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Embedding the Yang-Lee quantum criticality in open quantum systems
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The Yang-Lee edge singularity is a quintessential nonunitary critical phenomenon characterized by anomalous
scaling. However, an imaginary magnetic field involved in this phenomenon makes its physical implementation
nontrivial. By embedding the original classical system which exhibits the Yang-Lee edge singularity in a
quantum system with an ancilla qubit and by invoking the quantum-classical correspondence, we demonstrate
a physical realization of the nonunitary quantum criticality in an open quantum system, where the nonuni-
tary criticality is identified with the singularity at an exceptional point caused by postselection of quantum
measurement.
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I. INTRODUCTION

The Yang-Lee zero [1,2] is a zero point of the partition
function of the canonical ensemble and provides a mathe-
matical origin of singularities of thermodynamic quantities
at phase transitions. In the ferromagnetic Ising model, the
Yang-Lee zeros distribute on the imaginary axis in the com-
plex plane of an external magnetic field, and the distribution
becomes dense as we approach the thermodynamic limit.
In the paramagnetic phase, there is a nonzero lower bound on
the absolute values of the Yang-Lee zeros, and the distribution
of the zeros does not touch the real axis. In the vicinity of
the lower bound, i.e., at the edge of the distribution, a criti-
cal phenomenon called the Yang-Lee edge singularity [3–9]
arises. This critical phenomenon exhibits anomalous scaling.
For example, a correlation function can increase with increas-
ing the distance due to the negative scaling dimension of a
field [4,6]. Also, it has been reported in related models that
the entanglement entropy of a subsystem can decrease with
increasing the size of the subsystem due to the negative central
charge [10,11]. Such anomalous scaling with no counterpart
in unitary critical systems is a unique feature of nonunitary
critical phenomena [3–14].

While the concepts of Yang-Lee zeros and the Yang-Lee
edge singularity were originally introduced as mathematical
foundations of phase transitions, their physical realization has
been of both theoretical and experimental interest. For exam-
ple, schemes to determine the critical points and the critical
exponents from Yang-Lee zeros have been proposed [15–17],
and dynamical quantum phase transitions [18–21] may be
interpreted as the real-time counterparts of the Yang-Lee
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zeros. Furthermore, experimental observations of the Yang-
Lee zeros [22–26] were reported, and some features of the
Yang-Lee edge singularity were extracted from experimental
data [22,23,27,28]. The critical exponent of the density of
Yang-Lee zeros has been obtained from the dependence of
magnetization of an Ising ferromagnet on a real magnetic field
combined with analytic continuation [22,23]. It can also be
obtained from a finite-size scaling [29] of quantum coher-
ence of a probe spin coupled to a many-body spin system
[27]. Such scaling analysis also provides an effective central
charge [28] of the conformal field theory [12–14,30,31] which
describes the Yang-Lee edge singularity. However, a direct
observation scheme and the physical meaning of the anoma-
lous scaling accompanied by the negative scaling dimension
in the Yang-Lee edge singularity have remained elusive due
to an imaginary magnetic field involved in this critical phe-
nomenon.

In this paper, we demonstrate that the Yang-Lee
edge singularity can be implemented in quantum systems on
the basis of the quantum-classical correspondence [32,33],
where a classical system is mapped to a quantum system
via the equivalent canonical partition function. The corre-
sponding quantum system exhibits the Yang-Lee zeros and
the Yang-Lee edge singularity of the classical ferromagnetic
Ising model. In the Yang-Lee edge singularity of a classi-
cal system, the critical behavior of physical observables and
that of the distribution of Yang-Lee zeros are discussed in a
seminal work by Fisher [4]. In this work, however, an imagi-
nary magnetic field is treated formally, which makes it highly
nontrivial to physically interpret this critical phenomenon. By
contrast, in our quantum counterpart, which is described by
a non-Hermitian Hamiltonian [34–36], we find that both an
imaginary magnetic field and the Yang-Lee edge singularity
can be realized in an open system. To realize the Yang-Lee
edge singularity in a quantum system, we embed the original
classical system which exhibits the Yang-Lee edge singularity
in a Hermitian quantum system with an ancilla so that a
physical observable of the original system can be found as an
expectation value conditioned on the measurement outcome
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of the ancilla. We demonstrate that such nonunitary operations
of measurement and postselection extract the criticality in
the form of a dynamical singularity at an exceptional point.
We find unconventional scaling laws for finite-temperature
dynamics that have not been discussed in classical systems.
Such scaling laws are unique to quantum systems and of
experimental relevance.

The rest of this paper is organized as follows. In Sec. II,
we discuss how to implement the Yang-Lee edge singularity
in open quantum systems. In Sec. III, we investigate the Yang-
Lee quantum critical phenomena in finite-temperature sys-
tems. In Sec. IV, we present a possible experimental situation
of the proposed open quantum system. In Sec. V, we summa-
rize the paper and discuss future prospects. In Appendix A, the
Yang-Lee edge singularity in the classical one-dimensional
Ising model is reviewed to make this paper self-contained. In
Appendix B, the quantum-classical correspondence between
the classical one-dimensional ferromagnetic Ising model and
a parity-time symmetric non-Hermitian Hamiltonian is dis-
cussed. In Appendix C, detailed derivations of some results
in the main text are given. In Appendix D, expectation values
of observables for finite-temperature quantum systems are
calculated.

II. YANG-LEE EDGE SINGULARITY IN
OPEN QUANTUM SYSTEMS

A. Yang-Lee edge singularity in quantum systems

A prototypical example that exhibits the Yang-Lee edge
singularity is the classical one-dimensional Ising model with
a pure-imaginary external magnetic field [6]:

H = −J
∑

j

σ jσ j+1 − ih
∑

j

σ j, (1)

where J > 0, h ∈ R, and σ j = ±1 (see Appendix A for
details of the classical Yang-Lee edge singularity). A quan-
tum system to which this classical model is mapped via the
quantum-classical correspondence is described by a parity-
time (PT ) symmetric non-Hermitian Hamiltonian [34–36]

HPT = R(cos φ)σ x + iR(sin φ)σ z (2)

with real parameters R > 0 and φ ∈ (−π/2, π/2). The
canonical partition function of a classical system is obtained
via the path-integral representation [37,38] of the quantum
counterpart up to an error that scales as O((�β0)2) with
a segment width �β0 of the inverse temperature [39,40]
(see Appendix B for details). Here, σ x, σ y, and σ z denote
the Pauli matrices, and the PT symmetry is described by
[HPT,PT ] = 0 with P = σ x and T = K, where K represents
complex conjugation. This Hamiltonian has eigenenergies
E± = ±R

√
cos 2φ. The corresponding right eigenvectors are

given by

|ER
±
〉 = 1√

2

(
i tan φ ±

√
cos 2φ

cos φ

1

)
, (3)

and the left eigenvectors are given by 〈EL
±| = 〈ER

±|η (〈EL
±| =

±〈ER
∓|σ x) for |φ| < π/4 (|φ| � π/4). These eigenstates

are normalized so as to satisfy the following normaliza-
tion conditions: 〈ER

±|ER
±〉 = 〈EL

±|EL
±〉 = 1 for |φ| < π/4, and

〈EL
p |ER

q 〉 = δpq
√

cos 2φ/ cos φ for p, q ∈ {+, −} [41]. Here,

η := 1√
cos 2φ

(cos φ + sin φ σ y) (4)

characterizes the pseudo-Hermiticity and satisfies ηHPT =
H†

PTη [42,43]. The parameter points φ = ±π/4 are excep-
tional points [44–46], at which the right (left) eigenvectors as
well as the eigenenergies coalesce.

The quantum-classical correspondence shows that the
Yang-Lee edge singularity manifests itself as the distribution
of zeros of the partition function

Z = Tr[e−βHPT ] =
∑

p∈{+,−}
e−βEp, (5)

and the associated critical phenomena appear in the expecta-
tion value of O given by [47–50]

〈O〉PT := Tr[Oe−βHPT ]

Z
= 1

Z

∑
p

〈
EL

p

∣∣O∣∣ER
p

〉
〈
EL

p

∣∣ER
p

〉 e−βEp . (6)

We note that the partition function Z takes a real value because
the eigenenergies are either real or form a complex conjugate
pair due to PT symmetry.

B. Embedding the non-Hermitian system in
an extended Hermitian system

The dynamics governed by HPT is realized in open quan-
tum systems. In the following, we focus on the PT −
unbroken phase (i.e., |φ| < π/4), and construct a model fol-
lowing Ref. [51]. By introducing an ancilla, we embed the
non-Hermitian single-qubit system in an extended Hermitian
two-qubit system described by the Hilbert space Htot = HA ⊗
HS, where HA and HS represent the Hilbert space of the
ancilla and that of the system [51,52]. The total Hamiltonian
of the two-qubit system is given by

Htot = r sin θ IA ⊗ σ x + r cos θ σ
y
A ⊗ σ z, (7)

where r > 0 and θ ∈ [0, π ]. We note that the total system has
a conserved quantity

H̃ := sin θ σ x
A ⊗ I + cos θ σ z

A ⊗ σ y (8)

since [Htot, H̃ ] = 0. We focus on the eigenspace HPT
tot of the

conserved quantity H̃ with eigenvalue +1. We assume an
initial state |ψ〉PT

tot = |↑〉A ⊗ |ψ〉 + |↓〉A ⊗ (η|ψ〉) (∈ HPT
tot ),

which evolves in time as

e−itHtot |ψ〉PT
tot = |↑〉A ⊗ e−itHPT |ψ〉 + |↓〉A ⊗ ηe−itHPT |ψ〉, (9)

where the parameters of HPT in Eq. (2) are given
by R = r

√
1 + cos2 θ/ sin θ and φ = − arctan(cos θ ) (see

Appendix C). By measuring the ancilla qubit after this time
evolution and postselecting the event that projects the ancilla
onto |↑〉A, we obtain the time evolution of the system qubit
generated by HPT. Such embedding in a Hermitian two-qubit
system has been realized experimentally [53,54].

C. Observables in the extended Hermitian system

In the following, we show how to relate physical quantities
for the canonical ensemble of HPT to those of the extended
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Hermitian system. The partition function of the system qubit
with the non-Hermitian Hamiltonian HPT is obtained from
the partition function of the total system with the Hermitian
Hamiltonian Htot whose Hilbert space is constrained to HPT

tot :

Trtot
[
PPT

tot e−βHtot
] = TrS[e−βHPT ] = Z, (10)

where PPT
tot := (1/2)(I + H̃ ) is the projection operator onto

HPT
tot [see Appendix C for the derivations of this result and

Eqs. (11)–(16) below]. Then, the four formal expectation
values for the canonical ensemble with respect to HPT are
given by〈

PPT
tot (|↑〉A A〈↑| ⊗ O)

〉
tot〈

PPT
tot (|↑〉A A〈↑| ⊗ I )

〉
tot

=
∑

p

e−βEp

Z

〈
ER

p |O|ER
p

〉
〈
ER

p |ER
p

〉 , (11)

〈
PPT

tot (|↓〉
A A

〈↓| ⊗ O)〉tot〈
PPT

tot (|↓〉
A A

〈↓| ⊗ I )
〉
tot

=
∑

p

e−βEp

Z

〈
EL

p |O|EL
p

〉
〈
EL

p |EL
p

〉 , (12)

〈
PPT

tot (|↓〉A A〈↑| ⊗ O)
〉
tot〈

PPT
tot (|↓〉A A〈↑| ⊗ I )

〉
tot

=
∑

p

e−βEp

Z

〈
EL

p |O|ER
p

〉
〈
EL

p |ER
p

〉 , (13)

〈
PPT

tot (|↑〉A A〈↓| ⊗ O)
〉
tot〈

PPT
tot (|↑〉A A〈↓| ⊗ I )

〉
tot

=
∑

p

e−βEp

Z

〈
ER

p |O|EL
p

〉
〈
ER

p |EL
p

〉 , (14)

where 〈· · ·〉tot := Trtot[· · · e−βHtot ]/Trtot[e−βHtot ]. In particular,
the expectation value in Eq. (6), which exhibits the Yang-Lee
edge singularity, is obtained as

〈O〉↓↑
tot :=

〈
PPT

tot (σ−
A ⊗ O)〉tot〈

PPT
tot (σ−

A ⊗ I )
〉
tot

=
∑

p

e−βEp

Z

〈
EL

p |O|ER
p

〉
〈
EL

p |ER
p

〉 , (15)

where σ−
A = 1

2 (σ x
A − iσ y

A) = |↓〉AA〈↑|. In the vicinity of the
critical points θc = 0, π , the quantity 〈PPT

tot (σ−
A ⊗ I )〉tot =

(sin θ )/2 in the denominator of 〈O〉↓↑
tot in Eq. (15)

approaches zero, leading to the singularity. The two-
time correlation function G(O(t2), O(t1)) = 〈O(t2)O(t1)〉PT −
〈O(t2)〉PT〈O(t1)〉PT can be obtained in a similar manner. In
particular, 〈O(t2)O(t1)〉PT is obtained as〈

ei�tHtot (σ−
A ⊗ O)e−i�tHtot PPT

tot (σ−
A ⊗ O)PPT

tot

〉
tot〈

ei�tHtot (σ−
A ⊗ I )e−i�tHtot PPT

tot (σ−
A ⊗ I )PPT

tot

〉
tot

, (16)

where �t := t2 − t1.
The quantities in Eqs. (11)–(16) can be interpreted as

the expectation values for the subensembles conditioned on
the measurement outcomes of σ z

A for each bra and ket un-
der the imaginary-time evolution. The denominator of 〈O〉↓↑

tot
in Eq. (15) is proportional to the probability amplitude of
the measurement outcome corresponding to this type of the
expectation value, and the vanishment of this probability am-
plitude is the physical origin of the Yang-Lee edge singularity.
Here, a nontrivial equivalence with the classical many-body
system with an imaginary field emerges as a consequence
of nonunitary operations of measurement and postselection,
which extract the criticality in the form of singularities at
exceptional points θ = 0, π . We note that the criticality in
observables cannot arise from the canonical ensemble for
Htot alone. For example, the magnetization remains zero and
does not exhibit any critical behavior when evaluated without

measurement and postselection on the ancilla:

Trtot[(IA ⊗ σ z ) exp(−βHtot )]

Trtot[exp(−βHtot )]
= 0. (17)

Practically, the expectation values in Eqs. (11)–(14) can be
obtained from simultaneous measurements of an observable
O of the system and another observable of the ancilla. For
example, the quantity 〈PPT

tot (σ−
A ⊗ O)〉tot appearing in the nu-

merator of 〈O〉↓↑
tot in Eq. (15) is given by the following linear

combination:

1
2

[〈
PPT

tot

(
σ x

A ⊗ O
)〉

tot − i
〈
PPT

tot

(
σ

y
A ⊗ O

)〉
tot

]
. (18)

Here, the first (second) term can be obtained by the simultane-
ous measurement of O and σ x

A (σ y
A), and is proportional to the

real (imaginary) part of TrS[O exp(−βHPT)]. The denomina-
tor of 〈O〉↓↑

tot is given as a special case of O = I in Eq. (18). The
linear combination of the observables σ x

A and σ
y
A in Eq. (18)

reconstructs the off-diagonal matrix element of the reduced
density matrix of the ancilla. Therefore, the present scheme
for obtaining the expectation value (18) can be regarded as
measurements of a system observable O combined with quan-
tum state tomography [55–59] of the ancilla. The two-time
correlation function can also be evaluated in a similar manner.

III. YANG-LEE QUANTUM CRITICAL PHENOMENA IN
FINITE-TEMPERATURE SYSTEMS

A. Observables

Here we discuss scaling laws of physical quantities for
a finite-temperature quantum system. In particular, finite-
temperature scaling of a two-time correlation function is
unique to quantum critical phenomena [60]. The quantum
critical points are located at β−1 = 0 and φ = ±π/4. We here
focus on the critical point at φ = π/4. The magnetization
m = 〈σ z〉PT, the magnetic susceptibility χ = dm

da with a :=
(R sin φ)/(R cos φ) = tan φ representing a normalized mag-
netic field, and the two-time correlation function G(t2, t1) =
〈σ z(t2)σ z(t1)〉PT − 〈σ z(t2)〉PT〈σ z(t1)〉PT are given by (see
Appendix D for derivations)

m = cos φ√
cos 2φ

e−βE−〈EL
−|σ z|ER

−〉 + e−βE+〈EL
+|σ z|ER

+〉
e−βE− + e−βE+

= −i
sin φ√
cos 2φ

tanh(βR
√

cos 2φ), (19)

χ = dm

da
= (cos2 φ)

∂m

∂φ
= −i cos3 φ

(cos 2φ)
3
2

×
[

tanh(βR
√

cos 2φ) − 2βR(sin2 φ)
√

cos 2φ

cosh2(βR
√

cos 2φ)

]
,

(20)

G(t2, t1) = cos2 φ

cos 2φ

[
(tan2 φ)

(
tanh2[βR

√
cos 2φ] − 1

)

+ cosh
[
(β − 2i�t )R

√
cos 2φ

]
cosh[βR

√
cos 2φ]

]
. (21)
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FIG. 1. Phase diagram of the Yang-Lee quantum critical system.
The quantum critical point (QCP) is located at φ = π/4 and β−1 =
0. In the PT -unbroken phase (i.e., |φ| < π/4), the �φ dependencies
of physical quantities obey the conventional scaling laws for the
Yang-Lee edge singularity [6] (see Appendix A) in two successive
limits, i.e., β−1 → 0 followed by φ → π/4 − 0. In the PT -broken
phase (i.e., |φ| > π/4), physical quantities diverge periodically and
the corresponding limits cannot be defined by two sequential limits
of β−1 → 0 followed by φ → π/4 + 0. Unconventional scaling laws
about the dependence on the temperature β−1 are obtained if the
limit β−1 → 0 is taken after φ → π/4. In the PT -unbroken phase, a
crossover between the two limiting behaviors occurs near the dashed
curve given by β−1 = (2/π )R

√
cos 2φ.

Here, the pure-imaginary nature of the magnetization origi-
nates from PT symmetry. Indeed, because of this symmetry,
we have

m∗ = Tr[σ ze−βH†
PT ]

Z
= Tr[σ z(σ xe−βHPTσ x )]

Z
= −m. (22)

Physically, this result arises from the projection σ−
A =

|↓〉AA〈↑| in Eq. (15) onto the off-diagonal element of the re-
duced density matrix of the ancilla, which is complex-valued
in general.

B. PT -unbroken phase

First, we consider the PT -unbroken phase (i.e., |φ| <

π/4) and examine the dependence of physical quanti-
ties on �φ := π/4 − φ by taking the limit φ → π/4 −
0 after β−1 → 0, the latter of which corresponds to the
thermodynamic limit for the classical counterpart in the
quantum-classical correspondence. This order of the limits
leads to the scaling laws in the classical system [6] (see
Appendix A), where �φ corresponds to a normalized mag-
netic field �a := 1 − a ∝ �φ (see Fig. 1). By taking the limit
of β−1 → 0, we obtain

m → −i sin φ√
cos 2φ

∝ �φ− 1
2 , (23)

χ → −i cos3 φ

(cos 2φ)3/2
∝ �φ− 3

2 , (24)

G(t2, t1) → cos2 φ

cos 2φ

exp[(β − 2i�t )R
√

cos 2φ]

exp[βR
√

cos 2φ]

= cos2 φ

cos 2φ
exp

[
−2π i

�t

π/(R
√

cos 2φ)

]
, (25)

where we have used the fact that hyperbolic functions
behave as tanh(βR

√
cos 2φ) → 1 and cosh[(β −

2i�t )R
√

cos 2φ] → 1
2 exp[(β − 2i�t )R

√
cos 2φ] in the

above limit. In particular, if �t is replaced by an
imaginary-time interval −i�β, the two-time correlation
function corresponds to the spatial correlation function Gcl(x)
with the distance x = �β for the classical system

Gcl(x) ∝ e−x/ξ

(x/ξ )2
x−(d−2+η), (26)

where d = 1, η = −1, and ξ ∝ (hc − h)−1/2 is the correlation
length with the critical magnetic field hc. Here, the singulari-
ties in Eqs. (23)–(25) originate from vanishing of the overlap
〈EL

p |ER
p 〉 = √

cos 2φ/ cos φ between the left and right eigen-
states with the same eigenenergy in the denominator of the
resulting expressions [see also Eq. (6)].

C. Scaling laws in the extended Hermitian system

The results in Eqs. (23)–(25) are also obtained from the
extended Hermitian system discussed in the previous section.
In fact, from Eqs. (15) and (16), we obtain (see Appendix D
for derivations)

m =Trtot
[
PPT

tot

(
σ−

A ⊗ σ z
)
e−βHtot

]
Trtot

[
PPT

tot

(
σ−

A ⊗ I
)
e−βHtot

] = i

tan θ
tanh(βr)

→ i

tan θ
∝ |θ − θc|−1, (27)

χ = − i

sin3 θ

[
tanh(βr) − 2βr

cosh2(βr) [1 + (cos θ )−2]

]

→ − i

sin3 θ
∝ |θ − θc|−3, (28)

G(t2, t1) = − 1

tan2 θ
[1 − tanh2(βr)] + cosh[(β − 2i�t )r]

(sin2 θ )(cosh βr)

→ 1

sin2 θ
exp

(
−2π i

�t

π/r

)
(29)

in the vicinity of the critical points θc = 0, π .

D. PT -broken phase

Next, we consider the PT -broken phase (i.e., |φ| > π/4)
and evaluate the dependence of physical quantities on �φ by
taking the limit φ → π/4 + 0 after β−1 → 0. In this phase,
the magnetization, the magnetic susceptibility, and the two-
time correlation function are given as follows:

m = −i
sin φ√| cos 2φ| tan(βR

√
| cos 2φ|), (30)

χ = i cos3 φ

| cos 2φ| 3
2

×
[

tan(βR
√

| cos 2φ|) − 2βR(sin2 φ)
√| cos 2φ|

cos2(βR
√| cos 2φ|)

]
, (31)
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G(t2, t1) = − cos2 φ

| cos 2φ|

[
− (tan2 φ)

(
1 + tan2[βR

√
| cos 2φ|])

+ cosh
[
(iβ + 2�t )R

√| cos 2φ|]
cos[βR

√| cos 2φ|]

]
. (32)

These quantities diverge periodically when the limit β−1 → 0
is taken for some fixed φ > π/4, which makes it impossible to
define the above-mentioned double limits of these quantities
(see Fig. 1). The condition for the divergence is given by

βR
√

| cos 2φ| =
(

n + 1

2

)
π (33)

for some integer n, which corresponds to the zeros of the
partition function

Z = 2 cos(βR
√

| cos 2φ|), (34)

i.e., the Yang-Lee zeros. Here, the real-valuedness of φ

which satisfies this condition (33) is in accordance with the
Lee-Yang circle theorem [2,61–63] in the classical system,
which states that the fugacity z = exp(−2βh) corresponding
to Yang-Lee zeros distributes on a unit circle on the complex
z plane. These zeros appear only in the region defined by (see
Fig. 1)

β−1 � 2

π
R
√

| cos 2φ|. (35)

E. Anomalous temperature dependence

Finally, we consider the case in which the limit β−1 →
0 is taken after the limit φ → π/4. This order of these two
limits leads to unconventional scaling laws that have not been
discussed in classical systems. By taking the limit φ → π/4,
we obtain the following unconventional scaling laws:

m = −i
sin φ√
cos 2φ

[
βR

√
cos 2φ + O((βR

√
cos 2φ)3)

] → − i√
2
βR, (36)

χ = − i

(
1 + cos 2φ

2 cos 2φ

) 3
2
[
βR

√
cos 2φ − 1

3
(βR

√
cos 2φ)3 + O((βR

√
cos 2φ)5) − (1 − cos 2φ)βR

√
cos 2φ

1 + (βR
√

cos 2φ)2 + O((βR
√

cos 2φ)4)

]

→ − i

3
√

2

(
β3R3 + 3

2
βR

)
, (37)

G(t2, t1) = 1 + cos 2φ

2 cos 2φ

(
cos 2φ − 1

cos 2φ + 1

[
1 − β2R2 cos 2φ + O((βR

√
cos 2φ)4)

]

+ 1 + 1
2 (β − 2i�t )2R2 cos 2φ + O((R

√
cos 2φ)4)

1 + 1
2β2R2 cos 2φ + O((βR

√
cos 2φ)4)

)
→ R2

(
1

2
β2 − iβ�t − (�t )2

)
+ 1, (38)

from which we obtain critical exponents σβ = −1,−3,−2
for the power-law dependence on the temperature β−1 (see
Fig. 1). In particular, the two-time correlation function be-
haves as |G(t2, t1)| ∝ (�t )2 in the limit of �t → ∞, which
is consistent with the anomalous divergent behavior of the
spatial correlation function Gcl(x) ∝ x2 at the critical point
of the corresponding classical system [6] (see Appendix A).
To understand the physical origin of the divergent behavior
in the quantum system, we note that the factor cosh[(β −
2i�t )R

√
cos 2φ], which appears in the two-time correlation

function in Eq. (21), becomes cosh[(iβ + 2�t )R
√| cos 2φ|]

in the PT -broken phase [see Eq. (32)] and exponentially
diverges on a timescale T ∝ | cos 2φ|−1/2 as �t increases,
indicating an exponential amplification in this phase [64–68].
At the critical point (i.e., φ = ±π/4), the timescale T di-
verges and the divergent behavior of the two-time correlation
function becomes a power law. We note that we can observe
the criticality in Eqs. (36)–(38) in the extended Hermitian
system by examining the temperature dependence of physical
quantities with the parameters r and θ held fixed near the
critical point.

In the PT -unbroken phase (i.e., |φ| < π/4), a crossover
between the two limiting behaviors given in Eqs. (23)–(25)

and in Eqs. (36)–(38) occurs around the temperature

β−1 � 2

π
R
√

cos 2φ, (39)

where the temperature is comparable to the energy gap
(see Fig. 1).

IV. POSSIBLE EXPERIMENTAL SITUATION

In this section, we discuss a possible experimental situation
of the open quantum system discussed in the previous
sections. The dynamics governed by the non-Hermitian
Hamiltonian HPT has been experimentally realized in
open quantum systems [53,54,69,70], and the scheme
for embedding this non-Hermitian Hamiltonian in the
Hermitian two-qubit system discussed in this paper has been
implemented [53,54]. Among various quantum simulators,
trapped ions [71–91] offer an ideal playground to explore
the long-time dynamics at finite temperatures due to a long
coherence time [71,90].
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A. Magnetization

The Yang-Lee edge singularity in the magnetization m of
the system can be found from Eq. (15) as

m = Trtot
[
PPT

tot

(
σ−

A ⊗ σ z
)
e−βHtot

]
Trtot

[
PPT

tot

(
σ−

A ⊗ I
)
e−βHtot

]
= Trtot

[(
σ x

A ⊗ σ z
)
ρ̃TFI

] − iTrtot
[(

σ z
A ⊗ σ z

)
ρ̃TFI

]
Trtot

[(
σ x

A ⊗ I
)
ρ̃TFI

] − iTrtot
[(

σ z
A ⊗ I

)
ρ̃TFI

] , (40)

where ρ̃TFI = P′
totρTFIP′

tot. Here ρTFI = e−βHTFI/Trtot[e−βHTFI ]
is a thermal equilibrium state of the total system for the Ising
Hamiltonian with a transverse field

HTFI = r sin θ IA ⊗ σ x + r cos θ σ z
A ⊗ σ z, (41)

which is related to Htot as Htot = e
π
4 iσ x

A HTFIe− π
4 iσ x

A . The
transverse-field Ising Hamiltonian has been implemented
in trapped ions [78,79,81–89], superconducting-circuit QED

systems [92–97], and Rydberg atoms [98–105]. The projec-
tion operator P′

tot is given by

P′
tot := e− π

4 iσ x
A PPT

tot e
π
4 iσ x

A = 1
2 (I + H̃ ′) (42)

with H̃ ′ := sin θ σ x
A ⊗ I − cos θ σ

y
A ⊗ σ y, and it can be im-

plemented by projection onto the eigenspace of H̃ ′ with
eigenvalue +1 using, for example, the scheme proposed in
Ref. [106], in which the center of mass of trapped ions is
coupled to atomic states and plays a role of the meter in an
indirect measurement of the Hamiltonian.

B. Two-time correlation function

The two-time correlation function G(σ z(t2), σ z(t1)) can be
measured in a similar manner. Specifically, from Eq. (16),
〈σ z(t2)σ z(t1)〉PT is obtained as

〈σ z(t2)σ z(t1)〉PT = Trtot
[
ei�tHtot (σ−

A ⊗ σ z )e−i�tHtot PPT
tot (σ−

A ⊗ σ z )PPT
tot e−βHtot

]
Trtot

[
ei�tHtot (σ−

A ⊗ I )e−i�tHtot PPT
tot (σ−

A ⊗ I )PPT
tot e−βHtot

]
= Trtot

{
ei�tHTFI

[(
σ x

A − iσ z
A

) ⊗ σ z
]
e−i�tHTFI P′

tot

[(
σ x

A − iσ z
A

) ⊗ σ z
]
P′

tote
−βHTFI

}
Trtot

{
ei�tHTFI

[(
σ x

A − iσ z
A

) ⊗ I
]
e−i�tHTFI P′

tot

[(
σ x

A − iσ z
A

) ⊗ I
]
P′

tote−βHTFI
}

= Trtot
{[(

σ x
A − iσ z

A

) ⊗ σ z
]

TFI(�t )P′
tot[(σ

x
A − iσ z

A) ⊗ σ z]P′
tote

−βHTFI
}

Trtot
{[(

σ x
A − iσ z

A

) ⊗ I
]

TFI(�t )P′
tot

[(
σ x

A − iσ z
A

) ⊗ I
]
P′

tote
−βHTFI

} , (43)

where [O]TFI(t ) = eitHTFI Oe−itHTFI . Both the numerator and the
denominator are obtained as a linear combination of quantities
such as

Trtot{[O′
A ⊗ OS]TFI(�t )P′

tot[OA ⊗ OS]P′
tote

−βHTFI}, (44)

where OA, O′
A ∈ {σ x

A, σ z
A}, and OS = σ z(I ) for the numerator

(denominator) in Eq. (43). The quantity in Eq. (44) can be

evaluated using the polarization identity [107]:

A†MB = 1
4 [(A + B)†M(A + B) − (A − B)†M(A − B)

− i(A + iB)†M(A + iB) + i(A − iB)†M(A − iB)].

(45)

Indeed, applying this identity to [O′
A ⊗ OS]TFI(�t )P′

tot[OA ⊗
OS]P′

tot with A = I , M = [O′
A ⊗ OS]TFI(�t ), and B =

P′
tot[OA ⊗ OS]P′

tot, we obtain

[O′
A ⊗ OS]TFI(�t )P′

tot[OA ⊗ OS]P′
tot = 1

4 (I + P′
tot[OA ⊗ OS]P′

tot )
†[O′

A ⊗ OS]TFI(�t )(I + P′
tot[OA ⊗ OS]P′

tot )

− 1
4 (I − P′

tot[OA ⊗ OS]P′
tot )

†[O′
A ⊗ OS]TFI(�t )(I − P′

tot[OA ⊗ OS]P′
tot )

− i
4 (I + iP′

tot[OA ⊗ OS]P′
tot )

†[O′
A ⊗ OS]TFI(�t )(I + iP′

tot[OA ⊗ OS]P′
tot )

+ i
4 (I − iP′

tot[OA ⊗ OS]P′
tot )

†[O′
A ⊗ OS]TFI(�t )(I − iP′

tot[OA ⊗ OS]P′
tot ). (46)

The first term on the right-hand side is obtained by first apply-
ing A + B = I + P′

tot[OA ⊗ OS]P′
tot to the thermal equilibrium

state ρTFI and then measuring O′
A ⊗ OS after an evolution time

of �t . The other terms can also be evaluated similarly.

V. SUMMARY AND FUTURE PERSPECTIVE

We have identified a quantum system which exhibits the
Yang-Lee edge singularity on the basis of the quantum-
classical correspondence and discussed its realization in an
open quantum system. Specifically, we have embedded a non-

Hermitian classical system in an extended quantum Hermitian
system by introducing an ancilla, and found that the physical
origin of the singularity lies in the facts that the physical quan-
tity to be evaluated is the expectation value conditioned on the
measurement outcome of the ancilla and that the probability
of the successful postselection of events almost vanishes in the
vicinity of the critical point. Moreover, we have found uncon-
ventional scaling laws for finite-temperature dynamics, which
are unique to quantum critical phenomena [60]. We have
shown that an expectation value over the canonical ensemble
with respect to a non-Hermitian Hamiltonian corresponds to
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that for an extended Hermitian system with the projection onto
specific matrix elements of the reduced density matrix of the
ancilla [see Eq. (15)]. It is an interesting future problem to
investigate the generality of this correspondence.

The Yang-Lee edge singularity is a prototypical example of
nonunitary critical phenomena involving anomalous scaling
laws unseen in unitary critical systems. We hope that this
work stimulates further investigation on nonunitary critical
phenomena in open quantum systems for higher-dimensional
systems and other universality classes.

ACKNOWLEDGMENTS

We are grateful to Kohei Kawabata, Hosho Katsura, and
Takashi Mori for fruitful discussions. This work was sup-
ported by KAKENHI Grant No. JP22H01152 from the Japan
Society for the Promotion of Science (JSPS). N.M. was
supported by the JSPS through the Program for Leading
Graduate Schools (MERIT). N.M. and M.N. were supported
by JSPS KAKENHI Grants No. JP21J11280 and No.
JP20K14383.

APPENDIX A: YANG-LEE EDGE SINGULARITY IN THE
CLASSICAL ONE-DIMENSIONAL ISING MODEL

We briefly review the Yang-Lee edge singularity [3–9] in
the classical one-dimensional ferromagnetic Ising model [6]:

H = −J
∑

j

σ jσ j+1 − h
∑

j

σ j, (A1)

where J is positive and h is complex in general. The transfer
matrix of this model is given by

T =
(

eβJ+βh e−βJ

e−βJ eβJ−βh

)

= e−βJσ x + eβJ [cosh(βh)I + sinh(βh)σ z], (A2)

and its eigenvalues are given by

λ± = eβJ cosh βh ±
√

e2βJ sinh2 βh + e−2βJ . (A3)

Under the periodic boundary condition, the partition function
is represented as

Z = Tr[T N ], (A4)

where N is the number of sites. In the thermodynamic limit
N → ∞, the free-energy density is given by

f = − 1

βN
ln λN

+

= − 1

β
ln

(
eβJ cosh βh +

√
e2βJ sinh2 βh + e−2βJ

)
, (A5)

and the correlation length is given by

ξ = 1

ln λ+ − ln λ−
. (A6)

From Eq. (A6), we find that the Yang-Lee edge singularity
manifests itself as the diverging correlation length when the
magnetic field satisfies the following condition:

e2βJ sinh2 βh + e−2βJ = 0, (A7)

and hence the critical magnetic field is pure imaginary:

hc = ±iβ−1 sin−1(e−2βJ ), (A8)

which is in accordance with the Lee-Yang circle theorem
[2,61–63].

The Yang-Lee edge singularity involves anomalous scaling
laws with no counterparts in unitary critical phenomena. The
magnetization density is obtained as m = −∂h f , which scales
in the vicinity of the critical point as

m = sinh βh√
sinh2 βh + e−4βJ

= sinh βh√
C�h + o(�h)

∝ �hσ , (A9)

where σ = − 1
2 , �h := h − hc, and C is a nonuniversal

constant. By differentiating the magnetization density with
respect to the magnetic field, we obtain the scaling law for
the magnetic susceptibility:

χ = dm

dh
= β e−4βJ cosh(βh)

(sinh2 βh + e−4βJ )3/2
∝ 1

�hγ
(A10)

with γ = 1 − σ = 3
2 . Correlation functions also exhibit

anomalous scaling laws. It follows from Eq. (A6) that the
correlation length scales near the critical point as

ξ−1 � 2e−βJ (cosh βh)−1
√

e2βJ sinh2 βh + e−2βJ

= 2(cosh βh)−1
√

C�h + o(�h) ∝ �hν, (A11)

where ν = 1/2. Finally, the correlation function Gcl(x) at
spatial distance x scales as

Gcl(x) = (λ−/λ+)x

1 + e4βJ sinh2(βh)
∝ e−x/ξ

�h
∝ e−x/ξ

(x/ξ )2
x−(d−2+η),

(A12)

where d = 1 and η = −1.

APPENDIX B: QUANTUM-CLASSICAL
CORRESPONDENCE

In this section, we discuss the quantum-classical cor-
respondence [32,33] between the classical one-dimensional
ferromagnetic Ising model Hcl = −J

∑
j σ jσ j+1 − ihcl

∑
j σ j

(J > 0, hcl ∈ R), and a parity-time (PT ) symmetric non-
Hermitian Hamiltonian [34–36] HQ = −hxσ

x − ihzσ
z with

real parameters hx and hz. We list the correspondence in
Table I. This correspondence is based on the equivalence of
the partition functions for Hcl and HQ. The partition function
for HQ is given by

ZQ = Tr[e−βHQ ] =
∑

σ0=±1

〈σ0|e−(β0ntemp )HQ |σ0〉, (B1)

where |σ0〉 is the eigenstate of σ z with the eigenvalue σ0 ∈
{+1,−1}, and the inverse temperature β is given by β =
β0ntemp with an integer ntemp and a fixed value β0. We employ
a path-integral representation [37,38] of Eq. (B1) by dividing
each segment β0 into ndiv subsegments of width β0/ndiv, which
results in N = ntempndiv subsegments in total. By inserting a
complete basis set between subsegments, we obtain
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TABLE I. Quantum-classical correspondence between a quantum system with a parity-time symmetric non-Hermitian
Hamiltonian HQ and a classical system with a one-dimensional ferromagnetic Ising Hamiltonian Hcl. The partition functions for HQ

and Hcl are denoted as ZQ and Zcl, respectively. Parameters of the two systems are related to each other by βclJ = − 1
2 ln[tanh(β0hx/ndiv )]

and βclhcl = β0hz/ndiv. The differences between the quantum and classical systems in the partition function, the free-energy density, the
magnetization density, the magnetic susceptibility, and the correlation function are evaluated in Eqs. (B7), (B8), (B17), (B18), and (B19),
respectively.

Quantum system Classical system
Upper bound or leading-order term of

the difference between the two systems

β = β0ntemp Inverse temperature System size
β0/ndiv Segment width of inverse

temperature
Lattice constant

N = ntempndiv Number of segments in
inverse temperature

Number of sites

ntemp → ∞ Zero-temperature limit Thermodynamic limit
ndiv → ∞ Continuum limit for

imaginary time
Continuum limit for real space

Partition function ZQ = Tr[eβ(hxσ x+ihzσ
z )] Zcl =

AN
∑

{σk } e
∑

k (βclJσk+1σk+iβclhclσk )
|ZQ − Zcl| �

2ntempβ3
0 (|hx |+|hz |)3

3n2
div

entempβ0 (|hx |+|hz |)

Free-energy density fQ = −1
β0ntemp

ln ZQ fcl = − 1
βclndivntemp

ln Zcl | fQ − fcl| � 2β2
0 (|hx |+|hz |)3

3n2
divZcl

entempβ0 (|hx |+|hz |)

Magnetization density in
ntemp → ∞

−i sin φ√
cos 2φ

i sin(βclhcl )√
exp(−4βclJ )−sin2 (βclhcl )

cos2 φ

(cos 2φ)3/2
| sin φ−3 sin 3φ|

24

(
β0R
ndiv

)2 + O(n−4
div )

Magnetic susceptibility in
ntemp → ∞

−i cos3 φ

(cos 2φ)3/2 iβcl
exp(−4βclJ ) cos(βclhcl )

[exp(−4βclJ )−sin2 (βclhcl )]3/2
cos3 φ

(cos 2φ)5/2
|3+12 cos 2φ+cos 4φ|

16

(
β0R
ndiv

)2 +
O(n−4

div )

Correlation function in
ntemp → ∞

cos2 φ

cos 2φ
e−2R�τ

√
cos 2φ 1

1−e4βclJ sin2 (βclhcl )
×[

cos(βclhcl )−
√

e−4βclJ −sin2 (βclhcl )

cos(βclhcl )+
√

e−4βclJ −sin2 (βclhcl )

]x

tan2 2φ

24 |1 + 2R�τ (cos2 φ)
√

cos 2φ +
3 cos 2φ| × e−2R�τ

√
cos 2φ

(
β0R
ndiv

)2 +
O(n−4

div )

ZQ =
∑

σ0=±1

〈σ0|
{[

exp

(
β0hx

ndiv
σ x

)
exp

(
i
β0hz

ndiv
σ z

)]ntempndiv

+ Endiv,ntemp

}
|σ0〉

=
∑
σ0

· · ·
∑
σN−1

N−1∏
k=0

〈σk+1|exp

(
β0hx

ndiv
σ x

)
exp

(
i
β0hz

ndiv
σ z

)
|σk〉 + Tr[Endiv,ntemp ]

=
∑
σ0

· · ·
∑
σN−1

AN exp

[
N−1∑
k=0

(βclJσk+1σk + iβclhclσk )

]
+ Tr[Endiv,ntemp ], (B2)

where σN = σ0, and the coefficients are given by

βclJ := −1

2
ln

[
tanh

(
β0hx

ndiv

)]
, (B3)

βclhcl := β0hz

ndiv
, (B4)

A :=
√

cosh

(
β0hx

ndiv

)
sinh

(
β0hx

ndiv

)
. (B5)

In Eq. (B2), we have evaluated the matrix element as follows:

〈σk+1|exp

(
β0hx

ndiv
σ x

)
exp

(
i
β0hz

ndiv
σ z

)
|σk〉

= 〈σk+1|
[

cosh

(
β0hx

ndiv

)
+ sinh

(
β0hx

ndiv

)
σ x

]
|σk〉ei β0hz

ndiv
σk

=
[

cosh

(
β0hx

ndiv

)
δσk+1,σk + sinh

(
β0hx

ndiv

)
(1 − δσk+1,σk )

]
ei β0hz

ndiv
σk

= A exp(βclJσk+1σk ) exp

(
i
β0hz

ndiv
σk

)
. (B6)

The first term on the right-hand side of Eq. (B2) gives the par-
tition function Zcl for the classical one-dimensional ferromag-
netic Ising model, which shows the desired quantum-classical
correspondence for the partition functions. Here, the differ-
ence between the quantum and classical partition functions
is bounded from above as [39] (see Table I)

|ZQ − Zcl| =| Tr[Endiv,ntemp ] |

� 2ntempβ
3
0 (|hx| + |hz|)3

3n2
div

entempβ0(|hx |+|hz |), (B7)
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which is vanishingly small in the continuum limit ndiv → ∞.
As a corollary of this bound, we also evaluate the difference
in the free-energy density as (see Table I)

| fQ − fcl| =
∣∣∣∣
(

− ln ZQ

β0ntemp

)
−

(
− ln Zcl

βclndivntemp

)∣∣∣∣
= 1

β0ntemp
ln

(
1 + |Tr[Endiv,ntemp ]|

Zcl

)

�
|Tr[Endiv,ntemp ]|

β0ntempZcl

� 2β2
0 (|hx| + |hz|)3

3n2
divZcl

entempβ0(|hx |+|hz |), (B8)

where we have set the inverse temperature of the classical
system as βcl = β0/ndiv.

1. Difference in observables between the quantum
and classical systems

We evaluate the difference of some observable quantities
between the quantum and classical systems. In the classical
system, the magnetization density, the magnetic susceptibility,
and the spatial correlation function are given in the thermody-
namic limit ntemp → ∞ by (see Eqs. (A9), (A10), and (A12))

mcl → i
sin(βclhcl )√

exp(−4βclJ ) − sin2(βclhcl )
, (B9)

χcl → iβcl
exp(−4βclJ ) cos(βclhcl )

[exp(−4βclJ ) − sin2(βclhcl )]3/2
, (B10)

Gcl(x) → 1

1 − e4βclJ sin2(βclhcl )

×
(

cos(βclhcl ) −
√

e−4βclJ − sin2(βclhcl )

cos(βclhcl ) +
√

e−4βclJ − sin2(βclhcl )

)x

. (B11)

On the other hand, in the quantum system, where the same
limit ntemp → ∞ represents the zero-temperature limit, the
corresponding observables are given by (see Eqs. (23)–(25))

mQ → −i
sin φ√
cos 2φ

, (B12)

χQ → −i
cos3 φ

(cos 2φ)3/2
, (B13)

GQ(�τ ) → cos2 φ

cos 2φ
exp

( − 2R�τ
√

cos 2φ
)
, (B14)

where �τ := (β0/ndiv)x and the parametrization in Eqs. (2)
and (23)–(25) is reproduced by

hx = −R cos φ, (B15)

hz = −R sin φ. (B16)

We use the relations in Eqs. (B3) and (B4) to evaluate the dif-
ference in each observable between the quantum and classical
systems in the same limit ntemp → ∞ (see Table I):

mQ − mcl → − i

24

cos2 φ

(cos 2φ)3/2
[sin φ − 3 sin(3φ)]

(
β0R

ndiv

)2

+ O(n−4
div ), (B17)

χQ −
(

− βclndiv

β0R cos φ

)−1

χcl → i

16

cos3 φ

(cos 2φ)5/2
[3 + 12 cos(2φ) + cos(4φ)]

(
β0R

ndiv

)2

+ O(n−4
div ), (B18)

GQ(�τ ) − Gcl(x) → − tan2(2φ)

24

[
1 + 2R�τ (cos2 φ)

√
cos(2φ) + 3 cos(2φ)

]
e−2R�τ

√
cos 2φ

(
β0R

ndiv

)2

+ O(n−4
div ), (B19)

where we have rescaled the magnetic susceptibility for the
classical system by taking account of the difference in the
magnetic field between the two systems. Here, the scaling
O(n−2

div ) of the leading term in the differences is consistent
with the general argument given in Refs. [39,40].

2. Required fineness of division for a given precision

We consider how finely we should divide the inverse
temperature in the quantum system to obtain the quantum-
classical correspondence with a difference smaller than a
given precision ε. We argue that the integer ndiv should be
chosen large enough so as to satisfy

ndiv

β0R
>

1√
ε (cos 2φ)5/4

. (B20)

Under this condition, we can show that (i) higher-order terms
in n−1

div in the difference of observables can be relatively ne-

glected and that (ii) the leading term is bounded from above by
ε. To demonstrate (i), we consider the expansion of the differ-
ence in the magnetization density in the limit of ntemp → ∞:

mQ − mcl → −i

24
√

2

1

(cos 2φ)3/2

(
β0R

ndiv

)2

+ i

384
√

2

1

(cos 2φ)5/2

(
β0R

ndiv

)4

+ 5i

27648
√

2

1

(cos 2φ)7/2

(
β0R

ndiv

)6

+ · · · .

(B21)

Here, if ndiv is large enough to satisfy the condition in
Eq. (B20), higher-order terms can be neglected because

1

cos 2φ

(
β0R

ndiv

)2

< ε (cos 2φ)3/2 � 1. (B22)

033250-9



MATSUMOTO, NAKAGAWA, AND UEDA PHYSICAL REVIEW RESEARCH 4, 033250 (2022)

The above argument holds also for the magnetic susceptibility and the correlation function. Furthermore, (ii) can be
demonstrated near the critical point (ntemp → ∞ followed by φ → π/4 − 0) as follows:

|�m|
ε

= 1

ε

1

24

cos2 φ

(cos 2φ)3/2
| sin φ − 3 sin(3φ)|

(
β0R

ndiv

)2

→ 1

ε

1

24
√

2

1

(cos 2φ)3/2

(
β0R

ndiv

)2

<
cos 2φ

24
√

2
< 1, (B23)

|�χ |
ε

= 1

ε

1

16

cos3 φ

(cos 2φ)5/2
|3 + 12 cos(2φ) + cos(4φ)|

(
β0R

ndiv

)2

→ 1

ε

1

16
√

2

1

(cos 2φ)5/2

(
β0R

ndiv

)2

<
1

16
√

2
< 1, (B24)

|�G|
ε

=1

ε
|1 + 2R�τ (cos2 φ)

√
cos(2φ) + 3 cos(2φ)| tan2(2φ)

24
e−2R�τ

√
cos 2φ

(
β0R

ndiv

)2

→ 1

ε

1

24

1

cos2(2φ)

(
β0R

ndiv

)2

<

√
cos 2φ

24

< 1, (B25)

where �m, �χ , and �G denote the leading terms of the
differences between the quantum and classical systems in the
zero-temperature limit ntemp → ∞ for the magnetization den-
sity, the magnetic susceptibility, and the correlation function,
respectively [see Eqs. (B17)–(B19)].

APPENDIX C: DERIVATION OF THE RESULTS IN
EQUATIONS (9)–(16) FOR THE EXTENDED

HERMITIAN SYSTEM

1. Embedding the non-Hermitian system in
an extended Hermitian system

In this section, we discuss how to obtain physical quan-
tities for the canonical ensemble of HPT from the extended
Hermitian system. We first consider the dynamics of the total
system generated by Htot = r sin θ IA ⊗ σ x + r cos θ σ

y
A ⊗ σ z

in the following two-dimensional subspace of Htot:

HPT
tot = {|ψ〉PT

tot = |↑〉A ⊗ |ψ〉 + |↓〉A ⊗ (η|ψ〉)
∣∣ |ψ〉 ∈ HS

}
,

(C1)

which is the eigenspace of the conserved quantity H̃ with
eigenvalue +1. The action of Htot is described by

Htot|ψ〉PT
tot = |↑〉A ⊗ (r sin θ σ x − ir cos θ σ zη)|ψ〉

+ |↓〉A ⊗ (r sin θ σ x + ir cos θ σ zη−1)(η|ψ〉)

= |↑〉A ⊗ r

sin θ
(σ x − i cos θ σ z )|ψ〉

+ |↓〉A ⊗ r

sin θ
(σ x + i cos θ σ z )(η|ψ〉). (C2)

This can be rewritten as

Htot|ψ〉PT
tot = |↑〉A ⊗ HPT|ψ〉 + |↓〉A ⊗ H†

PT(η|ψ〉), (C3)

where the non-Hermitian Hamiltonian HPT is given by
HPT = R(cos φ)σ x + iR(sin φ)σ z with the parameters R =
r
√

1 + cos2 θ/ sin θ and φ = − arctan(cos θ ). The time evo-
lution according to Htot is given by

e−itHtot |ψ〉PT
tot = |↑〉A ⊗ e−itHPT |ψ〉 + |↓〉A ⊗ ηe−itHPT |ψ〉.

(C4)

2. Partition function

The partition function for the system qubit with HPT is
obtained from the partition function for the total system with
Htot under the restriction of the Hilbert space to HPT

tot :

Trtot[P
PT
tot e−βHtot ] = TrS[e−βHPT ] = Z. (C5)

To show this, we note that the projection operator can be
written as

PPT
tot = sin θ

2

∑
{|σ 〉}

|σ 〉PT
tot

PT
tot 〈η−1σ |, (C6)

where {|σ 〉} is an orthonormal basis of HS and satisfies
〈σ ′|σ 〉 = δσ ′ σ . Here, the state vector |η−1σ 〉PT

tot = |↑〉A ⊗
η−1|σ 〉 + |↓〉A ⊗ |σ 〉 (∈ HPT

tot ) satisfies the following relation:

PT
tot 〈η−1σ ′|σ 〉PT

tot = 〈σ ′|(η + η−1)|σ 〉 = 2 cos φ√
cos 2φ

δσ ′ σ

= 2

sin θ
δσ ′ σ . (C7)

Using these expressions, the partition function is evaluated as

Trtot[P
PT
tot e−βHtot ]

= sin θ

2

∑
{|σ 〉}

PT
tot 〈η−1σ |e−βHtot |σ 〉PT

tot

= sin θ

2

∑
{|σ 〉}

( A〈↑| ⊗ 〈σ |η−1 + A〈↓| ⊗ 〈σ | )

× (|↑〉A ⊗ e−βHPT |σ 〉 + |↓〉A ⊗ ηe−βHPT |σ 〉)

= sin θ

2
TrS[(η + η−1)e−βHPT ] = TrS[e−βHPT ] = Z. (C8)

In obtaining the penultimate equality, we have used the fol-
lowing relation (see Eq. (4)):

η + η−1 = 2 cos φ√
cos 2φ

= 2

sin θ
. (C9)

3. Expectation values of observables

We consider the four formal expectation values 〈O〉mn
tot

(m, n ∈ {↑,↓}) appearing in Eqs. (11)–(14) for the canonical
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ensemble with respect to HPT. We first focus on

〈O〉↓↑
tot := Trtot[PPT

tot (σ−
A ⊗ O)e−βHtot ]

Trtot[PPT
tot (σ−

A ⊗ I )e−βHtot ]
, (C10)

which exhibits the Yang-Lee edge singularity. Here, σ−
A is

defined as σ−
A = 1

2 (σ x
A − iσ y

A) = |↓〉AA〈↑|. The numerator of
this expression is evaluated with a parameter 0 < x < 1 as

Trtot[P
PT
tot (σ−

A ⊗ O)e−βHtot ] = sin θ

2

∑
{|σ 〉}

PT
tot 〈η−1σ |e−(1−x)βHtot (σ−

A ⊗ O)e−xβHtot |σ 〉PT
tot

= sin θ

2

∑
{|σ 〉}

(
A〈↑| ⊗ 〈σ |η−1e−(1−x)βH†

PT + A〈↓| ⊗ 〈σ |e−(1−x)βHPT
)
(σ−

A ⊗ O)

× (|↑〉A ⊗ e−xβHPT |σ 〉 + |↓〉A ⊗ e−xβH†
PTη|σ 〉) = sin θ

2
TrS[Oe−βHPT ], (C11)

from which we obtain the desired expression:

〈O〉↓↑
tot =Trtot

[
PPT

tot (σ−
A ⊗ O)e−βHtot

]
Trtot

[
PPT

tot (σ−
A ⊗ I )e−βHtot

]
=

sin θ
2 TrS[Oe−βHPT ]

sin θ
2 Z

= 1

Z

∑
p

e−βEp

〈
EL

p |O|ER
p

〉
〈
EL

p |ER
p

〉 .

(C12)

Similar calculations yield the following results:

〈O〉↑↑
tot :=Trtot

[
PPT

tot (|↑〉AA〈↑| ⊗ O)e−βHtot
]

Trtot
[
PPT

tot (|↑〉AA〈↑| ⊗ I )e−βHtot
]

=
sin θ

2 TrS[η−1Oe−βHPT ]
1
2 Z

= 1

Z

∑
p

e−βEp〈ER
p |O|ER

p 〉,

(C13)

〈O〉↓↓
tot :=Trtot

[
PPT

tot (|↓〉AA〈↓| ⊗ O)e−βHtot
]

Trtot
[
PPT

tot (|↓〉AA〈↓| ⊗ I )e−βHtot
]

=
sin θ

2 TrS[Oηe−βHPT ]
1
2 Z

= 1

Z

∑
p

e−βEp
〈
EL

p |O|EL
p

〉
,

(C14)

〈O〉↑↓
tot :=Trtot

[
PPT

tot (|↑〉AA〈↓| ⊗ O)e−βHtot
]

Trtot
[
PPT

tot (|↑〉AA〈↓| ⊗ I )e−βHtot
]

=
sin θ

2 TrS
[
Oe−βH†

PT
]

sin θ
2 Z

= 1

Z

∑
p

e−βEp

〈
ER

p

∣∣O∣∣EL
p

〉
〈
ER

p

∣∣EL
p

〉 .

(C15)

The two-time correlation function G(O(t2), O(t1)) =
〈O(t2)O(t1)〉PT − 〈O(t2)〉PT〈O(t1)〉PT can be obtained
in a similar manner. In particular, 〈O(t2)O(t1)〉PT is
obtained as

Trtot
[
ei�tHtot (σ−

A ⊗ O)e−i�tHtot PPT
tot (σ−

A ⊗ O)PPT
tot e−βHtot

]
Trtot

[
ei�tHtot (σ−

A ⊗ I )e−i�tHtot PPT
tot (σ−

A ⊗ I )PPT
tot e−βHtot

] ,

(C16)

where �t := t2 − t1. In fact, this quantity is evaluated as

Trtot
[
ei�tHtot (σ−

A ⊗ O)e−i�tHtot PPT
tot (σ−

A ⊗ O)PPT
tot e−βHtot

]
Trtot

[
ei�tHtot (σ−

A ⊗ I )e−i�tHtot PPT
tot (σ−

A ⊗ I )PPT
tot e−βHtot

]

= TrS
[
eit2HPT sin θ

2 Oe−i(t2−t1 )HPT sin θ
2 Oe−it1HPT e−βHPT

]
TrS

[
eit2HPT sin θ

2 Ie−i(t2−t1 )HPT sin θ
2 Ie−it1HPT e−βHPT

]

= TrS[O(t2)O(t1)e−βHPT ]

Z
= 〈O(t2)O(t1)〉PT. (C17)

APPENDIX D: EXPECTATION VALUES OF OBSERVABLES
FOR FINITE-TEMPERATURE QUANTUM SYSTEMS

1. Expectation values of observables in a PT -symmetric
non-Hermitian system

In this section, we calculate the expectation values of ob-
servables for a finite-temperature quantum system. First, we
derive the expectation values of the magnetization, the mag-
netic susceptibility, and the two-time correlation function for
the PT -symmetric non-Hermitian system. The magnetization
is evaluated as

m :=〈σ z〉PT

= cos φ√
cos 2φ

e−βE−〈EL
−|σ z|ER

−〉 + e−βE+〈EL
+|σ z|ER

+〉
e−βE− + e−βE+

= − i
sin φ√
cos 2φ

tanh(βR
√

cos 2φ). (D1)

By differentiating this with respect to a (= tan φ), we obtain
the magnetic susceptibility:

χ :=dm

da
= (cos2 φ)

∂m

∂φ
= −i cos3 φ

(cos 2φ)
3
2

×
[

tanh(βR
√

cos 2φ) − 2βR(sin2 φ)
√

cos 2φ

cosh2(βR
√

cos 2φ)

]
.

(D2)
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To derive the two-time correlation function

G(σ z(t2), σ z(t1)) := 〈σ z(t2)σ z(t1)〉PT − 〈σ z(t2)〉PT〈σ z(t1)〉PT,

(D3)

we calculate the first term on the right-hand side as
follows:

〈σ z(t2)σ z(t1)〉PT = 1

Z

(
cos φ√
cos 2φ

)2 ∑
p∈{+,−}

〈
EL

p

∣∣e−(β−it2 )Epσ z

×
∑

q∈{+,−}

∣∣ER
q

〉
e−i(t2−t1 )Eq

〈
EL

q

∣∣σ ze−it1Ep
∣∣ER

p

〉

= 1

Z

cos2 φ

cos 2φ

∑
p,q∈{+,−}

e−βEp−i(t2−t1 )(Eq−Ep)

× 〈
EL

p

∣∣σ z
∣∣ER

q

〉〈
EL

q

∣∣σ z
∣∣ER

p

〉
. (D4)

Now we split the sum into two parts, one with p = q and the
other with p �= q, as follows:

〈σ z(t2)σ z(t1)〉PT

= 1

Z

cos2 φ

cos 2φ

∑
p∈{+,−}

e−βEp
(〈

EL
p

∣∣σ z
∣∣ER

p

〉)2

+ 1

Z

cos2 φ

cos 2φ

∑
p�=q∈{+,−}

e−βEp−i(t2−t1 )(Eq−Ep)

= − sin2 φ

cos 2φ
+ 1

Z

cos2 φ

cos 2φ
2 cosh

[
(β − 2i�t )R

√
cos 2φ

]

= cos2 φ

cos 2φ

(
− tan2 φ + cosh

[
(β − 2i�t )R

√
cos 2φ

]
cosh

[
βR

√
cos 2φ

] )
, (D5)

where �t := t2 − t1. Combining this expression with
Eq. (D1), we obtain the two-time correlation function:

G(t2, t1) = 〈σ z(t2)σ z(t1)〉PT − 〈σ z(t2)〉PT〈σ z(t1)〉PT

= cos2 φ

cos 2φ

{
(tan2 φ)

(
tanh2[βR

√
cos 2φ] − 1

)

+ cosh
[
(β − 2i�t )R

√
cos 2φ

]
cosh[βR

√
cos 2φ]

}
. (D6)

2. Expectation values of observables in an extended Hermitian system

The results in Appendix D 1 are also obtained from the extended Hermitian system discussed in Appendix C in an equivalent
form. In fact, the magnetization m is obtained from Eq. (C12) as

m = 〈σ z〉PT = Trtot
[
PPT

tot (σ−
A ⊗ σ z )e−βHtot

]
Trtot

[
PPT

tot

(
σ−

A ⊗ I
)
e−βHtot

]

= Trtot
{(

1
2 + sin θ

2 σ x
A ⊗ I + cos θ

2 σ z
A ⊗ σ y

)
(σ−

A ⊗ σ z )
[

cosh(βr) − sinh(βr)(sin θ IA ⊗ σ x + cos θ σ
y
A ⊗ σ z )

]}
Trtot

{(
1
2 + sin θ

2 σ x
A ⊗ I + cos θ

2 σ z
A ⊗ σ y

)
(σ−

A ⊗ I )
[

cosh(βr) − sinh(βr)(sin θ IA ⊗ σ x + cos θ σ
y
A ⊗ σ z )

]}

= Trtot
{

1
2

( − i
2σ

y
A ⊗ σ z

)[ − sinh(βr) cos θ σ
y
A ⊗ σ z

]}
Trtot

[
( sin θ

2 σ x
A ⊗ I )( 1

2σ x
A ⊗ I ) cosh(βr)

] = i

tan θ
tanh(βr). (D7)

We can also express the magnetic susceptibility with r and θ as

χ = − i

sin3 θ

[
tanh(βr) − 2βr

cosh2(βr) [1 + (cos θ )−2]

]
. (D8)

Finally, the two-time correlation function G(σ z(t2), σ z(t1)) = 〈σ z(t2)σ z(t1)〉PT − 〈σ z(t2)〉PT〈σ z(t1)〉PT is obtained from
Eqs. (C17) and (D7) as

G(σ z(t2), σ z(t1)) = Trtot
[
ei�tHtot (σ−

A ⊗ σ z )e−i�tHtot PPT
tot (σ−

A ⊗ σ z )PPT
tot e−βHtot

]
Trtot

[
ei�tHtot (σ−

A ⊗ I )e−i�tHtot PPT
tot (σ−

A ⊗ I )PPT
tot e−βHtot

] −
(

Trtot
[
PPT

tot (σ−
A ⊗ σ z )e−βHtot

]
Trtot

[
PPT

tot (σ−
A ⊗ I )e−βHtot

]
)2

= −(cos2 θ ) cosh(βr) + cosh [(β − 2i�t )r]

(sin2 θ ) cosh(βr)
−

[ i

tan θ
tanh(βr)

]2

= − 1

tan2 θ

1

cosh2(βr)
+ cosh [(β − 2i�t )r]

(sin2 θ ) cosh(βr)
. (D9)
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