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We develop an exact map of all states and operators from two-dimensional lattices of spins-1/2 into lattices
of fermions and bosons with mutual semionic statistical interaction that goes beyond previous dualities of Z2

lattice gauge theories because it does not rely on imposing local conservation laws and captures the motion of
“charges” and “fluxes” on equal footing. This map allows to explicitly compute the Berry phases for the transport
of fluxes in a large class of symmetry-enriched topologically ordered states with emergent Z2 gauge fields that
includes chiral, nonchiral, Abelian or non-Abelian, that can be perturbatively connected to models where the
visons are static and the emergent fermionic spinons have a noninteracting dispersion. The numerical complexity
of computing such vison phases reduces, therefore, to computing overlaps of ground states of free-fermion
Hamiltonians. Among other results, we establish numerically the conditions under which the Majorana-carrying
flux excitation in Ising-topologically ordered states enriched by translations acquires the 0 or π phase when
moving around a single plaquette.

DOI: 10.1103/PhysRevResearch.4.043003

I. INTRODUCTION

One of the best understood families of spin liquids are
those featuring emergent Z2 gauge fields [1,2]. These spin
liquids, which include the original Anderson short-ranged
resonating valence bond state [3,4], feature a nonlocal fermion
(spinon) and a “π -flux” (vison) excitation [5–8]. Kitaev’s
toric code (TC) [9] is perhaps the simplest exactly solvable
model for these kind of spin liquids. A recent series of works
[10–12] have shown that, beyond being an exactly solvable
model, the TC offers a new way to organize the Hilbert
space. In Ref. [10], it has been shown that by imposing a
new type of local Z2 constraint (local symmetry) on a spin
model, the local gauge invariant spin operators can be exactly
mapped onto local fermion bilinears. This construction can
be viewed as a generalization of the procedure that allows
to solve the Kitaev honeycomb model exactly [13], where
the Z2 constraint immobilizes the flux excitations leaving the
fermions as the only dynamical objects of the problem. For
related constructions see Refs. [13–18]. The construction of
Ref. [10] provides a local map from fermion bilinear operators
onto spin operators in two dimensions (2D), and it serves to
rewrite in an exact manner any imaginable local Hamiltonian
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of fermions as a local Hamiltonian of spins restricted to a
subspace satisfying the Z2 local conservation laws. Thus,
for example, any free fermion model can be obtain as an
exact description of a subspace of the Hamiltonian of a spin
model.

In this paper we extend the mapping of Ref. [10] by con-
structing an exact lattice duality mapping of the full Hilbert
space of the underlying spins onto a dual space of spinons
and visons without imposing any local Z2 conservation laws
that would freeze the motion of these particles. Namely, we
will construct nonlocal spinon and vison creation/annihilation
operators in a completely explicit form in terms of underlying
spin-1/2 operators. One of the key properties of our construc-
tion is that the dual Hilbert space completely “disentangles”
the vison and emergent fermion degrees of freedom, in the
sense that the dual states can be organized as tensor products
of vison and emergent fermion configurations. We will use
this construction to compute the Berry phases associated with
transporting the vison around plaquettes in closed loops in
the background of topological superconducting state of the
spinons with a nonzero Chern number. Throughout this paper
we will refer to the vison π -flux excitations sometimes as “e
particles” and the fermionic spinons as the “ε particles.” A
recent work [12] computed these phases when the fermions
were in Bogoliubov–de Gennes (BdG) states with zero Chern
number, relying on the property that these could be realized
as ground states of commuting projector Hamiltonians. But it
is known that chiral states cannot be realized in this fashion
[19], and, therefore, our current approach overcomes these
limitations.

The rest of the paper is organized as follows: Sec. II con-
tains the theoretical foundation of this paper, which is an exact
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duality mapping of a 2D spin system and a Hilbert space
of mutual semions. In Sec. II A, we introduce the duality
mapping where the dual space consists of e (boson) and m
(boson) particles; in Sec. II B, we introduce the mapping with
the dual space containing visons (e boson) and spinons (ε
fermion). As an application of this new theoretical tool, we
computed the vison Berry phases for the celebrated Kitaev
model. The model (and its dual form) were briefly reviewed in
Sec. III. Our main results are presented in Sec. IV: Sec. IV A
shows the results for the Kitaev model with a finite spinon
Haldane mass term, and the results for a model with a higher
spinon Chern number (C = −2) are presented in Sec. IV B.
We summarize and discuss our findings in Sec. V.

II. DUALITY MAPPING

A. Boson-boson mapping

In this section, we will illustrate the idea of the boson-
boson mapping. For simplicity, here we will focus on the case
of an infinite system, the mappings on an open and a periodic
system are provided in the Supplemental Material [20].

As has been shown explicitly in the TC model [9] for a 2D
spin system with spins residing on the links of a square lattice
(its Hilbert space will be denoted as Hspin), one can defined
the so-called star and plaquette operators associated with each
vertex and plaquette respectively,

Av =
∏

l∈star(v)

Xl , Bp =
∏

l∈boundary(p)

Zl . (1)

All the Av’s and Bp’s commute with each other, moreover, the
eigenstates of them form a basis of the spin Hilbert space
Hspin. One can define a dual spin system He-spin × Hm-spin

containing two types of spins, denoted as e and m spins. Here
the e and m spins sit on the vertices and plaquettes of the
square lattice, respectively, whose spin-Z configurations are
related to the occupation of the e and m particles (see below).
The local spin-X and -Z Pauli matrices of the dual e (m)
spins are denoted as X e

v (X m
p ) and Ze

v (Zm
p ), which satisfy the

following commutation relations:[
X e

v , Ze
v′
] = 0 (v �= v′),

{
X e

v , Ze
v

} = 0, (2a)[
Zm

p , X m
p′
] = 0 (p �= p′),

{
Zm

p , X m
p

} = 0, (2b)[
X e

v , X m
p

] = [
Ze

v , Zm
p

] = [
X e

v , Zm
p

] = [
Ze

v , X m
p

] = 0. (2c)

Within the duality mapping, we will map the eigenbases of Av

and Bp from Hspin to the local spin-Z eigenbasis of e and m
spins such that the star and plaquette operators are mapped to
the spin-Z Pauli matrices of e and m spins. respectively,

Av ↔ Ze
v , Bp ↔ Zm

p . (3)

To make the dual operators of X e
v , Ze

v , X m
p , and Zm

p should also
satisfy the algebraic relations in Eq. (2), we found that the
following choice of dual operators do the job:∏

l∈R(v)

Zl ↔ X e
v ,

∏
l∈L(p)

Xl ↔ X m
p . (4)

Here R(v) stands for the horizontal links to the right of vertex
v, L(p) stands for the vertical links to the left of plaquette p
[see Fig. 1(a) for a schematic of the nonlocal operators above].

FIG. 1. Schematic of the infinite system for both boson-boson
and boson-fermion mappings. (a) Operators for the boson-boson
mapping (infinite lattice). Spin-X (-Z) operators at each link are
represented by red (blue) colored bonds. (b) Operators for the boson-
fermion mapping (infinite lattice). The gray arrow indicates the
sequence of plaquettes in the Jordan-Wigner transformation, which
increases from lower to upper rows.

It can be shown that the local spin-X and -Z operators in Hspin

can be mapped to
(i) Vertical l ,

Xl ↔ X m
p1

X m
p2

, Zl ↔ X e
v1

X e
v2

∏
p∈R(l )

Zm
p . (5)

(ii) Horizontal l ,

Xl ↔ X m
p1

X m
p2

∏
v∈L(l )

Ze
v , Zl ↔ X e

v1
X e

v2
. (6)

Here for any vertical (horizontal) link l , the two vertices
connected by it are denoted as v1 and v2, the plaquettes to its
left (top) and right (bottom) are called p1 and p2. L(l ) stands
for vertices to the left of a horizontal l (including v1). Note
that spin-Xl and -Zl operators form a complete algebraic basis
out of which any other spin operators can be written in terms
of their summation, products and multiplication with complex
numbers. In this way, we have established the duality mapping
between Hspin and He-spin × Hm-spin.

Since spin-1/2 degrees of freedom can be equivalently
viewed as hard-core (e and m) bosons, it is straightforward
to establish the mapping He-spin × Hm-spin ↔ He × Hm, the e
and m spins’ Pauli matrices can be written as bosonic opera-
tors,

Ze
v ↔ (−1)b†

vbv , X e
v ↔ (

bv + b†
v

)
, (7a)

Zm
p ↔ (−1)d†

pdp, X m
p ↔ (

dp + d†
p

)
. (7b)

Here bv (dp) is the annihilation operator of an e (m) boson at
vertex v (plaquette p).

Finally, we obtain the duality mapping between Hspin and
He × Hm where the star and plaquettes operators of the orig-
inal spin space are mapped to the parity operators of e and m
bosons,

Av ↔ (−1)b†
vbv , Bp ↔ (−1)d†

pdp . (8)

The local spin operators are mapped into
(i) Vertical l ,

Xl ↔ (
dp1 + d†

p1

)(
dp2 + d†

p2

)
, (9)

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)
∏

p∈R(l )

(−1)d†
pdp . (10)
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(ii) Horizontal l ,

Xl ↔
∏

v∈L(l )

(−1)b†
vbv (dp1 + d†

p1
)(dp2 + d†

p2
), (11)

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

). (12)

Within this duality mapping, local Zl (Xl ) operators have
the effect of pair fluctuating and hopping the e (m) particles
on nearest-neighbor vertices v1 and v2 (plaquettes p1 and p2)
as one would naturally expect since they anticommute with
the e (m) particles’ parity operator at those two vertices (pla-
quettes). More interestingly, there is also a product of m (e)
particles’ parity operators when the e (m) particle is hopping
along the y direction [21], such nonlocal statistical interaction
terms make the e and m particles mutual semi-ions.

B. Boson-fermion mapping

1. Infinite lattice

It turns out that it is also possible to map the Hspin to a space
of bosons (e particles) and fermions (ε particles) He × Hε.
For a pedagogical reason, we will start with the case with an
infinite lattice and introduce the mapping on a periodic system
in the next section. The mapping for an open lattice can be
found in the Supplemental Material [20].

Each ε particle in the boson-fermion mapping can be
viewed as a composite of e and an m particles of the boson-
boson mapping, and the e and ε particles are mutual semions
[9]. The same as the boson-boson mapping introduced in the
previous section, the mapping between Hspin and He × Hε

can be made more obvious if one first introduces an intermedi-
ate dual spin space He-spin × Hε-spin, where the e (ε) spins are
located at the vertices (plaquettes) of a square lattice. Recall
that the eigenstates of Av and Bp are also eigenstates of all the
AvBp(v)’s and Bp’s. Here p(v) stands for the plaquettes to the
northeast of vertex v. One can map this eigenbasis to the local
spin-Z eigenbases of e and ε spins of the intermediate dual
space such that

AvBp(v) ↔ Ze
v, Bp ↔ Zε

p. (13)

Note that here we used bold symbols to denote the Pauli
matrices of the e and ε spins, which satisfy the following
algebraic relations:[

Xe
v, Ze

v′
] = 0 (v �= v′), {Xe

v, Ze
v} = 0, (14a)

[
Zε

p, Xε
p′
] = 0 (p �= p′), {Zε

p, Xε
p} = 0, (14b)

[
Ze

v, Zε
p

] = [
Xe

v, Xε
p

] = [
Xe

v, Zε
p

] = [
Ze

v, Xε
p

] = 0. (14c)

In Hspin, the dual operators of Xe
v and Xε

p will respect these
relations if one chooses ∏

l∈R(v)

Zl ↔ Xe
v, (15)

∏
l∈R(v(p))

Zl

∏
l ′∈L(p)

Xl ′ ↔ Xε
p. (16)

Here v(p) stands for the vertex to the southwest of plaquette
p. A schematic of these nonlocal spin operators are shown

in Fig. 1(b). In this way, we have completed the mapping
between Hspin and He-spin × Hε-spin.

The mapping from He-spin × Hε-spin to He × Hε is more
straightforward, the e particles are just the hard-core boson
corresponding to the e spins, and the Hε-spin is mapped to Hε

through a Jordan-Wigner transformation,

Ze
v ↔ (−1)b†

vbv , Xe
v ↔ (bv + b†

v ), (17)

Zε
p ↔ −iγpγ

′
p, Xε

p ↔
(∏

q<p

−iγqγ
′
q

)
γ ′

p. (18)

Here bv (b†
v) is the annihilation (creation) operator for the e

particle at vertex v. We have also introduced two Majorana
fermion modes (γp and γ ′

p) to represent the complex ε fermion
mode (whose annihilation/creation operator is cp/c†

p) at each
plaquette p with

γp = cp + c†
p, γ ′

p = 1

i
(cp − c†

p). (19)

Note that the fermion parity at each plaquette p is (−1)c†
pcp =

−iγpγ
′
p. The sequence of plaquettes in the Jordan-Wigner

transformation is indicated by the gray arrow in Fig. 1(b).
In this way, we have established the mapping between Hspin

and He × Hε, it can be shown that the following local spin
operators are mapped to:

(i) l is a vertical link,

XlZSW(l ) ↔ Xε
p1

Xε
p2

↔ iγp1γ
′
p2

, (20)

Zl ↔ Xe
v1

Xe
v2

∏
p∈R(l )

Zε
p

↔ (bv1 + b†
v1

)(bv2 + b†
v2

)
∏

p∈R(l )

(−iγpγ
′
p). (21)

(ii) l is a horizontal link,

XlZSW(l ) ↔ (−1)
∏

v∈L(l )

Ze
v

( ∏
p2�p�p1

Zε
p

)
Xε

p1
Xε

p2

↔
∏

v∈L(l )

(−1)b†
vbv iγp1γ

′
p2

(22)

Zl ↔ Xe
v1

Xe
v2

↔ (bv1 + b†
v1

)(bv2 + b†
v2

). (23)

Here SW(l ) is the link to the southwest of link l , which
also connects to it [see Fig. 1(b) for a schematic]. It is clear
that the local Zl (XlZSW(l )) operator is able to pair create,
annihilate, and hop the e (ε) particles in the nearest neighbors.
The nonlocal products of the e-particle (ε-particle) parities
in the dual operator of Xl ZSW(l ) (Zl ) indicate the statistical
interaction between between e and ε particles, which view
each other as π fluxes, i.e., they are mutual semi-ions.

2. Periodic lattice

The idea of the duality mapping on a periodic lattice (torus)
is basically the same as the infinite lattice case. However, there
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FIG. 2. Schematic of operators in the boson-fermion mapping for
a periodic lattice. (a) Noncontractible loops used in the definition of
the Wilson loop and t’Hooft operators. �x/y is highlighted in gray
color, and �̃x/y is highlighted in red color. (b) The dual of Xe

1Xe
v

and Xε
1Xε

p operators. The sequence of vertices and the associated
plaquettes (to the northeast of each vertex) starts with the one on
the top left, ascends towards the right direction within each row and
increases from the top to bottom rows as indicated by the gray arrow.
The �1,v path starts from vertex 1, goes down first then goes to the
right direction until reaching vertex v, see the path paved by blue
colored bonds. The dual path �̃1,p starts from plaquette 1, goes to the
right end first, then goes down, and finally goes left until plaquette p.
An example is indicated by the black dotted line in the figure.

are now two global constraints in the original spin space,∏
v

AvBp(v) = 1,
∏

p

Bp = 1. (24)

Therefore, only an even number of AvBp(v) and Bp can take
−1, i.e., there are only 22N−2 different configurations of
AvBp(v) and Bp, where N is the number of unit cells in the
system. To fully characterize the spin Hilbert space (with
dimension 22N ), one needs to introduce two additional Wilson
loop degrees of freedom. The Wilson loop operators commute
with all the AvBp(v) and Bp operators, one possible choice is
as follows:

W1 = −
∏
l×�̃x

Xl

∏
l ′∈�x

Zl ′ , W2 = −
∏
l×�̃y

Xl

∏
l ′∈�y

Zl ′ . (25)

Here l × �̃x/y denotes the link l crossing the dual-lattice path
�̃x/y. Paths �x,y and �̃x,y are shown in Fig. 2(a).W1/2 takes
the value of ±1 and can be interpreted as a closed transport
of ε particles across a x/y-oriented noncontractible loop of
the torus (see below). One can also define two t’Hooft op-
erators T1 and T2 which commutes with all the AvBp(v) and
Bp but, respectively, anticommutes with W1 and W2, which
read

T1 =
∏
l∈�y

Zl , T2 =
∏
l∈�x

Zl . (26)

As will become clear later, T1/2 plays the role of transporting
an e particle across the y/x-oriented noncontractible loop of
the torus.

The intermediate dual (spin) space for a periodic system
reads Heven ↓

e-spin × Heven ↓
ε-spin × HW . Here Heven↓

e-spin stands for the

even-↓ subspace of the e spins (same for the Heven↓
ε-spin) due

to the constraint Eq. (24). HW is a four-dimensional Hilbert
space containing two (auxiliary) spins, which we call Wilson
loop spins (WLS) as they correspond to the two Wilson loop
degrees of freedom in the original spin system. When estab-
lishing the mapping between Hspin and Heven ↓

e-spin × Heven ↓
ε-spin ×

HW , the eigenbases of all the AvBp(v), Bp, and W1,2 will be

mapped to the spin Z eigenbasis of e spins, ε spins, and WLS,
which gives

AvBp(v) ↔ Ze
v, Bp ↔ Zε

p, W1,2 ↔ ZW
1,2. (27)

The t’Hooft operators are mapped to the Pauli X matrices of
the WLS: T1,2 ↔ XW

1,2. Note that there is an implicit projection
operator P in the dual spin operators, which projects states
to the even-↓ subspace of e and ε spins. Since the physical
dual spin subspace states contains only an even number of (e
and ε) down spins, a single Xe

v or Xε
p has no matrix element

in this subspace because they only mix states with different
number of down spins. On the other hand, bilinears of Xe

v or
Xε

p have nonzero matrix elements in the physical subspace.
For convenience, we take vertex/plaquette 1 as a “reference”
vertex/plaquette [see Fig. 2(b)] and looked for the dual oper-
ators of Xe

1Xe
v and Xε

1Xε
p such that the algebraic relations in

Eq. (14) can be satisfied. One possible choice is the following
mapping:

∏
l∈�1,v

Zl ↔ Xe
1Xe

v, (28)

∏
l∈�1,v

Zl

∏
l ′∈�̃1,p

Xl ′ ↔ Xε
1Xε

p (29)

Here �1,v (�̃1,p) is a direct (dual) lattice path connecting the
vertices 1 and v (plaquettes 1 and p), see Fig. 2(b) for a
schematic of them. To simplify the notation, we are simply
using the sequence numbers of vertices and plaquettes to
denote them in the subindices of the operators [see their order
in Fig. 2(b)].

The mapping from e spins (ε spins) to the e bosons (ε
fermions) is very similar to the infinite lattice case shown
in Eqs. (17) and (18), however, due to the constraints in
Eq. (24), the (physical) e- and ε-particle states contain only an
even number of particles. The dual boson-fermion (and WLS)
space reads Heven

e × Heven
ε × HW . Note that the sequence of

plaquettes in the Jordan-Wigner transformation between ε

spins and ε fermions has also changed now [which is shown
in Fig. 2(b)]. In this way, one obtains the duality mapping
between Hspin and Heven

e × Heven
ε × HW , local Xl and Xl ZSW(l )

operators are mapped to
(I) l is a vertical link,
(i) l /∈ �y, and l does not cross �̃x,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)

⎛
⎝ ∏

l×�̃1,p

−iγpγ
′
p

⎞
⎠, (30a)

Xl ZSW(l ) ↔ iγpγ
′
p. (30b)

(ii) l ∈ �y, and l does not cross �̃x,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

), (31a)

Xl ZSW(l ) ↔
⎡
⎣ ∏

l∈�1,v

(−1)b†
vbv

⎤
⎦iγp1γ

′
p2

ZW
1 . (31b)
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(iii) l /∈ �y, and l crosses �̃x,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)

⎛
⎝ ∏

l×�̃1,p

−iγpγ
′
p

⎞
⎠ XW

1 ,

(32a)

Xl ZSW(l ) ↔ iγp1γ
′
p2

. (32b)

(iv) l ∈ �y, and l crosses �̃x,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

) XW
1 , (33a)

XlZSW(l ) ↔ iγpγ
′
p ZW

1 . (33b)

(II) l is a horizontal link,
(i) l /∈ �x, and l does not cross �̃y,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

), (34a)

Xl ZSW(l ) ↔
⎡
⎣ ∏

l∈�1,v

(−1)b†
vbv

⎤
⎦iγp1γ

′
p2

. (34b)

(ii) l ∈ �x, and l does not cross �̃y,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

), (35a)

XlZSW(l ) ↔
⎡
⎣ ∏

l∈�1,v

(−1)b†
vbv

⎤
⎦iγp1γ

′
p2

ZW
2 .

(35b)

(iii) l /∈ �x, and l crosses �̃y,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)

⎛
⎝ ∏

l×�̃1,p

−iγpγ
′
p

⎞
⎠XW

2 ,

(36a)

Xl ZSW(l ) ↔ iγp1γ
′
p2

. (36b)

(iv) l ∈ �x, and l crosses �̃y,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)XW
2 , (37a)

Xl ↔ iγp1γ
′
p2

ZW
2 . (37b)

Here for a horizontal (vertical) link l , v1 and v2 are the
two vertices connected by it, p1 and p2 are the plaquettes to
its top (left) and bottom (right). Again, the nonlocal boson
and fermion parities in the dual operators reflect the semionic
statistical interaction between e and ε particles. Moreover,
when an e (ε) particle is moving across the x/y direction
boundary, there will be an associated XW

2/1 (ZW
1/2) operator.

The spin-Z configuration of WLS determines the boundary
condition of ε particles.

III. MODEL HAMILTONIAN

In this paper, we consider Hamiltonians of the form
H = H0 + H1. H0 commutes with AvBp(v) for ∀ v, accord-
ing to the boson-fermion mapping introduced in Sec. II B,
its dual operator has dynamical (ε) fermions and static π

fluxes (e particles). Many exactly solvable models can be
constructed from these type of Hamiltonians by making the

fermions free, e.g., the Kitaev honeycomb model [10–13]. H1

will be a term that allows the motion of e particles, whereas
preserving their total number. We choose H0 to be given
by

H0 =
∑

l∈h−link

−Jx Xl ZSW(l ) + Jy YlYSE(l ) − Jz XNE(l )Zl

+ κ[ZlZSW(l )YSE(l ) + XlXNE(l )YSE(l ) − YlZSE(l )XNE(l )]

+
∑

l∈v−link

κ[YlZSW(l )XNE(l ) − ZlZSW(l )YNW(l )

− Xl XNE(l )YNW(l )]. (38)

Here the h/v link stands for horizontal/vertical links. This
Hamiltonian is equivalent to the Kitaev homeycomb Hamil-
tonian (with a Haldane mass term κ) [13] by placing the
sites of the original honeycomb lattice onto the links of a
square lattice (see Supplemental Material Sec. S III [20] for a
schematic of the lattice) and a unitary transformation U which
transforms

Xj ↔ Zj, Yj → −Yj, ∀ j ∈ A sublattice. (39)

Under the duality transformation introduced in Sec. II B, the
dual Hamiltonian reads (for an infinite system)

H̃0 = −
∑

p

(JxeiπβL̃(p,p+ŷ) iγp+ŷγ
′
p

+ JyeiπβL̃(p,p+ŷ) iγp+ŷγ
′
p+x̂ + Jziγpγ

′
p+x̂ )

− κ
∑

p

[
eiπβL̃(p,p+ŷ) iγp+ŷγp−x̂

+ eiπb†
v(p)bv(p) iγp−x̂γp + eiπβL̃(p,p+ŷ) iγpγp+ŷ

+ eiπβL̃(p−x̂,p−x̂+ŷ) iγ ′
p+ŷγ

′
p

+ iγ ′
p+x̂γ

′
p + eiπβL̃(p,p−ŷ) iγ ′

p−ŷγ
′
p+x̂

]
. (40)

Here L̃(p, p′) stands for the link sandwiched by plaquettes p
and p′, βl = ∑

v∈L(l ) b†
vbv for a horizontal link l [here L(l )

stands for the vertices to the left of link l]. It is clear that H̃0

has a BdG form for the ε fermions in a background of static π

fluxes (e particles) and can be solved exactly within any given
real-space configuration of e particles.

As for H1, we choose it to be as follows:

H1 = g
∑

l

Zl
1 − Av1(l )Bp[v1(l )]Av2(l )Bp[v2(l )]

2
, (41)

with v1(l ) and v2(l ) being the two vertices adjacent to link l .
Its dual operator H̃1, according to Eqs. (17) and (23) reads (for
the infinite lattice case),

H̃1 = g
∑

v

b†
vbv+ŷ

∏
p∈R[L(v,v+ŷ)]

(−iγpγ
′
p) + b†

vbv+x̂ + H.c.

(42)

∼ b†
v1

bv2 + b†
v2

bv1 , Here L(v, v′) stands for the link connect-
ing vertices v and v′, R(l ) stands for the plaquettes to the link
l . Note that the above Hamiltonian is a sum of operators that
act on spins contained within some local region of the link l ,
and, therefore, it is a strictly local perturbation (even though
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FIG. 3. Berry phase for e particles. (a) Berry phase for a
single-plaquette movement of an e particle. φ → 0 or π in the
thermodynamic limit. The inset indicates the setup of numerical
calculations: two e particles are highlighted by the red dots with one
of them hops circularly between the four sites. The legends indicate
values of parameters (t, Jy, z1, z2) in the model. (b) Berry phase for
the exchange of two e particles. φ converges to predicted values in
Ref. [13] as N → ∞.

it contains products of several spin operators). So H̃1 contains
nearest-neighbor e-particle hopping terms. Note that it is also
dressed by ε particles’ parities due to the statistical interaction
between e and ε particles. To perform calculations, in this
paper, H1 will be treated as a perturbation to H0.

IV. BERRY PHASES OF VISONS

A. Kitaev model with a Haldane mass term

We will use the previously described mapping to compute
the Berry phase for transporting the π flux in a closed loop
around a single plaquette. This phase can be viewed as a
universal characterization of the topologically ordered state
enriched by lattice translational symmetry [22–28].

In order to compute the Berry phase, we place two e
particles far apart on a torus and will allow only one of
them to move within the four vertices surrounding a pla-
quette [see the inset to Fig. 3(a)]. This is accomplished
by only adding the flux-hopping operator from Eq. (41)
to be nonzero at the links connecting these four vertices.
For a fixed WLS configuration |z1, z2〉, when the mobile
e particle is located at site j ∈ {1–4}, the corresponding
physical (even number of ε particles) ground state of H̃0

reads

|	 j〉 = b†
0b†

j

∣∣0〉 ⊗ ∣∣
ε
j

〉 ⊗ |z1, z2〉. (43)

Here |
ε
j 〉 is the even-parity ground state of a BdG Hamil-

tonian with two π fluxes at 0 and j, and the z1,2= ± 1
are the eigenvalues of the Wilson loop operators that label
the global periodic/antiperiodic boundary conditions of the
fermions along the x and y directions (see Supplemental Ma-
terial Sec. S III [20]). |
ε

j 〉 can be solved exactly and has a
BCS form (see Supplemental Material [20]). The Berry phase
for this close-loop movement of an e particle is as follows:
eiφ ≈ ∏4

j=1〈	 j+1|Zj+1, j |	 j〉. Note that the index j runs

cyclically from 1 to 4, i.e., |	5〉 ≡ |	1〉. In the dual space,
the Berry phase reads

eiφ = 〈

ε

1

∣∣( ∏
p∈L(4,1)

−iγpγ
′
p

)∣∣
ε
4

〉〈

ε

4

∣∣
ε
3

〉

×〈

ε

3

∣∣( ∏
p∈L(3,2)

−iγpγ
′
p

)∣∣
ε
2〉

〈

ε

2

∣∣
ε
1

〉
. (44)

Here L(4, 1) denotes the string of plaquettes to the left of link
(4,1) that runs until the left edge of the torus.

In our paper, we take the following parameters:
Jx=Jz=1, κ=0.1. The torus has N × N plaquettes with N
even. We consider two values Jy= ± 1 which corresponds to
fermionic BdG states with Chern numbers C= ± 1. There are
four high-symmetry points (HSPs) in k space which are un-
paired in a BdG Hamiltonian [12,29,30]: (0, 0), (π, 0), (0, π ),
and (π, π ). For Jy=1, the fermion band energy ε(0, 0) < 0 and
is positive at other three HSPs. In this case, we have found
that the single-plaquette Berry phase φ → 0 with increasing
N for any BC. On the other hand, for Jy= − 1, ε(k) < 0 at
(0,0), (π, 0), and (0, π ) and is positive at (π, π ). For this case
we have found that for any BC, φ → π as N increases. The
results are presented in Fig. 3(a) and this is one of the main
findings of our paper.

The motion of the vison in the ferromagnetic (FM) and an-
tiferromagnetic (AFM) Kitaev models induced by physically
realistic perturbations, such as the Zeemann field, has also
been studied in Refs. [31,32]. Whereas an earlier version of
Ref. [31] had concluded that the phase of vison in the FM
model was π around a unit cell, the updated understanding
provided in Refs. [31,32] is currently in mutual agreement
with the conclusion that the vison acquires zero phase in the
FM model and π phase in the AFM model around a unit cell,
which is also in agreement with the current paper.

We also studied the braiding phases for two anyons.
To avoid geometric phases depending on the details of the
braiding path, we follow the Levin-Wen protocol [13,33,34].
Figure 3(b) presents results of the braiding phases. For
Jy=1 with increasing system size, the braiding phase φ →
−π/8 for antiperiodic BC (APBC) and φ → 3π/8 for
periodic BC (PBC). Whereas for Jy= − 1, the φ → π/8
for APBC and φ → −3π/8 for PBC. Our results for φ

match exactly the prediction of Rσ,σ
1 ∝ exp (−iCπ/8) and

Rσ,σ
ε ∝ exp (iC3π/8) in Ref. [13] (here σ stands for the

π -flux particle). The difference between PBC and APBC
originates from the fermion ground-state parity of H̃0.
The state with Jy=1 is a p + ip topological supercon-
ductor, and the ground state would have an odd number
of fermions under PBC [35], which is unphysical in our
case. Since, only even-parity states are physical, the lowest-
energy physical eigenstate of H̃0 in this case is actually the
first excited state of the BdG Hamiltonian with a single
Bogoliubov quasiparticle. Thus, for PBCs the π fluxes are
in the fusion sector σ × σ = ε, explaining the difference in
braidings that we observe in Fig. 3. As for APBC, the ground
state of the BdG Hamiltonian contains an even number of
fermions, therefore, the π fluxes are in the fusion sector
σ × σ = 1.
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B. Higher Chern numbers and conjecture for the arbitrary case

One can also explore cases with higher Chern numbers
by correspondingly modifying H0. This illustrates the power
of this construction allowing to write an exactly solvable
model for any free fermion Hamiltonian of interest. We
accomplished this explicitly by introducing some four-spin
interaction terms to H0 in Eq. (38),

t

2

[ ∑
l∈h link

(
YlZSW(l )ZNE(l )YN(l ) + YlYW(l )XSW(l )XNE(l )

)

+
∑

l∈v link

(
YlYS(l )XSW(l )XNE(l ) + YlYE(l )ZSW(l )ZNE(l )

)

+
∑

p

Bp +
∑

v

Av

]
. (45)

The E (l ) [S(l )] stands for the link to the east (south)
of l within a common plaquette. Under the duality
mapping established in this paper, these new terms are
mapped to third-neighbor Majorana fermion couplings of the
form

t
∑

p

(−iγpγ
′
p − iγpγ

′
p+2x̂ − iγpγ

′
p−2ŷ). (46)

Here for simplicity we have omitted the nonlocal vison
parities and the WLS operators involved in some of the
terms for the complete expression see Supplemental Material
Sec. S III [20].

At Jy = 1, t = 0.5, H̃0 has C = −2. εk < 0 at all HSPs,
so for both PBC and APBC, the fermion ground-state parity
of H̃0 is even. There are two types of anyons in this case
[13], and we studied the sector with a × ā = 1 where a and
ā denote the two kinds of π -flux particles in these states.
When braiding a single e particle around a plaquette, we found
Berry phase φ = π for any BC. As for the braiding phase,
we obtained Ra,ā

1 = eiπ/4 = e−iCπ/8, which is also consistent
with Ref. [13]. More details can be found in the Supplemental
Material [20].

As mentioned before, the phase φ acquired by a π flux
upon enclosing a plaquette is an universal characteristic of the
symmetry enriched topological state. BdG states of fermions
with lattice translations can be classified by their Chern num-
ber, C ∈ Z, and four parity indices ζk , which dictate whether
the band is inverted (ζk = −1) or not (ζk = 1) in each of the
four HSPs of the Brillouin zone [12,29,30,36–39]. Therefore,
the value of φ should be a function uniquely fixed by C and
ζk . The analytical proof of the value of φ in the most general
case is not known to us. Reference [12] showed that when
C = 0, φ = 0 when all ζk = 1 and φ = π when all ζk = −1
(all HSPs are band inverted), in agreement with previous

arguments [23]. Reference [12] also showed that the cases
with C = 0 and only two ζk = −1, corresponds to states with
“weak symmetry breaking” (and, thus, the π fluxes cannot
be transported to adjacent vertices with local operations). We
have shown here that when only one ζk = −1 and C = 1 then
φ = 0, and when three ζk = −1 and C = −1 then φ = π .
We also showed that when C = −2 and all four ζk = −1,
then φ = π . This suggest the conjecture that for states with
odd C and only one ζk = −1, then φ = 0 and states with
three ζk = −1 then φ = π . For states with even C and all
ζk = 1 then φ = 0 and those with all four ζk = −1 then φ = π

(states with even C and only two ζk = −1 should display weak
symmetry breaking of translations [12]).

V. DISCUSSIONS

We have established an exact mapping between a 2D
spin system and a 2D boson-boson (e, m) or boson-fermion
(e, ε) system where the two types of particles in the dual
space are mutual semions, which generalizes the previous dual
maps that relied on imposing local Z2 constraints [10]. This
amounts to constructing explicit vison and spinon nonlocal
creation/annihilation operators in terms of the underlying
spin degrees of freedom. Based on this mapping, we found
that the Berry phase for the transport of the vison (π -flux
excitation) around a single plaquette was quantized to be 0
or π . We have conjectured a universal form of this phase
that depends on the Chern number and the parity indices at
HSPs of the BdG band structure of the spinons, generalizing
previous results from nonchiral states in Refs. [12,23] to chi-
ral and non-Abelian states. We also computed explicitly the
braiding phase between two visons, which was found to be
consistent with the general arguments of Ref. [13] for both
C = 1 and C = 2 states of the spinons. In the models studied
here, the e particles are static, and we only need to solve a free
fermionic Hamiltonian of N2 × N2. Thus, the Berry phase
for e-particle movement can be calculated even for relatively
large system sizes without too much computational cost. The
lattice dualities developed in this paper are universal and can
be used to study not only the Berry phases of translations
of visons, but also many other topological and dynamical
properties of these excitations, such as their effective mass
and dispersions, which can be crucial in understanding their
role in real materials and experiments [31].
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