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Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “black-box”
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A precise understanding of the influence of a quantum system’s environment on its dynamics, which is at
the heart of the theory of open quantum systems, is crucial for further progress in the development of control-
lable large-scale quantum systems. However, existing approaches to account for complex system-environment
interaction in the presence of memory effects are either based on heuristic and oversimplified principles or
give rise to computational difficulties. In practice, one can leverage on available experimental data and replace
first-principles simulations with a data-driven analysis that is often much simpler. Inspired by recent advances in
data analysis and machine learning, we propose a data-driven approach to the analysis of the non-Markovian
dynamics of open quantum systems. Our method allows, on the one hand, capturing the most important
characteristics of open quantum systems such as the effective dimension of the environment and the spectrum
of the joint system-environment quantum dynamics, and, on the other hand, reconstructing a predictive model
of non-Markovian quantum dynamics, and denoising the measured quantum trajectories. We demonstrate the
performance of the proposed approach with various models of open quantum systems, including a qubit coupled
with a finite environment, a spin-boson model, and the damped Jaynes-Cummings model.

DOI: 10.1103/PhysRevResearch.4.043002

I. INTRODUCTION

Understanding and predicting dynamics of quantum many-
body systems is a formidable challenge, and an essential step
toward the development of quantum computing devices [1].
Recent experiments [2–9] have demonstrated the realization
of quantum computing and simulation protocols with quan-
tum many-body systems of an intermediate scale (dozens of
particles). Nevertheless, even with the achieved outstanding
level of control in these experiments it remains challenging
to isolate a quantum system from the environment [9], which
is the main source of decoherence causing errors. This fact
significantly limits applications of such systems for quantum
information processing and prevents the full experimental
verification of various effects related to the nonequilibrium
dynamics [10–12].
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The theory of open quantum systems [13–16] aims
to provide a complete description of such nonequilibrium
dynamical effects at the quantum level. Within such a frame-
work, one can arbitrarily partition a quantum many-body
system and its environment and describe each part as an
individual open system. This powerful idea allows studying
a nonequilibrium many-body system by considering smaller
parts of it; for example, an individual qubit in a large ensemble
of qubits interacting with each other and their environment.
At first sight, dealing with one qubit instead of an ensemble
of entangled qubits seems to be a much simpler problem,
because it does not suffer from the computational difficulties
raised by the exponentially large Hilbert space in the number
of subsystems. Indeed, the dynamics of the subsystem’s den-
sity matrix (e.g., one qubit density matrix) can be described
exactly by the Nakajima-Zwanzig equation [17,18], which
contains a convolution (memory) kernel. Time-convolution is
necessary to take into account the non-Markovianity of the
general open quantum dynamics. Non-Markovianity, i.e., ef-
fects of memory, are among the most challenging problems to
solve for the proper description of the general open quantum
system [14]. The problem is that the exact derivation of the
Nakajima-Zwanzig equation is of the same complexity as the
calculation of the coupled system and environment quantum
dynamics [13].
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FIG. 1. Physical intuition underpinning the Markovian embedding for the non-Markovian dynamics of the finite-dimensional system
interacting with a high-dimensional (possibly infinite-dimensional) environment. One can split the system’s environment into two parts: The
finite-dimensional effective environment, which is responsible for memory effects in the system’s dynamics, and the remaining far environment
responsible for dissipation. It allows one to consider a Markovian dissipative dynamics of the finite-dimensional extended system consisting
of the original system and its effective environment.

This problem can be approached by considering differ-
ent approximations such as the Born-Markov approxima-
tion [16,19] or simplified models of open quantum dynamics
that are exactly solvable [20–23]. However, the class of
problems that can be studied analytically is limited to a
handful of exceptional situations. An alternative approach
is to use numerical techniques such as the non-Markovian
quantum state diffusion [24–27], the hierarchical equa-
tions of motion [28,29], the time-evolving matrix product
operators [30], the method based on optimized auxiliary os-
cillators [31], the dressed quantum trajectories method [32],
the Dirac-Frenkel time-dependent variational approach with
the Davydov ansatz [33], or the time-evolving density with
orthogonal polynomials algorithm [34,35], just to name a
few. At the same time, open quantum systems studied under
real experimental conditions are usually too complex and
cannot always be described with existing numerical meth-
ods developed for illustrative models. For instance, most
of the numerical methods, including those listed above, are
devoted to simulating systems with an environment made
of noninteracting quantum oscillators [14] or noninteracting
fermions [36,37], so they are unable to simulate systems
with more complex environments, such as the spin environ-
ment [38–42]. Moreover, since in a real experimental setting
the joint Hamiltonian of a system and its environment is often
unknown, exhaustive spectroscopy experiments are required
to recover the Hamiltonian parameters and simulate the actual
system’s dynamics at the microscopic level [43,44].

Since building a precise analytical or numerical description
of open quantum dynamics from a microscopic model is a
notoriously difficult problem in the general case, one can
try to build a precise data-driven model of open quantum
dynamics using experimentally measured data. In addition,
data-driven approaches do not require reconstruction of the
joint system and environment microscopic model. A number
of data-driven techniques for the analysis of the dynamics
of open systems have been recently proposed. For example,
Ref. [45] introduces a method for a data-driven reconstruc-
tion of the discrete-time Nakajima-Zwanzig equation, namely
the transfer-tensor method (TTM) [46–54], that can be used
for dynamics prediction. In Ref. [55] a recurrent neural net-
work based method [56] for data-driven identification of open
quantum dynamics has been developed. Although these meth-
ods provide efficient predictive models, they serve as “black

boxes,” i.e., they do not allow one to unravel the physical
picture of the underlying processes [57–59].

One of the most natural ways to describe open quantum
dynamics is embedding the non-Markovian system dynamics
into a Markovian dynamics of the system and the effective
environment of a finite dimension [60]. The physical intu-
ition behind such embedding is summarized in Fig. 1. One
can think of the environment that induces the system’s non-
Markovian dynamics as a two-component system consisting
of effective and far environments. The effective environ-
ment is responsible for memory effects: some information
about the system is recorded into the effective environment
and then affects the system at later time. The dimension of
the effective environment determines the complexity of the
non-Markovian system’s dynamics. In contrast to the effec-
tive environment, the interaction with the far environment
does not entail a backflow of information, and leads to a
purely dissipative dynamics. In this way, the system and
the effective environment instantiate a Markovian embed-
ding, and their collective dynamics is both dissipative and
Markovian. We emphasize that Markovian embedding is not
just a “black-box” model of open quantum dynamics since
it provides insights into the properties of both the system
and its environment. Moreover, Markovian embedding can be
reconstructed with only information about the non-Markovian
dynamics of a system, which is accessible in real experimental
conditions [61,62].

In this work, we harness data-driven Markovian embedding
reconstruction, and present a complete framework for general
open quantum dynamics analysis. Our framework can be seen
as a combination of the alternative “data-friendly” view on
non-Markovian quantum dynamics, that we develop in first
sections, and linear machine-learning methods [63–66]. Input
data include trajectories of a system at discrete time steps, a
guess of the memory depth of the non-Markovian process,
and the level of noise generated during experimental recon-
struction of trajectories. As output, our framework returns
the predictive model of non-Markovian quantum dynamics,
the dimension of the effective environment [62,67,68], the
eigenfrequencies of the joint system and environment quan-
tum dynamics, and the denoised trajectories of the system as
a valuable byproduct. Note that our framework has the distinct
advantage to rely on the linear methods of machine learning,
which are known to be scalable, data efficient and yield the
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exact solution. We illustrate the performance of our scheme
with several paradigmatic examples of realistic models such
as a qubit coupled with a finite-dimensional environment,
a spin-boson model, and the damped Jaynes-Cummings
model.

II. TIME-DELAY EMBEDDING OF NON-MARKOVIAN
QUANTUM DYNAMICS

A. Quantum trajectories’ Markovian dynamics

In this section we discuss an alternative view on non-
Markovian open quantum dynamics that is the basis of the
proposed data processing scheme. The alternative lies in
turning from the density matrix based description of non-
Markovian quantum dynamics to quantum trajectories based
description, where a quantum trajectory is seen as a concate-
nation of several subsequent in time density matrices. This
description is less physics-motivated and more suitable for the
data-driven analysis we propose. Consider a d-dimensional
quantum system undergoing non-Markovian dynamics [69]
due to the interaction with a dE-dimensional environment.
Throughout the paper, we assume that the Hamiltonian driving
dynamics of the system and environment as a whole remains
time-independent. In the development that follows, d and dE

are finite, though the environment may consist of a large
number of subsystems (particles), so one can have dE expo-
nentially large in the number of particles. Assume one has
access to the system states (density matrices) �(t ) ∈ Cd×d at
consecutive and equidistant time instants t = 0, 1, 2, . . ., sep-
arated by the constant experimental time resolution τ , and one
is able to reconstruct �(t ) using quantum state tomography.
Throughout the paper we use τ as time units, i.e., the physical
time is expressed as τ t . Performing the tomographic exper-
iment multiple times, one reconstructs K-element sequences
of the system’s states:

TK (t ) := (�(t ), �(t + 1), . . . , �(t + K )) ∈ CK×d×d , (1)

which we refer to as system trajectories. Assuming that the
observed non-Markovian dynamics has a finite memory depth,
for a sufficiently large value of K , there exists a linear map M
that connects two subsequent trajectories through a Marko-
vian master equation:

TK (t + 1) = M[TK (t )]. (2)

The rigorous criteria for K to be sufficient (existence of M)
is given in Appendix A. One can think of K as the number
of previous in-time density matrices of the system, which is
enough to determine the next in-time state of the system. Note
also that while one can express the physical memory depth
as τK , which is a more fundamental quantity, K itself is more
suitable for data-driven analysis. In Appendix A we also show
that for a finite dE one always has a finite sufficient K that does
not exceed d2d2

E. Note, however, that in the worst case, the
minimal sufficient K scales with the number of environment’s
subsystems (particles) exponentially and Eq. (2) quickly be-
comes intractable for a numerical analysis. Our conjecture is
that this worst case corresponds to a dynamical chaos regime,
as we discussed in more detail in Appendix A, for which
long-time dynamics prediction is impossible. Although, one
can use the data-driven analysis (discussed in the next section)

FIG. 2. Connection between the joint dynamics of the system
and its environment with the observed dynamics of trajectories.
Curve (i) sketches the joint dynamics of the system and its environ-
ment �SE(t ) driven by the quantum channel �. Curve (ii) sketches
the joint dynamics of the system and the effective environment �

(r)
SE (t )

driven by the map �(rr). Curve (iii) sketches the observed trajectories
dynamics TK (t ) driven by the map M. There is the one-to-one corre-
spondence between curves (ii) and (iii) that is described by the linear
map φK . Both dynamics (ii) and (iii) are Markovian, their Master
equations are connected via φK and they can be seen as “shadows”
of dynamics (i).

to identify chaos in the system’s dynamics, our scheme is
suitable only for finite-memory (nonchaotic) non-Markovian
dynamics. In what follows, K is always assumed to be suffi-
cient. We also refer to a sufficient K as to a memory length.

The general idea of considering the Markovian dynamics
of TK (t ) instead of the non-Markovian dynamics of �(t ) is
also known as a time-delay embedding and it is routinely
employed across wide variety of contexts, including Koop-
man operators [70–73], closure modeling [74], time-series
modeling [75,76], and reinforcement learning [77]. One can
also think of the time-delay embedding as a particular way
to construct a Markovian embedding [60,61,67,78–81] of
non-Markovian quantum dynamics. The framework being de-
veloped here also seems very close in spirit to the TTM.
However, there is a substantial difference. The TTM operates
with a map from the space of trajectories to the space of
density matrices, while here we operate with a map from
the space of trajectories to the same space. This framework
turns out to be more fruitful since it allows us to study the
environment properties in addition to the system’s dynamics
prediction. In particular we show that the observed trajectories
dynamics is the same, up to linear rescaling, as joint dynamics
of the system and so called effective part of the environment.
This finding is illustrated in Fig. 2. The given figure and
the concepts involved are discussed in detail below. Since
the main distinguishing feature of the presented method is its
ability to explore the physics of the environment, the central
question we address in this section is: what knowledge about
the system and its environment causing non-Markovianity one
can extract from the analysis of the Markovian dynamics of
system’s trajectories?
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B. Unraveling the joint system and environment dynamics
via the trajectories’ dynamics

To start addressing this question, let us first note that states
�(t ) can be expressed via the corresponding joint system and
environment states �SE(t ) ∈ CdSE×dSE as follows:

�(t ) = TrE[�SE(t )], (3)

where dSE := ddE and TrE denotes a partial trace over the
environment. Let us also introduce a quantum channel �

describing the discrete-in-time evolution of the joint states:

�SE(t + 1) = �[�SE(t )]. (4)

Since TrE is a linear map and the dynamics of �SE(t ) is linear
as well, one can introduce a linear map φK returning TK (t )
from �SE(t ):

TK (t ) = φK [�SE(t )]. (5)

The precise definition of φK is given in Appendix A; for the
purposes of this section we only need the linearity property of
this map.

The analysis of φK provides insights into the connection
between the system trajectories’ dynamics and the actual joint
system and environment dynamics. It turns out that the linear
map φK defines which “part” of the joint system and environ-
ment dynamics affects the observed trajectories. Let us call
the irrelevant (relevant) subspace the kernel (the support) of
φK . The corresponding projectors take the form

π
(i)
K = Id − φ+

K φK , π
(r)
K = φ+

K φK , (6)

where Id denotes the identity map, φ+
K is the Moore-Penrose

inverse of φK , and superscripts (i) and (r) stand for irrelevant
and relevant respectively. These projectors allow us to intro-
duce the ‘irrelevant’ and ‘relevant’ parts of the joint state that
read

�
(i)
SE(t ) = π

(i)
K [�SE(t )], �

(r)
SE(t ) = π

(r)
K [�SE(t )]. (7)

Since �
(i)
SE(t ) belongs to the kernel of φK , only �

(r)
SE(t ) defines

TK (t ). Therefore, �
(i)
SE(t ) and �

(r)
SE(t ) have a clear operational

meaning: The dynamics of �
(i)
SE(t ) is hidden, while �

(r)
SE(t ) can

be considered as a joint state of the system and the “effective”
environment contributing to the observed non-Markovian dy-
namics of the system. Note, however, that �

(i)
SE(t ) and �

(r)
SE(t )

no longer have a unit trace. Moreover, there is no guarantee
that they are positive semidefinite or even Hermitian. One
can think of the projection on the relevant subspace as an
analog of the partial trace over those degrees of freedom of the
environment that do not contribute to the memory effects. We
note that the similar projections on the relevant and irrelevant
subspaces, yet with different meanings, are employed in the
Nakajima-Zwanzig projection method [13].

An important characteristic of the linear map φK is the
rank r of its matrix. It provides the dimension of the relevant
subspace. In the next subsection, we show that the dynamics
in the relevant subspace is independent of the dynamics in the
irrelevant subspace. So, to fully describe the non-Markovian
dynamics of the system, it is enough to consider only the
relevant subspace that can be seen now as the space of the
joint system and effective environment density matrices. By

the construction, deff
E provides the minimal dimensionality of

the environment that can describe the non-Markovian behav-
ior of the system. This observation allows us to introduce
the dimension of the effective environment through the fol-
lowing relation r = d2[deff

E ]2, which simply states that the
joint system and effective environment density matrix has
size ddeff

E × ddeff
E . Note, however, that there is no guarantee

that deff
E =

√
r/d2 results in an integer number, since r can

be an arbitrary integer. So, to make deff
E an integer, one can

either round it up or down. Rounding down contradicts the
fact that

√
r/d2 is an underestimation of deff

E since some of
the degrees of freedom of the environment may not affect the
system dynamics. Therefore, one needs to round

√
r/d2 up, or

in other words one needs to complement the relevant subspace
with additional degrees of freedom that, however, do not affect
the dynamics of the system. Clearly, this can always be done
and not in a unique way. We use this trick only here and for
the sole purpose to justify the following final estimation of the
effective environment dimension that reads:

deff
E := �

√
r/d2�, (8)

where � · � stands for the rounding up operation. Note that
the value of r and deff

E are independent of K because K is
sufficient (see Appendix A). The concept of the effective
environment’s dimension has been actively studied in recent
literature [61,67,68,82,83] and has been shown to be an im-
portant characteristic of the environment. One can think of deff

E
as a quantitative indicator of non-Markovianity, the dimen-
sionality of the memory, or the complexity of non-Markovian
dynamics. We remark that an exponentially large deff

E corre-
sponds to utterly complex dynamics/dynamical chaos.

C. Equivalence between the trajectories’ dynamics
and the dynamics of the system and its effective environment

Next, consider the r-dimensional subspace CK ≡
Im(φK ) ⊆ CK×d×d , where Im stands for the image of
φK . All experimentally accessible trajectories TK (t ) lie in
this subspace by definition; therefore, we refer to it as
trajectories subspace. Note that φK is the linear bijection
between the relevant subspace and the trajectories subspace.
The Moore-Penrose inverse φ+ inverts this bijection. The
bijection between this subspaces is complemented by the
following identity between �, M, and φK :

MφK = φK�. (9)

One can think about Eq. (9) as about the following com-
mutative diagram:

It says that one can first make a time step forward in the
space of the joint system and environment states and then go
to the corresponding trajectory via φK or first go to a trajectory
via φK from a given join state and then make a time step
forward by applying M in the trajectories subspace. Note that
the identity Eq. (9) follows from the fact that M describes
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the temporal evolution of any trajectory. The existence of the
bijection between the relevant subspace and CK and Eq. (9)
mean that the trajectories’ dynamics and the joint system and
effective environment dynamics are identical in a sense that is
explained below. Let us decompose � into four terms

� = �(ii) + �(ir) + �(ri) + �(rr), (10)

where �(xy) := π
(x)
K �π

(y)
K , x, y ∈ {i, r}. One can see that each

term has a clear operational meaning: �(rr) and �(ii) gov-
ern the dynamics in the relevant and irrelevant subspace
respectively, while �(ir) and �(ri) correspond to “cross-flows”
between the subspaces. Note, however, that �(xy) are neither
trace-preserving nor completely positive maps in general. Let
us substitute the decomposition Eq. (10) in Eq. (9):

MφK = φK�(ii) + φK�(ir) + φK�(ri) + φK�(rr). (11)

One can compare supports of all terms of the identity above
and identifies two linearly independent identities that read

MφK = φK�(ir) + φK�(rr), 0 = φK�(ii) + φK�(ri). (12)

By noticing that φK�(ii) = 0 and φK�(ir) = 0 due to the fact
that φK maps any vector from the irrelevant subspace to zero
one finally gets

MφK = φK�(rr), 0 = φK�(ri). (13)

The identity 0 = φK�(ri) implies the absence of “flow” from
the irrelevant subspace to the relevant one. In other words �(rr)

fully describes the dynamics in the relevant subspace:

�
(r)
SE(t + 1) = �(rr)

[
�

(r)
SE(t )

]
, (14)

since there is no effect of the irrelevant subspace on the dy-
namics in the relevant subspace. Moreover, one can see that
Eq. (14) is a Markovian master equation. Let us multiply the
identity MφK = φK�(rr) by φ+

K on the right side

MφKφ+
K = φK�(rr)φ+

K . (15)

Bearing in mind that the action of M on the orthogonal com-
plement of CK does not have a physical meaning and can be
set arbitrarily, we set it equal to zero. Hence, M = MφKφ+

K ,
and we get

M = φK�(rr)φ+
K . (16)

Now we can claim that the dynamics of trajectories and the
joint dynamics of the system and its effective environment
are identical up to a linear rescaling. Indeed, both dynamics
are Markovian, there is the linear bijection between states,
i.e., T (t ) = φK [�(r)

SE(t )] and the corresponding linear identity
between master equations M = φK�(rr)φ+

K . This also implies
that M and �(rr) have completely the same eigenvalues and
their left and right eigenvectors are connected via φK . More-
over, since � has block triangular form w.r.t. relevant and
irrelevant subspaces (�(ri) = 0), the set of eigenvalues of �

includes all the eigenvalues of �(rr), and so the eigenvalues of
M. The overall concept described above is illustrated in Fig. 2.

The fact that the dynamics of the system and environ-
ment factorizes into two parts: the “relevant” part, which is
Markovian, and the independent “irrelevant” part, may seem
artificial at first glance. Indeed, this property should imply
some symmetry that is not inherent to an arbitrary system.

In fact, the exact factorization in general, except for some
trivial cases of two noninteracting subsystems or highly sym-
metric cases, results trivially in the “relevant” part that covers
the entire state space and a one-dimensional irrelevant part.
However, an approximate factorization (with some acceptable
error) may be far more productive and lead to a significant
dimensionality reduction of the “relevant” part compared to
the entire state space. The data-driven approach we introduce
later builds an approximate factorization by setting a threshold
defined by the noise amplitude.

The main results of this section may be summarized as
follows. If a non-Markovian dynamics has a finite memory
length K , then: (I) The dynamics of trajectories is driven by
the Markovian master Eq. (2); (II) All the experimentally
accessible trajectories lie in a subspace of dimension r =
rank(M ) (trajectories subspace) and form an r-dimensional
Markovian embedding; (III) There exists an r-dimensional
relevant subspace of the joint system and environment density
matrices’ space. The dynamics in the relevant subspace is
Markovian and identical to the dynamics of trajectories up
to the bijective linear transformation φK . The dynamics in
the orthogonal complement of the relevant subspace does not
affect dynamics of trajectories at all; (IV) One can think of the
dynamics in the relevant subspace as the dynamics of the joint
system and effective environment. One can estimate the di-
mension of the effective environment deff

E using Eq. (8). Both
r and deff

E are quantitative indicators of the non-Markovian
dynamics complexity; (V) As a consequence of (III), all the
eigenvalues of the dynamical maps M and �(rr) are the same,
and are part of the set of eigenvalues of �.

These claims allow one to gain valuable knowledge about
the system and its environment from the master equation de-
scribing the system’s trajectories and the dimension of the
subspace where these trajectories are embedded. The only
missing ingredient at this stage, is a scheme to extract these
objects from noisy measured trajectories.

III. ALGORITHMS FOR PROCESSING OF QUANTUM
TRAJECTORIES

A. Effective environment dimension identification
and data denoising

As we discussed in the previous section, the only
data assumed to be experimentally accessible are the sys-
tem’s discrete-in-time quantum trajectories. Those quantum
trajectories can be reconstructed via quantum state tomog-
raphy [84,85], i.e., for each trajectory, one runs multiple
experiments with completely identical initial conditions and
collects measurement outcomes statistics to reconstruct un-
derlying density matrices in different moments of time.
Since in real experiments each measurement takes some fi-
nite time τm, one has a natural restriction τ � τm. Note also
that the time resolution τ should be chosen small enough
to capture all necessary short-time dynamical effects but
not too small not to make an experiment lasts too long collect-
ing too many data-points. Note, that subsequent experiment
runs must be sufficiently separated in time, to eliminate mem-
ory effects from the previous run. Let us assume that for L
different initial states of the system the measured data set
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(a) (b)

FIG. 3. (a) Graphical interpretation of slicing a trajectory into smaller chunks. (b) Reconstruction of the whole trajectory of length N back
from chunks.

consists of quantum trajectories of length N > K , where N
is the total number of discrete time steps per each trajectory
and K is assumed to be sufficient for the Markovian dynamics
of trajectories. This set reads

S = {
T (i)

N (0)
}L

i=1, (17)

where i enumerates initial states. To prepare data for the anal-
ysis we construct their time-delay embedding. We slice each
trajectory T (i)

N (0) into N − K + 1 smaller K-steps chunks
{T (i)

K (t )}N−K
t=0 as it is shown in Fig. 3(a). The resulting set of

chunks {{T (i)
K (t )}N−K

t=0 }L
i=1 are processed further.

First, one can estimate the subspace CK as the linear span
of all the trajectories chunks, i.e.,

CK ≈ span
({{

T (i)
K (t )

}N−K

t=0

}L

i=1

)
. (18)

The question arises: how many trajectories L have to be
measured to provide a reliable estimate of CK ? For noiseless
trajectories it turns out that in most cases one needs only one
long enough trajectory. This can be explained as follows. The
estimate Eq. (18) for only one trajectory reads

CK ≈ span
({

T (1)
K (t )

}N−K

t=0

)
= span

({
Mt T (1)

K (0)
}N−K

t=0

)
. (19)

Note that unless the initial trajectory chunk T (1)
K (0) not in

a low-dimensional invariant subspace of M, for N − K = r
one has span({Mt T (1)

K (0)}N−K
t=0 ) covering the entire trajectories

subspace. Therefore, only one trajectory is enough. This is
also supported by the numerical experiments that are demon-
strated further. For example, in Fig. 10 one can see that
the average error of prediction for quite a few numerical
experiments with L = 1 and different other parameters, in-
cluding noise amplitude, is about 0.06, which is not that much.
However, for highly symmetric systems it might be the case
that span({Mt T (1)

K (0)}N−K
t=0 ) covers only part of the trajectories

subspace. In this case, one needs to sample trajectories with

different initial states. It can be done in different ways. For
example, before measuring a trajectory one can perturb the
system in various ways, e.g., measure it on an arbitrary basis
or apply some control signal to it. In our numerical exper-
iments, we prepare a unique initial state as follows. We set
the initial joint system and environment state in the stationary
thermal state and then replace the system with a new one
in some state of our choice. This helps us to explore the
trajectories subspace better. To determine the value of L in
practice, one can sample a new trajectory with a unique initial
state until the estimate Eq. (18) saturates.

All the trajectories bear some noise induced by finiteness
of the measurements statistics, imperfections of measurement
devices, etc. This results in an additive noise

T (i)
K (t ) −→ T (i)

K (t ) + δT (i)
K (t ), (20)

where δT (i)
K (t ) is a noise term. Note that this is not a noise

induced by the interaction of the system with the environ-
ment that has an entirely different nature. The linear span of
noisy trajectories always tends to the ambient space Cd×d×K

with the growing number of trajectories in a data set and
does not correspond to the genuine subspace CK ⊆ CK×d×d

of trajectories. Thus, one requires a method that identifies the
genuine trajectories subspace in the presence of background
noise. In other words, one needs to find a low-dimensional
hyperplane of an appropriate dimension such that the data
points (trajectories) lie as close to this hyperplane as possible.
The dimension of the hyperplane is chosen to separate signal
from noise. This is a typical machine-learning task usually
performed by using a principal component analysis (PCA)
with automatic rank determination. We found the automatic
rank determination procedure described in Ref. [63] the most
suitable for our case. The overall algorithm is summarized
here:

Step 1. One concatenates all the trajectories chunks into a
matrix

H =
⎡
⎣ | | | | | | | | | |

T (1)
K (0) . . . T (L)

K (0) T (1)
K (1) . . . T (L)

K (1) . . . T (1)
K (N − K ) . . . T (L)

K (N − K )
| | | | | | | | | |

⎤
⎦

︸ ︷︷ ︸
all accessible trajectories

(21)
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of size Kd2 × L(N − K + 1), which has the form of a Hankel
matrix. Here, trajectories chunks can be thought of as vectors
of length Kd2. In the noiseless case, it is enough to take the
linear span of the Hankel matrix columns to determine the
subspace CK , but we need to process them further to distin-
guish the signal from background noise.

Step 2. One performs a singular value decomposition
(SVD) of the Hankel matrix H = USV †, where U and V are
isometric matrices and S is the diagonal matrix with singular
values on the diagonal arranged in nonincreasing order.

Step 3. Following the results of Ref. [63] one separates
“noisy” singular values from “signal” singular values by com-
paring them with a threshold

s = σ
√

2L(N − K + 1) f

[
Kd2

L(N − K + 1)

]
, (22)

where f is defined as follows f (β ) =√
2(β + 1) + 8β

(β+1)+
√

β2+14β+1
, σ is the standard deviation of

noise. If a singular value is greater (less) than the threshold,
then one considers it as a signal (noise) singular value. Since
the quantum state tomography requires an enormous number
of measurement outcomes to build a precise estimations
of system’s states, the size of measurements statistic is the
main bottleneck of a tomographic experiment. Therefore, the
observed noise is mainly the result of a statistical error caused
by the finiteness of the quantum measurements statistics
Nsamples per time step. This allows one to estimate the standard
deviation of noise σ as N−1/2

samples. More precisely, the standard

deviation σ of the resulting noise reads σ ≈ N−1/2
samples for the

standard tomographic protocols or σ ≈ N−1
samples for adaptive

tomographic protocols with a protocol-specific prefactor [86].
If trajectories result from a Monte Carlo simulation [13],
then one can estimate σ from the number of samples as
σ ≈ N−1/2

samples. The threshold s differs from the threshold in

Ref. [63] by a factor
√

2. This is motivated by the fact that
the amplitude of the absolute value of a complex valued noise
is

√
2 times larger. The intuition behind such a separation

of singular values is simple: one uses the random matrix
theory to determine the maximal singular value smax of
a random matrix with the standard deviation of a matrix
elements σ . Then, s ≈ smax can be seen as a threshold that
separates “noisy” singular values from “signal” singular
values;

Step 4. One truncates the SVD of the Hankel matrix as
follows:

Û = U [:, : η], V̂ = V [:, : η], Ŝ = S[: η, : η], (23)

where we use MATLAB/NumPy notations to represent slices
of matrices (see Appendix C), η is the number of singular
values that are greater than s. The corresponding “truncated”
Hankel matrix reads Ĥ = Û ŜV̂ †.

This algorithm provides a data-driven estimation of the
genuine trajectories subspace CK , its dimension, and the di-
mension of the effective environment:

CK ≈ span(Û ), r ≈ η, deff
E ≈ �

√
η/d2�, (24)

FIG. 4. Illustrative interpretation of the PCA with automatic rank
selection algorithm applied to quantum trajectories. The algorithm
estimates the low-dimensional subspace of system’s trajectories from
measured trajectories and then projects trajectories chunks on this
subspace. The orthogonal projection on this subspace eliminates the
orthogonal to the subspace component of noise that leads to the noise
reduction effect.

where span(·) denotes the linear span of matrix columns
and η serves as a data-driven estimation of the genuine tra-
jectories subspace dimension r. But these are not the only
useful outcomes of the algorithm: It also reduces noise in
the measured trajectories. The idea is that since noise does
not preserve the subspace CK , it takes trajectories out of this
subspace (see Fig. 4). Meanwhile, the orthogonal projection
of trajectories back onto the subspace CK reduces the effect
of noise because the component of noise orthogonal to the
subspace CK is thus eliminated. Note, that one can reconstruct
the whole trajectory of length N from its chunks as shown
in Fig. 3(b). To establish a connection between the proposed
denoising method with previously developed techniques for
denoising and quantum tomographic reconstruction from lim-
ited data, we note that usually their main idea is to employ
an assumption about underlying states model imposing cer-
tain restrictions on admissible states. In other words, these
methods use prior information about an unknown state in
addition to the observed measurements data, which mitigates
requirements to the amount of data. For example, one can use
the low-rank assumption to reconstruct a fairly pure state from
limited data [87], or assume limited entanglement to make the
reconstruction of a many-body state from measurement out-
comes possible [88]. However, our technique utilizes another
type of prior information. It uses prior information about the
temporal structure of a system’s dynamics, not about its state.
It fixes some level of complexity of the dynamics that reduces
the required amount of data and leads to noise reduction. Our
denoising technique is compatible with conventional meth-
ods of noise reduction, and in combination, they can lead to
further improvement of data efficiency. We verify the perfor-
mance of denoising in the numerical experiments discussed
further below.

B. Identification of the Markovian master equation governing
trajectories dynamics

Denoised trajectories T̂ (i)
K (t ) which are columns of Ĥ can

be also used to estimate M, which could be thought of as a
predictive model from the machine-learning point of view.
The estimation can be written as the solution of the following

043002-7



I. A. LUCHNIKOV et al. PHYSICAL REVIEW RESEARCH 4, 043002 (2022)

optimization problem:

minimize
M

L∑
i=1

N−K∑
t=0

∥∥T̂ (i)
K (t + 1) − M

[
T̂ (i)

K (t )
]∥∥2

2,

subject to rank(M ) = η, (25)

where ‖ · ‖2 stands for the 2-norm. The first line corresponds
to the minimization of the difference between left and right
hand sides of the equation T̂K (t + 1) = M[T̂K (t )] driving the
dynamics of trajectories. The second line restricts considera-
tion only to matrices of rank η. As the dynamics of trajectories
is embedded in the subspace of dimension η, there is no need
to consider matrices of other ranks. Note that η is not only an
estimate of r, but also the optimal choice of one of the hyper-
parameters of the predictive model. Another hyperparameter
of the predictive model is the memory depth K . Search of
η corresponds to the selection of the predictive model. The
larger the value of the hyperparameter is, the more expressible
the corresponding model is (i.e., more complex data can be
described), but the more data is needed to reconstruct M
(lower data efficiency). This is the bias-variance trade-off
typical for the model selection tasks in machine leaning [89].
Usually one selects the best model by minimization of the
error on a validation set, which is not used for model training.
This model selection technique is called cross-validation [90],
and requires splitting data on training and validation sets and
exhaustive validation set’s error minimization via brute force
adjustment of hyperparameters. However, for some models,
e.g., relevance vector machine [66,91], one selects the best

model automatically without a validation set by using the
Bayesian interpretation of the model selection task. The idea
of such an automatic model selection follows the Occam’s
razor principle: one should select the simplest model among
all possible that still yet manages to describe the observed
data [66]. The correct model selection guarantees the best
data efficiency and robustness to noise and corresponds to
the best machine-learning practices. One sees that a PCA
algorithm with automatic determination of the subspace di-
mension solves such a model selection task. It chooses the
model with the smallest value of the hyperparameter (the sim-
plest model) that still describes the measured data. Therefore,
our approach is equipped with the automatic model selection,
which improves the data efficiency compared to previously
proposed methods such as TTM [45] as discussed in Sec. V.
The effect of noise reduction also can be seen as a conse-
quence of the correct model selection. It also makes the model
less sensitive to selection of another hyperparameter K . One
can safely overestimate K by setting it knowingly large, the
automatic model selection prevents the effect of overfitting.
This makes the selection procedure for K very simple: one
can set K to be comparable with N , e.g., K = N/2. The only
important restriction is not to make the number of trajectories
(N − K + 1)L in a data set too small. The proper selec-
tion of η prevents overfitting. We show this numerically in
Sec. IV A.

The optimization problem Eq. (25) is exactly solvable.
Indeed, this is an example of linear regression among the
most robust methods of machine learning. To write down the
solution of Eq. (25), let us introduce two matrices

X̂ = Ĥ [:, : −L] =
⎡
⎣ | | | | | | | | | |

T̂ (1)
K (0) . . . T̂ (L)

K (0) T̂ (1)
K (1) . . . T̂ (L)

K (1) . . . T̂ (1)
K (N − K − 1) . . . T̂ (L)

K (N − K − 1)
| | | | | | | | | |

⎤
⎦,

Ŷ = Ĥ [:, L :] =
⎡
⎣ | | | | | | | | | |

T̂ (1)
K (1) . . . T̂ (L)

K (1) T̂ (1)
K (2) . . . T̂ (L)

K (2) . . . T̂ (1)
K (N − K ) . . . T̂ (L)

K (N − K )
| | | | | | | | | |

⎤
⎦. (26)

The matrix X̂ is the matrix Ĥ without L last columns and the
matrix Ŷ is the matrix Ĥ without L first columns. In other
words, columns of Ŷ are trajectories subsequent in time to the
corresponding columns of X̂ . Using this fact, one can rewrite
the optimization problem Eq. (25) in the following form:

minimize
M

‖Ŷ − MX̂‖2
F ,

subject to rank(M ) = η, (27)

where ‖ · ‖F stands for the Frobenius norm, and M is seen as
a matrix rather than as an abstract linear map. The solution of
this optimization problem thus reads

M = Ŷ X̂ +, (28)

where X̂ + is the Moore-Penrose inverse of X . Indeed, M
has the rank η by construction and it is the global mini-
mum of the objective function. Note that it is more efficient
both for numerical complexity and memory to find the so-
lution Eq. (28) by using the dynamic mode decomposition

(DMD) method [64,65], rather than straightforwardly calcu-
late Y X +. In our numerical experiments we use the DMD to
find M.

Finally, we summarize the data processing scheme in
Fig. 5, that basically includes two steps, (i) environment di-
mension identification described in the previous subsection
and (ii) predictive model reconstruction described in the given
subsection. The proposed data processing scheme allows one
to obtain (i) information on the quantum environment such as
the dimension of the effective environment, eigenvalues of the
quantum channel driving the discrete-in-time joint dynamics
of the system and its environment, (ii) the master equation that
predicts the system’s dynamics, and (iii) denoised data set of
trajectories. As inherent features of the scheme we note that all
the used algorithms (i.e., PCA with automatic rank selection
and the linear-regression-based reconstruction of M) converge
with mathematical guarantees to the optimal solution and the
scheme is equipped with the automatic model selection that
improves data efficiency and robustness to noise.
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FIG. 5. Summary of the proposed data processing scheme. (i) One starts by collecting a data set of noisy quantum trajectories. Usually, it is
obtained via tomographic reconstruction or numerical simulation. As input information the scheme also requires an estimation of the standard
deviation of noise and an estimation of the sufficient K . The standard deviation can be estimated from the size of the quantum measurements
statistics used per time step. An estimation of the sufficient K does not requires precise tuning. It can be set knowingly large. The automatic
model selection prevents overfitting for an overestimated K . One of the possible practical recipes of choosing K consists in setting the maximal
possible K = N − 1 and iterative retraining the model while decrementing K , until the value of η saturates. (ii) In the next step, one slices
trajectories into chunks of size K as shown in Fig. 3(a). (iii) Then, one identifies the subspace of trajectories via a PCA with the automatic
dimension selection. It not only reconstructs the space CK , but also allows to estimate the effective dimension of the environment deff

E , and
performs the automatic model selection and reduces noise in data. (iv) Denoised chunks of trajectories are combined into a denoised version of
initial whole trajectories of length N as shown in Fig. 3(b). (v) Finally, one reconstructs M from the denoised trajectories chunks by solving the
optimization problem Eq. (25). The reconstructed M allows predicting the dynamics of a non-Markovian quantum system and its eigenvalues
are also eigenvalues of � which drives the joint system and environment dynamics.

IV. NUMERICAL RESULTS

A. Probing non-Markovian quantum dynamics
with a predefined effective environment

As the first example of non-Markovian quantum dynamics
that we analyze with the proposed method, we consider a
model with a predefined effective environment, i.e., with a
predefined �(rr) driving the dynamics of the system and the
effective environment as a whole. We choose �(rr) in such
a way, that its dimension can not be reduced further. This
model is chosen to validate the claimed ability of the proposed
method to reconstruct properties of the effective environment,
i.e., the effective dimension of the environment and eigenval-
ues of the joint system and environment dynamics. It can be
easily done since all the properties of �(rr) are predefined and
known. In this subsection we also (i) validate the ability of
our method to predict a non-Markovian quantum dynamics
via the reconstructed M; (ii) validate the ability of our method
to reduce noise in data by checking how the projection of the
observed trajectories on the principle subspace reduces the
amplitude of noise; (iii) study the sensitivity of the proposed
method to a choice of the hyperparameter K ; and finally (iv)
we study how the performance of the method depends on
the size of data set, i.e., number of trajectories L in a data
set.

The discrete-in-time dynamics of the system reads

�(rr) = exp (τL), �
(r)
SE(t + 1) = �(rr)

[
�

(r)
SE(t )

]
,

�(t + 1) = TrE
[
�

(r)
SE(t + 1)

]
, (29)

where �
(r)
SE ∈ Cddeff

E ×ddeff
E is the joint system and effective

environment density matrix that also plays the role of the
state in the relevant subspace, deff

E is the dimension of the
effective environment, � is the state of the system, L is
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) gener-
ator [13,15,16,92,93] of the Markovian quantum dynamics
of the system and the effective environment, τ is the con-
stant discrete time step. One generates the GKSL generator
L randomly as described in Appendix B. The randomness of
L prevents further dimensionality reduction of the effective
environment.

We use the model above to generate a number of data
sets. We fix d = 2 (the system is a qubit) and for deff

E rang-
ing from 2 to 6 generate a set of random GKSL generators.
For each GKSL generator and for total simulation times
N = 150 and 200 we simulate L = 4 quantum trajectories
{T (i)

N (0)}L
i=1 with time step τ = 0.2 using Eq. (29). As an ini-

tial joint state for each trajectory we take �SE(0) = |ψ〉 〈ψ | ⊗
�E(0), where |ψ〉 is sampled uniformly from the Bloch sphere,
�E(0) = TrS�

st
SE, and �st

SE is the stationary state of L, i.e.,
L[�st

SE] = 0. It means that the system and the environment
are in a joint thermalized state before the observation process,
and at the moment the process starts, we replace the system
by a new random pure state. To address dynamics prediction
accuracy, for each value of deff

E , we generate an additional
“test” trajectory T test

N (0), which is not employed in the training
procedure, i.e., its initial state is also randomly generated
but different with initial states of {T (i)

N (0)}L
i=1. To simulate

noise appearing during data acquisition of trajectories, we
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(a) (b)

(c) (d)

FIG. 6. Results obtained by the application of the proposed method to the non-Markovian dynamics with a predefined effective environment
[Eq. (29)]. (a) A comparison of the exact dimension of the trajectories subspace d2[deff

E ]2 with the data-driven reconstruction r of it for
different data set trajectories lengths N and noise levels σ . (b) The distance between the prediction and the noiseless test trajectory Dnoiseless

and the distance between the prediction and the noisy test trajectory Dnoisy as functions of memory depth K for different levels of noise σ .
(c) Comparison of the spectrum of the quantum channel exp(τL) driving the dynamics of the joint system and effective environment density
matrix with the eigenvalues of M reconstructed from data for dE = 4. (d) Comparison of the distance between noisy and noiseless data sets
〈Dnoisy〉 and the distance between denoised and noiseless data sets 〈Ddenoised〉 for several different σ and dE.

add i.i.d. Gaussian noise with zero mean and variance σ 2 to
the real and imaginary parts of each entry of all trajectories
(both employed in the training and the test trajectory). In
what follows, we consider σ to be known in advance, because
in a typical tomographic experiment or in the Monte Carlo
simulation one can estimate σ from the statistics size. We also
note that the considered values of σ are consistent with typical
numbers of samples processed in tomographic experiments
Nsamples ∼ 103 . . . 106 (see, e.g., [86]). To demonstrate the de-
noising ability of our approach we keep record of both noisy
and noiseless versions of each trajectory, i.e., each trajectory
of all data sets {T (i)

N (0)}L
i=1 and all test trajectories T test

N (0).
We start discussion of the results of data processing from

the reconstruction of the trajectories subspace dimension r
and the effective dimension of the environment deff

E . The com-
parison of the exact r and the reconstructed from data one
for the fixed memory depth hyperparameter K = 75, several
noise amplitudes σ , and two values of a data set trajectories
length N , is presented in Fig. 6(a). One can see that the
reconstructed r underestimates the exact value of r that is

equal to d2d2
E though approaches it with decreasing the noise

level and increasing the length of trajectories forming a data
set. In the case of σ = 0, reconstructed r precisely fits the
exact one. The tiny difference appearing for large r is due to
negligible memory effects that do not fit into given memory
length K . For finite σ it is impossible to recognize some weak
memory effects in front of noise, this leads to underestimated
r value. The situation becomes critical when σ = 0.1, as the
algorithm is almost unable to recognize the signal against
the background noise. We also compare the exact effective
dimensions of the environment deff

E with its data-driven re-
construction �

√
r/d2�, where r is reconstructed from the data.

The comparison is given in Table I. We see that for small noise
amplitudes and sufficiently long trajectories in a data set, the
value of deff

E is reconstructed exactly.
Next, we validate the ability of the proposed method to

predict the dynamics of the system. The prediction is built as
follows. One reconstructs M that describes Markovian dynam-
ics of trajectories from a noisy data set. Then one uses M to
predict dynamics of a test trajectory. One takes a noisy chunk
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TABLE I. Comparison of the exact effective dimensions of the
environment deff

E with reconstructed from data ones for different
amplitudes of noise σ and different trajectories lengths N . Cases
where the data-driven estimation is exact are shown in bold font.

σ = 10−1 σ = 10−2 σ = 10−3

N = 150 N = 200 N = 150 N = 200 N = 150 N = 200

deff
E = 2 2 2 2 2 2 2

deff
E = 3 2 2 3 3 3 3

deff
E = 4 2 2 4 4 4 4

deff
E = 5 2 2 4 5 5 5

deff
E = 6 1 1 5 5 5 6

TK (0) of the test trajectory, also seen as an initial state of
Eq. (2) or as a “prehistory” of non-Markovian dynamics, and
propagates it forward in time by using the reconstructed from
data M and Eq. (2). In Fig. 7(a) we demonstrate the agreement
between the predicted behavior of the test trajectory and the
test trajectory itself for the following parameters of the data
set used for the reconstruction of M: N = 200, dE = 3 and
several different values of σ . The value of K is set to 75.

One sees that the proposed method predicts non-Markovian
dynamics of the system correctly. Even if a data set and
a test trajectory are effected by noise with reasonably high
standard deviation σ = 0.1, the approach is capable to predict
the system’s dynamics at a small timescale.

Then we compare eigenvalues of M with eigenvalues
of the quantum channel �(rr) = exp(τL) driving the joint
system and effective environment dynamics. The results for M
reconstructed from a data set with dE = 4, K = 75, N = 200
in the case of noise absence (σ = 0) and in the case with
noise (σ = 0.01) are presented in Fig. 6(c). One can see that
there is a perfect coincidence between exact and reconstructed
eigenvalues in the case without noise, which agrees well with
the theory (see Sec. II), while in the case with noise the
obtained eigenvalues are slightly shifted, and a tiny part of
them only is lost. The latter fact can be explained by the
indistinguishability of some eigenmodes dynamics from the
noise. However, even in the presence of noise, one sees that
the method provides valuable information such as the eigen-
values of the joint dynamics.

We also study how the selection of the memory depth K
that is a hyperparameter of the model and number of trajecto-
ries L (data set size) impact the accuracy of the prediction. For
this purpose we introduce the distance between two quantum

Time

(a) (b) (c)

FIG. 7. Comparison of the noiseless dynamics of 〈σx〉 = Tr(σx�) computed for the test trajectory (blue curve), noisy version of this
dynamics (gray thick curve), and the data-based prediction (red dashed curve) within (a) the model with the predefined effective environment
[Eq. (29)] of dimension dE = 3, (b) The damped Jaynes-Cummings model [Eq. (31)] with parameters γ = 0.05, g = 2.5, α = 1.1, and (c) the
spin-boson model [Eq. (33)] with parameters γ = 0.05, g = 0.5, � = 0.5. The value of r shows the estimated from data dimension of
trajectories subspace. The region where the noisy trajectory chunk T test

K (0) is assumed to be known and employed for prediction of the further
dynamics is highlighted by the red color. The region where one builds the prediction of the further dynamics T test

N−K (K ) is highlighted by the
green color.
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FIG. 8. The distance between prediction and noiseless test trajec-
tory Dnoiseless plotted against L and σ for the model with predefined
effective environment [Eq. (29)]. The value of K is set equal to 75.

trajectories T (a)
R (t ) and T (b)

R (t ) of length R at time t as follows:

D
(
T (a)

R (t ), T (b)
R (t )

) = 1

R

R−1∑
k=0

‖�(a)(t + k) − �(b)(t + k)‖1,

(30)
where states �(a) and �(b) are taken from the trajectories
T (a)

R (t ) and T (b)
R (t ) correspondingly, and ‖ · ‖1 denotes a trace

norm [84]. Let Dnoisy be the distance Eq. (30) between the
prediction and the noisy version of a test trajectory T test

N−K (K )
and Dnoiseless be the distance Eq. 30 between the prediction
and the noiseless version of a test trajectory T test

N−K (K ). These
distances show how close the predicted trajectory to the noisy
test trajectory and to the noiseless test trajectory and thus
can be used to validate the accuracy of the prediction. The
behavior of the distance as a function of K is presented in
Fig. 6(b). As one can see, there is a “saturation” value of
K , starting from which the accuracy of prediction is mainly
determined by the noise level. This means that the accuracy of
the prediction is not sensitive to the choice of K , i.e., there is
no effect of overfitting when the accuracy becomes worse with
an increase of the model complexity. One can set K knowingly
large and this does not lead to the effect of overfitting. This is
the consequence of the proper automatic model selection. To
validate how the accuracy of prediction depends on choice of
L we generated additional data sets for L ranging from 1 to 20,
deff

E = 4, N = 200 and for several different σ . For predictions
based on these data sets, we plot the dependence of Dnoiseles

on L and σ in Fig. 8. One can observe that the accuracy
rapidly improves with growing L at the beginning and then
saturates. The saturation effect is caused by the fact that the
prediction is based on an initial noisy prehistory of constant
size (independent on L) and this noise can not be eliminated
via an increase of data set size.

Finally, we validate the ability of the method to reduce
noise in data. For this purpose we introduce the distance be-
tween data sets as the averaged over all trajectories distance
introduced in Eq. 30 and denote this distance as 〈D〉. One
needs to consider the distance between denoised and noiseless
data sets 〈Ddenoised〉 and the distance between noisy and noise-
less data sets 〈Dnoisy〉. If 〈Ddenoised〉 is systematically smaller
than 〈Dnoisy〉, then the denoising procedure works correctly.
We plot 〈Ddenoised〉 and 〈Dnoisy〉 for T = 200, K = 75 and
several different values of σ and dE in Fig. 6(d). One can see
that 〈Ddenoised〉 is systematically smaller than 〈Dnoisy〉. This

fact supports our claim on the correctness of the denoising
procedure. This completes the validation of the proposed
method.

B. Probing dynamics of dissipative Jaynes-Cummings model

As another example of non-Markovian quantum dynamics,
we consider the dynamics of a two-level atom (the system)
interacting with a decaying bosonic mode (the environment)
via the Jaynes-Cummings (JC) interaction [94,95]. Note that
in contrast to the previous example, the effective environment
of a spin is a bosonic mode that is infinite-dimensional. How-
ever, in the previous example we considered a random GKSL
generator driving the joint dynamics. Its randomness prevents
further dimensionality reduction of the effective environment.
In the given example, the bosonic mode can be truncated since
we consider a case when the mode is not highly excited. This
means that one can build an effective environment of finite
dimension. The interesting question is whether the proposed
algorithm can detect a low-dimensional effective environment
from data. To address this question, we probe our method
on this model and try to identify a low-dimensional effective
environment. The details of the model are given below. The
joint dynamics of the atom and the bosonic mode within the
JC model is driven by the Lindblad equation that reads

d�SE

dt
= −i[HJC, �SE]+ γ

(
a�SEa†− 1

2
a†a�SE− 1

2
�SEa†a

)
,

HJC = a†a + 1

2
σz + g

2

(σx + iσy

2
a + H.c.

)
, (31)

where HJC is the JC model Hamiltonian, a(a†) is the bosonic
mode annihilation (creation) operator, σx, σy, σz are the Pauli
matrices, g is the interaction strength, and γ is the bosonic
mode dissipation rate. Taking the partial trace w.r.t. the
bosonic mode, one obtains the density matrix of the atom,
�(t ) = TrE[�SE(t )], that experiences non-Markovian dynam-
ics. As in the previous example, for γ = 0.05, g = 2.5 and
various amplitudes of noise σ we prepare a number of noisy
data sets {T (i)

N (0)}L
i=1 and noisy and noiseless versions of test

trajectories T test
N (0) for each data set using the model above.

We simulate the joint atom and mode dynamics driven by
Eq. (31) at successive time steps of length τ = 0.03, and com-
pute the corresponding trajectories of the system by taking a
partial trace over the environment. The initial joint atom and
mode state is taken in the factorized form

�SE(0) = |ψ〉 〈ψ | ⊗ |α〉 〈α| , (32)

where |α〉 is the coherent state of the bosonic mode, and |ψ〉
is sampled uniformly from the Bloch sphere. For all data
sets we fix α = 1.1. To proceed with numerical simulation
of Eq. (31) we truncate the infinite-dimensional Hilbert space
of the bosonic mode keeping such a number of eigenstates
with the lowest energy that guarantees conservation of >95%
of the initial environment state �E(0) probability mass. The
truncation is needed only for the tractability of numerical
calculations necessary for data set generation. The limit of
applicability of our data processing method is not sensitive to
the genuine dimensionality of the environment; it can be either
finite or infinite-dimensional. As mentioned before, only the
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finiteness of the memory matters. We fix L = 2, K = 100, and
N = 1000 for all data sets.

We apply our method to generated data sets and recon-
struct r and M. As in the previous example, we use M to
predict behavior of the test trajectory. The comparison of the
prediction and the test trajectory for each amplitude of noise
is shown in Fig. 7(b). One can see that one predicts dynamics
of the atom even in presence of relatively high noise. We also
note, that in all considered cases r � 39, while the dimension
d2[deff

E ]2 of the joint system and environment density matrix
after truncation of the bosonic mode is 100, which is well
above 39. This justifies the truncation of the bosonic mode
and shows the finiteness of deff

E even though the genuine
environment is infinite. The main outcome of this numerical
experiment is that the proposed method is able to identify a
finite-dimensional effective environment even in the case of
infinite-dimensional genuine environment.

C. Probing the spin-boson model dynamics

The third example of non-Markovian quantum dynamics,
which we analyze with our method, is the dynamics of a
two-level atom coupled with a set of noninteracting bosonic
modes. We refer to this model as the spin-boson model [14].
We consider the dynamics of a two-level atom in the limit
of a continuum of bosonic modes. In this case there is no a
straightforward way to extract a finite dimensional effective
environment using first-principle numerical modeling. We test
the ability of the proposed method to do this from a data set as
well as the ability to predict the non-Markovian dynamics of
the spin. We also study how the dimension r reconstructed
from data depends on some parameters of the spin-boson
model and show that r serves as a non-Markovianity or
complexity measure in this case. The Hamiltonian of the spin-
boson model reads

HSB = 1

2
σz + 1

2
�σx +

∑
k

ωka†
kak + σzX,

X =
∑

k

gk√
2ωk

(a†
k + ak ), (33)

where � is the tunneling matrix element, ωk are frequencies of
bosonic modes, ak (a†

k ) are annihilation (creation) operators of
bosonic modes, and gk is the strength of interaction between
the atom and the kth mode. As before, we consider the atom
as a system and the set of bosonic modes as an environment.
The atom affected by the bosonic modes experiences non-
Markovian quantum dynamics that can be analyzed by our
method. We consider the case when the initial state of bosonic
modes is the ground state uncorrelated with the initial state
of the atom. In this case, the influence of the environment of
noninteracting bosonic modes on the system is fully described
by the two-time correlation function of bosonic modes

C(t ) = 〈vac| eı
∑

k ωka†
k akt Xe−ı

∑
k ωka†

k akt X |vac〉

=
∫ ∞

0

J (ω)

π
exp (−ıωt ),

J (ω) = π
∑

k

g2
k

2ωk
δ(ω − ωk ), (34)

where |vac〉 is the ground state of bosonic modes, J (ω) is
the spectral density. We consider the limit of continuum
bosonic modes when the gap between frequencies of neigh-
boring modes ωk+1 − ωk vanishes. In this limit we choose the
following spectral density:

J (ω) = γ g2ω

(ω2 − ω0)2 + γ 2ω2
, (35)

where ω0 is the resonance frequency, γ is the width of the
spectral function, g is the aggregated interaction strength.

We simulate the dynamics of the atom with an arbitrary
pure initial state |ψ〉 using the numerical approach and code
developed in Ref. [96]. As before, we prepared a number
of data sets {T (i)

N (0)}L
i=0 and corresponding test trajectories

T test
N (0) specified by various amplitudes of noise and parame-

ters of the spin-boson model. The initial state of the two-level
atom |ψ〉 is sampled uniformly from the Bloch sphere for each
trajectory of a data set. We fix L = 2, τ = 0.15, K = 100,
and N = 1000 for all data sets. As before, we reconstruct
M from a data set and use it to predict the behavior of the
test trajectory. The comparison of the prediction and the test
trajectory is given in Fig. 7(c). One can see again, that even for
the relatively high amplitude of noise, the approach is capable
of predicting the atom dynamics.

To demonstrate on a concrete example that the trajecto-
ries space dimension r can be also considered as a measure
of non-Markovianity and system’s dynamics complexity, we
study a relation between r and the value of the parameter γ of
the considered spin-boson model. Note that γ determines the
width of the two-time correlation function C(t ). The smaller
γ is the bigger the width of the correlation function is. There-
fore, the smaller γ is the stronger memory effects are, and
the more challenging the atom dynamics simulation is. We
also consider different values of K to understand how the
memory depth of the dynamics depends on γ . We generate
several noiseless data sets for L = 4, T = 1000, τ = 0.15 and
different values of γ . For each value of γ we process the
corresponding data set by our method. We consider differ-
ent values of the hyperparameter K and the fixed value of
σ = 10−6 to cut off the numerical simulation error. We start
from the analysis of the prediction accuracy. In Fig. 9(a) we
show how the accuracy of prediction Dnoiseless depends on
K and γ . One can observe that a steep improvement of the
accuracy then changes to a smooth saturation regime with
increasing K . Note that for smaller γ one has worse accuracy
of prediction. This observation agrees well with the fact that
for smaller γ , dynamics becomes more complicated. Then we
turn to the analysis of r. In Fig. 9(b) we show how the minimal
Markovian embedding dimension depends on different values
of K and γ . One can see that value of r saturates starting from
some sufficiently large value of K . Note also that for smaller γ

the value of K , for which r saturates, is bigger. This supports
the fact that for smaller γ one has deeper memory. But the
most important observation is that for smaller γ one has r
bigger. In Fig. 9(c), for K = 500 (which is well above the
memory depth for all considered γ ) we show the dependence
of r on γ explicitly. One sees that r decreases with increasing
γ , which is in accord with interpretation of r as the complexity
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(a) (b)

(c)

FIG. 9. Analysis of the spin boson model [Eq. (33)] within the proposed method. (a) Accuracy of prediction for different values of K
and γ . (b) Trajectories subspace dimension for different values of K and γ . (c) Dependence of the trajectories subspace dimension on γ for
K = 500.

of a non-Markovian quantum dynamics or a measure of non-
Markovianity.

V. COMPARISON WITH EXISTING DATA-DRIVEN
METHODS OF NON-MARKOVIAN QUANTUM DYNAMICS

IDENTIFICATION

In this section, we compare the given method of non-
Markovian quantum dynamics identification with previously
proposed ones, especially focusing attention on the re-
lated “black-box” methods namely the TTM [45–51,54],
and a method based on a recurrent neural network (RNN)
parametrization of a predictive model [55]. We evaluate all
the methods by means of the following metrics: ability of a
method to extract information about the environment of a non-
Markovian quantum system, data efficiency, and robustness to
noise.

The first and foremost distinguishing feature of the pro-
posed method is its ability to extract information about the
quantum environment of a system by observing only quantum
trajectories of a system. It estimates the effective dimension
of the environment and reconstructs eigenvalues of the joint
system and environment dynamics. The effective dimension
of the environment shows the size of the environment fraction
that mutually exchanges information with a system. The re-
maining fraction of the environment is seen as a decoupled

part, since it only absorbs information and does not bring
any information back. The eigenvalues of the joint system
and environment dynamics are essentially spectroscopic data
that defines the physics of the system and environment as a
whole. All previously proposed methods do not reconstruct
any information about the system’s quantum environment,
except maybe attempts to reconstruct the effective dimension
of the environment by looking for the “elbow” in the vali-
dation curve plot [61,62] while fitting the observed data by
process-tensor-based methods. However, this method requires
a separate validation data set and multiple retraining of a
process-tensor-based model, while the proposed method is
free from these drawbacks.

The next indicators of performance are data efficiency
and robustness to noise. Our method is equipped with the
automatic model selection that selects the simplest possible
model among describing observed data. This is achieved by
identification of the low-dimensional linear subspace where
all the quantum trajectories are placed. The dynamics of the
system in this subspace can be described by a model with
a fewer number of parameters, which implies less data for
learning and better robustness against noise. To demonstrate
the data efficiency and robustness to noise of our method,
we compare the prediction of a non-Markovian quantum dy-
namics built using our method with that which is built using
the TT method that serves as an example of a “black-box”
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FIG. 10. The comparison of the averaged prediction accuracy of the proposed method and the TTM for the model with a predefined
effective environment [Eq. (29)]. The value of Dnoiseless is the distance Eq. (30) between the prediction built on top of noisy “prehistory” of
a test trajectory and the noiseless remaining part of a trajectory. The first averaging sign in 〈〈Dnoiseless〉〉log means averaging the distance over
all trajectories in the test set, the second averaging sign with superscript log means that for each particular plot one performs logarithmic
averaging, i.e., 〈〈Dnoiseless〉〉 = exp(〈log〈Dnoiseless〉〉), over all parameters τ, σ, K, N, L, dE, adiss, κ but the parameter that is the x axis.

method, and which does not account for the physics under the
hood of the observed data. To make our comparison system-
atic we performed multiple numerical experiments (300 000
in total) and compared the performance of both methods for
each experiment. For the learning of the TTM model from the
data, we utilized a ridge regression [66] to solve the following
optimization problem:

minimize
W

L∑
i=1

N−K−1∑
t=0

∥∥�(i)(t + K + 1) − W
[
T (i)

K (t )
]∥∥2

F

+ θ‖W ‖2
F , (36)

where W is the kernel of the discrete Nakajima-Zwanzig
equation that one reconstructs from the data and θ is the
regularization coefficient taken equal to σ to mitigate the
effect of noise. Each experiment consisted of a data prepa-
ration stage, when test and training sets of trajectories are
generated within a particular model, a fitting stage, when both
the proposed method and the TTM are applied to a training

trajectories set to build data-driven model of the dynamics,
and a test stage, when both data-driven models are used to
predict dynamics of trajectories from a test set. After the test
stage, prediction errors of both methods are evaluated. As the
error measure we used 〈Dnoiseless〉 that is distance Eq. (30)
between the prediction built on top of noisy “prehistory” of
a test trajectory and the noiseless remaining part of a tra-
jectory averaged over all trajectories from a test set. As a
model of non-Markovian dynamics we used the model with a
predefined effective environment considered in the Sec. IV A.
Each experiment is defined by a particular tuple of parameters
(τ, σ, K, N, L, dE, adiss, κ ) where τ is the time-step size, σ

is the amplitude of noise, K is the guess of memory depth,
N is the number of discrete time steps in test and training
sets, L is the number of trajectories in a training set, dE is
the predefined dimension of the effective environment, adiss

is the dissipation rate (see Appendix B) and κ is the random
seed that is used to generate the Lindbladian driving the
dynamics of the system and the environment. We performed
numerical experiments for all tuples of parameters from the
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TABLE II. Comparison of different non-Markovian quantum dynamics identification methods with the method proposed in the present
research.

Information about the
environment that can be
reconstructed

Data efficiency and
robustness to noise

Mathematical guarantees
of convergence to the
optimal point

Is able to predict the
response of a
non-Markovian quantum
system on an external
perturbation?

TTM The most general model
requires a large data set

Converges with
mathematical guarantees

No

Methods based on
learning of a matrix
product state
representation of a process
tensor

Effective dimension [61] Cross-validation based
bond dimension tuning
improves data efficiency

No mathematical
guarantees of convergence

Yes

Methods based on
tomography of a process
tensor

Eigenfrequencies,
effective dimension

Extremely data
demanding (requires
exponential in the number
of discrete time steps
amount of data points)

Converges with
mathematical guarantees

Yes

RNN based method “Black-box” model
requires a large data set

No mathematical
guarantees of convergence

No

Proposed method Eigenfrequencies,
effective dimension

The automatic model
selection improves data
efficiency and robustness
to noise in contrast with
“black-box” methods

Converges with
mathematical guarantees

No

set

(τ (1), . . . , τ (5) ) × (σ (1), . . . , σ (5) ) × (K (1), . . . , K (4) )

× (N (1), . . . , N (3) ) × (L(1), . . . , L(5) ) × (
d (1)

E , . . . , d (4)
E

)
× (

a(1)
diss, . . . , a(5)

diss

) × (κ (1), . . . , κ (10)), (37)

where × stands for the Cartesian product and superscripts
mark a particular value of a parameter used in numerical
experiments. In order not to list all values of parameters here
we refer a reader to Fig. 10 where the x axis of subplots shows
the ranges of parameters we used.

The obtained high-dimensional data needs to be visualized
in a concise way. To do that we introduce a logarithmic aver-
aging that we define as follows:

〈A〉log = exp (〈log A〉), (38)

that is more preferable than the standard averaging since the
value of 〈Dnoiseless〉 may vary several orders of magnitude for
different parameters. For the sake of demonstration of what
is done next, let us fix σ as a target parameter. For σ we
calculated 〈〈Dnoiseless〉〉log

τ,K,N,L,dE,adiss,κ
that is the logarithmic

averaged value of 〈Dnoiseless〉 over all parameters but σ . We
did the same averaging for all parameters except κ and plot
the results in Fig. 10. One can think of this plots as “projec-
tions” of the obtained high-dimensional data on a particular
plane. They represent how the prediction accuracy for both
methods depends on a particular parameter. One can note,
that the proposed method outperforms the TTM almost always
except cases with small noise, small memory depth, small

time-step size, where both methods perform equally. One can
also note, that the proposed method compared to the TTM
works especially good in case of high amplitudes of noise, that
is especially practical one. These observations approve the
proposed method’s improved data-efficiency and robustness
to noise in comparison with previously propose “black-box”
methods such as TTM of RNN based method. The overall
comparison summary is given in Table II. To conclude the
presented comparison.

To conclude the presented comparison, one can note that
the proposed method is a substantial step forward toward
interpretable data-driven methods of non-Markovian quantum
dynamics analysis. This is the first method allowing auto-
matic extraction of information about the environment from
the measured system dynamics and it outperforms previously
proposed “black-box” methods, such as TTM, in terms of
robustness to noise and data efficiency.

VI. DISCUSSION AND OUTLOOK

We developed a data-driven method for non-Markovian
quantum dynamics analysis. The input data processed by the
method is a set of quantum trajectories, i.e., sequences of den-
sity matrices of the system at consecutive time steps. We note
that quantum trajectories can be reconstructed with the use of
quantum state tomography that is de facto the gold standard
for the characterization of quantum information processing
devices [88], and is a standard tool for studying the per-
formance of various physical quantum computing platforms
including photons [97], trapped ions [98], and superconduct-
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ing circuits [99]. So, the method we developed is well-suited
to the study of existing noisy intermediate-scale quantum
(NISQ) devices including listed above. We also note that the
developed approach takes into account inevitable discrepan-
cies between true density matrices (which one would obtain
with infinite number of perfect measurements) and practically
reconstructed ones obtained with finite amount of experimen-
tal statistics. The estimated level of this reconstruction noise
(the standard deviation σ ), as well as the guess about the
memory depth K , are the method’s hyperparameters.

The analysis of the non-Markovian dynamics performed
within our method consists of two major steps. At the first
stage, the method determines the simplest model describing
observed data, in conformity with Occam’s razor principle,
and outputs the hyperparameter r defining the complexity
of the model. This simplest model selection corresponds to
the best machine-learning practices and improves both data
efficiency and noise robustness of the proposed method [66].
Moreover, r defines the dimension of the effective envi-
ronment that is an important characteristic of the genuine
environment. At the second stage, the method reconstructs
the predictive model based on the results at the previous
step. The obtained model allows one to predict the continu-
ation of the quantum system’s trajectory consisting of at least
K elements.

Both stages rely on matrix decompositions guaranteeing
convergence to the optimal solution while most of previ-
ously proposed methods rely on an approximate nonconvex
optimization [55,61,62,68]. Due to the established relation
between a quantum system’s trajectories and the joint sys-
tem and environment dynamics, the reconstructed predictive
model is not just a “black box,” but an interpretable phys-
ical model of non-Markovian quantum dynamics. It allows
not only the system’s dynamics prediction, but also provides
additional information on the underlying open quantum sys-
tem properties, in particular, the effective dimension of the
environment deff

E and eigenfrequencies of the joint system and
environment dynamics. As an additional valuable output, the
proposed method performs quantum trajectories denoising by
projecting them onto the r-dimensional principle subspace.
We note that the introduced denoising procedure can be used
in combination with other approaches for improving accuracy
of quantum tomography, including compressive sensing [87]
and employing tensor-product structures [88].

We have validated the performance of our approach for
dynamics of two-level system interacting either with a known
finite-dimensional effective environment or with an infinite
dimensional environment (JC model and spin-boson model).
For the first case, we have justified the ability of the method
to recover the correct information on effective environment,
and for the latter, we have validated the performance of the
method with respect to the models related to actual experi-
ments (see, e.g., Refs. [100,101]). We note that in both cases,
the considered values of reconstruction noise σ , are taken to
mimic realistic tomographic experiments.

Our technique is highly relevant for ongoing experiments
with NISQ processors, where quantum state tomography of
several-qubit systems is an available tool. Our method makes
it possible to extract relevant information about the environ-
ment affecting a quantum processor, which is extremely hard

to measure directly, and build its dynamics prediction. It po-
tentially allows building new types of data-driven controllers
for the next generation of quantum processors taking into ac-
count non-Markovian dynamics and using non-Markovianity
as a resource.

We also note that the method is directly applicable to the
analysis of incomplete data (trajectories of some elements of
a density matrix or trajectories of single observables). Indeed,
one requires only the linearity of φK ; it can output either a
trajectory of density matrices, a trajectory of certain elements
of density matrices, or a trajectory of certain observables.
However, in this case, the physical meaning of deff

E is different
and requires further analysis. This is in the scope of the next
works.

Further research is also required to determine whether
our scheme is capable of predicting the response of a
non-Markovian system to an external perturbation. Such a
prediction capability would open a promising line of research
with the development of new data-driven quantum control
methods. We also need to study how the proposed approach
could be generalized on the case of time dependent inter-
action between a system and its environment. Specifically,
is it possible to capture the dynamics with varying K? This
generalization would be useful to detect transitions between
different dynamics regimes and dynamical phase transitions.

Realization of the method in Python as well as numerical
experiments for the model with predefined effective environ-
ment are available publicly in Ref. [102].
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APPENDIX A: SUFFICIENCY OF K

To introduce the criterion of K to be sufficient, i.e., to
understand which value of K is enough for the Markovianity
of trajectories dynamics, let us properly define the linear map
φK that is not discussed in detail in the main text. We define
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this linear map through its action on an arbitrary joint system
and environment state that reads

φK : �SE �→ [TrE(�SE), TrE(�[�SE]), . . . , TrE(�K−1[�SE])].
(A1)

The object of our interest is the orthogonal complement of
the kernel of φK , i.e., the relevant subspace that is introduced
in the main text. One can note, that the relevant subspace
is essentially an example of a Krylov subspace due to the
structure of φK . Like for any Krylov subspace its dimension
r(K ) increases with increasing K until some critical values
of r and K are reached after which r saturates and remains
constant (see, for example, Ref. [103], Lemma 1). The effect
of saturation of r takes place when

ker⊥(φK+1) = ker⊥(φK ), (A2)

which means that the relevant subspace does not change
with increasing K anymore. More precisely it can be for-
mulated as follows. There exist Kc such that r(K ) < r(K +
1) if K < Kc and r(K ) = r(K + 1) = rc if K � Kc. Let us
show that this is indeed true. First of all r is bounded from
above, since a linear span of any number of vectors from
a finite dimensional linear space cannot be greater that the
dimension of this space. Second, r(K ) is a nondecreasing
function of K , because by adding new vectors to a linear
span one can not discrease the dimension of this linear span.
Finally, one needs to prove that once ker⊥(φK+1) = ker⊥(φK ),
then for any k ∈ N the following is true ker⊥(φK+k ) =
ker⊥(φK ). The equality ker⊥(φK+1) = ker⊥(φK ) implies that
ker⊥(φK+1�) = ker⊥(φK�) and span[φ1, ker⊥(φK+1�)] =
span[φ1, ker⊥(φK�)]. Now note that

span[φ1, ker⊥(φK�)] = ker⊥(φK+1),

span[φ1, ker⊥(φK+1�)] = ker⊥(φK+2), (A3)

which leads us to the equality ker⊥(φK+2) = ker⊥(φK+1). Ap-
plying the same logic again and again we get ker⊥(φK+3) =
ker⊥(φK+2), ker⊥(φK+4) = ker⊥(φK+3), etc. This proves the
equality ker⊥(φK+k ) = ker⊥(φK ). Gathering all together we
get the described above behavior, i.e., r(K ) strictly increases
up to some critical value with increasing K and then saturates
and remains constant.

The equality Eq. (A2) is equivalent to the following rela-
tion:

ker⊥(φK�) ⊆ ker⊥(φK ). (A4)

This relation implies that there exists such a linear map M that

φK� = MφK , (A5)

which immediately leads to

TK (t + 1) = φK�[�SE(t )] = MφK [�SE(t )] = M[TK (t )],
(A6)

i.e., there exists a Markovian master equation driving the
dynamics of trajectories of size K for any initial �SE. One can
note that the inverse statement is also true. This brings us to
the criterion of K to be sufficient:

Criterion 1. The value of K is sufficient for Markovianity
of quantum trajectories iff

ker⊥(φK�) ⊆ ker⊥(φK ). (A7)

Let us derive an important upper bound of the minimal
sufficient K . Note, that if K is insufficient, then the following
holds:

r(K + 1) � r(K ) + 1, (A8)

or in other words,

r(K ) > K. (A9)

Note also that the dimension of the relevant subspace does not
exceed d2d2

E. Therefore, one has

d2d2
E � r(K ) > K, (A10)

which states that any insufficient K is less then d2d2
E. This

means that the minimal sufficient K is not greater than d2d2
E

and for any finite dimensional environment the minimal suf-
ficient K is also finite. This also means that the minimal
sufficient K is less or equal to r.

Equation (A10) implies that in the worst case the minimal
sufficient K and r grow exponentially with the number of
subsystems of the environment. In the thermodynamic limit
the minimal sufficient K and r may even tend to infinity.
Our conjecture is that this case corresponds to the dynamical
chaos. Indeed, the same unbounded growth of r takes place
when one builds time-delay embedding of classical chaotic
dynamics [70]. This also is well compatible with understand-
ing of r as the complexity measure. When r and the minimal
K tend to infinity this means infinite complexity or chaotic
behavior.

APPENDIX B: GKSL GENERATOR OF THE MODEL
WITH PREDEFINED EFFECTIVE ENVIRONMENT

In this subsection we describe how we obtain a GKSL
generator L : B(H ⊗ HE) → B(H ⊗ HE) driving dynamics
of the joint system and effective environment density matrix.
The corresponding Lindblad equation reads

d�SE

dt
= L(�SE)

= −ıaunit[H, �SE]

+ adiss

d2d2
E−1∑

i, j=1

γi j

(
Fi�SEF †

j − 1

2
{F †

j Fi, �SE}
)

. (B1)

Amplitudes aunit and adiss determine contributions of the
Hamiltonian and the dissipative parts of the equation into
the dynamics. In all experiments we choose aunit = 1, adiss =
0.003, until otherwise stated. The Hamiltonian H is generated
randomly as follows:

H = 1
2 (A + A†), Re(A) ∼ N (0, I ), Im(A) ∼ N (0, I ),

(B2)
where N (0, I ) is the matrix normal distribution with zero
mean and the identity covariance matrix. The positive semi-
definite matrix γ that characterizes dissipation in the system
and environment is also generated randomly. It reads

γ = Q�Q†, (B3)

where � is a diagonal matrix with diagonal elements sampled
uniformly from the interval [0, 1] and Q is a unitary matrix
generated in two steps: (1) one randomly generates a matrix

043002-18



PROBING NON-MARKOVIAN QUANTUM DYNAMICS WITH … PHYSICAL REVIEW RESEARCH 4, 043002 (2022)

(a) (b) (c) (d)

FIG. 11. Illustration of NumPy notations for matrices slicing. (a) First j columns are removed, (b) first j columns and first i rows are
removed, (c) only first j columns and i rows are kept, (d) last j columns and last i rows are removed.

A such that Re(A) ∼ N (0, I ) and Im(A) ∼ N (0, I ), (2) one
performs QR factorization of A and takes unitary factor as Q.
The set of real, traceless matrices {F1, F2, . . . , Fd2d2

E−1} forms

an orthonormal basis, i.e., Tr(F †
i Fj ) = δi j , where δi j stands

for the Kronecker’s symbol.

APPENDIX C: NUMPY NOTATIONS FOR TENSORS
SLICING

To represent submatrices of a matrix we use notations that
are standard in many programming packages for numerical

computation such as NumPy [104]. Let us consider a rectan-
gular matrix A of the size p × q, that can be of complex, real,
or any other type. If we want to consider a truncated version of
A for which we remove first j columns, then we write A[:, j :].
If we additionally want to remove first i rows, then we write
A[i :, j :]. If we want to keep only first j columns and first
i rows, then we write A[: i, : j]. It is also possible to count
columns and rows starting from the other end using negative
integers as indices. For example, if we want to remove last j
columns and last i rows, then we write A[: −i, : − j]. All the
examples are also illustrated in Fig. 11.
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