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Particle-hole asymmetric lifetimes promoted by nonlocal spin and orbital
fluctuations in SrVO3 monolayers
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The two-dimensional nature of engineered transition-metal ultrathin oxide films offers a large playground of
yet to be fully understood physics. Here, we study pristine SrVO3 monolayers that have recently been predicted
to display a variety of magnetic and orbital orders. We find that nonlocal magnetic (orbital) fluctuations lead
to a strong (weak to moderate) momentum differentiation in the self-energy, particularly in the scattering rate.
In the one-band 2D Hubbard model, momentum selectivity on the Fermi surface (“k = kF ”) is known to lead
to pseudogap physics. Here instead, in the multiorbital case, we evidence a differentiation between momenta
on the occupied (“k < kF ”) and the unoccupied side (“k > kF ”) of the Fermi surface. Based on the dynamical
vertex approximation, and introducing a “binaural fluctuation diagnostics” tool, we advance the understanding
of spectral signatures of nonlocal fluctuations. Our work calls to (re)examine ultrathin oxide films and interfaces
with methods beyond dynamical mean-field theory and may point to correlation-enhanced thermoelectric effects.
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I. INTRODUCTION

In the vicinity of phase transitions and in low-dimensional
systems, nonlocal long-range fluctuations are known to pro-
liferate. These are not only crucial for the critical behavior
but may also lead to a strong enhancement of the scattering
rate, i.e., a dampening of the quasiparticle lifetime. In three
dimensions, it is still debated [1–3] whether this scattering
rate is actually diverging at a phase transition or approaches
a large but finite value. Even more peculiar is the situation in
two dimensions. There, an actual phase transition—associated
with the breaking of continuous symmetries—is prohibited.
Nonetheless nonlocal long-range fluctuation may still become
huge and can result in the famous pseudogap that has been
experimentally observed in cuprate superconductors [4–7].
The pseudogap arises from a pronounced momentum differ-
entiation of the scattering rate at low energy. It is largest
in the antinodal direction where eventually a gap opens at
low enough temperatures. One possible explanation are long-
range antiferromagnetic spin fluctuations [8–13], with the
momentum differentiation originating from the perfect anti-
ferromagnetic nesting at the hot spots [1,14–18], from the
vicinity to a van Hove singularity in the antinodal direction
[18–21], or from the spin-fermion vertex turning complex at
strong coupling [22]. It has also been suggested, on the basis
of model studies, that a pseudogap phase can be driven by
ferromagnetic fluctuations [23–27]. While pseudogap physics
is mostly associated with cuprates, it has also been evidenced
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in other layered materials [29]: iron pnictides [30–33] and
chalcogenides [34], (layered) nickelates [35], and iridates
[36]. However, the origin of momentum-differentiated scat-
tering rates is far from understood.

Here, we study a material that is quasi-two-dimensional by
engineering: a monolayer of SrVO3. In the bulk, SrVO3 is
a correlated paramagnetic metal [37,38] with a correlation-
induced kink [39,40] linked to the effective Kondo tem-
perature [41]. Grown as a film, it is known to undergo a
metal-insulator transition below a critical thickness when de-
posited on an SrTiO3 [42–44] or LSAT [45] substrate. We
focus on a monolayer of SrVO3 grown on the common SrTiO3

substrate and consider two different terminations of the film
to the vacuum: VO2 and SrO, see insets of Fig. 1. Only the
former has been evidenced experimentally [46], but it could
be preferable to cover the films with a SrTiO3 capping layer
which leads to a structure more akin to the SrO termination.
Such a capping layer also prevents a surface reconstruction
with oxygen adatoms, which result in a dead surface layer
[47], at least for slightly thicker films. A preceding study
[28], based on dynamical mean-field theory (DMFT) [48–50],
revealed a rich variety of orbital ordered and magnetic phases
as a function of doping, see Fig. 1. Experimentally, the phase
diagrams could be perused by applying a gate voltage.

In the present paper, we go beyond DMFT and study the
effect of nonlocal fluctuations on spectral properties using
the dynamical vertex approximation (D�A) [51–54]. As for
cuprates, we find that strong long-range fluctuations lead to
a substantial momentum-dependence in the self-energy. In
stark contrast to the cuprates, however, in ultrathin films of
SrVO3 the momentum differentiation does not distinguish
momenta on the Fermi surface but those perpendicular to it.
For example, for the SrO-termination and antiferromagnetic
spin fluctuations [above the red dome in Fig. 1(a)], occupied
states with momenta below the Fermi surface have a long,
Fermi liquidlike lifetime. Instead, unoccupied states above the
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FIG. 1. Phase diagrams. (a) SrO- and (b) VO2-terminated SrVO3 monolayer on top of a SrTiO3 substrate (see insets for crystal structures)
exhibit numerous phases as a function of electrons per site (n; lower x axis) in the low-energy vanadium t2g orbitals or gate voltage (VG; upper x
axis): antiferromagnetism (AF: red), ferromagnetism (FM: blue), incommensurate magnetism (iM: blueish), checkerboard orbital order (cOO:
green), and stripe orbital order (sOO: turquoise). The colored domes mark the occurrence of a long-range order within dynamical mean-field
theory (DMFT); adapted from Ref. [28]. The “+”–marks indicate points for which we present D�A (and DMFT) data in the present paper.

Fermi surface have short lifetimes and even kinks (downturns)
in the self-energy, signaling a depletion of states. For orbital
ordering and ferromagnetic fluctuations (above green and blue
regions) it is vice versa. The same is true for the VO2 termi-
nation and the most relevant xz/yz orbitals in the regime of
orbital and incommensurate magnetic fluctuations above half-
filling [n > 1 in Fig. 1(b), above the green and blue regions].
Below half-filling, instead, nonlocal correlations only have a
minor impact on the self-energy of this termination.

A pronounced asymmetry with respect to the Fermi surface
in the real part of the self-energy is a common phenomenon,
mostly owing to nonlocal exchange. For example, in GW cal-
culations [55–57], it leads to larger semiconductor band gaps
than in density functional theory. For the imaginary part of the
self-energy (the scattering rate), however, such an asymmetry
has, to the best of our knowledge, not been reported so far.
The particle-hole asymmetric lifetimes arising here from a
momentum-selectivity of renormalizations can complement
more ubiquitous orbital-selective asymmetries and could drive
large thermoelectric effects.

The outline of the paper is as follows. Section II provides
information on the employed electronic structure methods.
Section III presents the DMFT Fermi surfaces and spectral
functions and the trends upon doping the SrVO3 monolayer.
Nonlocal fluctuations in ABINITIOD�A suppress ordering in-
stabilities but strong long-range fluctuations persist and affect
spectra and self-energies. An overview of the ABINITIOD�A

results and the evidenced momentum selectivity are presented
in Sec. IV, before being analyzed in detail in Sec. V; im-
plications will be discussed in Sec. VI. Finally, Sec. VII
summarizes our conclusions.

II. METHOD

The crystal structures used are identical to Ref. [28]:
density function theory (DFT) calculations are based

on the WIEN2K package [58,59] with PBE [60] as
exchange-correlation potential. We construct a slab as dis-
played in the insets of Fig. 1 consisting of one unit cell
of SrVO3 on top six unit cells of the SrTiO3 substrate and
surrounded (in z direction) by sufficient vacuum of about
10 Å to both sides. While the in-plane lattice constant of the
heterostructure is locked to the (theoretical) SrTiO3 substrate
[61] (aPBE

SrTiO3
= 3.95 Å) all other internal atomic positions

are relaxed, except for the two unit cells of SrTiO3 furthest
away from SrVO3. The WIEN2K band-structure is then pro-
jected onto maximally localized V-t2g Wannier orbitals, using
the WIEN2WANNIER [62] interface to WANNIER90 [63]. The
thus obtained Wannier Hamiltonian is supplemented by a
Kanamori interaction using U = 5 eV, J = 0.75 eV, U ′ =
3.5 eV and solved by dynamical mean-field theory (DMFT)
[50,64]. Doping is modeled by a posterior-to-DFT adjustment
of the chemical potential in DMFT. For DMFT spectral func-
tions, analytic continuation was performed with the maximum
entropy method implemented in ANA_CONT [65]. There, the
hyperparameter α was determined with the CHI2KINK method
and a preblur window size of σ = 0.05 eV was employed.

In this paper, we go beyond DMFT [54,66] and treat
nonlocal correlations in the SrVO3 film with ABINITIOD�A

[53,67,68]. Contrary to finite-size cluster methods, the D�A
approach[51,52,54] and other, closely related diagrammatic
extensions of DMFT [54,69–74] are not limited to short-
range fluctuations. It well describes pseudogaps induced by
antiferromagnetic fluctuations in the one-band 2D Hubbard
model [12,75–81] and (quantum) critical behavior [2,82–84].
orbital ordering and ferromagnetic fluctuations have hitherto
not been studied by D�A or other diagrammatic extensions
of DMFT. For the ABINITIOD�A, we here calculate the local
particle-hole irreducible vertex at DMFT self-consistency by
continuous-time quantum Monte Carlo simulations in the hy-
bridization expansion [85,86] using W2DYNAMICS [87] with
worm sampling [88]. From this local vertex, we subsequently
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FIG. 2. SrO-terminated monolayer—DMFT Fermi surface for the points highlighted in Fig. 1(a): n = 0.9 (T = 290 K) and n = 1.1 (T =
290 K) order AF at low T (red box indicating the color code of Fig. 1), FM at n = 1.3 (T = 190 K; blue box), and cOO at n = 1.5 (T = 230 K;
green box).

calculate the particle-hole and transversal particle-hole Bethe-
Salpeter ladder diagrams, and, through the Schwinger-Dyson
equation, the nonlocal self-energy. This way we include non-
local correlation effects in the self-energy. The D�A chemical
potential was readjusted to fix the total number of electrons
to the considered doping level. In this study we apply D�A
in a one-shot setting, forgoing nonlocal self-consistency [89].
For a review of the method, see Ref. [54]; for computational
details of the ABINITIOD�A see Ref. [68]. D�A and DMFT
Fermi surfaces were obtained from the Green’s function at
imaginary time τ = β/2 (β = 1/kBT ). This procedure cor-
responds to a spectral function A(k, ω = 0) that is averaged
over a frequency interval ∼kBT around the Fermi level. We
note that our ABINITIOD�A calculations are not self-consistent.
Therefore, the too large susceptibilities from DMFT, will lead
to an overestimation of spectral renormalizations in D�A. For
a discussion of the relevance of the Mermin-Wagner theorem,
see our preceding paper [28].

III. DMFT: ORBITAL EFFECTS

The DMFT phase diagram Fig. 1 shows, as a function of
doping and surface termination, a rich variety of different
magnetic and orbitally ordered phases [28]. Nonlocal fluctu-
ations will strongly suppress the DMFT phase transitions in
quasi-two dimensions but lead, at the same time, to strong
scattering rates and self-energy corrections. In Sec. IV, we
will study these renormalizations using the D�A at the (n, T )
points indicated in Fig. 1. The temperatures have been chosen
so that we are close to the respective phase transitions in
DMFT and, thus, can expect pronounced nonlocal correla-

tions.1 Before turning to these D�A results, in this Section we
first analyze the DMFT Fermi surfaces and k-integrated spec-
tra at the same fillings (orbitally resolved occupations, DMFT
susceptibilities, and k-integrated DMFT spectra at filling n =
1 with and without crystal field splitting have already been
presented in Ref. [28]). In DMFT, nonlocal fluctuations are
not included and thus do not affect the self-energy and spectral
function. As a consequence, approaching the ordered states
does not result in a pronounced temperature dependence of
the DMFT spectra and self-energy.

A. SrO termination

Figure 2 shows the DMFT Fermi surface for the SrO-
terminated SrVO3 monolayer at four different dopings (left
to right). The upper panels display the contribution of the xy
orbital and the lower panels the xz orbital (the yz orbital is
equivalent to the latter if rotated by 90◦).

We find the stoichiometric sample (n = 1) to be an or-
bitally polarized insulator [44] with a gap of about 1 eV,
see Fig. 3. That is, the in-plane xy orbital is essentially half-
filled, while the xz, yz orbitals are almost completely depleted.
Hence, the undoped SrO-terminated SrVO3 monolayer is an
effective one-orbital system. The reduced orbital-degeneracy
(with respect to the bulks threefold t2g orbitals) leads to a
smaller critical interaction for the Mott state [90,91]. This

1Due to the multiorbital nature and the temperature scaling of
the D�A, we are restricted in temperature, i.e., we are not able to
approach the FM instability much further.
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FIG. 3. SrO-terminated monolayer—DMFT spectral functions A(ω) for various fillings n and temperatures T : in the Mott insulating state
(n = 1.0), in the vicinity of the AF (n = 0.9, 1.1), FM (n = 1.3), and cOO (n = 1.5) phases, resolved into orbital characters (xy and xz/yz).
Colored boxes around fillings indicate the type of long-range orders realized at lower T , in correspondence to Fig. 1. At nominal filling (n = 1;
orange), an orbitally polarized Mott insulator forms [28,44].

turns the undoped SrVO3 monolayer Mott insulating with
strong antiferromagnetic (AF) fluctuations.

Doping with 10% electrons or holes, we obtain a metal, see
the panels with n = 0.9 and n = 1.1, respectively, in Refs. 2
and 3. The xz and yz orbitals are now slightly filled, pushing
the AF phase transition to lower T , see Fig. 1, while strong AF
spin fluctuations persist. The k-integrated spectral function
in Fig. 3 further shows that the xz and yz orbitals, while
only slightly filled, already contribute a sizable amount to the
quasiparticle peak at the Fermi level.

Similarities of this system to high-Tc cuprates are un-
canny. While, here, the low-energy physics is dominated
by a half-filled xy orbital instead of the x2 − y2 orbital in
cuprates, we find a ratio of nearest to next-neighbor in-plane
hopping t ′/t = +0.31, (t = −0.237 eV, t ′ = −0.073 eV)
which is essentially the same as found for YBa2Cu3O7 and
Bi2Sr2CaCu2O8 [92], but t ′ has the opposite sign. In a one-
band picture, one can compensate for the opposite sign by
making a particle-hole transformation and we obtain an elec-
tronlike Fermi surface instead of a hole like one in cuprates.
The decisive difference is however that, upon doping, the
xz/yz orbitals become partially filled, leading to a different,
multiorbital kind of physics.

Indeed, at larger doping, n = 1.5, Fig. 1 indicates a
checkerboard orbital order (cOO) in DMFT with a spatially
alternating occupation of the xz and yz orbitals, whereas the
xy orbital does not participate in the cOO. Here, the xy and
yz orbitals are already almost as much filled as the xy orbital
as is evident from Fig. 3 and also from the Fermi surfaces in
Fig. 2. As the xz (yz) lobes point in the x (y) and z directions,
their Fermi surface in Fig. 2 is highly asymmetric, whereas
their k-integrated spectrum in Fig. 3 is similar to that of the xy
orbital. In between, around n = 1.3, the xz and yz orbitals are
still significantly less filled, however the spectral function at
the Fermi level A(ω = 0) is strongly enhanced, see Fig. 3. Fer-
romagnetic (FM) order therefore develops in Fig. 1 from the
interplay of the Hund’s coupling J and the hopping t [28,93].

B. VO2 termination

We now turn to the DMFT electronic structure of the VO2-
terminated surface. Again, we show Fermi surfaces (Fig. 4)
and k-integrated spectra (Fig. 5) for varying doping. For the
VO2 instead of the SrO termination to the vacuum, the crystal-
field splitting between the xz/yz and the xy orbital flips its sign
[28]. That is, the xy orbital now lies above the xz/yz orbitals.

At n = 1, the latter accommodate all of the charge and their
spectrum is split into upper and lower Hubbard bands, see
Fig. 5, whereas the xy orbital is unoccupied. The two degen-
erate xz and yz orbitals are at or near quarter filling around
n = 1. This gives rise to checkerboard orbital fluctuations and,
at low enough temperature, ordering (cOO) in DMFT, see
Fig. 1. For slight hole doping and substantial electron doping,
the cOO tendencies remain intact, but the SrVO3 layer turns
metallic. Inverting the role of the xz/yz and the xy orbitals
compared to the SrO-termination, we now observe a small
hole pocket for the xy orbital in Fig. 4, in agreement with their
small filling in Fig. 5.

Reducing the filling from n = 0.94 to 0.85, this xy Fermi-
surface pocket becomes slightly enhanced, albeit it remains
small in Fig. 4. As for the fluctuations: because of their re-
duced filling, the xz/yz orbitals are no longer quarter-filled.
Thus cOO gives way, first, to stripe orbital order (sOO) at
n = 0.85 and, eventually, at lower fillings to FM, similar as
for the two-band Hubbard model [93].

Further electron doping from n = 1.23 to 1.3 instead
changes the DMFT ordered state from cOO to incommen-
surate magnetism (iM) with a small q vector in Fig. 1, see
Ref. [28]. It has, however, little effect on the spectral func-
tion and the Fermi surface in Figs. 4 and 5, respectively.
The sharper Fermi surface for n = 1.3 can be explained by
the slight decrease in the temperature and the fact that local
DMFT correlations get reduced the farther we are away from
half-filling, see Fig. 9 below.

IV. D�A: MOMENTUM DIFFERENTIATION

On the dynamical mean-field level, many-body renormal-
izations are assumed to be isotropic (i.e., independent of
momentum). In 3D, this is mostly a good approximation (see,
however, Ref. [94]). Yet, when the effective dimensionality
is reduced, as in our ultrathin film, renormalizations become
increasingly nonlocal [29]. The major question we will answer
here is: To what extent do the nonlocal critical fluctuations—
in the vicinity of the associated ordered states—lead
to momentum-selective renormalizations? To elucidate this
question, we use the ABINITIOD�A [53,67,68] methodology
and scrutinize the electron self-energy �(k, iν) in the vicinity
of the DMFT ordering instabilities summarized above.
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FIG. 4. VO2-terminated monolayer—DMFT Fermi surface for the points highlighted in Fig. 1(b): n = 0.94 (T = 290 K) and n = 1.23
(T = 290 K) order cOO at low T (green box indicating the color code of Fig. 1), n = 0.85 sOO (T = 210 K; turquoise box), and n = 1.3 iM
(T = 190 K; blue box).

A. SrO termination

Figure 6 shows the real and imaginary parts of the
ABINITIOD�A self-energy in the vicinity of the DMFT phase
transitions where nonlocal correlations become strong. Shown
are the two inequivalent orbitals, xy (top) and xz (middle
panel) as a function of Matsubara frequency νn. The yz orbital
is equivalent to the xz orbital if the momenta are rotated by
90◦ rotated; the DMFT self-energy is shown for comparison.

In the vicinity of half-filling, n = 0.9 and 1.1, AF spin fluc-
tuations prevail with leading eigenvalue λM (π, π ) = 0.95 and
0.79, respectively, in the magnetic (M) channel at q = (π, π ).
Note, λ = 1 indicates a divergence of the susceptibility, i.e.,
an ordering instability. These AF spin fluctuations are driven
by the xy orbital that is close to half filling, whereas the xz and
yz orbitals rather act as passive bystanders [28]. Consequently,
we see for n = 0.9 and n = 1.1 in Fig. 6 a pronounced mo-
mentum differentiation only for the xy orbital.

The Matsubara frequency self-energy has the advantage
that it does not require the ill-conditioned analytic continu-

ation. Nonetheless, we can gain valuable information: The
momentum differentiation of the real part of the self-energy in
Fig. 6 between unoccupied [k = (π, π ), green] and occupied
states [k = (0, 0), red] signals that the quasiparticle poles at
ω + μ = Re� + εk are pushed further away from the Fermi
energy, causing an overall enhancement of the bandwidth.
The momentum differentiation between k = (0, π ) (blue) and
k = (π/2, π/2) (orange) that are closer to the Fermi level,
indicates a deformation of the Fermi surface for n = 0.9, but
not for n = 1.1 which has a similar self-energy for these two
k points. Indeed, a deformation is observed in Fig. 7, where
the electronlike DMFT Fermi surface (Fig. 2) turns into a
holelike one in D�A for n = 0.9. For n = 1.3 with strong FM
fluctuations [λM (0, 0) = 0.78] and n = 1.5 with strong cOO
fluctuations in the density (D) channel [λD(π, π ) = 0.98], the
momentum differentiation of Re� is less pronounced.

Let us now turn to Im� from which we can read
off the scattering rate, as the νn → 0-extrapolated value.
Further, from its slope the quasiparticle renormalization
Zk = [1 − ∂Im�(k, iν)/∂ν|ν→0]−1 is accessible for a Fermi

FIG. 5. VO2-terminated monolayer—DMFT spectral functions A(ω) for various fillings n and temperature T : n = 0.85: sOO; n = 0.94:
cOO; n = 1.0: Mott insulating cOO; n = 1.23: cOO; n = 1.3: iM. Otherwise identical to Fig. 3.
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FIG. 6. SrO-terminated monolayer—momentum differentiation of the D�A self-energy. (Top four rows) Real and imaginary parts for the
xy and xz orbital at 4 different momenta, compared to DMFT, for the dopings and temperatures indicated in Fig. 1(a). (Bottom row) Slope of
the imaginary part of the D�A self-energy for a path through the Brillouin zone. Negative values correspond to a Fermi-liquid like self-energy,
positive values indicate the formation of a (pseudo)gap.

liquid phase. A positive slope of Im�(iν → 0) indicates the
crossover to a diverging (Mott-like) self-energy, which splits
the spectrum and leads to an insulating gap.

Clearly, for all four fillings shown in Fig. 6, there are
momenta for which the system exhibits non-Fermi liquid
behavior, identifiable by a kink and a downturn in Im� at
low energies. In case of AF fluctuations (n = 0.9 and 1.1)
this downturn is in the xy orbital, whereas it occurs in the
xz (and yz) orbital which dominates the FM (n = 1.3) and
cOO (n = 1.5) fluctuations. These kinks are salient indicators
for the occurrence of a pseudogap state, and they get more
pronounced when cooling the system toward the respective
phase transition.

Interestingly, in the vicinity of the AF phase, the structure
of the scattering rate is opposite to the cuprates: it is larger for
the diagonal (π, π ) direction than for the (0,π ) direction. This
momentum differentiation on the Fermi surface is, however,
much less pronounced than the momentum dependence per-
pendicular to the Fermi surface, i.e., comparing occupied vs.
unoccupied states.

This can be seen in Fig. 6 (bottom), where we plot the slope
between the first two positive Matsubara frequencies, i.e.,
slope = (Im�(iν1) − Im�(iν0))β/(2π ), along the indicated
k-path. Isolines of this slope are superimposed on the D�A

Fermi surfaces in Fig. 7, with the sign indicated by solid, fat
(positive) and dashed, thin (negative) lines. In the electron
doped regime, the slope in Im� is always negative on the
Fermi surface, i.e., Fermi liquidlike. However, when moving
away from the Fermi energy, we observe positive slopes,
which corresponds to the kinks in Fig. 6: at n = 1.1 for the
unoccupied xy states above the Fermi level; and at n = 1.3 and
n = 1.5 for the occupied xz states. In the hole doped regime,
at n = 0.9, we find Im� isoline patterns similar to n = 1.1.
However, owing to the larger xy occupation in combination
with the equally strong reconstruction through Re�, negative
slopes of Im� instead appear across the transformed xy Fermi
surface. This insulatinglike behavior is found only in the most
relevant orbitals, i.e., the xy orbital for the AF fluctuations
around n = 1, and the xz/yz orbitals where FM and cOO
long-range fluctuations are dominant. The ancillary orbitals
(xz/yz for n = 1.1 and xy for n = 1.3, 1.5) on the other hand
exhibit only a comparatively minor momentum differentiation
(see Fig. 6)—implying also a stark orbital differentiation.

B. VO2 termination

The corresponding ABINITIOD�A results for the VO2-
terminated SrVO3 monolayer for the self-energy and the
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FIG. 7. SrO-terminated monolayer—Fermi surfaces at the same dopings and T as in Fig. 2. The white lines represent isolines of the slope
between the first two Matsubara frequencies of the imaginary part of �: solid, fat lines indicate a positive slope, i.e., a kink in the self-energy,
dashed, thin lines a negative value, suggestive of a Fermi-liquid-like state.

Fermi surface are presented in Figs. 8 and 9, respectively.
For cOO fluctuations at n = 1.23 (λD(π, π ) = 0.97), the mo-
mentum differentiation of the self-energy and Fermi surface
are qualitatively similar to the cOO results at n = 1.5 for the
SrO-terminated layer. But for the cOO at n = 0.94 and sOO
at n = 0.85, we only find a minor momentum differentiation
of the self-energy, see Fig. 8. Correspondingly, the Fermi
surface in Fig. 9 is similar to that of DMFT in Fig. 4, and
there are no positive non-Fermi-liquid like slopes (solid lines
in Fig. 9). This is surprising since the leading eigenvalue
λD(0, π ) = λD(π, 0) = 0.985 at n = 0.85 and λD(π, π ) =
0.91 at n = 0.94 is similarly close to 1 as for n = 1.23 or
the SrO termination, indicating that strong orbital ordering
fluctuations are present.

On the contrary, at n = 1.3, above iM order, we observe
the by far strongest momentum differentiation in Fig. 8, even
though λM (δ, δ) = 0.97 with δ ≈ ±π/4 is again comparable
to the strength of other fluctuations. A clear pole develops
in the vicinity of the Fermi level not only for the xz and yz
orbitals, that drive the iM ordering, but also for the xy orbital.
This pole is so large that the spectrum splits into two parts,
akin to the splitting into upper and lower Hubbard band; and
it pushes the Fermi surface to k = (0,±π ). However, the
divergence occurs only for a region of the Brillouin zone that
does not account for the Fermi surface of the respective orbital
character.

V. BINAURAL FLUCTUATION DIAGNOSTICS

We now expose the connection between strong nonlocal
two-particle fluctuations and the occurrence (or not) of large,
momentum-selective corrections to one-particle spectral

properties. To this end, we revisit the ABINITIOD�A equa-
tion of motion [53]: the self-energy of spin σ consists of the
Hartree-Fock (“HF”) contribution and a term that includes
all truly two-particle scattering events by linking the density
vertex FD with the interaction matrix U , the bare susceptibility
χ0, and a Green’s function G that closes the Feynman diagram

�k
mm′
σ

= �HF
mm′
σ

− 1

β

∑
qk′

lhn,rst

Umlhnχ
qk′k′
0,nlsrF qk′k

rstm′
D

Gk−q
ht
σ

. (1)

In this notation, q, k, k′ refer to compound indices con-
sisting of pairs of momenta and Matsubara frequencies,
(q, iω), (k, iν), (k′, iν ′). In the ladder approximation em-
ployed in ABINITIOD�A, FD is constructed from the Bethe-
Salpeter equations in the particle-hole (“ph”) channel with an
additional enforcement of crossing symmetry via the parquet
equation [52,53]. The resulting expression

F qkk′

lmm′l ′
D

= Fωνν ′
lmm′l ′

D
+ F qνν ′,nl

lmm′l ′
D,ph

− 1
2 F (k′−k)(ν ′−ω)ν ′,nl

m′mll ′
D,ph

− 3
2 F (k′−k)(ν ′−ω)ν ′,nl

m′mll ′
M,ph

(2)

contains both charge (density, “D”) and spin (magnetic, “M”)
fluctuations. The nonlocal (nl) particle-hole (ph) vertices are
calculated through the Bethe-Salpeter equation, and a local
contribution with only frequency and orbital dependencies
is subtracted to avoid a double counting. We can further
decompose Eq. (1) into the DMFT self-energy and nonlocal
corrections to it,

�k
mm′
σ

= �ν,DMFT
mm′
σ

+ �k,correction
mm′
σ

(3)
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FIG. 8. VO2-terminated monolayer—momentum differentiation of the D�A self-energy. (Top four rows) Real and imaginary parts for the
xy and xz orbital for four different momenta (colors) and, for comparison, the DMFT self-energy (dashed) at the four dopings and T indicated
by the “+” in Fig. 1(b). (Bottom row) Slope of the imaginary part of the D�A self-energy for a momentum path through the Brillouin zone.

as the purely local vertex of Eq. (2) combines with the
Hartree-Fock contribution of Eq. (1) to the DMFT self-energy.
The correction term, �k,correction, then contains all nonlocal
contributions and is efficiently implemented as a linear com-
bination of various three-leg vertices, see Ref. [68]. For our
purpose, we now transform internal momenta and frequencies
in the corrections to DMFT by substituting k′′ = k − q, lead-
ing to

�k,correction
mm′
σ

= �HF
mm′
σ

− �ν,DMFT
mm′
σ

+
∑

k′′
�mm′ (k, k′′), (4)

where we lumped all internal summations except that over k′′
into

�mm′ (k, k′′) = − 1

β

∑
k′

lhn,rst

Umlhnχ
(k′′−k)k′k′
0,nlsr F (k′′−k),k′k

rstm′
D

Gk′′
ht
σ

. (5)

Now, by selecting a specific momentum k of the self-
energy correction, �k,correction, we are able to identify the
contributions stemming from momentum k′′ via �(k, k′′).
This analysis allows highlighting the link between the elec-
tronic structure (encoded in Gk′′

) and nonlocal fluctuations
(included in F ): in the vicinity of spontaneous instabilities, FD

will peak at zero (bosonic) energy transfer, iω = i(ν ′′ − ν) =

0, while the characteristic momentum transfer Q = k′′ − k
depends on the dominant type of fluctuations. Since we are
interested in renormalizations at low energies, we limit the
discussion to the lowest fermionic Matsubara frequency, ν =
ν0 = π/β, implying also ν ′′ = π/β. Focusing then on the
momentum dependence,

�mm′ (k, k′′) ≡ �mm′ ((k, iν0), (k′′, iν ′′
0 )), (6)

we note that (in the absence of nesting) the bare susceptibility
χ0 contributes only minimally to the k dependence. The mo-
mentum structure is, hence, dominantly generated from the
interplay of the vertex F (k′′−k)

D and the Greens function Gk′′
.

We find a strong momentum variation in the imaginary part of
the self-energy correction to originate from the real part of the
vertex and the imaginary part of the Green’s function. The lat-
ter is a direct reflection of the underlying Fermi surface, while
the vertex’s amplitude is driven by the dominant fluctuations.

Essentially, large corrections to electronic lifetimes will
be generated at Brillouin zone momenta k if they can be
connected to a Fermi surface via the transfer momentum Q
of the existing fluctuations. This connection does not need
to be precise. First, deviations in the transfer momentum that
are within the bounds of the (inverse) correlation length, ξ−1,
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FIG. 9. VO2-terminated monolayer—D�A Fermi surfaces at the same dopings and T as in Fig. 4. Isolines are again the low-energy slope
of Im�, where the solid, fat lines represent a positive, and the dashed, thin lines represent a negative value.

will still produce a large signature in � [22]. Second, the
(DMFT) scattering rate � = ZIm�(ω = 0) allows excitations
to contribute even if they are at a distance O(�/2) away from
the Fermi surface.

Our decomposition of the equation of motion derives
from previous approaches for the diagnostics of fluctuations
[79,95,96]. Our contribution to the diagnostics tool box is
twofold. First, we supplemented the fluctuation diagnostics
with a second layer of analysis. We plot the fluctuation di-
agnostics together with the Fermi surface, providing a link
between the dominant fluctuation momentum Q and spectral
properties at k′′ for the studied momentum k, see Fig. 10
and the animations in Ref. [97]. This additional layer helps
explaining when and why nonlocal renormalizations from
particular fluctuations become large. We call this doubled-
down analysis that pairs fluctuation diagnostics with spectral
information: “binaural fluctuation diagnostics.”2 Second, we
extended the domain of the fluctuation diagnostics from
many-body models to realistic multiorbital materials.

Using the above “binaural fluctuation diagnostics,” we
now analyze the self-energy corrections shown in the left
column of Fig. 10 for both surface terminations, various dop-
ing levels, hosting orbitals, and k-points. The positions of
three selected k points are indicated in the Brillouin zone
plots in the three adjacent columns. There, the colored heat
maps (blue: negative, red: positive, white: no correction) il-
lustrate Im�mm(k, k′′) from Eq. (6). The grey shaded overlay

2Without the connection to fluctuation diagnostics, related mo-
menta and Fermi surface analyses have been done before, e.g., in
Ref. [22].

corresponds to the Fermi surface of the selected orbital m. See
Ref. [97] for an animated version of Fig. 10.

In close proximity to the antiferromagnetic DMFT phase
transition (SrO termination; n = 1.1; top row), the momenta
k1 and k2 display a pronounced kink in the correction to the xy
self-energy. Our momentum diagnostics reveals that these mo-
menta can indeed be connected to the xy Fermi surface via the
AF ordering vector Q = (π, π ), generating a large amplitude
in Im�(k1,2, k1,2 − Q). Due to the shape and size of the Fermi
surface, momenta—for which this constructive interplay with
the AF fluctuations is possible—naturally lie in unoccupied
regions of the Brillouin zone. Instead, occupied momenta,
such as k3, cannot be connected to the Fermi surface via the
AF ordering vector. As a result, there is no kink in k3’s self-
energy correction and the overall shape is Fermi liquidlike.
This insight into the momentum-structure of the equation of
motion thus explains the evidenced momentum asymmetry
(k >

<
kF ) in the scattering rate. While corrections at k3 are small

compared to those at k1 and k2, −Im�k3,correction
xy (iν → 0) ∼

O(0.5) eV is still larger than some of the corrections at other
dopings, discussed below. The reason is the large (DMFT)
scattering rate, −Im�ν=π/β,DMFT

xy ≈ 0.7 eV, see Fig. 6: it
causes incoherent spectral weight of bands slightly below EF

(cf. Fig. 2(a) in Ref. [28]) to spill to the Fermi level, thus
contributing to �(�, M ).

Larger electron doping at n = 1.3 favors ferromagnetism
hosted by the xz/yz orbitals (second row in Fig. 10). Here
Q = (0, 0) (hence no arrow) naturally causes corrections to
appear at the occupied states within the Fermi surface because
it is rather narrow. The extent of the momentum region in
which the FM-driven � is large (see the diameter of the (blue)
circular region) owes to the inverse correlation length ξ−1 that
was found to be sizably larger than for dominant fluctuations
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FIG. 10. Binaural fluctuation diagnostics. (Left) Self-energy correction to �DMFT for six selected terminations, fillings, k points, and
orbitals. (Right) Binaural fluctuation diagnostics for these six cases, consisting of (i) the corresponding momentum (k′′) fluctuation diagnostics
Im�(k, k′′) from Eq. (6) at the first positive fermionic and zeroth bosonic Matsubara frequency (three columns on the right). (ii) Marking the
selected k points (k1, k2, k3) in the Brillouin zone plots as colored circles, indicating the dominant wave vector Q (arrows) of a given type
of fluctuations, and the Fermi surface (gray shaded area) of the same orbital. Strong corrections are a product of strong fluctuations (large
F Q

D ) where the momentum transfer Q (arrows) connects the self-energy momentum k to the Fermi surface (gray shaded area) of the same
orbital. While antiferromagnetic fluctuations cause strong corrections at momenta outside the Fermi surface (top row), ferromagnetism and the
observed incommensurate magnetism are prone to corrections inside the Fermi surface (second and last row). Orbital ordering on the other
hand is different (third and fifth row): checkerboard fluctuations have little to no effect, while stripe ordering promotes moderate corrections.
This analysis reveals that in the SrO-terminated structure at n = 1.5 (third row) the adjacent ferromagentism is the root cause of the sizable
renormalization, not the orbital order fluctuations that dominate the susceptibility. For animations with more k points, see Ref. [97].
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at other dopings, see Fig. 6(c) in Ref. [28] for a comparison.
The large ξ−1 enables the � point, which manifestly is not on
the Fermi surface, to significantly contribute to the self-energy
corrections. Instead, k3 is far enough from the Fermi surface
for corrections to be suppressed.

Doping further to n = 1.5, the xz/yz orbitals become
close to quarter-filling and a checkerboard orbital ordering
instability emerges (third row in Fig. 10). Interestingly, the
corresponding characteristic vector Q = (π, π ) of the cOO
fluctuations, only plays a minor role in the lifetime differenti-
ation: for k1 and k2, (π, π ) connects to a small region of finite
intensity in � far away from the Fermi surface. However,
larger contributions to the self-energy correction manifestly
still come from the high amplitude around Q = (0, 0), i.e.,
from the direct vicinity of the k1 and k2 momenta in Fig. 10:
spectral renormalizations are dominated by FM fluctuations
although, at the current doping level, these are subleading in
the susceptibility. This interpretation is further supported by
looking at k3, where FM contributions are absent. There, self-
energy corrections from (π, π ) fluctuations are largest, as this
momentum transfer directly connects k3 to the Fermi surface.
However, the resulting corrections are nonetheless very small.
One contributing factor is again the inverse correlation length,
ξ−1. It is smaller for cOO than for FM by one order of magni-
tude (cf. Fig. 6(c) in Ref. [28]), resulting in a smaller (k′′

x , k′′
y )

region with finite (blue) intensity to integrate over. We can
motivate an additional factor: The OO susceptibility of two
orbitals l �= m can be expanded into a linear combination of
the density susceptibilities in which diagonal and off-diagonal
components enter with opposite sign

χ lm
OO = 2χ llll

D + 2χmmmm
D − 4χ llmm

D . (7)

The entering diagonal and off-diagonal χ llmm
D for l, m ∈

{xz, yz} are displayed Fig. 11(b). While χ lm
OO for fixed l �= m

is naturally large in an OO regime, we empirically find the
density susceptibility, χD = 2

∑
lm χ llmm

D , in which the above
terms are summed with the same (plus) sign, to be small, see
Fig. 11(d), suggestive of compensational effects. Similar to
χD, also the equation of motion involves a summation over
diagonal and off-diagonal components, this time of F :

�k
mm
σ

∝
∑
qk′

U

(
χ

qk′k′
0,mmmmF qk′k

mmmm
D

+ χ
qk′k′
0,llll F

qk′k
llmm

D

)
Gk−q

mm
σ

+ O(J ), (8)

where we omitted terms involving the Hund’s coupling J
and restricted G and χ0 to diagonal elements, Gmm and
χ0,lmml , mostly warranted in the systems considered here.
Large off-diagonal contributions are only expected where
bands hybridize, e.g., where the xz and yz orbitals cross. The
observation made for χD then suggests that also the orbital
summation in the equation of motion results in an (at least
partial) cancellation of terms headed by U . Quite intuitively
for orbital fluctuations, leading corrections will then be driven
by a smaller energy scale: the Hund’s coupling J . These
intricacies highlight that strong nonlocal fluctuations do not
always translate 1-to-1 into large nonlocal renormalizations
in spectral properties.

Similar arguments hold for the cOO regime at filling n =
0.94 for the film with VO2 termination (fifths panel in Fig. 10).

Additionally, there is a modulation in the k′′ plane, with
positive contributions compensating part of the self-energy
enhancement from around k + Q.

The argument of compensations in FD does not hold for
stripe orbital ordering for filling n = 0.85 and VO2 termina-
tion (fourth panel in Fig. 10). Similar to the ferromagnetic
case, the Q = (0, π ) nematic fluctuation vector supports a
strong differentiation between occupied (k1, k2) and unoccu-
pied states (k3) in the xz orbital. We speculate that the lower
symmetry of the sOO state obviates cancellation effects in
the equation of motion. Indeed, compared to the cOO regime,
the sOO orbital-summed density susceptibility, χD, and the
partial sum χxz,xz

D + χ
xz,yz
D that mirrors the orbital combina-

tions entering the equation of motion, Eq. (8), is one order of
magnitude larger, cf. Figs. 11(c) and 11(d).3

Lastly, the incommensurate nature of the magnetic order-
ing at n = 1.3 in the VO2-terminated structure is easily seen
as the root cause of the massive self-energy corrections in
the last row of Fig. 10: the Q = δ × êQ vector is able to
perfectly connect onto the Fermi surface for k′′

x = 0. Due to
the large δ ∼ π/4 also most other k points are able to—at
least partially—connect onto the Fermi surface—with zone-
boundary momenta, such as k3, being the only exceptions.
The momentum diagnostics hence provides an explanation
for the wide range of positive slopes in Im�(iν) throughout
the Brillouin zone, shown in Fig. 9. Incidentally, the onset of
this magnetism is also the main driver of the corrections at
slightly smaller doping n = 1.23 where, yet again, the cOO
fails to contribute. Consequently both the D�A Fermi surfaces
and low-energy slopes of Im� are qualitatively identical for
n = 1.23 and 1.3 in Fig. 9.

In all, we find that all types of spin fluctuations provide a
path to strong nonlocal renormalizations. Our analysis further
motivates the asymmetry with respect to the Fermi surface to
be a direct consequence of the interplay of shape and size of
the Fermi surface and the ordering vector Q of the driving
fluctuations.4 The impact of orbital fluctuations, instead, is
more ambiguous. Our work suggests that checkerboard orbital
fluctuations only produce a weak momentum differentiation
in the self-energy, while stripe-orbital fluctuations have larger
signatures. A simpler model should be studied to further
elucidate spectral consequences of orbital fluctuations in the
absence of other complications.

VI. DISCUSSION AND PERSPECTIVE

Recapitulating, we have studied a SrVO3 monolayer on
a SrTiO3 substrate with two different surface terminations,
SrO and VO2, to vacuum within ABINITIOD�A. Depending
on the termination and filling, there are strong nonlocal fluc-

3Note also that the sOO data point is much closer to its DMFT or-
dering temperature than the cOO one (eigenvalues: λsOO = 0.985 >

λcOO = 0.91), suggestive of overall larger fluctuations.
4In a related analysis of the 2D doped Hubbard model [22], it was

shown that an interplay of Fermi surface shape, van-Hove singular-
ities and the coherence length of the antiferromagnetic fluctuations
can further lead to a self-energy differentiation on the Fermi surface
[22].
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FIG. 11. Density susceptibilities in the (qx, qy ) plane. [(a) and (b)] χD matrix in the xz/yz-orbital space and the vicinity of stripe orbital
ordering and checkerboard orbital ordering found in the VO2 terminated monolayer at n = 0.85 and 0.94, respectively. The sOO response in
(a) displays orbital asymmetry where χ xz,xz

D (π, 0) > χ xz,xz
D (0, π ) and vice versa for the yz orbital. The cOO response in (b) on the other hand is

perfectly symmetric, i.e., χ xz,xz
D (π, π ) = χ

yz,yz
D (π, π ) = −χ

xz,yz
D (π, π ) = −χ

yz,xz
D (π, π ). [(c) and (d)] Orbital-summed density susceptibility

χD = 2
∑

lm χ lm
D and the nonsymmetric sum χ xz,xz

D + χ
yz,xz
D motivated by Eq. (8). The aforementioned asymmetry manifests itself in a—for

sOO fluctuations—large remainder in χ xz,xz
D + χ

yz,xz
D , which is strongly attenuated in the vicinity of the cOO phase (note the different color

scales).

tuations of various kinds: antiferromagnetic, ferromagnetic,
incommensurate magnetic, striped or checkerboard orbital.
These nonlocal fluctuations will suppress the mean-field
DMFT ordering but also have pronounced effects on the self-
energy—the focus of the present paper. They can deform
the Fermi surface, as observed for antiferromagnetic ordering
with n = 0.9 for SrO-terminated SrVO3, and quite generally
can lead to a strong enhancement of Im�. Strong nonlocal
fluctuations can even cause the development of a pole in
the self-energy, signaling the splitting of the spectrum into
two parts—here not because of Mott-Hubbard physics but
because of large nonlocal fluctuations. The latter is particu-
larly strong for the incommensurate ferromagnetic phase of
the VO2-terminated SrVO3 monolayer at n = 1.3 filling. First
indications, i.e., downturns of the self-energy at the lowest
Matsubara frequency are however ubiquitous for various dop-
ings and both terminations. While such nonlocal physics have

been investigated quite intensively for antiferromagnetic fluc-
tuations in the Hubbard model in the context of the cuprates,
to the best of our knowledge it has not been analyzed before
for orbital fluctuations.

The undoped (n = 1) SrVO3 monolayer is Mott insulating
and, for SrO-termination, appears to be akin to the cuprates
with the xy orbital playing the role of the high-Tc’s x2 −
y2 orbital. However, electron-doping reveals the multiorbital
physics of the SrVO3 system: The xy orbital is depopulated
when adding electrons to the system, and all three orbitals, xy,
xz, and yz, participate in developing a quasiparticle resonance
at the Fermi level.

For the cuprates, AF fluctuations lead to pseudogap physics
with a momentum differentiation distinguishing between a
Fermi liquidlike self-energy in the nodal direction on the
Fermi surface, and a kink in the self-energy signaling the
opening of a gap in the antinodal direction. Here, we also
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observe the joint presence of these two behaviors in the
self-energy. However, the momentum differentiation is not
realized on the Fermi surface but perpendicular to it: for
the SrO-termination in the electron-doped regime, AF fluc-
tuations lead to a Fermi liquidlike behavior for momenta
on the occupied side of the Fermi surface (“k < kF ”) and
a kinklike insulating behavior in the imaginary part of the
self-energy on the unoccupied side (“k > kF ”). In case of FM
fluctuations, the momentum differentiation between occupied
and unoccupied momenta is reversed. The tendency towards
checkerboard orbital ordering, however, has no vital influence
on the self-energy.

For the VO2 termination, iM fluctuations at n = 1.3 lead to
massive nonlocal correlations and a pole in the self-energy. In
contrast to all other cases not only the xz/yz orbitals—driving
the iM fluctuations—are affected but also the ancillary xy
orbital. Around half-filling, again, the cOO fails to contribute
significantly to the self-energy. Instead, sOO fluctuations do
generate a momentum differentiation.

The imaginary part of the self-energy corresponds to the
lifetimes and the broadening of the spectral function. Our re-
sults hence show that the lifetimes of an added hole or electron
are extremely different. The hole lifetime can be measured
by angular resolved photoemission spectroscopy (ARPES);
the electron lifetime by inverse photoemission spectroscopy,
by ARPES at elevated temperatures, or in nonequilibrium
situations (e.g., pump-probe measurements) in which states
above the Fermi level become populated.

The differentiation between states above and below the
Fermi surface that we observe is quite extreme. Techno-
logically this might be exploited for thermoelectrics which
rely on a strong electron-hole asymmetry [98–101]. Partic-
ularly beneficial are sharp peaks in the spectral function
on only one side of the Fermi level [98], as found for the
SrO-terminated monolayer, see Fig. 2, within DMFT. There,
local electronic correlations can enhance thermoelectricity
through energy-dependent renormalizations that are different
for electrons (ω > 0) and holes (ω < 0) [99,102]. Our finding
of a momentum-selectivity in the scattering rate may pro-
vide an additional route: a particle-hole asymmetry that is
driven (or enhanced) by nonlocal renormalizations. Indeed,

looking again at the SrO-terminated monolayer, dominant
(sub-leading) FM fluctuations at n = 1.3 (n = 1.5), drive a
dispersive scattering rate [103] that is larger for occupied
momenta (“k < kF ”) then for empty states (“k > kF ”). Specif-
ically, the downward kinks in the xz component of Im�, see
Fig. 6, occur for k = (0, 0) and k = (0, π ) which are inside
the (DMFT) xz Fermi surface, see Fig. 2. For k = (π, π ) and
k = (π/2, π/2), which are outside the Fermi surface, the xz
scattering rate instead decreases when approaching zero fre-
quency. This electron-hole asymmetry of the scattering time
will make the already electronlike DMFT thermopower even
more negative, thus increasing its magnitude.

VII. CONCLUSIONS

Based on simulations of oxide ultrathin films, we demon-
strated that, in quasi-two-dimensional systems, strong long-
range magnetic (orbital) fluctuations cause a strong (weak to
moderate) momentum differentiation in the self-energy. We
devised a binaural fluctuation diagnostics tool for analyzing
this momentum differentiation, which links the occurrence
of strong nonlocal self-energy corrections to an interplay of
the size and shape of the Fermi surface and the characteris-
tic momentum transfer of existing fluctuations. Further, we
demonstrated that the momentum differentiation from mag-
netic fluctuations has a much richer structure than the current
focus on cuprates and pseudogap physics suggests: Strong
variations in renormalizations may not only occur on the
Fermi surface but also perpendicular to it. Our results call
for a (re)examining—with beyond-DMFT methods—of cor-
related electron systems that host strong nonlocal fluctuations:
layered materials as well as ultrathin oxide films and het-
erostructures.

ACKNOWLEDGMENTS

We thank M. Fuchs, A. Galler, J. Kaufmann, G. Sangio-
vanni, P. Thunström, A. Toschi, and Z. Zhong for fruitful
discussions. The authors acknowledge support from the Aus-
trian Science Fund (FWF) through Grants No. P 32044 and
No. P 30213. Calculations were performed on the Vienna
Scientific Cluster (VSC).

[1] Y. M. Vilk and A.-M. S. Tremblay, Non-perturbative many-
body approach to the Hubbard model and single-particle
pseudogap, J. Phys. I (France) 7, 1309 (1997).

[2] G. Rohringer, A. Toschi, A. Katanin, and K. Held, Critical
Properties of the Half-Filled Hubbard Model in Three Dimen-
sions, Phys. Rev. Lett. 107, 256402 (2011).

[3] G. Rohringer and A. Toschi, Impact of non-local correlations
over different energy scales: A dynamical vertex approxima-
tion study, Phys. Rev. B 94, 125144 (2016).

[4] M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T.
Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki,
P. Guptasarma, and D. G. Hinks, Destruction of the Fermi
surface in underdoped high-Tc superconductors, Nature
(London) 392, 157 (1998).

[5] T. Timusk and B. Statt, The pseudogap in high-temperature
superconductors: An experimental survey, Rep. Prog. Phys.
62, 61 (1999).

[6] M. R. Norman, D. Pines, and C. Kallin, The pseudogap: Friend
or foe of high Tc ? Adv. Phys. 54, 715 (2005).

[7] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, From quantum matter to high-temperature supercon-
ductivity in copper oxides, Nature (London) 518, 179 (2015).

[8] A. P. Kampf and J. R. Schrieffer, Spectral function and pho-
toemission spectra in antiferromagnetically correlated metals,
Phys. Rev. B 42, 7967 (1990).

[9] Y. M. Vilk and A.-M. S. Tremblay, Destruction of Fermi-
liquid quasiparticles in two dimensions by critical fluctuations,
Europhys. Lett. 33, 159 (1996).

033253-13

https://doi.org/10.1051/jp1:1997135
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevB.94.125144
https://doi.org/10.1038/32366
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/PhysRevB.42.7967
https://doi.org/10.1209/epl/i1996-00315-2


PICKEM, TOMCZAK, AND HELD PHYSICAL REVIEW RESEARCH 4, 033253 (2022)

[10] D. Rost, E. V. Gorelik, F. Assaad, and N. Blümer, Momentum-
dependent pseudogaps in the half-filled two-dimensional
Hubbard model, Phys. Rev. B 86, 155109 (2012).

[11] B. Kyung, V. Hankevych, A.-M. Daré, and A.-M. S. Tremblay,
Pseudogap and Spin Fluctuations in the Normal State of
the Electron-Doped Cuprates, Phys. Rev. Lett. 93, 147004
(2004).

[12] E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and
the Pseudogap in the Two-Dimensional Hubbard Model, Phys.
Rev. Lett. 110, 216405 (2013).

[13] O. Cyr-Choinière, R. Daou, F. Laliberté, C. Collignon, S.
Badoux, D. LeBoeuf, J. Chang, B. J. Ramshaw, D. A. Bonn,
W. N. Hardy, R. Liang, J.-Q. Yan, J.-G. Cheng, J.-S. Zhou,
J. B. Goodenough, S. Pyon, T. Takayama, H. Takagi, N.
Doiron-Leyraud, and L. Taillefer, Pseudogap temperature T ∗

of cuprate superconductors from the Nernst effect, Phys. Rev.
B 97, 064502 (2018).

[14] A. Kampf and J. R. Schrieffer, Pseudogaps and the spin-bag
approach to high-Tc superconductivity, Phys. Rev. B 41, 6399
(1990).

[15] P. Monthoux and D. Pines, YBa2Cu3O7: A nearly antiferro-
magnetic Fermi liquid, Phys. Rev. B 47, 6069 (1993).

[16] A. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-
critical theory of the spin-fermion model and its application
to cuprates: Normal state analysis, Adv. Phys. 52, 119
(2003).

[17] Y. M. Vilk, Shadow features and shadow bands in the para-
magnetic state of cuprate superconductors, Phys. Rev. B 55,
3870 (1997).

[18] W. Wu, M. S. Scheurer, M. Ferrero, and A. Georges, Effect of
van Hove singularities in the onset of pseudogap states in Mott
insulators, Phys. Rev. Res. 2, 033067 (2020).

[19] J. González, F. Guinea, and M. A. H. Vozmediano, Kinematics
of Electrons near a Van Hove Singularity, Phys. Rev. Lett. 84,
4930 (2000).

[20] C. J. Halboth and W. Metzner, d-Wave Superconductivity and
Pomeranchuk Instability in the Two-Dimensional Hubbard
Model, Phys. Rev. Lett. 85, 5162 (2000).

[21] C. Honerkamp and M. Salmhofer, Magnetic and Supercon-
ducting Instabilities of the Hubbard Model at the Van Hove
Filling, Phys. Rev. Lett. 87, 187004 (2001).

[22] F. Krien, P. Worm, P. Chalupa, A. Toschi, and K. Held,
Spin scattering turns complex at strong coupling: The
key to pseudogap and Fermi arcs in the Hubbard model,
arXiv:2107.06529.

[23] D. Fay, O. Loesener, and J. Appel, Momentum-dependent
electron self-energy in nearly ferromagnetic systems: Compar-
ison of spin fluctuations and phonons, Phys. Rev. B 37, 3299
(1988).

[24] P. Monthoux, Migdal’s theorem and the pseudogap, Phys. Rev.
B 68, 064408 (2003).

[25] V. Hankevych, B. Kyung, and A.-M. S. Tremblay, Weak ferro-
magnetism and other instabilities of the two-dimensional t − t ′

Hubbard model at van Hove fillings, Phys. Rev. B 68, 214405
(2003).

[26] A. A. Katanin, A. P. Kampf, and V. Y. Irkhin, Anomalous
self-energy and Fermi surface quasisplitting in the vicinity of
a ferromagnetic instability, Phys. Rev. B 71, 085105 (2005).

[27] A. A. Katanin, Electronic self-energy and triplet pairing
fluctuations in the vicinity of a ferromagnetic instability in

two-dimensional systems: Quasistatic approach, Phys. Rev. B
72, 035111 (2005).

[28] M. Pickem, J. Kaufmann, K. Held, and J. M. Tomczak, Zo-
ology of spin and orbital fluctuations in ultrathin oxide films,
Phys. Rev. B 104, 024307 (2021).

[29] B. Klebel-Knobloch, T. Schäfer, A. Toschi, and J. M.
Tomczak, Anisotropy of electronic correlations: On the appli-
cability of local theories to layered materials, Phys. Rev. B
103, 045121 (2021).

[30] Y.-M. Xu, P. Richard, K. Nakayama, T. Kawahara, Y. Sekiba,
T. Qian, M. Neupane, S. Souma, T. Sato, T. Takahashi, H.-
Q. Luo, H.-H. Wen, G.-F. Chen, N.-L. Wang, Z. Wang, Z.
Fang, X. Dai, and H. Ding, Fermi surface dichotomy of the
superconducting gap and pseudogap in underdoped pnictides,
Nat. Commun. 2, 392 (2011).

[31] S. J. Moon, A. A. Schafgans, S. Kasahara, T. Shibauchi, T.
Terashima, Y. Matsuda, M. A. Tanatar, R. Prozorov, A. Thaler,
P. C. Canfield, A. S. Sefat, D. Mandrus, and D. N. Basov,
Infrared Measurement of the Pseudogap of P-Doped and Co-
Doped High-Temperature BaFe2As2 Superconductors, Phys.
Rev. Lett. 109, 027006 (2012).

[32] X. Zhou, P. Cai, A. Wang, W. Ruan, C. Ye, X. Chen, Y. You,
Z.-Y. Weng, and Y. Wang, Evolution from Unconventional
Spin Density Wave to Superconductivity and a Pseudogaplike
Phase in NaFe1−xCoxAs, Phys. Rev. Lett. 109, 037002 (2012).

[33] T. Shimojima, T. Sonobe, W. Malaeb, K. Shinada, A.
Chainani, S. Shin, T. Yoshida, S. Ideta, A. Fujimori, H.
Kumigashira, K. Ono, Y. Nakashima, H. Anzai, M. Arita, A.
Ino, H. Namatame, M. Taniguchi, M. Nakajima, S. Uchida, Y.
Tomioka et al., Pseudogap formation above the superconduct-
ing dome in iron pnictides, Phys. Rev. B 89, 045101 (2014).

[34] P.-H. Lin, Y. Texier, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran,
E. Giannini, M. Grioni, and V. Brouet, Nature of the Bad
Metallic Behavior of fe1.06Te Inferred from its Evolution in
the Magnetic State, Phys. Rev. Lett. 111, 217002 (2013).

[35] M. Uchida, K. Ishizaka, P. Hansmann, Y. Kaneko, Y. Ishida, X.
Yang, R. Kumai, A. Toschi, Y. Onose, R. Arita, K. Held, O. K.
Andersen, S. Shin, and Y. Tokura, Pseudogap of Metallic Lay-
ered Nickelate R2−xSrxNiO4 (R = Nd, Eu) Crystals Measured
using Angle-Resolved Photoemission Spectroscopy, Phys.
Rev. Lett. 106, 027001 (2011).

[36] Y. K. Kim, O. Krupin, J. D. Denlinger, A. Bostwick, E.
Rotenberg, Q. Zhao, J. F. Mitchell, J. W. Allen, and B. J. Kim,
Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferro-
magnet, Science 345, 187 (2014).

[37] I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and
M. Ishikawa, Bandwidth control in a perovskite-type 3d1-
correlated metal Ca1−xSrxVO3. i. evolution of the electronic
properties and effective mass, Phys. Rev. B 58, 4372 (1998).

[38] S.-K. Mo, J. D. Denlinger, H.-D. Kim, J.-H. Park, J. W. Allen,
A. Sekiyama, A. Yamasaki, K. Kadono, S. Suga, Y. Saitoh, T.
Muro, P. Metcalf, G. Keller, K. Held, V. Eyert, V. I. Anisimov,
and D. Vollhardt, Prominent Quasiparticle Peak in the Photoe-
mission Spectrum of the Metallic Phase of V2O3, Phys. Rev.
Lett. 90, 186403 (2003).

[39] I. A. Nekrasov, K. Held, G. Keller, D. E. Kondakov, T.
Pruschke, M. Kollar, O. K. Andersen, V. I. Anisimov, and
D. Vollhardt, Momentum-resolved spectral functions of srvo3

calculated by LDA + DMFT, Phys. Rev. B 73, 155112
(2006).

033253-14

https://doi.org/10.1103/PhysRevB.86.155109
https://doi.org/10.1103/PhysRevLett.93.147004
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevB.97.064502
https://doi.org/10.1103/PhysRevB.41.6399
https://doi.org/10.1103/PhysRevB.47.6069
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/PhysRevB.55.3870
https://doi.org/10.1103/PhysRevResearch.2.033067
https://doi.org/10.1103/PhysRevLett.84.4930
https://doi.org/10.1103/PhysRevLett.85.5162
https://doi.org/10.1103/PhysRevLett.87.187004
http://arxiv.org/abs/arXiv:2107.06529
https://doi.org/10.1103/PhysRevB.37.3299
https://doi.org/10.1103/PhysRevB.68.064408
https://doi.org/10.1103/PhysRevB.68.214405
https://doi.org/10.1103/PhysRevB.71.085105
https://doi.org/10.1103/PhysRevB.72.035111
https://doi.org/10.1103/PhysRevB.104.024307
https://doi.org/10.1103/PhysRevB.103.045121
https://doi.org/10.1038/ncomms1394
https://doi.org/10.1103/PhysRevLett.109.027006
https://doi.org/10.1103/PhysRevLett.109.037002
https://doi.org/10.1103/PhysRevB.89.045101
https://doi.org/10.1103/PhysRevLett.111.217002
https://doi.org/10.1103/PhysRevLett.106.027001
https://doi.org/10.1126/science.1251151
https://doi.org/10.1103/PhysRevB.58.4372
https://doi.org/10.1103/PhysRevLett.90.186403
https://doi.org/10.1103/PhysRevB.73.155112


PARTICLE-HOLE ASYMMETRIC LIFETIMES PROMOTED … PHYSICAL REVIEW RESEARCH 4, 033253 (2022)

[40] K. Byczuk, M. Kollar, K. Held, Y. F. Yang, I. A. Nekrasov, T.
Pruschke, and D. Vollhardt, Kinks in the dispersion of strongly
correlated electrons, Nat. Phys. 3, 168 (2007).

[41] K. Held, R. Peters, and A. Toschi, Poor Man’s Understand-
ing of Kinks Originating from Strong Electronic Correlations,
Phys. Rev. Lett. 110, 246402 (2013).

[42] K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S.
Aizaki, A. Fujimori, and M. Oshima, Dimensional-Crossover-
Driven Metal-Insulator Transition in SrVO3 Ultrathin Films,
Phys. Rev. Lett. 104, 147601 (2010).

[43] M. Kobayashi, K. Yoshimatsu, T. Mitsuhashi, M. Kitamura,
E. Sakai, R. Yukawa, M. Minohara, A. Fujimori, K. Horiba,
and H. Kumigashira, Emergence of quantum critical behavior
in metallic quantum-well states of strongly correlated oxides,
Sci. Rep. 7, 16621 (2017).

[44] Z. Zhong, M. Wallerberger, J. M. Tomczak, C. Taranto, N.
Parragh, A. Toschi, G. Sangiovanni, and K. Held, Electronics
with Correlated Oxides: SrVO3/SrTiO3 as a Mott Transistor,
Phys. Rev. Lett. 114, 246401 (2015).

[45] M. Gu, S. Wolf, and J. Lu, Two-dimensional Mott insulators
in SrVO3 ultrathin films, Adv. Mater. Interfaces 1, 1300126
(2014).

[46] Y. Okada, S.-Y. Shiau, T.-R. Chang, G. Chang, M. Kobayashi,
R. Shimizu, H.-T. Jeng, S. Shiraki, H. Kumigashira, A. Bansil,
H. Lin, and T. Hitosugi, Quasiparticle Interference on Cu-
bic Perovskite Oxide Surfaces, Phys. Rev. Lett. 119, 086801
(2017).

[47] J. Gabel, M. Pickem, P. Scheiderer, L. Dudy, B. Leikert, M.
Fuchs, M. Stübinger, M. Schmitt, J. Küspert, G. Sangiovanni,
J. M. Tomczak, K. Held, T.-L. Lee, R. Claessen, and M.
Sing, Toward functionalized ultrathin oxide films: The impact
of surface apical oxygen, Adv. Electron. Mater. 8, 2101006
(2021).

[48] W. Metzner and D. Vollhardt, Correlated Lattice Fermions in
d = ∞ Dimensions, Phys. Rev. Lett. 62, 324 (1989).

[49] A. Georges and G. Kotliar, Hubbard model in infinite dimen-
sions, Phys. Rev. B 45, 6479 (1992).

[50] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[51] A. Toschi, A. A. Katanin, and K. Held, Dynamical vertex
approximation: A step beyond dynamical mean-field theory,
Phys. Rev. B 75, 045118 (2007).

[52] A. A. Katanin, A. Toschi, and K. Held, Comparing perti-
nent effects of antiferromagnetic fluctuations in the two- and
three-dimensional Hubbard model, Phys. Rev. B 80, 075104
(2009).

[53] A. Galler, P. Thunström, P. Gunacker, J. M. Tomczak, and K.
Held, Ab initio, Phys. Rev. B 95, 115107 (2017).

[54] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations
beyond dynamical mean field theory, Rev. Mod. Phys. 90,
025003 (2018).

[55] R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy oper-
ators and exchange-correlation potentials in semiconductors,
Phys. Rev. B 37, 10159 (1988).

[56] T. Miyake, C. Martins, R. Sakuma, and F. Aryasetiawan, Ef-
fects of momentum-dependent self-energy in the electronic

structure of correlated materials, Phys. Rev. B 87, 115110
(2013).

[57] J. M. Tomczak, M. Casula, T. Miyake, and S. Biermann,
Asymmetry in band widening and quasiparticle lifetimes in
SrVO3: Competition between screened exchange and local
correlations from combined GW and dynamical mean-field
theory GW + DMFT, Phys. Rev. B 90, 165138 (2014).

[58] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J.
Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2k,
An Augmented Plane Wave + Local Orbitals Program for
Calculating Crystal Properties (Karlheinz Schwarz, Techn.
Universität Wien, Austria, 2018), http://www.wien2k.at/reg_
user/textbooks/usersguide.pdf.

[59] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen,
and L. D. Marks, WIEN2k: An APW+lo program for calcu-
lating the properties of solids, J. Chem. Phys. 152, 074101
(2020).

[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[61] C. Wang, H. Zhang, K. Deepak, C. Chen, A. Fouchet, J. Duan,
D. Hilliard, U. Kentsch, D. Chen, M. Zeng, X. Gao, Y.-J. Zeng,
M. Helm, W. Prellier, and S. Zhou, Tuning the metal-insulator
transition in epitaxial SrVO3 films by uniaxial strain, Phys.
Rev. Mater. 3, 115001 (2019).

[62] J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K.
Held, Wien2wannier: From linearized augmented plane waves
to maximally localized Wannier functions, Comput. Phys.
Commun. 181, 1888 (2010).

[63] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, wannier90: A tool for obtaining maximally-
localised Wannier functions, Comput. Phys. Commun. 178,
685 (2008).

[64] K. Held, Electronic structure calculations using dynamical
mean field theory, Adv. Phys. 56, 829 (2007).

[65] J. Kaufmann and K. Held, ana_cont: Python package for
analytic continuation, Comp. Phys. Commun. 282, 108519
(2022).

[66] J. M. Tomczak, P. Liu, A. Toschi, G. Kresse, and K. Held,
Merging GW with DMFT and non-local correlations beyond,
Eur. Phys. J.: Spec. Top. 226, 2565 (2017).

[67] A. Galler, J. Kaufmann, P. Gunacker, M. Pickem, P.
Thunström, J. M. Tomczak, and K. Held, Towards ab initio
calculations with the dynamical vertex approximation, J. Phys.
Soc. Jpn. 87, 041004 (2018).

[68] A. Galler, P. Thunström, J. Kaufmann, M. Pickem, J. M.
Tomczak, and K. Held, The AbinitioD�A project v1.0:
Non-local correlations beyond and susceptibilities within dy-
namical mean-field theory, Comput. Phys. Commun. 245,
106847 (2019).

[69] H. Kusunose, Influence of spatial correlations in strongly cor-
related electron systems: Extension to dynamical mean field
approximation, J. Phys. Soc. Jpn. 75, 054713 (2006).

[70] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein,
Dual fermion approach to nonlocal correlations
in the Hubbard model, Phys. Rev. B 77, 033101
(2008).

[71] G. Rohringer, A. Toschi, H. Hafermann, K. Held, V. I.
Anisimov, and A. A. Katanin, One-particle irreducible
functional approach: A route to diagrammatic extensions of

033253-15

https://doi.org/10.1038/nphys538
https://doi.org/10.1103/PhysRevLett.110.246402
https://doi.org/10.1103/PhysRevLett.104.147601
https://doi.org/10.1038/s41598-017-16666-x
https://doi.org/10.1103/PhysRevLett.114.246401
https://doi.org/10.1002/admi.201300126
https://doi.org/10.1103/PhysRevLett.119.086801
https://doi.org/10.1002/aelm.202101006
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.80.075104
https://doi.org/10.1103/PhysRevB.95.115107
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevB.37.10159
https://doi.org/10.1103/PhysRevB.87.115110
https://doi.org/10.1103/PhysRevB.90.165138
http://www.wien2k.at/reg_user/textbooks/usersguide.pdf
https://doi.org/10.1063/1.5143061
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevMaterials.3.115001
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1016/j.cpc.2022.108519
https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.7566/JPSJ.87.041004
https://doi.org/10.1016/j.cpc.2019.07.012
https://doi.org/10.1143/JPSJ.75.054713
https://doi.org/10.1103/PhysRevB.77.033101


PICKEM, TOMCZAK, AND HELD PHYSICAL REVIEW RESEARCH 4, 033253 (2022)

the dynamical mean-field theory, Phys. Rev. B 88, 115112
(2013).

[72] C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W.
Metzner, G. Rohringer, and A. Toschi, From Infinite to Two
Dimensions through the Functional Renormalization Group,
Phys. Rev. Lett. 112, 196402 (2014).

[73] G. Li, Hidden physics in the dual-fermion approach: A special
case of a nonlocal expansion scheme, Phys. Rev. B 91, 165134
(2015).

[74] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko,
L. Messio, and P. Seth, Triqs: A toolbox for research on inter-
acting quantum systems, Comput. Phys. Commun. 196, 398
(2015).

[75] G. Sordi, K. Haule, and A.-M. S. Tremblay, Mott physics and
first-order transition between two metals in the normal-state
phase diagram of the two-dimensional Hubbard model, Phys.
Rev. B 84, 075161 (2011).

[76] S. Sakai, G. Sangiovanni, M. Civelli, Y. Motome, K. Held,
and M. Imada, Cluster-size dependence in cellular dynamical
mean-field theory, Phys. Rev. B 85, 035102 (2012).

[77] T. Schäfer, A. Toschi, and K. Held, Dynamical vertex approx-
imation for the two-dimensional Hubbard model, J. Magn.
Magn. Mater. 400, 107 (2016).

[78] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K.
Held, N. Blümer, M. Aichhorn, and A. Toschi, Fate of the false
Mott-Hubbard transition in two dimensions, Phys. Rev. B 91,
125109 (2015).

[79] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Fluctuation Di-
agnostics of the Electron Self-Energy: Origin of the Pseudogap
Physics, Phys. Rev. Lett. 114, 236402 (2015).

[80] J. Gukelberger, E. Kozik, and H. Hafermann, Diagrammatic
Monte Carlo approach for diagrammatic extensions of dy-
namical mean-field theory: Convergence analysis of the dual
fermion technique, Phys. Rev. B 96, 035152 (2017).

[81] T. Schäfer, N. Wentzell, F. Šimkovic, Y.-Y. He, C. Hille, M.
Klett, C. J. Eckhardt, B. Arzhang, V. Harkov, F. M. Le Régent,
A. Kirsch, Y. Wang, A. J. Kim, E. Kozik, E. A. Stepanov,
A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M.
Vilk et al., Tracking the Footprints of Spin Fluctuations: A
MultiMethod, MultiMessenger Study of the Two-Dimensional
Hubbard Model, Phys. Rev. X 11, 011058 (2021).

[82] A. E. Antipov, E. Gull, and S. Kirchner, Critical Exponents
of Strongly Correlated Fermion Systems from Diagrammatic
Multiscale Methods, Phys. Rev. Lett. 112, 226401 (2014).

[83] T. Schäfer, A. A. Katanin, K. Held, and A. Toschi, Interplay
of Correlations and Kohn Anomalies in Three Dimensions:
Quantum Criticality with a Twist, Phys. Rev. Lett. 119, 046402
(2017).

[84] T. Schäfer, A. A. Katanin, M. Kitatani, A. Toschi, and K.
Held, Quantum Criticality in the Two-Dimensional Periodic
Anderson Model, Phys. Rev. Lett. 122, 227201 (2019).

[85] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Continuous-Time Solver for Quantum Impurity Mod-
els, Phys. Rev. Lett. 97, 076405 (2006).

[86] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[87] M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N.
Parragh, F. Goth, K. Held, and G. Sangiovanni, w2dynamics:

Local one- and two-particle quantities from dynamical
mean field theory, Comput. Phys. Commun. 235, 388
(2019).

[88] P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G.
Sangiovanni, and K. Held, Continuous-time quantum Monte
Carlo using worm sampling, Phys. Rev. B 92, 155102
(2015).

[89] J. Kaufmann, C. Eckhardt, M. Pickem, M. Kitatani, A. Kauch,
and K. Held, Self-consistent ladder dynamical vertex approxi-
mation, Phys. Rev. B 103, 035120 (2021).

[90] O. Gunnarsson, E. Koch, and R. M. Martin, Mott transition in
degenerate Hubbard models: Application to doped fullerenes,
Phys. Rev. B 54, R11026 (1996).

[91] E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A.
Georges, and O. K. Andersen, Mott Transition and Suppres-
sion of Orbital Fluctuations in Orthorhombic 3d1 Perovskites,
Phys. Rev. Lett. 92, 176403 (2004).

[92] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen,
and O. K. Andersen, Band-Structure Trend in Hole-Doped
Cuprates and Correlation with Tcmax, Phys. Rev. Lett. 87,
047003 (2001).

[93] K. Held and D. Vollhardt, Microscopic conditions favoring
itinerant ferromagnetism: Hund’s rule coupling and orbital
degeneracy, Eur. Phys. J. B 5, 473 (1998).

[94] T. Schäfer, A. Toschi, and J. M. Tomczak, Separability of dy-
namical and nonlocal correlations in three dimensions, Phys.
Rev. B 91, 121107(R) (2015).

[95] T. Schäfer and A. Toschi, How to read between the lines of
electronic spectra: The diagnostics of fluctuations in strongly
correlated electron systems, J. Phys.: Condens. Matter 33,
214001 (2021).

[96] L. Del Re and G. Rohringer, Fluctuations analysis of spin
susceptibility: Néel ordering revisited in dynamical mean field
theory, Phys. Rev. B 104, 235128 (2021).

[97] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.033253 for an animated decom-
position of self-energy corrections and their momentum-space
contributions along a k path.

[98] G. Mahan and J. Sofo, The best thermoelectric, Proc. Natl.
Acad. Sci. U.S.A. 93, 7436 (1996).

[99] K. Held, R. Arita, V. I. Anisimov, and K. Kuroki, The
LDA+DMFT route to identify good thermoelectrics, in Prop-
erties and Applications of Thermoelectric Materials, NATO
Science for Peace and Security Series B: Physics and Bio-
physics, edited by V. Zlatić and A. Hewson (Springer,
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