉i〈va(p0)|i,

PSM
2,i (p0) = |vb(p0)〉i〈vb(p0)|i,

PSM
3,i (p0) = |va(p0)〉i〈vb(p0)|i + |vb(p0)〉i〈va(p0)|i

2
,

PSM
4,i (p0) = |va(p0)〉i〈vb(p0)|i − |vb(p0)〉i〈va(p0)|i

2i
. (46)

Although the operators in Eq. (46) are only designed to
locally annihilate |ψn,N=0,1(p0)〉 states, they may annihilate
other multimagnon eigenstates. First, when p0 �= π , PSM

1,i (p0)
annihilates states with any number of p = 0 and p = p0

magnons. That is,

PSM
1,i (p0)|ψn,N (p0)〉 = 0, ∀ n, N � 0. (47)

The Hamiltonian HA = ∑
i PSM

1,i (p0) thus provides an example
of a multi-p0-magnon model (see Sec. IV D). We confirm
in Sec. V D that the Hamiltonian is otherwise thermalizing
(within each Sz sector as Sz is a good quantum number).

When p0 = π , Eq. (47) applies to all four operators
{PSM

a,i (π )}4
a=1. We thus can also construct multi-π -magnon

models of the SM type that are otherwise thermalizing.
A comment is in order. If the chain is periodic, translation-

ally invariant, and conserves the total z magnetization, then all
single-magnon states are eigenstates. As PSM

a,i (p0) commutes
with Sz for a = 1, 2, the multi-p0-magnon model described
above has all single-magnon states as eigenstates.

To determine HA that are beyond the SM formalism, we
project out the annihilators in Eq. (46) in Sec. IV C.

C. Spherical tensors in scarred Hamiltonians

We find that Hsym and HA can be constructed from the
following representations of spherical tensors. By consider-
ing the fully polarized base state |ψ0〉 = |up〉, we show in
Appendix A that it is relatively easy to construct these terms
analytically.

Hsym is spanned by four scalars. Aside from the identity,
there are the range-R Heisenberg (denoted by H-R) terms

HH
R =

L−1∑
i=0

Si · Si+R. (48)

We only use the nearest-neighbor (R = 1) and next-nearest-
neighbor (R = 2) terms. The fourth is the “scalar triple
product” (ST) term

HST = εμνλ

L−1∑
i=0

Sμ
i−1Sν

i Sλ
i+1. (49)

HA can be constructed from four sets of vectors and one
set of rank-2 tensor operators, which are orthogonal to the 3-
local SM annihilators in Eq. (46). Two of these are the range-R
Dzyaloshinskii-Moriya interaction (denoted by DM-R) terms

HDM
R (μ) = εμνλ

L−1∑
i=0

Sν
i Sλ

i+R, μ = x, y, z (50)

with R = 1, 2. Then, there are two sets of vectors, namely, the
“vector triple product plus” (VTP) terms

HVTP(μ) =
L−1∑
i=0

Sμ
i−1(Si · Si+1) − 2Sμ

i (Si−1 · Si+1)

+ (Si−1 · Si )S
μ
i+1, (51)
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and the “vector triple product minus” (VTM) terms

HVTM
R (μ) =

L−1∑
i=0

Sμ
i−1(Si · Si+1) − (Si−1 · Si )S

μ
i+1, (52)

which are so named because each local term can be expressed
in the following combinations in Eqs. (51) and (52):

Sk × (Si × S j ) + Si × (Sk × S j )

= Si(S j · Sk ) − 2S j (Si · Sk ) + (Si · S j )Sk,

Sk × (Si × S j ) − Si × (Sk × S j )

= Si(S j · Sk ) − (Si · S j )Sk . (53)

Finally, there are five terms (denoted by RT or rank-2)
terms that can be expressed as linear combinations of a set
of rank-2 tensor operators. Namely (explicitly given in Ap-
pendix B),

HRT(1) = T 1
(2),a + T −1

(2),a

4
, HRT(2) = T −1

(2),a − T 1
(2),a

4i
,

HRT(4) = − iT 0
(2),a/2,

HRT(3) = T −2
(2),a − T 2

(2),a

2
, HRT(5) = i

(
T 2

(2),a + T −2
(2),a

)
2

,

(54)

where up to normalizations,

T 0
(2),a =

L−1∑
i=0

Sz
i−1(S−

i S+
i+1 − S+

i S−
i+1)

+ (S−
i−1S+

i − S+
i−1S−

i )Sz
i+1

+ 2Sz
i (S−

i−1S+
i+1 − S+

i−1S−
i+1), (55)

T ±1
(2),a =

L−1∑
i=0

(S±
i−1S∓

i+1 − S∓
i−1S±

i+1)S±
i

+ 2(Sz
i−1S±

i+1 − S±
i−1Sz

i+1)Sz
i , (56)

T ±2
(2),a = ±

L−1∑
i=0

S±
i (S±

i−1Sz
i+1 − Sz

i−1S±
i+1). (57)

Aside from the VTP, all of the operators in HA are antisym-
metric with respect to spatial inversion. This symmetry is a
useful guiding principle to construct representations of tensor
operators that annihilate the fully polarized base state because
of the cancellation of terms with their spatially inverted coun-
terparts.

D. General forms of scarred models

Using the operators in Secs. IV B and IV C, we now write
families of Hamiltonians that host different sets of magnon
scars. In all these cases, we can write HSG = �Sz and

Hsym = J0 + J1HH
1 + J2HH

2 + J3HST, (58)

where {Ji}3
0 are free parameters. The form of HA depends on

the target states to be embedded as scars. We separate out the
SM terms HSM

A (p0) that locally annihilate the target states and

write

HA = H ′
A(p0) + HSM

A (p0). (59)

The SM annihilators in Eq. (46) determine HSM
A (p0):

HSM
A (p0) =

∑
a

Ka

∑
i

PSM
a,i (p0), (60)

where {Ka} are free parameters in all but the multi-p0 magnon
model.

Zero-magnon models. States with any number of p = 0
magnons (the multiplet {|ψn,0(0)〉}) are annihilated by any
linear combination of the operators from Eqs. (50) to (54),
and by the SM annihilators in Eq. (46) for any p0.

Single-p0-magnon models. States with any number
of p = 0 magnons and up to one p0 �= 0, π magnon
({ψn,N=0,1(p0)}) are annihilated by H ′

A(p0) of the form

H ′
A(p0) =

∑
μ=x,y,z

JV
μ V μ(p0, 1/2), (61)

where {JV
μ } are free parameters and

V μ(p0, s) = 2s sin(p0)HDM
1 (μ) + s tan

(
p0

2

)
HDM

2 (μ)

+ HVTP(μ). (62)

The explicit derivation of the vector term V μ(p0, s) is pro-
vided in Appendix C.

Single-π -magnon models. States with any number of p = 0
magnons and up to one p0 = π magnon ({ψn,N=0,1(π )}) are
annihilated by

H ′
A(π ) =

∑
μ=x,y,z

JDM2
μ HDM

2 (μ) +
5∑

λ=1

JRT
λ HRT(λ), (63)

where {JDM2
μ } and {JRT

λ } are free parameters. The form of
H ′

A(π ) is distinct from Eq. (62) because of the following. Let
φ1 label the DM1, VTP, VTM representations of k = 1 ten-
sors. Of all the k > 0 tensors in Sec. IV C, these are the only
tensors that do not individually annihilate the target states.
In particular, since T −1

(1),φ1
Q−(π )|up〉 �= 0, and the tensors are

linearly independent, their coefficients cφ1
q are zero for all q.

Multi-π -magnon models. In the absence of the nearest-
neighbor Heisenberg term, i.e., J1 = 0, states with any number
of p = 0 and p0 = π magnons [{ψn,N (π )}] are preserved as
eigenstates of H with the same H ′

A in Eq. (63).
Multi-p0-magnon models. The set of states with any num-

ber of p = 0 and p0 �= 0, π magnons [{ψn,N (p0)}] cannot
be annihilated by any 3-local non-SM Hamiltonian. That is,
H ′

A(p0) = 0. Furthermore, K2,3,4 = 0 and J1,2,3 = 0. The sim-
plest model with a nontrivial Hsym is thus given by

Hsym = JMHH
M, HA = K1

L−1∑
i=0

PSM
1,i (p0), (64)

where HH
M is the range-M Heisenberg term and M is an integer

multiple of the denominator of p0/2π .
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V. NUMERICAL SIMULATIONS

This section presents numerical results obtained by exactly
diagonalizing three models from Sec. IV D. Based on the level
statistics and the entanglement entropy of the eigenstates, we
conclude that the models are scarred by the targeted magnon
states. In addition, we discuss the quench dynamics of initial
states which can be used to probe the p0 �= 0 magnon scars.

A. Single-p0-magnon model

We show that the model H2π/3 with HA = H ′
A(p0) given by

Eq. (61) with parameters

H2π/3 : (p0, J0, J1, J2, J3,�) = (2π/3, 0, 1, 1, 1.7, π/3),(
JV

x , JV
y , JV

z

) = (1, 0, 0) (65)

is scarred by the states {ψn,N=0,1(2π/3)}. For simplicity, we
do not include the SM annihilators.

Symmetries and level statistics. Aside from translational
symmetry, the model also possesses an antiunitary symmetry.
Let T be the time-reversal operator, Ry

π be the operator which
rotates all spins along the y axis by π , and I be the spatial
inversion operator about a site or bond (for odd or even L).
H2π/3 is invariant under the operation

IRy
πT H2π/3T −1

(
Ry

π

)−1I−1 = H2π/3. (66)

To test whether the (sorted) spectrum {En} is thermalizing,
we examine the distribution of level spacing ratios [62],
defined by

rn = min(sn, sn−1)

max(sn, sn−1)
, (67)

where sn = En+1 − En are the consecutive energy level spac-
ings. Figure 2(a) indicates that the level statistics of the model
is that of a thermalizing model and because of the presence of
the antiunitary symmetry, is given by the Gaussian orthogonal
ensemble (GOE).

Entanglement entropy. To further test thermalization on an
eigenstate level, we also consider the half-chain von Neu-
mann entanglement entropy SvN of each eigenstate. In systems
described by the ETH, the entanglement entropy density,
SvN/(L/2), clusters around a smooth function of the energy.
Figure 2(b) shows that this is indeed the case except for the
outlying scarred states, which constitutes a weak violation of
the ETH.

Quench dynamics and revival. Scarred states with one
p0 �= 0 magnon can be probed by quenching from a family
of initial states, given by the coherent state

|
〉 = N exp cS−Q−(2π/3)|up〉

= N
∞∑

m=0

(cS−)m

m!
Q−(2π/3)|up〉, (68)

where c is a complex number and N is the normalization
constant. The state evolves within the scarred manifold as

|
(t )〉 = N e−iH2π/3t |
〉
= N e−iE0t exp cei�t S−Q−(2π/3)|up〉, (69)

FIG. 2. (a) Probes of the level statistics of H2π/3 [parameters
given in Eq. (65)] using the set of rn, the level spacing ratios from
(67). The main plot shows that the mean 〈rn〉 values in the p = 0
and 2π/3 sectors both approach the GOE value ≈0.5359 [62] with
increasing system size L. The inset gives a normalized histogram
of the rn (p = 2π/3 sector, L = 18), P(r), which closely matches
the GOE prediction given in [62]. (b) The half-chain entanglement
entropy density plotted against the energy density of each eigenstate
of H2π/3 in the p = 0 and 2π/3 momentum sectors. At L = 18, the
17 {ψn,1(p0)} scarred states are marked by circles, whereas the 19
{ψn,0(p0)} scarred states are marked by squares. Aside from these
36 states, the entropy density appears to be a smooth function of
the energy density, which is one of the hallmarks of a thermalizing
model.

where E0 is the energy of the base state Q−(2π/3)|up〉.
On the other hand, since (S−

i )2 = 0 for spin 1
2 and

exp cS− = ∏L−1
i=0 exp cS−

i , we may write

|
(t )〉 = N e−iE0t Q−(2π/3)
L−1∏
i=0

(1 + cei�t S−
i )|up〉

= N e−iE0t Q−(2π/3)
L−1∏
i=0

(|↑〉i + cei�t |↓〉i ). (70)

The entanglement entropy of |
(t )〉 is finite but constant
in time. For a half-cut, this is given by SvN = log 2. Using
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FIG. 3. Probes of the level statistics of Hπ [parameters given in
Eq. (72)] using the set of rn, the level spacing ratios from (67). The
main plot shows the mean 〈r〉 values in the p = 0 and π sectors
asymptoting to the GUE value ≈0.6027 [62] with increasing system
size L. The inset with a histogram of the rn (p = π sector, L = 18),
P(r), closely matches the GUE prediction in [62].

this expression, one can show that the fidelity shows perfect
revival as

F (t ) = |〈
|
(t )〉|2

=
(

1 + |c|4 + 2|c|2 cos �t

1 + |c|4 + 2|c|2
)L−2

. (71)

B. Multi-π-magnon model

We show that the model Hπ with HA = H ′
A(π ) given by

Eq. (63) with parameters

Hπ : (p0, J0, J1, J2, J3,�) = (π, 0, 0, 0.1, 1, 2),(
JDM2

x , JDM2
y , JDM2

z

) = (1.1, 1.2, 1.1),(
JRT

1 , JRT
2 , JRT

3 , JRT
4 , JRT

5

) = (1.2, 2, 1.9, 1, 1, 1) (72)

is scarred by the entire set of {ψn,N (π )} states. The coefficients
are meant to be generic and give a well-thermalizing spectrum
at small system size.

Level statistics. Figure 3 shows that the model is thermal-
izing outside of the scarred manifold using the level spacing
ratio. With the inclusion of multiple RT terms, Hπ does not
possess any antiunitary symmetry, thus, the level statistics fol-
low the Gaussian unitary ensemble (GUE) rather than GOE.

Entanglement entropy. Figure 1 shows that there are outly-
ing eigenstates with subthermal entanglement entropy. They
correspond to the p = 0 and p0 = π magnon states. Since
states with the same total magnetization but different numbers
of p = 0, π magnons are degenerate, i.e.,

Hπ |ψn,N (π )〉 = En,N |ψn,N (π )〉,
En,N = E0,0 − �(n + N ), (73)

we confirm the identity of these outliers as follows. In the
plot, the marked states {En} constitute a scarred manifold
of dimension dscar = (L/2 + 1)2. On the other hand, the set

of magnon states in Eq. (42) can be orthonormalized to
form a basis {|ψ̃n′ 〉} of dimension dmagnon. We verify that
this basis spans the scarred manifold by checking that the
projectors

Pscar =
dscar∑
n=1

|En〉〈En|, Pmagnon =
dmagnon∑
n′=1

|ψ̃n′ 〉〈ψ̃n′ | (74)

satisfy

Tr {PscarPmagnon} = dscar = dmagnon, (75)

and that

(I − Pscar )Pmagnon = 0, (76)

which shows that the complement of the scarred manifold is
disjoint from the set of magnon states.

Quench dynamics and revival. As in Sec. V A, the p0 = π

magnon scarred states can be probed with simple initial states.
Notice that the product state

|Z2〉 = |↑↓↑↓ . . . ↑↓〉
=

∑
n+N=L/2

an,N |ψn,N (π )〉 (77)

is a linear combination of degenerate scarred states and has
spatial periodicity 2. To observe periodic revivals, we require
initial states with overlap on nondegenerate scarred states. We
consider

|�1〉 = N1 exp cS−|Z2〉, (78)

where N1 is the normalization constant. Under time evolution
by Hπ , the state remains entirely within the scarred manifold.
One can show that

|�1(t )〉 = N1e−iEZ t exp cei�t S−|Z2〉

= N1e−iEZ t
L/2−1∏

j=0

(|↑〉2 j + cei�t |↓〉2 j )|↓〉2 j+1. (79)

where EZ is the energy of |Z2〉. Note that unlike |
(t )〉 in
Eq. (70), |�1(t )〉 remains a product state in real space.

Hence, defining the fidelity F1(t ) of |�1(t )〉 as

F1(t ) = |〈�1|�1(t )〉|2, (80)

we have that under time evolution by Hπ that

F1(t ) =
(

1 + |c|4 + 2|c|2 cos �t

1 + |c|4 + 2|c|2
)L/2

. (81)

C. Deforming the multi-π-magnon model

The nearest-neighbor Heisenberg interaction HH
1 is an ex-

perimentally relevant deformation. We consider

Hπ (ε) = Hπ + εHH
1 (82)

and show that the fidelity of the initial state |�1(t )〉 no longer
exhibits perfect revivals. Furthermore, there are no revivals
in the fidelity at late times in the limit L → ∞. The nearest-
neighbor Heisenberg interaction HH

1 only preserves the scars
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FIG. 4. F1(t ) [defined in Eq. (80) and plotted in red] shows
persistent oscillations which decay to an amplitude set by ∼〈P0,1〉2

[the horizontal blue dashed line, defined in Eq. (88) and computed
in Eq. (90)] after time t ∼ 2π/[ε(δHH

1 )] [vertical pink dashed line,
with δHH

1 defined in Eq. (84)]. In contrast, the quantity F2(t )/〈P0,1〉2

[defined in Eq. (86) and plotted in gray], normalized by 〈P0,1〉2 to
avoid obstruction by the red line, shows perfect revivals with period
�/Eπ = 10. The inset is a zoomed-out version of the main plot
(ε = 0.1, c = 1, L = 12).

{|ψn,N (π )〉}N=0,1 because

εHH
1 [Q−(π )]N |up〉
= (E0 − NEπ )[Q−(π )]N |up〉

− 2N (N − 1)ε[Q−(π )]N−2
L−1∑
i=0

S−
i S−

i+1|up〉, (83)

where HH
1 |up〉 = E0|up〉 = (εL/4)|up〉 and Eπ = 2ε is the

energy of a single p0 = π magnon. The interaction connects
N > 1 p0 = π magnon states to other generic states in the
spectrum of Hπ (ε).

At short times, the fidelity F1(t ) = |〈�1|�1(t )〉|2 oscillates
as it would with ε = 0. It then decays due to the over-
lap with nonscarred eigenstates. A conservative estimate for
the timescale at which we expect to see decay is set by
Td = 2π/(εδHH

1 ), where the energy width

δHH
1 = max

{√〈(
HH

1

)2〉
n,N − 〈

HH
1

〉2
n,N

} = L1/2 (84)

is maximized with respect to n, N of the multimagnon states
|ψn,N (π )〉 for a given L. In Fig. 4, t = Td is plotted as a vertical
pink dashed line. .

At t > Td , fidelity oscillations persist with reduced ampli-
tude. This is a consequence of the finite overlap of |�1(t )〉
with the N = 0, 1 p = π magnon scarred manifold at finite
size. Consider the projector onto the exact scarred manifold

P0,1 =
∑

N=0,1

∑
n

|ψn,N (π )〉〈ψn,N (π )|
〈ψn,N (π )|ψn,N (π )〉 , (85)

as well as the fidelities of the projections

F2(t ) = |〈�1(t )|P0,1|�1〉|2 (86)

FIG. 5. F1(ω), F2(ω), and F3(ω) are, respectively, the Fourier
spectra of F1(t ), F2(t ), and F3(t ) [Eqs. (80), (86), (87)] at late times.
F3(ω) is featureless. On the other hand, both F1(ω) and F2(ω) show
sharp peaks at ω = |n� ± Eπ | and at ω = n� with equal amplitude,
indicating that the coherent oscillations of F1(t ) are due to overlap
with the N = 0, 1 p = π magnon scarred states. The inset shows the
IPR [Eq. (89)] with respect to F1(ω) (triangles) and F2(ω) (circles).
Its saturation at increasing total simulation time tmax is an indica-
tion of the localization of frequency distribution (at ω = n� and
ω = |n� ± Eπ |). The Fourier spectra are plotted at such late times
(ε = 1.1π/3, c = 1, L = 12).

and

F3(t ) = |〈�1(t )|(I − P0,1)|�1〉|2. (87)

The maximal value of F2(t ) is given by 〈P0,1〉2, where the
expectation value is given by

〈P0,1〉 = 〈�1|P0,1|�1〉 = 〈�1(t )|P0,1|�1(t )〉. (88)

In Fig. 4, 〈P0,1〉2 is plotted as a horizontal blue dashed line. At
late times, the amplitude of F1(t ) decays to a value approxi-
mately given by 〈P0,1〉2.

Figure 5 shows the Fourier spectra of F1(t ), F2(t ), and
F3(t ) at late times [denoted by F1(ω), F2(ω), and F3(ω),
respectively]. For a given n < L − 1, |ψn,1(π )〉 evolves with
an extra phase factor from Eπ as compared to |ψn,0(π )〉. Thus,
F2(ω) has sharp peaks at ω = n� and ω = |n� ± Eπ |. The
peaks of F1(ω) match those of F2(ω), while the Fourier spec-
trum of F3(t ) is featureless. We further probe the localization
of frequency distribution around these peaks with the inverse
participation ratio (IPR). For a given set of {F (ω j )} generated
from time evolution up to total simulation time tmax, the IPR
may be computed as

IPR = R4

(R2)2
, Rn =

∑
j ω

n
j F (ω j )∑

j F (ω j )
. (89)

These plots indicate that the late-time coherent oscillation of
F1(t ) entirely stems from the overlap with the N = 0, 1 p = π

magnon scarred states.
As a side note, the sharp peaks at ω = |n� ± Eπ | are not

deltalike (which is the case at ω = n�) because for incom-
mensurate Eπ and �, the Fourier expansion of F2(t ) has
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weight on all frequencies. In addition, a larger ε (≈1.15) is
used in Fig. 5 to produce a more uniform F3(ω). At ε = 0.1
(as in Fig. 4), F3(ω) still has small and relatively smooth
local maxima around ω = n�, which becomes increasingly
uniform at larger ε.

In the limit L � 1, the expectation value of the projector,
which sets the amplitude of the oscillations in F1(t ) at late
times, decreases exponentially with system size L as

〈P0,1〉 =
∑

N=0,1

∑
n+N�L/2

( |c|L/2−N−n(L/2)!

(L/2 − N − n)!

)2

× (L − 2N − n)!

LN n!(L − 2N )!

1

(1 + |c|2)L/2

∼2−0.22L (c = 1). (90)

Therefore, we do not expect to see any residual coherent
oscillation even when the deformation preserves scars with
zero or one p0 = π magnon.

The analysis in the case that the model is also deformed by
nearest-neighbor Dzyaloshinskii-Moriya interactions (DM1)
is analogous. After a timescale set by the energy width of the
magnon states, the amplitude of F1(t ) decays to a value set of
the expectation value of the projector onto the p = 0 magnon
scarred manifold, which decreases exponentially with L.

D. Multi-p0-magnon model

Finally, we show that the model described by Eq. (64) with
parameters

HSM
2π/3 : (p0, M, JM , K1,�) = (2π/3, 3, 1, 1, 1) (91)

is scarred by the entire set of states {ψn,N (p0 = 2π/3)}. The
scalar term Hsym is added to shift the energy of the scarred
states relative to the rest of the spectrum.

The model has two symmetries: translational invariance
and U(1) rotations about the z axis. We focus on the zero
momentum and Sz = 2 z-magnetization sector.

Level statistics. The inset of Fig. 6 shows that the nearest-
neighbor energy level statistics follows that of the GOE at
system size L = 18.

Entanglement entropy. The main plot in Fig. 6 shows
three outlying eigenstates with distinctly subthermal half-
chain entanglement entropy. Since the multimagnon state
|ψn,N (p0)〉 has total momentum N p0 (mod 2π ) and magne-
tization L/2 − (N + n), the outliers can be identified as the
(N, n) = (0, 7), (N, n) = (3, 4), and (N, n) = (6, 1) orthogo-
nal states.

VI. DISCUSSION

In summary, irreducible tensor operators provide a natural
basis to derive Hamiltonians with towers (or a pyramid) of
quantum many-body scars. These Hamiltonians generally fall
outside the Shiraishi-Mori formalism, and satisfy a restricted
spectrum-generating algebra. Indeed, several previous models
of scars [21,34] can be interpreted as a linear combination
of Q-SU(2) tensor operators (Appendix E). Three-spin tensor
operators may be realized in various quantum simulators [63].
For instance, three-spin scalar operator of the form (49) was

FIG. 6. The main plot shows the half-chain entanglement en-
tropy density plotted against the energy density of each eigenstate
of HSM

2π/3 [parameters given in Eq. (91), with L = 18] in the p = 0
momentum and Sz = 2 magnetization sector. The three degenerate
scarred states are marked by circles. The inset shows a normalized
histogram of the level spacings rn, closely matching the GOE predic-
tion in [62]. The mean value 〈r〉 in our data is ≈0.531.

synthesized in a system of three superconducting qubits using
Floquet engineering [64].

As an application, we have derived families of Hamilto-
nians scarred by multimagnon states, which are built from
the repeated actions of ladder operators Q−(p0) and S− on
the fully polarized state for any p0. Such states are generally
neither eigenstates of the associated Casimir operators Q2(p0)
nor S2. Generalized AKLT models provide the only other
examples which realize the same feature in a single scarred
tower. A natural extension of our work would be to construct
AKLT-type Hamiltonians with multiple species of bimagnon
or magnon quasiparticle excitations atop the AKLT ground
state, and Hamiltonians scarred by magnons with three or
more quasimomenta.

We have primarily considered tensor operators of spin
SU(2). However, as discussed in Appendix E, tensor operators
can be constructed from other symmetries. Such symmetries
need not arise from spin degrees of freedom nor be defined
on single sites. This opens the possibility of embedding (mul-
tispecies) scars with multisite quasiparticles, and/or scars in
electronic models such as those with η-pairing SU(2) symme-
try [32,34].

In the multi-π -magnon model Hπ , many terms are tensor
operators of both spin-SU(2) and Q(π )-SU(2) symmetry with
the same ranks and components. The rest are either Q-SU(2)
tensors with a different rank, or not well-defined tensors at all
and only annihilate the base state by accident. Given this, a
general principle for embedding scars with multiple species
of quasiparticles (e.g., magnons with more than two different
momenta) may be to use tensor operators associated with
multiple symmetries.

Furthermore, in several example Hamiltonians in the paper,
individual spherical tensors annihilate the scarred tower. As
tensor operators (with q �= 0) are non-Hermitian, the tensor
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operator formalism may be useful for embedding scars in open
systems [65].
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APPENDIX A: DERIVATION OF THE SPHERICAL
TENSOR OPERATOR BASIS

Here, we explicitly construct the exhaustive list of spheri-
cal tensor operators composed of up to three spin- 1

2 operators.
These operators form a complete basis from which we derive
scarred models, as discussed in Sec. III.

The procedure is straightforward. Since the transformation
properties of tensor operators under commutations with ladder
operators are identical to that of applying ladder operators to
angular momentum eigenstates [see Eqs. (14) and (15)], we
may identify the trace-orthonormal one-body spherical tensor
operators

T qi=0
(ki=1) =

√
2Sz

i ↔ |ki = 1, qi = 0〉,
T qi=±1

(ki=1) = ∓S±
i ↔ |ki = 1, qi = ±1〉. (A1)

Then, multisite spherical tensor operators can be system-
atically combined using Clebsch-Gordan (CG) coefficients,
much like combining two angular momentum states. That is,
a spherical tensor of rank K1 and component Q1 is obtained
from

T Q1
(K1 ) =

∑
q1,q2

〈k1, q1; k2, q2|K1,Q1〉T q1

(k1 ) ⊗ T q2

(k2 ), (A2)

where 〈k1, q1; k2, q2|K1,Q1〉 is a CG coefficient in the expan-
sion of the angular momentum state

|K1,Q1〉 =
∑
q1,q2

〈k1, q1; k2, q2|K1,Q1〉|k1, q1〉 ⊗ |k2, q2〉.
(A3)

These relations between states and tensor operators hold in
greater generality, as discussed in Appendix E. Following this,
we briefly discuss why only certain representations of the
tensor operators appear in the basis.

In the rest of this Appendix, product states such as
|ki = 1, qi〉 ⊗ |k j = 1, q j〉 are denoted by |qiq j〉 for brevity,
where qi, j = 0,±.

1. Two-body operators

The tensor product of spin operators on two different sites
form the irreducible representations 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5. It
means the decomposition yields three sets of tensor operators

with ranks K = 0, 1, or 2; the numbers represent the corre-
sponding dimensions 2K + 1.

K = 0: From

|K = 0, Q = 0〉 = 1√
3

(|−+〉 + |+−〉 − |00〉), (A4)

we can identify states with operators via Eq. (A1) to obtain
the Heisenberg interaction in Eq. (48) as the two-body rank-0
(scalar) operator

T Q=0
(K=0) = −2√

3
Si · S j . (A5)

K = 1: From

|K = 1, Q = 0〉 = 1√
2

(|+−〉 − |−+〉), (A6)

we obtain the Dzyaloshinskii-Moriya interaction in Eq. (50)
as the Q = 0 component of the two-body rank-1 (vector)
operator

T Q=0
(K=1) = i√

2
(ẑ · Si × S j ). (A7)

The Q = ±1 components can either by obtained from angular
momentum eigenstates or by commuting T Q=0

(K=1) with the total
raising and lowering operators S±

i + S±
j . Note that the overall

(imaginary) coefficient can be set to unity in the operator
basis.

K = 2: From

|K = 2, Q = 0〉 = 1√
6

(|+−〉 + |−+〉 + 2|00〉), (A8)

we obtain the Q = 0 component of the two-body rank-2 oper-
ator

T Q=0
(K=2) =

√
2

3

(
3Sz

i Sz
j − Si · S j

)
. (A9)

The rest of the components can be obtained similarly. Since
K = ki + k j = 2 is the highest possible rank, it is just as easy
to start from the lowest-weight operator T Q=−2

(K=2) ∝ S−
i S−

j .

2. Three-body operators

Three-body terms are obtained by forming
irreducible representations from the two-site represen-
tations discussed above and a k3 = 1 representation
on a third site. They can be decomposed into
3 ⊗ (1 ⊕ 3 ⊕ 5) = 3 ⊕ (1 ⊕ 3 ⊕ 5) ⊕ (3 ⊕ 5 ⊕ 7), i.e.,
one scalar, three sets of vectors, two sets of rank-2 tensors,
and one set of rank-3 tensors.

K ′ = 0: Using the same CG coefficients in Eq. (A4), we
combine a one-body triplet (kl = 1) and the two-body triplet
(K = 1) constructed above as

|kl ,−1〉 ⊗ |K, 1〉 + |kl , 1〉 ⊗ |K,−1〉 − |kl , 0〉 ⊗ |K, 0〉√
3

(A10)

which yields the scalar triple product term in Eq. (49):

T Q=0
(K ′=0) ∝ Sl · (Si × Sk ). (A11)
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K ′ = 1: There are three sets of vectors, one from each
of the K = 0, 1, 2 two-body tensor operators. Using the CG
coeficients for 3 ⊗ 1 → 3, 3 ⊗ 3 → 3, and 3 ⊗ 5 → 3, we
obtain

T Q=0
(K ′=1),φ1=0 ∝ Sz

l (Si · S j ), (A12)

T Q=0
(K ′=1),φ1=1 ∝ Sz

i (Sl · S j ) − Sz
j (Sl · Si ), (A13)

T Q=0
(K ′=1),φ1=2 ∝

√
3

4

(
Sz

i (Sl · S j ) + Sz
j (Sl · Si )

)
− Sz

l (Si · S j )√
3

, (A14)

where φ1 labels the different representations of rank-1 tensors.
The values of φ1 are chosen to be the same as K , the rank of
the two-body tensor operator from which the representation
is formed. It is straightforward to see that the rest of the
components are obtained simply by replacing the single-site
Sz

r operators with ∓S±
r .

K ′ = 2: Similarly, there are two sets of rank-2 operators
from the K = 1, 2 two-body tensor operators, given by

T Q=±2
(K ′=2),φ2=1 = ±(S±

l S±
i Sz

j − S±
l Sz

i S±
j ), (A15)

T Q=±2
(K ′=2),φ2=2 = 2Sz

l S±
i S±

j − S±
l S±

i Sz
j − S±

l Sz
i S±

j√
3

. (A16)

K ′ = 3: Finally, as in the two-body case, since
K = kl + ki + k j = 3 is the highest possible rank for
three-body operators, there is only one set of rank-3 tensors
with the extremal weight components given by

T Q=±3
(K ′=3) = ∓S±

l S±
i S±

j . (A17)

3. Forming the basis

As discussed in Sec. III C, given a highest-weight base
state with fixed z magnetization |ψ0〉 = |up〉 = ⊗

i |↑〉i, we
may derive tensor operators that appear in HA for each k
and q separately. Since any operator that annihilates a mul-
timagnon state must also annihilate |up〉, the rationale is to
use linear combinations of the operators above to construct
a maximal set of tensor operators that individually annihilate
|up〉 (starting from those with the lowest weight), and exclude
the remaining ones.

Take l = i − 1, j = i + 1 so that l < i < j label three
contiguous sites (this can be immediately generalized to
l = i − R, j = i + R). We consider their translationally in-
variant sums as defined in Eq. (18).

First, there are no rank-3 tensor operators in the basis
because it is impossible to satisfy Eq. (23) with q − n = −3
with just one set of rank-3 tensor operators in the basis. More
generally, for our choice of |ψ0〉, we may determine the whole
set of c

φp
q for certain representations φp of a given rank p. Sup-

pose T −p
(p),φp

|ψ0〉 �= 0 only for a particular representation φp.

Then the coefficient for the entire set of tensors {T q
(p),φp

} must

vanish, i.e., c
φp
q = 0 for all q = −p, . . . p. This can be shown

by iteratively considering the n = 2p, 2p − 1, . . . equations in
Eq. (29). For example, when n = 2p, the q = p component
gives

c
φp
p T −p

(p),φp
|ψ0〉 = 0,

T −p
(p),φp

|ψ0〉 �= 0 ⇒ c
φp
p = 0 = c

φp

−p. (A18)

Then, when n = 2p − 1, the q = p − 1 component gives

c
φp

p−1T −p
(p),φp

|ψ0〉 = 0,

T −p
(p),φp

|ψ0〉 �= 0 ⇒ c
φp

p−1 = 0 = c
φp

−p+1, (A19)

and so on, leading to c
φp
q = 0 for all q. In this specific instance,

since the lowest-weight operator

T −K
(K ) =

L−1∑
i=0

S−
i+1S−

i+2 . . . S−
i+K (A20)

does not annihilate |ψ0〉 = |up〉, HA has no support on the
entire set of {T q

(K )} with K = 3.
Second, note that the rank-2 tensor operators in Eqs. (A16)

and (A15) can be combined to form

T −2
(2),a =

L−1∑
i=0

(
Sz

i−1S−
i S−

i+1 − S−
i−1S−

i Sz
i+1

)
, (A21)

T −2
(2),b =

L−1∑
i=0

(
Sz

i−1S−
i S−

i+1 − 2S−
i−1Sz

i S−
i+1 + S−

i−1S−
i Sz

i+1

)
.

(A22)

T −2
(2),a annihilates |up〉 as a sum, as do the rest of T q

(2),a
components. They therefore form part of the operator basis.
On the other hand, neither T −2

(2),b nor T −1
(2),b annihilates |up〉.

One then needs to determine if the other rank-2 tensors in the
construction [i.e., those associated with Eq. (A9)] can be used
to form linear combinations that do annihilate the state. This
can be achieved by

T −2
(2),c = T −2

(2),b −
L−1∑
i=0

(S−
i S−

i+1 − S−
i−1S−

i+1). (A23)

While the rest of the components also annihilate |up〉, we
reject them since T 0

(2),c is non-Hermitian. The other represen-
tations of rank-2 tensors are rejected for the same reason as
the rank-3 tensors.

Third, the rank-1 tensors in Eqs. (A12), (A13), and (A14)
form two sets of operators whose components individually
annihilate |up〉:

T −1
(1),a =

L−1∑
i=0

S−
i−1(Si · Si+1) − 2S−

i (Si−1 · Si+1)

+ (Si−1 · Si )S
−
i+1, (A24)

T −1
(1),b =

L−1∑
i=0

S−
i−1(Si · Si+1) − (Si−1 · Si )S

−
i+1, (A25)
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and one set that does not,

T −1
(1),c =

L−1∑
i=0

S−
i−1(Si · Si+1) + S−

i (Si−1 · Si+1)

+ (Si−1 · Si )S
−
i+1, (A26)

which can be rejected.
To summarize, we have effectively derived all the ten-

sor operators in Sec. IV C which annihilate |up〉. These
operators can be used to construct HA that annihilate mul-
timagnon states. This generally cumbersome process is
simplified by two properties of the |up〉 state: (1) it is in-
version symmetric, and (2) it is an eigenstate of (Si · S j ) for
any i, j.

APPENDIX B: ACTIONS OF SPHERICAL TENSORS ON
BASE STATES

For some of the spherical tensors H defined in Sec. IV C,
we provide the analytical expressions of

HQ−(p)|s〉 = [H, Q−(p)]|s〉 + Q−(p)H |s〉, (B1)

where |s〉 and Q−(p) are the fully polarized state and magnon
creation operator defined in Eqs. (40) and (41), respectively.

Heisenberg interaction terms:

HH
R |s〉 = Ls2|s〉,[

HH
R , Q−(p)

]|s〉 = −4s sin2 pR

2
Q−(p)|s〉. (B2)

Scalar-triple-product terms:

HST|s〉 = 0,

[HST, Q−(p)]|s〉 = −8s2 sin(p) sin2

(
p

2

)
Q−(p)|s〉. (B3)

Dzyaloshinskii-Moriya interaction terms:

HDM
R (μ)|s〉 = 0,

[
HDM

R (μ), Q−(p)
]|s〉

= − (δxμ+iδyμ)

2
e−i pR

2 2 sin
pR

2

L−1∑
i=0

e−ipri S−
i S−

i+R|s〉

− δzμ2s sin(pR)Q−(p)|s〉. (B4)

Vector-triple-product-plus terms:

HVTP(μ)|s〉 = 0, [HVTP(μ), Q−(p)]|s〉

= (δxμ + iδyμ)

2

L−1∑
i=0

e−ipri

[(
4e−ips sin2 p

2
S−

i S−
i+2

+ 4e−i p
2 s sin

p

2
sin(p)S−

i S−
i+1

)]
|s〉

+ δzμ4s2[cos(p) − cos(2p)]Q−(p)|s〉. (B5)

Vector-triple-product-minus terms:

HVTM(μ)|s〉 = 0, [HVTM(μ), Q−(p)]|s〉

= (δxμ+iδyμ)

2

L−1∑
i=0

e−ipri

[(
2ie−ips sin(p)S−

i S−
i+2

− 4ie−i pR
2 s sin

p

2
cos(p)S−

i S−
i+1

)]

− δzμ8s2 sin2 p

2
Q−(p)|s〉. (B6)

The rank-2 terms formed from T q
(2),a in Eq. (54) can be ex-

pressed as

HRT(1) =
L−1∑
i=0

[
Sx

i−1

(
Sy

i Sy
i+1 − Sz

i Sz
i+1

)
− (

Sy
i−1Sy

i − Sz
i−1Sz

i

)
Sx

i+1

]
, (B7)

HRT(2) =
L−1∑
i=0

[
Sy

i−1

(
Sz

i Sz
i+1 − Sx

i Sx
i+1

)
− (

Sz
i−1Sz

i − Sx
i−1Sx

i

)
Sy

i+1

]
, (B8)

HRT(3) =
L−1∑
i=0

[
Sz

i−1

(
Sx

i Sx
i+1 − Sy

i Sy
i+1

)
− (

Sx
i−1Sx

i − Sy
i−1Sy

i

)
Sz

i+1

]
, (B9)

HRT(4) =
L−1∑
i=0

[
Sx

i−1

(
Sy

i Sz
i+1 + Sz

i Sy
i+1

)
− (

Sy
i−1Sz

i + Sz
i−1Sy

i

)
Sx

i+1

− Sy
i−1

(
Sz

i Sx
i+1 + Sx

i Sz
i+1

)
+ (

Sz
i−1Sx

i + Sx
i−1Sz

i

)
Sy

i+1

]
, (B10)

HRT(5) =
L−1∑
i=0

[
Sz

i−1

(
Sx

i Sy
i+1 + Sy

i Sx
i+1

)
− (

Sx
i−1Sy

i + Sy
i−1Sx

i

)
Sz

i+1

]
. (B11)

The actions of their commutators with Q−(p) on |s〉 are omit-
ted but they can be computed readily from T q

(2),a.

APPENDIX C: DERIVATION OF V μ(p, s)

Here we present a derivation of the result in Eq. (62). We
assume HA only contains DM and VTP terms and solve for
their coefficients using Eq. (23) and the results in Appendix B.

We proceed by letting

h0 = HA

=
∑

μ=x,y,z

[
α1

μHDM
1 (μ) + α2

μHDM
2 (μ) + α3

μHVTP(μ)
]

=
∑

φ1=1,2,3

[
αφ1

x + iαφ1
y√

2
T −1

(1),φ1

−
(
αφ1

x − iαφ1
y

)
√

2
T 1

(1),φ1
+ αφ1

z T 0
(1),φ1

]
, (C1)

where αφk
μ are real coefficients. Since HA in this

case contains up to rank-1 tensors, we only need to
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consider

h1 = [HA, S−]

=
∑

φ1=1,2,3

[(
αφ1

x − iαφ1
y

)
T 0

(1),φ1
− αφ1

z

√
2T −1

(1),φ1

]
, (C2)

h2 = [[HA, S−], S−]

=
∑

φ1=1,2,3

−
√

2
(
αφ1

x − iαφ1
y

)
T −1

(1),φ1
(C3)

as h3 = 0.
From Appendix B, we can read off

T 1
(1),φ1

Q−(p)|s〉 = 0, (C4)

T 0
(1),φ1

Q−(p)|s〉 = β
φ1
0 Q−(p)|s〉, (C5)

T −1
(1),φ1

Q−(p)|s〉 = [
β

φ1
−1,1Q−

1 (p, p) + β
φ1
−1,2Q−

2 (p, p)
]|s〉,

(C6)

where the βφ1 coefficients are all real and

e−i p
2

L=1∑
i=0

e−iprr S−
i S−

i+1|s〉 ≡ Q−
1 (p, p)|s〉, (C7)

e−ip
L=1∑
i=0

e−iprr S−
i S−

i+2|s〉 ≡ Q−
2 (p, p)|s〉 (C8)

are orthogonal to each other. From Eq. (23), the n = 0 equa-
tion yields

Q−(p)|s〉 :
3∑

φ1=1

αφ1
z β

φ1
0 = 0, (C9)

Q−
1 (p, p)|s〉 :

∑
φ1

(
αφ1

x + iαφ1
y

)
β

φ1
−1,1 = 0,

Q−
2 (p, p)|s〉 :

∑
φ1

(
αφ1

x + iαφ1
y

)
β

φ1
−1,2 = 0. (C10)

Since the α’s are real (by construction) and the β’s are also
real (base-state dependent), we can separate the real and imag-
inary parts of Eq. (C10) into∑

φ1

αφ1
x β

φ1
−1,1 = 0,

∑
φ1

αφ1
y β

φ1
−1,1 = 0,

∑
φ1

αφ1
x β

φ1
−1,2 = 0,

∑
φ1

αφ1
y β

φ1
−1,2 = 0. (C11)

Likewise, the real and imaginary parts of the n = 1 equa-
tion can be separated to yield

Q−(p)|s〉 :
∑
φ1

(
αφ1

x − iαφ1
y

)
β

φ1
0

⇒
∑
φ1

αφ1
x β

φ1
0 = 0,

∑
φ1

αφ1
y β

φ1
0 = 0, (C12)

Q−
1 (p, p)|s〉 :

∑
φ1

αφ1
z β

φ1
−1,1 = 0,

Q−
2 (p, p)|s〉 :

∑
φ1

αφ1
z β

φ1
−1,2 = 0. (C13)

Finally, there is the n = 2 equation:

Q−
1 (p, p)|s〉 :

∑
φ1

(
αφ1

x − iαφ1
y

)
β

φ1
−1,1 = 0,

Q−
2 (p, p)|s〉 :

∑
φ1

(
αφ1

x − iαφ1
y

)
β

φ1
−1,2 = 0. (C14)

Again, since the α’s and β’s are real, this new equation is
redundant, as the real and imaginary parts give the same
equations as in Eq. (C11).

Having extracted the equations in terms of β’s, we can
now solve for the {αφ1

μ }. For μ = x, y, we have enough equa-
tions to solve for αφ1

μ , since φ1 = 1, 2, 3, and Eqs. (C11) and
(C12) provide six equations. Noting that the equations for
x and y are decoupled and are identical, we can write (for
μ = x, y)

Bαμ =
⎡
⎣β1

−1,1 0 β3
−1,1

0 β2
−1,2 β3

−1,2
β1

0 β2
0 β3

0

⎤
⎦

⎡
⎣α1

μ

α2
μ

α3
μ

⎤
⎦ = 0. (C15)

From Appendix B,

β1
−1,1 = −2 sin

p

2
, β3

−1,1 = 4s sin
p

2
sin p,

β2
−1,2 = −2 sin p, β3

−1,2 = 4s sin2 p

2
,

β1
0 = −2s sin p, β2

0 = −2s sin 2p,

β3
0 = 4s2(cos p − cos 2p), (C16)

which can be used to compute

det(B) = β1
−1,1

(
β2

−1,2β
3
0 − β2

0β3
−1,2

) − β1
0β2

−1,2β
3
−1,1

= 0. (C17)

Thus, the system permits nontrivial solutions. Using the first
two rows, we obtain

α1
μ = −β3

−1,1

β1
−1,1

α3
μ = (2s) sin(p)α3

μ,

α2
μ = −β3

−1,2

β1
−1,2

α3
μ = s tan

(
p

2

)
α3

μ. (C18)

Now, per Eq. (C13), the first two rows in Eq. (C15) are
also satisfied by μ = z, and the final row appears in part
of Eq. (C9). This implies Eq. (C18) applies for μ = x, y, z.
Thus, the three vector components of the rank-1 tensors also
decouple, resulting in Eq. (62).

In the special case p = π , β2
−1,2, β2

0 , β3
−1,1, and β1

0 vanish.
Hence, Eq. (C15) only permits a solution with α1

μ = α3
μ = 0

and unconstrained α2
μ for μ = x, y, z.

APPENDIX D: SPHERICAL TENSORS BEYOND SPIN 1
2

Since the procedure to obtain scarred Hamiltonians from
spherical tensors follows from SU(2) symmetry, the results in
Sec. IV are amenable to numerous generalizations.

First, in a periodic spin-s chain, interpreting {Sμ
i } as the

corresponding spin-s operator gives a family of spin-s mod-
els with multimagnon states as scarred states (Sec. IV D). In
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addition, more tensor operators may be included in the basis
for H . They are constructed from the generalized single-site
spherical tensors

T qi

(ki )
(s)

=
∑
m,m′

(−1)s−m(2ki + 1)1/2

(
s s ki

m′ −m qi

)
|s, m〉〈s, m′|

=
∑
m,m′

(−1)s−m′ 〈s, m; s,−m′|k, q〉|s, m〉〈s, m′|, (D1)

where m, m′ = −s,−s + 1, . . . , s, ki = 0, 1, . . . 2s,
qi = −ki,−ki + 1, . . . ki, and (. . . ) is a Wigner 3 j symbol.
Including the identity (ki = 0), the set of (2s + 1)2 operators
is complete in the single-site spin-s Hilbert space Hs and
orthonormal with respect to the trace inner product. In
particular,

T ±ki
(ki )

∝ (S±
i )ki . (D2)

The multisite basis operators are then the irreducible repre-
sentations obtained from Eq. (A2).

Second, the family of models in Sec. IV D can also be
immediately generalized by the Q-SU(2) operators

S±
i → Q±

i = 1

(2s)!
(S±

i )2s, Sz
i → Qz

i = 1

2
[Q+

i , Q−
i ],

Sx
i → Qx

i = 1

2
(Q+

i + Q−
i ), Sy

i → Qy
i = 1

2i
(Q+

i − Q−
i ),

(D3)

which only act nontrivially on the Q-spin- 1
2 dou-

blet {|s〉i, |−s〉i}. Therefore, with the replacement
{S+

i , S−
i , Sz

i } → {Q+
i , Q−

i , Qz
i }, we find a family of operators

that can be used to embed target states

(Q−)n[Q−(p0)]N |s〉 (D4)

built from magnon operators

Q±(p0) = 1

(2s)!

L−1∑
i=0

e±ipri (S±
i )2s, Q±(0) = Q±. (D5)

When s = 1, Q±(p0) are also known as bimagnon operators
[21,34]. Note that as we discuss in Appendix E, {Q+

i , Q−
i , Qz

i }
do not form a complete basis of single-site Q-SU(2) spherical
tensors for s > 1

2 .

APPENDIX E: TENSOR OPERATORS BEYOND SU(2)

Below, we sketch a general method for generating com-
plete bases of tensor operators of compact groups.

1. Construction of tensor operators

The properties of tensor operators are very similar to those
of states transforming in an irreducible representation of the
group. For example, such a state |(k), q〉(S) can be labeled
by its Hilbert space S (specified by the number of sites and
their local Hilbert space dimensions), a multi-indexed k which
labels the representation, and a multi-indexed q which speci-
fies the state within the representation. Under the action of a

generator of the group acting on the space S, Qa(S), the state
transforms as

Qa(S)|(k), q〉(S) =
∑

m

(Q(k),a)mq|(k), m〉(S), (E1)

where Q(k),a is the ath generator of the representation k.
Similarly, a tensor operator that acts on the space S in the
representation (k) is defined to satisfy[

Qa(S), T q
(k)(S)

] =
∑

m

(Q(k),a)mqT m
(k)(S). (E2)

These generalize the commutation relations for the SU(2)
tensor operators given in Eq. (14). We will call the tensor
operator representation “irreducible” if (k) corresponds to
an irreducible representation, and we will work exclusively
with irreducible representations and tensor operator represen-
tations of compact groups.

For states, irreducible representations on a space S1 ⊗ S2

can be built out of tensor product representations of states in
spaces in S1 and S2 with Clebsch-Gordan coefficients C:

|(k), q〉(S1 ⊗ S2) =
∑
m1m2

C(k),q
(k1 ),m1,(k2 ),m2

(S1, S2)

× |(k1), m1〉(S1)|(k2), m2〉(S2). (E3)

The similar transformation properties of states and tensor
operators mean that for the same k’s and q’s, tensor operators
can be built using the same Clebsch-Gordan coefficients:

T q
(k)(S1 ⊗ S2) =

∑
m1m2

C(k),q
(k1 ),m1,(k2 ),m2

(S1, S2)T m1
(k1 )(S1)T m2

(k2 )(S2)

(E4)

which reduces to Eq. (14) for spherical tensors. Further-
more, the types of irreducible tensor representations appearing
within the tensor product of tensor operators are the same
as the irreducible representations appearing in the Clebsch-
Gordan decomposition of tensor products of group represen-
tations.

From the above, if one can find a complete set of tensor
operators on a single site i, one can construct a complete
basis of multisite tensor operators through the use of Clebsch-
Gordan coefficients. One procedure to find a tensor operator
basis (single site or otherwise, but we will apply it to a single
site) is, in analogy to states, to start with a “highest weight”
operator and “lower” it through iterated commutations with
the lowering operators Q−

i (S).
This procedure for making a single-site basis through

iterated commutators highlights another strong connection
between representations and tensor operator representations.
Call the representation of the group on a single site R [i.e., R
is generated by Qa(1) with S = 1 referring to a single site, and
we will omit (S)]. This representation need not be irreducible
nor fundamental. For ease, we will assume we are working
in a basis where the raising and lowering operators of this
representation are purely real; this can be done for compact
groups through a unitary basis transformation.

Then, consider one of the commutators of the lowering op-
erator(s) with some intermediate tensor operator A generated
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in this procedure:

[Q−(1),
∑

lr

Alr |l〉〈r|]

=
∑

lr

Alr[Q−(1)|l〉〈r| − |l〉〈r|Q−(1)]

=
∑

lr

Alr[Q−(1)|l〉〈r| + |l〉〈r|(−Q+(1))†]. (E5)

The Alr can all be taken real when working in the basis de-
scribed above, so it is straightforward to identify the operator
above with a state dual to it by exchanging the bra with its
dual ket:[

Q−(1),
∑

lr

Alr |l〉〈r|
]

∼ [Q−(1)l ⊗ Ir + Il ⊗ (−Q+(1)r )]
∑

lr

Alr |l〉|r〉.(E6)

The above is written suggestively. Replacing the representa-
tion R’s {Q±

α } → {−Q∓
α } yields the “conjugate” representation

R. Thus, the action of Q− on a single-site tensor operator
is equivalent to the action of the representation R ⊗ R on a
two-site state. From this, it is easy to show that the formalism
can be used to reproduce the spherical tensors in Eq. (D1).

This gives a straightforward way to enumerate a tensor
operator basis on a single site. First, find the Clebsch-Gordan
coefficients and decomposition of the representation R ⊗ R.
Second, replace the ket on the second site with its dual bra,
and the result is a tensor operator that transforms like the state
does.

As an example, consider the ladder operator that gen-
erates a tower of states for the AKLT spin-1 chain Q+ =∑L−1

i=0 (−1)i(S+)2/2. This ladder operator, along with its Her-
mitian conjugate Q−, are the ladder operators associated with
a reducible representation of SU(2) generated by Qx = (Q+ +
Q−)/2, Qy = (Q+ − Q−)/(2i), and Qz = [Q+, Q−]/2. This
representation is reducible on a single site, for which

Qx(1) =
⎡
⎣ 0 0 1/2

0 0 0
1/2 0 0

⎤
⎦, Qy(1) =

⎡
⎣ 0 0 −i/2

0 0 0
i/2 0 0

⎤
⎦,

Qz(1) =
⎡
⎣1/2 0 0

0 0 0
0 0 −1/2

⎤
⎦ (E7)

i.e., the |+〉 and |−〉 degrees of freedom correspond to a spin
1
2 , while the |0〉, which is annihilated by all the generators,
corresponds to a spin singlet. Thus, on a single site, the rep-
resentation R is 1 ⊕ 2 (labeling the representations by their
dimension).

To find a complete basis on a single site using the above
procedure we will find the irreps in (1 ⊕ 2) ⊗ (1 ⊕ 2). Note
that for SU(2), any conjugate representation R is unitarily
equivalent to the original R (and hence the overbar is usu-
ally left off), so the Clebsch-Gordan coefficients will be
the usual ones. However, there will be different single-site
states corresponding to the highest weight states in the conju-
gate representation. In particular, as Q± → −Q∓, the highest

weight single-site state for 2 will be |−〉, which will be low-
ered to −|+〉. The singlet is identical to itself, so |0〉 is still the
singlet state for 1.

The resulting irreps in (1 ⊕ 2) ⊗ (1 ⊕ 2) will be two sin-
glets, two doublets, and one triplet. The tensor operators’
explicit forms, found using the regular and conjugate bases
above and the usual Clebsch-Gordan coefficients for SU(2),
are given in Table II. Note in particular that the single-site op-
erators Q−, Qz, and −Q+ form a multiplet of tensor operators.
This is quite general; for generic nontrivial representations R,
the generators on a single site will fill one of the multiplets
of tensor operators on that site up to additional phases. This
follows from the fact that R ⊗ R contains the adjoint repre-
sentation, whose states can be identified with the generators
themselves.

From this complete single-site basis, we can construct
complete bases of irreducible tensor operators on multiple
sites by using Clebsch-Gordan coefficients. We wrote above

T q
(k)(S1 ⊗ S2) =

∑
m1m2

C(k),q
(k1 ),m1,(k2 ),m2

(S1, S2)T m1
(k1 )(S1)T m2

(k2 )(S2).

(E8)

Here, specifying the sites S1 and S2 is useful for handling gen-
erators that “have momentum,” such as Q+ = ∑

i eipri Q+
i . The

only difference between C(k),q
(k1 ),m1,(k2 ),m2

(S1, S2) and the usual
Clebsch-Gordan coefficients is an additional phase factor
stemming from eipri . Explicitly, building up tensor operators
on M contiguous sites by constructing the tensor product
representation of M − 1 sites and the next site will yield a
Clebsch-Gordan sum

T q
(k)

(
M⊗

i=1

Si

)
=

∑
m1m2

C(k),q
(k1 ),m1,(k2 ),m2

eip(m2−k2 )(M−1)

× T m1
(k1 )(r1, . . . , rM−1)T m2

(k2 )(rM ). (E9)

An alternative construction for handling these generators
with phase factors eipri or more generically eiφi is to use a
single-site basis that differs from site to site by the phase eipmri

and its generalizations for operators that raise the magnetiza-
tion by m. In this case, there would not be an additional phase
factor in the sum; the operators T (S) would contain the phase
factors.

2. Magnon scarred states from tensor operators of Q-SU(2)

The procedure described above allows us to interpret
scarred Hamiltonians in the literature as a linear combination
of Q-SU(2) tensor operators, where the Q-SU(2) symmetry is
associated with the magnon operators used to generate scar
towers atop fully polarized states.

We first note that Eq. (50) is a reproduction of Eq. (D13) in
Ref. [34], where the DM term breaks spin- 1

2 SU(2) symmetry
and annihilates the p = 0 magnon tower |ψn〉 = (S+)n|down〉.
In the same work, it was shown that the model

H = JXXZHXXZ + JDM1
z HDM

1 (z),

HXXZ =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 − Sz
i Sz

i+1 (E10)
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TABLE II. A complete basis of tensor operators for single-site Q-SU(2) formed from the irreducible representations in the Clebsch-Gordan
decomposition of (2 ⊕ 1) ⊗ (2 ⊕ 1). For SU(2), as noted in the text, any conjugate representation R is unitarily equivalent to the original R
and hence the bar is usually left off, but we keep it here for clarity. The tensor operators are organized according to dimension and the amount
they change the Qz magnetization.

q = −1 q = − 1
2 q = 0 q = 1

2 q = 1

2 ⊗ 2 triplet |−〉〈+| |+〉〈+|−|−〉〈−|√
2

−|+〉〈−|
2 ⊗ 2 singlet |+〉〈+|−|−〉〈−|√

2

1 ⊗ 2 doublet |0〉〈+| −|0〉〈−|
2 ⊗ 1 doublet |−〉〈0| |+〉〈0|
1 ⊗ 1 singlet |0〉〈0|

hosts the p0 = π magnon scar tower |ψn〉 = [Q+(π )]n|down〉
with Q±(π ) = ∑

i(−1)iS±
i . These two terms in the Hamil-

tonian can be interpreted as tensor operators of Q-SU(2),
generated by {Q+(π ), Q−(π ), Sz}. Since

Sx
i Sx

i+1 + Sy
i Sy

i+1 − Sz
i Sz

i+1

=
( |+−〉 + |−+〉√

2

)( 〈+ − | + 〈− + |√
2

)
(E11)

is a projector onto the two-site singlet state under
Q±(π ) = ∑

i(−1)iS±
i , HXXZ is scalar under Q-SU(2). It can

also be shown by directly applying

T q
(k)(S1 ⊗ S2) =

∑
m1m2

C(k),q
(k1 ),m1,(k2 ),m2

(−1)m2 T m1
(k1 )(r1)T m2

(k2 )(r2)

(E12)

to construct a two-site scalar from the single-site tensors
T 1

(1)(ri ) = −S+
i , T 0

(1)(ri ) = √
2Sz

i , and T −1
(1) (ri ) = S−

i . Using
the same method, we see that HDM

1 (z) is a q = 0 vector. Note
that, however, HDM

1 (x) ± iHDM
1 (y) are rank-2 tensors, thus

they do not belong to the same multiplet.
Turning to spin-1 models, for Q+ = ∑

i(−1)i(S+
i )2/2, a

two-site basis can be built out of the single-site basis via
Eq. (E12). Such a tensor operator basis will contain the ir-
reducible tensor operator representations within (3 + 2 + 2 +
1 + 1) ⊗ (3 + 2 + 2 + 1 + 1); that is, one 5, four 4’s, nine
3’s, twelve 2’s, and nine 1’s.

Consider decomposing the spin-1 XY model [21] into
tensor operators. This model has a bimagnon p = π scar
tower generated by the action of the raising operator Q+ =
1/2

∑
i(−1)i(S+

i )2, on the base state
⊗

i |−〉i. The Hamilto-
nian

HXY =
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) +
∑

i

[
hSz

i + δ
(
Sz

i

)2]
(E13)

can be broken down into Q-SU(2) tensor operators very sim-
ply. First, note that from the first row of Table II, Sz

i is
proportional to a rank 1, q = 0 tensor. From the second row,
(Sz

i )2 is proportional to a rank 0, q = 0 tensor. Finally, notice
that

Sx
i Sx

i+1 + Sy
i Sy

i+1 = (|+−〉 + |−+〉)〈00| + |0+〉〈+0|
+ |0−〉〈−0| + H.c. (E14)

Here, (| + −〉 + | − +〉)(〈00|) is an outer product of two sin-
glet [under Q-SU(2)] states, so it is trivially a rank-0, q = 0

tensor. Further, |0+〉〈+0| + |0−〉〈−0| is a rank-1, q = 0 ten-
sor. It can be found through applying Eq. (E12) to the doublet
tensors in the third and fourth rows.

This decomposition ties into the RSGA-M classification
scheme for scarred Hamiltonians introduced in Ref. [32]
[cf. Eq. (11)]. There, a Hamiltonian H exhibits a restricted
spectrum-generating algebra of order M (RSGA-M) if M + 1
iterated commutators with Q+ annihilates H while M com-
mutators with Q+ do not. In the HXY example above, there
are only k = 0, q = 0 and k = 1, q = 0 tensor operators, so
by Eq. (25) HXY exhibits RSGA-1.

Likewise, the Hamiltonian (which is the unitary equivalent
of HXY)

HDMI =
∑

i

(
Sx

i Sy
i+1 − Sy

i Sx
i+1

) +
∑

i

[
hSz

i + δ
(
Sz

i

)2]
(E15)

was shown [34] to host a scar tower with p = 0 bimagnon
excitations Q+ = ∑

i (S+
i )

2
/2 on the base state

⊗
i |−〉i. Sz

i
and (Sz

i )2 are still k = 1, q = 0 and k = 0, q = 0 tensors of
Q-SU(2). Expressing the DM term as

Sx
i Sy

i+1 − Sy
i Sx

i+1 = i(|+−〉 − |−+〉)〈00| + i|+0〉〈0 + |
+ i|0−〉〈−0| + H.c., (E16)

we see that (|+−〉 − |−+〉)〈00| is again a rank-0, q = 0
tensor, and |+0〉〈0 + | + |0−〉〈−0| a rank-1, q = 0 tensor.
Hence, HDMI exhibits RSGA-1.

3. Tensor operators of SU(3)

As another brief example of the procedure described in
Appendix E 1, we show how to construct the tensor operator
representations of SU(3) on a single 3 site.

We will label the 3 representation on a single site through
|+〉, |0〉, |−〉, ordered from the highest to the lowest weight
states. There are three raising operators,

Q+
1 =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦, Q+

2 =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦,

Q+
3 =

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦ (E17)

which act nontrivially only as follows: Q+
1 |−〉 = |0〉, Q+

2 |0〉 =
|+〉, and Q+

3 |−〉 = |+〉. The corresponding states in the con-
jugate representation, again ordered from highest to lowest
weight, will be |−〉, −|0〉, and |+〉.
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TABLE III. A complete basis of tensor operators for single-site SU(3) formed from the irreducible representations in the Clebsch-Gordan
decomposition of 3 ⊗ 3. The tensor operators are organized according to dimension and the amount they change the eigenvalues of the Cartan
subalgebra.

q2 = −√
3/2 q2 = 0 q2 = √

3/2

q1 = −√
2 |0〉〈+|

q1 = −1/
√

2 |−〉〈+| |0〉〈−|
3 ⊗ 3 octuplet q1 = 0 |+〉〈+|−|0〉〈0|√

2

−|+〉〈+|+|0〉〈0|−2|−〉〈−|√
6

q1 = 1/
√

2 −|−〉〈0| |+〉〈−|
q1 = √

2 −|+〉〈0|
3 ⊗ 3 singlet q1 = 0 |+〉〈+|+|0〉〈0|+|−〉〈−|√

3

SU(3) has a Cartan subalgebra of rank 2, which means that
states in the representation can be labeled by the eigenvalues
of two diagonal operators

Qz
1 = 1√

2

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦, Qz

2 = 1√
6

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦.

(E18)

The irreducible representations in the tensor product of 3
and 3 are 3 ⊗ 3 = 1 + 8. Using the corresponding Clebsch-
Gordan coefficients to construct the states in the representa-
tions on the right-hand side, and changing the kets to bras, we
find Table III.

By inspection, the operators in the table can all be identi-
fied as proportional to raising operators, lowering operators,
the Cartan subalgebra, or the identity. Thus, this example also

illustrates the fact noted above that R ⊗ R generically contains
the adjoint representation and a singlet, which in this case
can be identified with the eight generators of SU(3) and the
identity operator, respectively.

A comment is in order. There can be some ambiguities
in the Clebsch-Gordan coefficients for higher-rank groups.
SU(2) has a natural basis for each of its irreducible represen-
tations, where each state is characterized by its value under
Sz. This removes any ambiguity from the Clebsch-Gordan
coefficients of SU(2). On the other hand, for SU(3), there
are irreducible representations where the values in the Cartan
subalgebra do not uniquely label the states (i.e., there are
weight multiplicities), so there can multiple natural choices of
basis and hence different Clebsch-Gordan coefficients. We are
using the Clebsch-Gordan coefficients constructed from the
method in [68], which makes the tensor operators proportional
to the Gell-Mann basis for the generators of SU(3).
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Vuletić, and M. D. Lukin, Probing many-body dynamics on a
51-atom quantum simulator, Nature (London) 551, 579 (2017).

[15] A. Celi, B. Vermersch, O. Viyuela, H. Pichler, M. D. Lukin,
and P. Zoller, Emerging Two-Dimensional Gauge Theories in
Rydberg Configurable Arrays, Phys. Rev. X 10, 021057 (2020).

[16] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini,
S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho,

043006-19

https://doi.org/10.1103/PhysRevB.77.064430
https://doi.org/10.1103/PhysRevB.103.235133
https://doi.org/10.1103/PhysRevLett.121.040603
https://doi.org/10.1103/PhysRevLett.118.127201
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1103/PhysRevLett.125.260405
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevLett.54.1879
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevX.10.021057


TANG, O’DEA, AND CHANDRAN PHYSICAL REVIEW RESEARCH 4, 043006 (2022)

S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin,
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