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In this Reply, we set out a discussion on the strength as well as the plausible shortcomings of generalized
Lorenz-Mie theory in estimating the trapping force on a particle with an emphasis on the implications of ultrashort
pulsed excitation.
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We thank the authors for the timely Comment [1]. As
mentioned in the Comment, we would like to reiterate that
the choice of methods for numerically evaluating the beam-
shaping coefficients (BSCs) in generalized Lorenz-Mie theory
(GLMT) may produce results, which using localized approxi-
mations [2–4], were shown in Reference [5] to quantitatively
differ from that obtained by exact Mie theory (EMT) [6],
specifically for larger micron-sized particles or for any parti-
cle under ultrashort pulsed excitation. In particular, warnings
for the use of localized approximations have been recently
published for beams exhibiting axicon angles and/or topo-
logical charges [7–10], although there are strong evidences
of the efficiency of localized approximations in other cir-
cumstances (e.g., Refs. [11,12] and references therein). Thus,
our inference drawn on the possible limitations of localized
approximations is still correct which, in no way, means that
GLMT is not a rigorous theory as aptly pointed out by the
authors [1].

On the other hand, despite the possible limitations, the
localized approximations turned out to be quite useful to
qualitatively perceive novel phenomena, such as “trap split-
ting” (facilitating trapping of multiple particles) or “Fano
resonance” (responsible for negative optical scattering force)
especially under ultrashort pulsed excitation [13–16] which,
using dipole approximation [17], were not captured [18–19].
Obviously, either GLMT (using methods other than localized
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approximations for evaluating BSCs) or EMT is expected to
produce similar quantitative results which are more accurate
than those obtained from GLMT and need further investi-
gation. However, it is our observation that, although exact
in formulation, neither GLMT nor EMT, fully incorporates
specific effects (for example, force propagation along the
surface) for which different theoretical formalisms (for exam-
ple, extended boundary condition method [20–22]) are to be
followed.

It is to be noted that whereas comparing with experimental
findings, even EMT showed qualitative agreement only and
the quantitative disagreement was ascribed to specific hydro-
dynamic effects, for example, laser-induced heating leading
to convection/thermophoretic effects [23,24]; photophoretic
effects may also contribute to this discrepancy.

Finally, we would like to emphasize that, although
there have been previous studies on scattering of ultrashort
laser pulses by particles [25–28], none of these included
the ensuing optical and thermal nonlinear force/potential
on the particles which has been the focus of our
research [5,13–16,18,19,23,24,29–36].

We sincerely thank G. Gouesbet for bringing their attention
to the point discussed in the Comment. During preparation of
this response, he was contacted. It was indeed a pleasure to
have the numerous stimulating conversations over emails.
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