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Using the recently developed covariant Ito-Langevin dynamics, we develop a nonequilibrium thermodynamic
theory for small systems coupled to multiplicative noises. The theory is based on Ito calculus, and is fully co-
variant under time-independent nonlinear transformation of variables. Assuming instantaneous detailed balance,
we derive expressions for various thermodynamic functions, including work, heat, entropy production, and free
energy, both at ensemble level and at trajectory level, and prove the second law of thermodynamics for arbitrary
nonequilibrium processes. We relate time-reversal asymmetry of path probability to entropy production, and
derive its consequences such as fluctuation theorem and nonequilibrium work relation. For Langevin systems
with additive noises, our theory is equivalent to the common theories of stochastic energetics and stochastic
thermodynamics. Using concrete examples, we demonstrate that whenever kinetic coefficients or metric tensor
depend on system variables, the common theories of stochastic thermodynamics and stochastic energetics should
be replaced by our theory.
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I. INTRODUCTION

One of the main themes of modern nonequilibrium physics
is to study irreversible processes in small systems, where
fluctuations play a dominant role and stochastic descriptions
become necessary. Huge progresses have been achieved in
this course in the past few decades [1–3]. Thermodynamic
quantities such as heat, work, and entropy production, were
defined at the level of dynamic trajectory [4,5]; the deep
connection between entropy production and time-reversal
asymmetry was discovered [5,6]; a hierarchy of exact identi-
ties known as fluctuation theorems [1,7,8] and work relations
[3], have been established. Terms such as stochastic energet-
ics [4] and stochastic thermodynamics [1] have been coined
to describe this very diversified and important field, which
combines stochastic methods with mechanical and thermo-
dynamic concepts. More recently serious efforts have been
spent to generalize these theories to strongly coupled systems
[9–13], system driven by multiplicative noises [14,15], sys-
tems in moving frames [16], systems with position-dependent
temperature [17–19], as well as quantum systems [20,21].
Nonetheless, there does not yet exist a single unified theoret-
ical formulation that is capable of addressing all these issues.
Additionally, even though formulation of Langevin dynamics
in curved space was attempted by Graham [22] more than
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forty years ago, stochastic thermodynamics of Langevin sys-
tems with curved state spaces have not been developed.

The present paper is the third of a sequel dedicated to
a general theory of nonequilibrium statistical physics and
thermodynamics using the formalism nonlinear Langevin dy-
namics and Fokker-Planck dynamics. In the first paper [23], a
covariant theory of nonlinear Langevin dynamics and Fokker-
Planck dynamics was developed using Ito calculus, which are
applicable to system driven by multiplicative noises. One dis-
tinguishing feature of the covariant Langevin equation is the
appearance of derivatives of kinetic coefficients, i.e., the spu-
rious drift, which are important to guarantee detailed balance.
Another feature is that differential of slow variables transform
not as usual vectors, but according to Ito’s formula. In the
second paper [13], we and collaborator discussed the proper
definitions of thermodynamic variables for small Hamiltonian
systems that are strongly coupled to environment, such that
the interaction is not negligible comparing with the system
Hamiltonian. It was demonstrated that, if the dynamics of
bath variables is much faster than that of the system variables,
the weak coupling theory of stochastic thermodynamics is
also applicable in the strong coupling regime, as long as we
identify the fluctuating internal energy as the Hamiltonian of
mean force. This theory should be contrasted with other strong
coupling theories, where various thermodynamic quantities
need to be defined differently than those in the weak coupling
regime. It was also demonstrated that, at both trajectory and
ensemble levels, heat is negative the change of environmental
entropy, conditioned on the system variables.

In the present paper, we shall combine the results of the
previous two papers [13,23] to formulate a covariant nonequi-
librium thermodynamic theory for small classical systems that
are coupled to generally multiplicative noises. It is further
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assumed that the space of slow variable may be curved, or
curvilinear coordinates are used, so that the metric tensor
plays a serious role. As in the previous two papers [13,23],
we shall assume that our system is in contact with a sin-
gle bath with fixed temperature, and is driven by certain
time-dependent control parameter. The system dynamics is
described by Ito-Langevin dynamics with white Gaussian
noises. If the the control parameter is fixed, the system
converges to a thermal equilibrium, which exhibits detailed
balance. (This excludes systems driven by nonconservative
forces, and hence do not have a globally defined Hamiltonian.)
Within this setting, we define nonequilibrium work and heat
in terms of system variables, both at trajectory level and at en-
semble level, and show that the total entropy always increases
monotonically, regardless of the initial state of the system.
We also relate time-reversal asymmetry of path probability
to entropy production, and prove Crook’s fluctuation theorem
and Jarzynski equality.

The main message of this paper is that if the metric ten-
sor or the kinetic coefficients depend on system variables,
spurious drift shows up in the Langevin equation, and the
commonly accepted theories of stochastic energetics and
stochastic thermodynamics (which hereafter shall be referred
to as the common theories) need to be replaced by our covari-
ant theory. This is due to two important reasons. Firstly, in the
common theories, Langevin equations are formulated on the
idea of force balance. These equations are generally incorrect
when spurious drift play a role. Secondly, in the common
theories, heat is defined, à la Sekimoto [4], as the work by
friction and random forces. This definition is generally inap-
plicable to nonlinear Langevin dynamics where friction and
reactive force can not be clearly identified. More seriously, in
the presence of spurious drift, Sekimoto’s definition of heat
leads to violation of the second law of thermodynamics. By
strong contrast, our theory is free of these pathologies. In
Sec. VI, we discuss three systems where the common theories
fail, whereas our theory gives correct results. In these exam-
ples, the spurious drifts are caused by, respectively, curvilinear
coordinates, curved space, and multiplicative noises.

There are many more sophisticated models of stochastic
dynamics where spurious drift shows up, such as rotational
diffusion of anisotropic objects and spin dynamics as de-
scribed by stochastic Landau-Lifshitz-Gilbert equation [24].
More interestingly, quantum Markov processes can be de-
scribed as Brownian motion in Hilbert space [25], which is
also curved due to normalization. Strong interactions between
a system and its environment may also lead to state-dependent
noise correlations, which also leads to spurious drift. Hence
it is fair to say that in nonequilibrium statistical physics,
spurious drifts are rule of thumb rather than exceptions. We
will explore the above mentioned problems in the future.

The remaining of this paper is organized as follows. In
Sec. II, we adapt the covariant Langevin dynamics developed
in Ref. [23] to systems whose slow variables form a Rieman-
nian manifold. In Sec. III we define thermodynamic quantities
and establish the first and second laws at the ensemble level.
In Sec. IV, we define thermodynamic quantities at the level of
dynamic trajectory, establish the connection between entropy
production and time-reversal asymmetry of path probability,
derive Crooks fluctuation theorem and Jarzynski equality. In

Sec. V we discuss the connections between our theory and the
classical irreversible thermodynamics as well as Hamiltonian
dynamics. We also show that our theory is consistent with the
common theories in the case of classical point particles cou-
pled to additive noises. In Sec. VI we discuss three concrete
examples of Langevin dynamics with spurious drift, where the
common theories fail but our covariant theory give the correct
results. Finally in Sec. VII we draw conclusive remarks and
outline future directions. In Sec. A we provide a detailed
derivation of the short time transition probability for nonlinear
Langevin dynamics with multiplicative noises.

II. COVARIANT LANGEVIN DYNAMICS
ON RIEMANNIAN MANIFOLD

In this section, we shall reformulate the covariant Langevin
theory developed in Ref. [23] for systems whose slow vari-
ables form a Riemannian manifold.

A. Brief review of covariant Langevin dynamics

The covariant form of nonlinear Langevin equation with
multiplicative Gaussian white noises was derived in Ref. [23],

dxi(t ) + (Li j∂ jU − ∂ jL
i j )dt = biαdWα (t ), (2.1)

where x = (x1, · · · , xn) are the slow variables, ∂ j = ∂/∂xi,
and dWα (t ) are the Wiener noises, which satisfy

dWα (t )dWβ (t ) = δαβdt . (2.2)

In the left-hand side (LHS) of Eq. (2.1), Li j (x) are the kinetic
coefficients, and biα (x) the noise amplitudes, both generally
depending on the slow variables x. The term −∂ jLi jdt is
called spurious drift, and shows up when kinetic coefficients
depend on x, i.e., the noises are multiplicative. Throughout
the paper, repeated indices are summed over, unless otherwise
specified. In the right-hand side (RHS) of Eq. (2.1), the prod-
uct biα (x)dWα (t ) is interpreted in Ito’s sense. For definitions
of Ito product and Stratonovich product of stochastic vari-
ables, we refer to Ref. [26]. The matrix Li j (x) is decomposed
into a symmetric part Bi j (x) and an antisymmetric part Qi j (x),

Li j (x) = Bi j (x) + Qi j (x), (2.3a)

Bi j (x) = B ji(x), (2.3b)

Qi j (x) = −Q ji(x). (2.3c)

The matrix biα (x) is related to Bi j (x) via

biα (x)bjα (x) = 2 Bi j (x) = Li j (x) + L ji(x). (2.3d)

All eigenvalues of Bi j (x) are non-negative, otherwise either
normalization or positivity of probability is violated.

In Ref. [23] we define p(x, t )dnx to be the probability that
the slow variables take value in the infinitesimal volume dnx
centered at x. Hence p(x, t ) is the probability density function
(pdf) of slow variables. The function U (x) in Eq. (2.1) is
called the generalized potential, which is related to the steady
state pdf pSS(x) via

pSS(x) = e−U (x). (2.4)

If the system has a well-defined Hamiltonian and is in contact
with a single heat bath (as we will assume in this paper),
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the steady state is the thermal equilibrium state. If the slow
variable space is infinite, U (x) must be bounded from below
and diverge sufficiently fast as x → ∞, in order for pSS(x) to
be normalizable.

The covariant form of Fokker-Planck equation associated
with the Langevin dynamics (2.1) is given by

∂t p(x, t ) = LFP p(x, t )

= ∂iL
i j (∂ j + (∂ jU )) p(x, t ). (2.5)

As demonstrated in Ref. [23], under nonlinear transfor-
mation of variables (NTV) x = (xi ) → x′ = (x′a), Li j (x) and
biα (x)dWα transform respectively as contravariant tensor and
vector, whereas e−U (x)dnx and p(x, t )dnx transform as scalars.
In the proof of covariance, Eq. (2.2) plays an essential role.
Qualitatively speaking, Wiener noise dWα (t ) scales as

√
dt ,

and hence according to Eq. (2.1), dx receives contributions
from noises of order

√
dt and from the systematic forces

(the second term on LHS) of order dt . As a consequence, to
calculate the variation of a function f (x) up to order dt , we
must expand f (x + dx) up to order dx2,

df (x) = f (x + dx) − f (x)

= ∂ j f (x) dx j + 1
2∂i∂ j f (x) dxidx j . (2.6)

The quadratic terms dxidx j can be further simplified using
Langevin equation (2.1) and Eq. (2.2),

dxidx j =
∑

α

biαbjαdt + O(dt3/2), (2.7)

where the neglected terms vanish in the continuum limit. This
leads to Ito’s formula [26],

df (x) = ∂ j f (x) dx j + Bi j∂i∂ j f (x)dt . (2.8)

It is important to note that Eq. (2.8) should be understood as
an equality of stochastic variables, which holds in probability,
not just in average.

B. Langevin dynamics on Riemannian manifold

The covariant Langevin equation (2.1) does not involve
metric tensor, hence the range of applicability is not limited
to Riemannian manifold. On the other hand, the pdf p(x, t )
and e−U (x) transform as densities, but not as scalars. For many
physical systems, there is a natural volume measure dv(x)
defined in the manifold of slow variables, such that the volume
of a region � is given by

Vol[�] =
∫

�

dv(x). (2.9)

The volume measure must be invariant under NTV, which
means that in the new coordinates we have dv′(x′) ≡ dv(x).

For example, if the manifold of slow variables is a Riemann
manifold with a metric tensor gi j , it has a natural volume
measure

dv(x) =
√

g(x) dnx, (2.10)

where g = det(gi j ) is the determinant of the covariant metric
tensor. As another example, we consider a classical Hamilto-
nian system coupled to a heat bath, the set of slow variables
consists of canonical coordinates and momenta x = (q, p). It

is well known that Poisson brackets and Liouville volume
measure are preserved by all canonical variable transforma-
tions in the phase space. Hence the volume measure, i.e.,
the Liouville measure, dnx = ∏

i d pidqi, is invariant under all
canonical variable transformations.

In the remaining of this paper, we shall always assume that
the slow variable manifold is Riemannian with metric tensor
gi j (x), and with an invariant volume measure

√
g(x) dnx. To

apply the theory to Hamiltonian systems, we only need to
let

√
g(x) = 1, and restrict the nonlinear transformations of

variables to canonical transformations. Throughout the paper
we shall use the following simplified notation for integration
over the invariant measure:∫

x
≡

∫ √
g(x)dnx =

∫ √
g′(x′)dnx′. (2.11)

It is then convenient to define an invariant pdf p(x) and
invariant generalized potential U (x) via

p(x)
√

g(x) dnx = p(x)dnx, (2.12)

e−U (x)
√

g(x) dnx = e−U (x)dnx. (2.13)

Hence we have the following relations:

p(x) =
√

g(x)p(x), (2.14)

U (x) = U (x) − log
√

g(x). (2.15)

Using these, we can rewrite the Langevin equation (2.1) and
Fokker-Planck equation (2.5) as

dxi +
(

Li j∂ jU − 1√
g
∂ j

√
gLi j

)
dt = biαdWα, (2.16)

∂tp= 1√
g
∂i

√
gLi j (∂ j + (∂ jU ))p= LFPp. (2.17)

We shall call the term −(1/
√

g)(∂ j
√

gLi j )dt in Eq. (2.16) the
spurious drift, which shows up whenever the kinetic coeffi-
cients Li j or the metric determinant g depends on the slow
variables x.

It is then easy to see that the steady state is

pSS(x) = e−U (x) (2.18)

and satisfies Eq. (2.17). The invariant Fokker-Planck operator
LFP in Eq. (2.17) is

LFP = 1√
g
∂i

√
gLi j (∂ j + (∂ jU )), (2.19)

which is related to LFP defined in Eq. (2.5) via

LFP = 1√
g

LFP
√

g. (2.20)

Now the transformation laws of various components of
Eqs. (2.16) and (2.17) can be obtained from the corresponding
results in Ref. [23]. Specifically dxi transforms according to
the Ito’s formula,

dx′ → dx′a = ∂x′a

∂xi
dxi + ∂2x′a

∂xi∂x j
Bi jdt, (2.21)
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whilst p(x) and U (x) transform as scalars, whereas biα (x)
and Li j (x) transform respectively as contravariant vector and
tensor,

p(x) → p′(x′) = p(x), (2.22a)

U (x) → U ′(x′) = U (x), (2.22b)

biα (x) → b′aα (x′) = ∂x′
a

∂xi
biα (x), (2.22c)

Li j (x) → (L′)ab(x′) = ∂x′a

∂xi
Li j (x)

∂x′b

∂x j
. (2.22d)

The metric transforms as rank two covariant tensor

gi j → g′
ab = ∂xi

∂x′a gi j
∂x j

∂x′b , (2.23)

such that gi jdxidx j = gabdx′adx′b transforms as a scalar. Us-
ing Eq. (2.20a) of Ref. [23], we can also see that the invariant
Fokker-Planck operator, defined in Eq. (2.19) indeed trans-
forms as a scalar,

L ′
FP(x′) = LFP(x). (2.24)

Note that our notations are consistent with usual tensor
analysis, where upper indices and lower indices are used re-
spectively for contravariant and covariant objects.

Note that if we choose Li j = (g−1)i j to be the contravariant
metric tensor and U (x) constant, the Fokker-Planck operator
(2.19) becomes the covariant Laplacian in Riemannian mani-
fold: � = √

g−1∂i
√

g(g−1)i j∂ j , which is known to be invariant
under reparameterization.

An important but surprising fact about Eq. (2.16) is that
neither dxi nor −Li j∂ j (U − log

√
g)dt + ∂ jLi jdt transforms

as a vector. But the linear combination dxi + Li j∂ j (U −
log

√
g)dt − ∂ jLi jdt appearing in the LHS of Eq. (2.16) does

behave as a contravariant vector, and so is the Ito product
biαdWα in the RHS.

In Ref. [23], biα , Li j , and U are assumed to be independent
of time. However it is easy to realize that the formalism still
works if these functions are time dependent. In this paper,
we shall assume that biα , Li j, Bi j, Qi j and U may depend
on a set of parameters λ, which may be externally controlled
to vary over time. This is necessary since we aim to study
nonequilibrium processes in small systems. When there is
no danger of confusion, we will hide their dependence on
λ(t ). We shall always assume that the metric tensor g is time
independent. There are problems where the metric structure
of the slow variables changes with time, such as the diffusion
problem on a deformable membrane. Note also that we only
consider NTV independent of time. In Ref. [16], Speck et al.
use time-dependent variable transformation to study stochas-
tic thermodynamics in moving frames. We shall not touch this
issue here.

C. Reversibility and detailed balance

As specified in the Introduction, the system being studied
has a well defined Hamiltonian and is in contact with a single
heat bath. For fixed control parameter, the system converges to
a unique thermal equilibrium state. The system dynamics then
has time-reversal symmetry, whose implications are discussed
here.

As in Ref. [23], we assume that each slow variable has
definite time-reversal symmetry. Hence under time rever-
sal the slow variables transform as x → x∗, where x∗ =
(ε1x1, ε2x2, ..., εnxn) with εi = +1,−1 for even and odd
variables respectively. Take Hamiltonian systems as an exam-
ple, we have x = (q, p) and x∗ = (q,−p), where q are the
canonical coordinates and p the canonical momenta. For all
problems we know the metric tensor is itself invariant under
time reversal,

εi gi j (x∗) ε j = gi j (x), (2.25a)

where no summation is implied about repeated indices. Hence
the invariant volume measure dv(x) is also invariant under
time reversal,

g(x∗) = g(x), dv(x∗) = dv(x). (2.25b)

The external control parameter λ transforms under time
reversal as λ → λ∗. For a moment we shall assume that λ does
not vary over time. Two typical examples where λ changes
sign under time reversal are magnetic field and angular veloc-
ity. Note that if λ �= λ∗, the process with external parameter λ

is different from that associated with λ∗. It is customary to call
the process with parameter λ the forward process and that with
parameter λ∗ the backward process. The backward process
is also described by Langevin equation (2.16) and Fokker
Planck equation (2.17), but with U (x, λ), biα (x, λ), Li j (x, λ)
replaced by U (x, λ∗), biα (x, λ∗), Li j (x, λ∗). Accordingly, the
steady-state distributions of the forward and backward pro-
cesses are

pF (x1) = e−U (x1,λ), (2.26a)

pB(x∗
1 ) = e−U (x∗

1,λ
∗ ). (2.26b)

Since (λ∗)∗ = λ, the backward of the backward process is the
forward process itself.

Let pF (x2, t2; x1, t1) and pB(x2, t2; x1, t1) be the two-time
joint pdfs of the forward and backward processes respectively,
both assumed in the stationary regime. Here and below the
subscripts in boldface variables x1, x2 · · · denote time, not
the components of slow variables. These pdfs must have
time-translational symmetry, i.e., they can only depend on the
time difference t2 − t1. A stochastic dynamics is said to to be
reversible if the following relation is satisfied:

pF (x2, t2; x1, t1)dv(x2)dv(x1)

= pB(x∗
1,−t1; x∗

2,−t2)dv(x∗
2 )dv(x∗

1 ). (2.27a)

Because of Eq. (2.25b), the volume elements in two sides can
be dropped, which leads to

pF (x2, t2; x1, t1) = pB(x∗
1,−t1; x∗

2,−t2). (2.27b)

Because of stationarity, these joint pdfs only depend on t2 −
t1, and Eq. (2.27b) is equivalent to

pF (x2, t2; x1, t1) = pB(x∗
1, t2; x∗

2, t1). (2.27c)

Note also that this condition is symmetric with respect to
the exchange of the forward and backward processes, hence
the forward process is reversible if and only if the backward is
so. Furthermore, a process may be reversible even if it is not
the same as the backward process, i.e. if λ �= λ∗. Stationarity
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together with Eqs. (2.27) imply that the system is in thermal
equilibrium, i.e., the steady states are actually thermal equi-
librium states.

Our definition of reversibility may appear confusing be-
cause in quantum mechanics, it is often said that magnetic
field (and rotation of frame) breaks time-reversal symmetry.
In this paper, however, we shall use the term “irreversible” to
describe dissipative processes that produce entropy. Magnetic
field and rotation of frame only shift the equilibrium state, but
do not lead to a dissipative nonequilibrium state. Hence, ac-
cording to our terminology, they do not change the reversible
nature of the dynamic process.

Integrating Eq. (2.27b) over x2, we obtain pF (x1, t1) =
pB(x∗

1,−t2). But these one-time pdfs are given by Eq. (2.26).
Hence reversibility implies

U (x∗, λ∗) = U (x, λ). (2.28)

Because the processes are Markovian, the two-time pdfs can
be written as products of transition probabilities, i.e., condi-
tional pdfs, and one-time pdf’s,

pF (x2, t2; x1, t1) = pF (x2, t2|x1, t1)pF (x1),

pB(x∗
1,−t1; x∗

2,−t2) = pB(x∗
1,−t1|x∗

2,−t2)pB(x∗
2 ). (2.29)

Combining these with Eqs. (2.26), we obtain another implica-
tion of reversibility,

pF (x2, t2|x1, t1)

pB(x∗
1,−t1|x∗

2,−t2)
= e−U (x2,λ)+U (x1,λ). (2.30)

It is important to note that RHS is independent of time,
whereas in LHS, the conditional pdfs only depend on time
difference �t = t2 − t1, as well as on the control parameter λ.

Generalizing the proof presented in Ref. [23], we can show
that Eqs. (2.28) and (2.30) are equivalent to

U (x∗, λ∗) = U (x, λ), (2.31a)

εiL
i j (x∗, λ∗)ε j = L ji(x, λ), (2.31b)∫

x
e−U (x,λ) = 1. (2.31c)

Note that Eq. (2.31b) is equivalent to

εiB
i j (x∗, λ∗)ε j = Bi j (x, λ), (2.31d)

εiQ
i j (x∗, λ∗)ε j = −Qi j (x, λ). (2.31e)

Equations (2.31) are called detailed balance conditions.
For Markov processes, Eqs. (2.27), (2.33), and (2.31) are all
equivalent. With detailed balance satisfied, the steady state
e−U (x,λ) then describes thermal equilibrium. An alternative
proof of these conditions using Green’s function will be pre-
sented in a separate paper [27]. Note also that Eq. (2.31c),
even though not shown in most papers, is important. It can
be shown that if e−U (x,λ) is not normalizable, the system
converges to either a dissipative nonequilibrium steady state,
or some other state that constantly changing with time. These
will be studied in a separate paper.

Because of the Markovian property, we can construct N-
time joint pdfs in the stationary regime from initial pdfs and
transition probabilities, both for the forward process and for
the backward process,

pF (xN , tN ; · · · ; x1, t1; x0, t0) = pF (xN , tN |xN−1, tN−1) · · ·pF (x1, t1|x0, t0) e−U (x0,λ), (2.32a)

pB(x∗
0, tN ; · · · ; x∗

N−1, t1; x∗
N , t0) = pB(x∗

0, tN |x∗
1, tN−1) · · ·pB(x∗

N−1, t1|x∗
N , t0) e−U (x∗

N ,λ∗ ). (2.32b)

It is understood that tN > tN−1 > · · · > t1 > t0 and that time
propagates from right to left in these expressions. Taking the
ratio of Eqs. (2.32a) and (2.32a), and using Eqs. (2.30) and
(2.28) repeatedly, we find

pF (xN , . . . , x1, x0) = pB(x∗
0, x∗

1, . . . , x∗
N ). (2.33)

It is useful to think of (xN , . . . , x1, x0) as a discretized
dynamic trajectory, and (x∗

0, x∗
1, . . . , x∗

N ) as its time rever-
sal. Equation (2.33) then says that, for stationary reversible
Markov process, the probability of dynamic trajectory is in-
variant under time reversal of both the path and the dynamic
protocol, i.e., reversal of the parameter λ. In other words,
a trajectory in the forward process is equally probable as
the backward trajectory in the backward process. Combining
Eqs. (2.32) and (2.33), we may also obtain

pF (xN |xN−1) · · ·pF (x1|x0)

pB(x∗
0|x∗

1 ) · · ·pB(x∗
N−1|x∗

N )
= eU (x0,λ)−U (xN ,λ). (2.34)

We note however that Eqs. (2.31) and (2.34) are derived by
assuming that the parameter λ is fixed. If λ change over time,
neither the forward process and the backward process can be

stationary, yet the detailed balance conditions, Eqs. (2.31), are
still satisfied. Equations (2.33) and (2.34), however, will be
replaced by more complicated relations, see Eqs. (4.31) and
(4.30).

III. THERMODYNAMICS AT ENSEMBLE LEVEL

We shall now study the nonequilibrium thermodynamics
associated with the covariant Langevin dynamics (2.16) and
Fokker-Planck dynamics (2.17), assuming that the external
parameter λ(t ) is tuned externally as a function of time, and
that detailed balance is satisfied for every fixed λ. We start
with the setting discussed in Ref. [13], such that at the micro-
scopic level, the total Hamiltonian of the system and the bath
is

Htot = HX(x; λ) + HB(y; x), (3.1)

where x, y are variables of the system and the bath sepa-
rately. Unlike in Ref. [13], however, here we further assume
that the external parameter λ is coupled to HX(x; λ) but not
to HB(y; x). The decomposition of the total Hamiltonian in
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Eq. (3.1) is such that HX(x; λ) is the Hamiltonian of mean
force (HMF) of the system. Hence the marginal equilibrium
pdf of x is

pEQ
X (x) = 1

ZX
e−βHX = e−βHB+βF (λ). (3.2)

where F (λ) is the equilibrium free energy

F (λ) = −T log
∫

x
e−βHX (x,λ). (3.3)

We refer the readers to Ref. [13] for detailed construction
of this decomposition. In the limit of time-scale separation,
where the dynamics of y (bath variables) is much faster than
that of x (system variables), we expect that, after taking into
account fluctuations of y, the distribution of x evolves ac-
cording to the Fokker-Planck equation (2.17). If we follow
the dynamic trajectories of x, then the dynamics is described
by the nonlinear Langevin equation (2.16), whereas the fast
variables behave as Gaussian white noises. A mathematical
derivation from deterministic unitary microscopic dynamics
to mesoscopic Langevin dynamics or Fokker-Planck dynam-
ics can be achieved using projection operator methods.

Comparing Eqs. (3.2) with (2.4), we find

U (x, λ) = βHX(x, λ) − βF (λ). (3.4)

The condition of detailed balance Eq. (2.31a) is then translated
into

HX(x∗, λ∗) = HX(x, λ), F (λ∗) = F (λ). (2.31a′)

Since both Langevin equation (2.16) and Fokker-Planck equa-
tion (2.17) depend on U only through ∂iU , we see that the
additive constant βF (λ) in Eq. (3.4) can not be determined
from the dynamics of slow variables. Instead it has to obtained
from study of the statistical mechanics of the total system
consisting of both the slow variables and fast variables.

Thermodynamic quantities are also defined in the same
way as in Ref. [13]. We identify HX(x, λ) as the fluctuating
internal energy of the system, and its ensemble average as the
internal energy. Nonequilibrium entropy and free energy of
the system are defined as

S[p] ≡ −
∫

x
p(x) logp(x), (3.5a)

F [p(x)] ≡
∫

x
p(x)(HX(x, λ) + T logp(x))

= 〈HX(x, λ)〉 − T S[p(x)]. (3.5b)

Now consider an infinitesimal process where time evolves
by dt , the parameter λ changes by dλ, and the pdf of slow
variables changes by dp= LFPpdt according to Eq. (2.17).
We define the ensemble averaged differential work and heat
as

d̄W ≡
∫

x
pdλHX =

∫
x
p (∂λHX)dλ, (3.6a)

d̄Q ≡
∫

x
HX dp=

∫
x

HX(LFPp) dt, (3.6b)

where dλHX = (∂λHX)dλ is the differential of HX due to
variation of λ. It is shown in Ref. [13] that βd̄Q as defined

in (3.6b) equals to negative the variation of environmental
entropy, conditioned on the slow variables x. Note that even
though the kinetic matrices Bi j, Qi j may also depend on λ,
only the λ dependence of HX contributes to the work d̄W .

It is important to note that work and heat are defined in
Eqs. (3.6) in terms of Hamiltonian of mean force HX, but not
in terms of the generalized potential U . Nonetheless, HX and
T U differ from each other only by an additive constant F (λ),
see Eq. (3.4). Because of the particular form of the operator
LFP [Eq. (2.19)], one easily see via integration by parts that
the heat can be equivalently defined in terms of U as

d̄Q ≡ T
∫

x
U dp= T

∫
x
U (LFPp) dt . (3.6b’)

By contrast, the work cannot be rewritten in terms of U
because the constant F (λ) in Eq. (3.4) depends on λ. The fact
that work cannot be fully determined using the information
contained in the Langevin equation should not surprise us.
It is in fact shared by the commonly accepted theories of
stochastic energetics and stochastic thermodynamics as well.
To explain this issue more clearly, let us consider adding a
time-dependent constant potential V (t ) = V0 t/T to a Hamil-
tonian system, where V0 is independent of coordinates and
momenta. It of course means that the external agent does
work of the same amount to the system. Yet introduction
of V0 does not affect the dynamic equations of the system,
since ∂qV (t ) = ∂pV (t ) = 0. As will be shown in Sec. V C, our
definitions of heat and work reduce to those of Sekimoto for
the case of additive noises.

The differential of the internal energy is

d〈HX(x, λ)〉 =
∫

x
pdHX +

∫
x
HXdp

= d̄W + d̄Q, (3.7)

which has the form of the first law of thermodynamics at the
ensemble level. We can similarly obtain a differential relation
for the nonequilibrium free energy F [p],

dF = d̄W + d̄Q − T dS. (3.8)

In Ref. [13], it is demonstrated that the differential of the
total entropy (the joint Gibbs-Shannon entropy of the system
variables and bath variables) is

dStot = dS − βd̄Q

= −dt
∫

x
(log p + U )LFPp, (3.9)

where in the last equality we have used Eqs. (3.6b) and (3.4),
as well as

dS[p] = −
∫

x
logp(x) dp(x),

= −dt
∫

x
logp(x)LFPp. (3.10)

Now inserting Eqs. (2.19) and (2.11) into Eq. (3.9), and
integrating by parts [28], we further have

dStot

dt
=

∫
x
((∂ j + ∂iU )p)

Bi j

p
((∂ j + ∂ jU )p), (3.11)
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which is manifestly positive, since the matrix Bi j is so. Com-
bining this with Eqs. (3.8) and (3.9), we obtain

dStot = dS − βd̄Q � 0, (3.12a)

dStot = d̄W − dF � 0. (3.12b)

Whilst Eq. (3.12a) is called the Clausius inequality,
Eq. (3.12b) is usually known as the principle of minimal
work, which says that the minimal work needed for a process
is the change of the system free energy. In classical ther-
modynamics, these inequalities are valid only for processes
starting from and ending at equilibrium states. In the present
theory, however, they are valid for arbitrary nonequilibrium
processes.

Note that all thermodynamic variables have been con-
structed using HX = T U + F , p, as well as the invariant
volume measure, which transform as scalars under NTV.
Consequently, all thermodynamic variables and relations dis-
cussed in this section are invariant under NTV. It is also
important to note that the definitions of thermodynamic
variables are contingent on the identification of fluctuation
internal energy as the HMF HX. If the system is driven by
nonconservative forces, there is no unambiguous definition of
internal energy. Then definitions of heat and work will have
to been reevaluated very carefully. This will be discussed in a
future paper.

IV. THERMODYNAMICS AT TRAJECTORY LEVEL

A. Work and heat at trajectory level

Consider a small time step dt along a particular trajectory
in the forward process, where the slow variables evolve from
x at time t to x + dx at time t + dt , while λ changes to
λ + dλ. In Ref. [13], work at trajectory level was defined as
the change of total energy of the universe, averaged over fast
variables. It was then proved that the differential work is also
the differential of HX due to the change of λ. By contrast, heat
at trajectory level was defined as negative the energy change
of the environment, again averaged over fast variables. It was
then proved that the heat is also the differential of HX due to
the change of x. In the setting of nonlinear Langevin dynam-
ics, the environmental variables are not explicitly displayed.
Hence work and heat at trajectory level are defined in terms of
system variables as

d̄W ≡ dλHX = (∂λHX) dλ

= HX(x, λ + dλ) − HX(x, λ), (4.1a)

d̄Q ≡ dxHX ≡ HX(x + dx, λ) − HX(x, λ). (4.1b)

Now the differential of the fluctuating internal energy can be
decomposed into work and heat at trajectory level,

dHX = HX(x + dx, λ + dλ) − HX(x, λ)

≈ HX(x, λ + dλ) − HX(x, λ)

+ HX(x + dx, λ) − HX(x, λ) + O(dt3/2) (4.2)

= d̄W + d̄Q + O(dt3/2). (4.3)

For typical trajectories, the work is of order dt whereas the
heat is of order dx ∼ dt1/2. Hence neglected terms in the
above equation are of order dt3/2 and hence do not contribute
to the continuous limit. Hence we arrive at the first law at
trajectory level,

dHX = d̄W + d̄Q = dλHX + dxHX. (4.4)

Both dλHX and dxHX transform as scalars under NTV.
The definition of heat, Eq. (4.1b), can be expanded in terms

of dx. In view of Eq. (2.7), however, we should expand up to
dx2,

d̄Q = (∂iHX)dxi + 1
2 (∂i∂ jHX)dxidx j

= (∂iHX)dxi + Bi j (∂i∂ jHX)dt, (4.5)

where we have also used Eqs. (2.3d).
In order for the thermodynamics at trajectory level to be

consistent with the thermodynamics at ensemble level, we
need to show that the ensemble averages of differential work
and heat at trajectory level, defined in Eqs. (4.1), equal to
the average work and heat we defined in Eqs. (3.6). Here
ensemble average means averaging both over the pdf p(x, t )
and over the noise dWα (t ), which acts on the system during
(t, t + dt ). Note from Eq. (4.2) that d̄W does not depend on
noise. Hence to calculate its ensemble average, we only need
to multiply Eq. (4.2) by p(x, t )

√
g(x) and integrate over x. We

find Eq. (3.6a) as expected,

〈d̄W 〉 =
∫

x
p(x, t )(∂λHX)dλ = dW. (4.6)

To calculate the ensemble average of dQ, we express dxi in
Eq. (4.5) using the Langevin equation (2.16), use Eq. (3.4) to
express U in terms of HX, and further average over noise. The
noise term disappears up on averaging because of Ito calculus,
and we obtain

[Bi j (∂i∂ jHX − β(∂iHX)(∂ jHX))

+(∂iHX)∂ jL
i j + Li j (∂iHX)(∂ j log

√
g)]dt .

We further multiply the above equation by p(x, t )
√

g(x), then
integrate over x, and find

〈d̄Q〉 = dt
∫

x
p[Bi j (∂i∂ jHX − β(∂iHX)(∂ jHX))

+ (∂iHX)∂ jL
i j + Li j (∂iHX)(∂ j log

√
g)]. (4.7)

Further carrying out a few integrations by parts, we find that
d̄Q is indeed Eq. (3.6b), heat at ensemble level

〈d̄Q〉 = dt
∫

x
HX

1√
g
∂i

√
gLi j (∂ j + (∂ jU ))p

= dt
∫

x
HXLFPp. (4.8)

B. Forward and backward trajectories, protocols, and processes

Following the common terminology in stochastic ther-
modynamics, we shall use protocol to denote a generic
time-dependent external control parameter λ(t ), and trajec-
tory to denote a generic dynamic path x(t ). We use the
terms backward protocol for λ̃(t ) = λ∗(−t ), and backward

033247-7



MINGNAN DING AND XIANGJUN XING PHYSICAL REVIEW RESEARCH 4, 033247 (2022)

trajectory for x̃(t ) = x∗(−t ). To make comparison, we shall
also call λ(t ) and x(t ) respectively the forward protocol
and the forward trajectory. We call the Langevin dynamics
with the forward protocol λ(t ) the forward process, and that
with the backward protocol λ̃(t ) the backward process. Note
that if the forward process is defined in the time interval
(tI , tF ), then the backward process is defined in (−tF ,−tI ). In
many previous papers, both the forward process and backward
process are defined in the time intervals (0, T ). The backward
trajectory and protocol are then defined as x∗(T − t ) and
λ∗(T − t ). Evidently, the choices of time interval is only a
matter of convenience. Strictly speaking, to define a Langevin
process, we need to specify the pdf of slow variables at the
initial time. If the control parameter λ is fixed, and the initial
pdf is the equilibrium pdf, then the process is stationary, as we
discussed in Sec. II C. In this section, we shall not assume the
system starting from equilibrium.

Corresponding to every infinitesimal step in the forward
process, which we discussed in Sec. IV A, there is a step in
the backward process, where the system goes from x∗ + dx∗
to x∗, and the parameter from λ∗ + dλ∗ to λ∗. The resulting
variation of HX can be analogously decomposed into work
(d̄W )bw and heat (d̄Q)bw,

(dHX)bw = HX(x∗, λ∗) − HX(x∗ + dx∗, λ∗ + dλ∗)

= (d̄Q)bw − (d̄W )bw + O(dt3/2), (4.9)

(d̄W )bw ≡ HX(x∗, λ∗) − HX(x∗, λ∗ + dλ∗), (4.10)

(d̄Q)bw ≡ HX(x∗, λ∗) − HX(x∗ + dx∗, λ∗). (4.11)

Here the subscript bw denotes backward. Using the detailed
balance condition Eq. (3.6b′), we see that in the backward
step, (dHX)bw, (d̄Q)bw, (d̄Q)bw are the negatives of the cor-
responding quantities in the forward step,

(dHX)bw = −(dHX)fw, (4.12a)

(d̄W )bw = −(d̄W )fw, (4.12b)

(d̄Q)bw = −(d̄Q)fw, (4.12c)

where quantities in RHS with subscript fw refer to the forward
process and are given in Eqs. (4.1) and (4.3).

Let us now consider a trajectory of finite duration. The total
heat and work along the forward trajectory x(t ) in the forward
process can be obtained by integrating d̄Q and d̄W along the
path,

W [x(t ), λ(t )] =
∫ tF

tI

d̄W , (4.13a)

Q[x(t ), λ(t )] =
∫ tF

tI

d̄Q, (4.13b)

The integrated first law takes the form

�HX = HX(x(tF ), λ(tF )) − HX(x(tI ), λ(tI ))

= W [x(t ), λ(t )] + Q[x(t ), λ(t )]. (4.14)

Note that we have displayed the dependence of W ,Q on
trajectory and protocol.

Let Q[x̃(t ), λ̃(t )] and W [x̃(t ), λ̃(t )] be the total heat and
work along the backward trajectory x̃(t ) of the backward pro-
cess, which can be obtained by integrating (d̄Q)bw, (d̄Q)bw

along the backward trajectory. Using Eqs. (4.12) and (4.13),
we easily find

Q[x̃(t ), λ̃(t )] = −Q[x(t ), λ(t )], (4.15a)

W [[x̃(t ), λ̃(t )] = −W [x(t ), λ(t )]. (4.15b)

The meaning of Eqs. (4.12) is that work and heat are both
odd under simultaneous reversal of trajectory and dynamic
protocols.

C. Path probability

We shall now define probability density of dynamic tra-
jectory. To circumvent the difficulty associated with infinite
dimensional space of dynamic trajectories, we discretize the
time variable, i.e., use the trick of time slicing. We divide
the interval (tI , tF ) into N 
 1 infinitesimal steps with du-
ration dt = (tF − tI )/N . In kth step, the system goes from
xk−1 = x(tk−1) at time tk−1 to xk = x(tk ) at time tk , whereas
the parameter changes from λk−1 = λ(tk−1) to λk = λ(tk ). We
can now approximate the forward trajectory x(t ) as a discrete
sequence of states, which we denote as γ ,

γ :

(
xN

tN

)
← · · · ←

(
xk

tk

)
← · · · ←

(
x0

t0

)
, (4.16a)

where tN = tF , t0 = tI , and the arrow indicates propagation
of time. We similarly approximate the backward trajectory
x̃(t ) = x∗(−t ) as the reversed discrete sequence, and denote
it as γ̃ ,

γ̃ :

(
x∗

N
−tN

)
→ · · · →

(
x∗

k−tk

)
→ · · · →

(
x∗

0−t0

)
, (4.16b)

where time propagates from left to right. Note that the
initial state of the backward trajectory x∗

N is time reversal of
the final state of the forward trajectory, whereas the final state
of the backward trajectory x∗

0 is time-reversal of the initial
state of the forward trajectory.

We further define the invariant volume measure of the
forward trajectory as

Dγ ≡ dvN · · · dv1dv0

= dv(xN ) · · · dv(x1)dv(x0), (4.17)

where dv(x) is defined in Eq. (2.10). We then define the
differential probability of the discretized path γ in the forward
process as the N-time joint pdf,

pF [γ ]Dγ ≡ pF (xN , tN ; · · · ; x1, t1; x0, t0)

× dvN · · · dv1dv0. (4.18)
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Similar to Eqs. (2.32), the N-time joint pdf can be decomposed
as

pF (xN , tN ; · · · ; x0, t0) = pF (xN , tN |xN−1, tN−1)

× · · · · · · · · · · · · · · · · · ·
×pF (x1, t1|x0, t0)

×pF (x0, t0). (4.19)

Unlike in Eqs. (2.32), however, here the initial pdf pF0(x0, t0)
remains arbitrary.

Let us further introduce the notation γ0 = x0 to denote the
initial state of the forward trajectory, and pF (γ0) = pF (x0, t0)
its pdf. The product of N transition probabilities in Eq. (4.19)
can be understood as the conditional pdf of the forward trajec-
tory, given its initial state γ0 = x0,

pF [γ |γ0] = pF (xN , tN |xN−1, tN−1) · · ·pF (x1, t1|x0, t0).

(4.20)

The unconditional path pdf can then be expressed as

pF [γ ] = pF [γ |γ0]pF (γ0). (4.21)

The same things can be done for the discretized backward
trajectory Eq. (4.16b) of the backward process. The invariant
volume measure of the backward trajectory is

Dγ̃ ≡ dv∗
0dv∗

1 · · · dv∗
N

= dv(x∗
0 )dv(x∗

1 ) · · · dv(x∗
N ) = Dγ , (4.22)

where we have used the symmetry Eq. (2.25b). The counter-
part of Eqs. (4.18) is

pB[γ̃ ]Dγ̃ ≡ pB(x∗
0,−t0; x∗

1,−t1 · · · ; x∗
N ,−tN )dv∗

0dv∗
1 · · · dv∗

N .

(4.23)

The counterpart of Eq. (4.19) is

pB(x∗
0,−t0; · · · x∗

N ,−tN ) = pB(x∗
0,−t0|x∗

1,−t1)

× · · · · · · · · · · · · · · · · · ·
×pB(x∗

N−1,−tN−1|x∗
N ,−tN )

×pB(x∗
N ,−tN ). (4.24)

Furthermore introducing the notation γ̃0 = x∗
N for the initial

state of the backward trajectory, and pB(γ̃0) we have the
counterparts for Eqs. (4.20) and (4.21),

pB[γ̃ |γ̃0] = pB(x∗
0,−t0|x∗

1,−t1) · · ·
pB(x∗

N−1,−tN−1|x∗
N ,−tN ), (4.25)

pB[γ̃ ] = pF [γ̃ |γ̃0]pB(γ̃0). (4.26)

D. Detailed fluctuation theorem

Recall that in Sec. II C we have derived Eq. (2.30) by
assuming that λ is fixed. If t2 − t1 = dt is small, dx = x2 −
x1 ∼ √

dt is also small for typically trajectories. Hence the
exponent in the RHS of Eq. (2.30) can be rewritten as

−dxU (x, λ) = −β dxHX(x, λ) = −βd̄Q, (4.27)

where we have used Eqs. (3.4) and (4.1b). Hence Eq. (2.30)
can be rewritten into

pF (x + dx, t + dt |x, t )

pB(x∗,−t |x∗ + dx∗,−t − dt )
= e−βdQ. (4.28)

Now consider the case that λ(t ) is varied continuously,
both in the forward process and in the backward process.
There comes the issue now when should λ(t ) be evaluated
in Eq. (4.27). The answer is very simple. In the time step
dt , dλ ∼ dt , but d̄Q is already of order dt1/2. Hence change
of time where λ(t ) is evaluated only leads to correction of
Eq. (4.27) at the order of dt3/2, which is negligible in the
continuum limit. It does not matter when we evaluate λ(t ).

In Appendix, we explicitly calculate the short time transi-
tion probabilities pF (x + dx, t + dt |x, t ) using the covariant
Langevin equation (2.16), and verify Eq. (4.28). The formula
of short-time transition probability obtained in Appendix is
useful for construction of path-integral representation of
Langevin dynamics in curved space or driven by multiplica-
tive noises.

Let us apply Eq. (4.28) to a pair of evolution steps in the
forward and backward processes, as shown in Eqs. (4.16).
The heat associated with the forward step is U (xk+1, λ(τk )) −
U (xk, λ(τk )) = dQk , where τk is an arbitrary point between
tk, tk+1, whose precise value does not matter for the reason
explained above. We then obtain

pF (xk+1, tk+1|xk, tk )

pB(x∗
k ,−tk|x∗

k+1,−tk+1)
= e−βdQk . (4.29)

We can now calculate the ratio of Eqs. (4.20) and (4.25). Using
Eq. (4.29) for every step, we find

pF [γ |γ0]

pB[γ̃ |γ̃0]
= e−βQ[γ ,λ] = eβQ[γ̃ ,λ̃], (4.30)

where Q[γ , λ],Q[γ̃ , λ̃] are respectively the total heat ab-
sorbed by the system along the forward/backward trajectory
in the forward/backward process, which depends both on the
trajectory γ , γ̃ and on the protocol λ, λ̃. Equations (4.30),
or its short time version Eq. (4.28), play a fundamental role
in the theory of stochastic thermodynamics, has often been
called the detailed fluctuation theorem. Note that this result is
a consequence of detailed balance, and is valid for arbitrary
trajectory γ . In some previous papers, when studying general
nonlinear Langevin dynamics, Eq. (4.30) or (4.28) was often
treated as definition of heat. Such a definition however must
be carefully dealt with, as its connection to change of bath
entropy is not clear. In our covariant, however, the equiva-
lence of Eqs. (4.30) and (4.1b) is explicitly established, and
in Ref. [13], it was demonstrated that −βdxHX is indeed the
entropy change of environment.

Combining Eqs. (4.30), (4.21), and (4.26), we obtain

log
pF [γ ]

pB[γ̃ ]
= −βQ[γ , λ] + logpF (γ0) − logpB(γ̃0),

(4.31)

which is valid for arbitrary initial pdfs of the forward and
backward processes. Since −Q[γ , λ] is the energy trans-
fer from the system to the heat bath, −βQ[γ , λ] is the
entropy change of the heat bath, conditioned on the slow
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variables (assuming, of course, that the bath is always in
equilibrium). Seifert calls − logp(x) the stochastic entropies
of the system at state x, whose ensemble average gives the
usual Gibbs-Shannon entropy. If one further choose pB(γ̃0) =
pB(x∗,−tN ) = pF (x, tN ), which means that the initial pdf of
the backward process is chosen to be the time reversal of the
final pdf of the forward process, then logpF (γ0) − logpB(γ̃0)
is the change of the system stochastic entropy along the tra-
jectory γ , and the RHS of Eq. (4.31) may be interpreted as
the change of total entropy of the universe along the dynamic
trajectory γ in the forward process.

E. Crooks and Jarzynski

The derivations of Crooks fluctuation theorem and Jarzyn-
ski equality (integrated fluctuation theorem) from the “de-
tailed fluctuation theorem” Eq. (4.31), are standard and have
been discussed in many papers. Nonetheless, to make the pa-
per self-contained, we briefly present these derivations using
our own notations. Suppose in the forward protocol, the con-
trol parameter starts from λ(tI ) = λI and ends at λ(tF ) = λF .
In the backward protocol, then the control parameter starts
from λ̃(−tF ) = λ∗

F and ends at λ̃(−tI ) = λ∗
I .

Furthermore, we assume that both in the forward process
and in the backward process, the system starts from thermal
equilibrium with respect to the control parameter at that mo-
ment. Let a generic trajectory γ have initial state γ0 = xI and
final state xF , then γ̃0 = x∗

F , and we have

pF (γ0) = eβF (λI )−βHX (xI ,λI ), (4.32a)

pB(γ̃0) = eβF (λ∗
F )−βHX (x∗

F ,λ∗
F )

= eβF (λF )−βHX (xF ,λF ), (4.32b)

where in the last equality we have used detailed balance,
Eq. (3.6b′). Substituting Eqs. (4.32a) and (4.32b) back into
Eq. (4.31), and using Eq. (4.14), we obtain

log
pF [γ ]

pB[γ̃ ]
= βW [γ , λ] − β�F , (4.33)

where �F ≡ F (λF ) − F (λI ) is the difference of Gibbs free
energy between the final equilibrium state and the initial equi-
librium state.

One may be attempted to think of Eq. (4.33) as the entropy
increase of the universe along the trajectory γ , from tI to tF .
But this is not correct in general. The entropy change of the
universe along γ can be written as

−βQ[γ , λ] − logpF (xF , tF ) + logpF (xI , tI ), (4.34)

where the first term is the entropy change of the environment,
conditioned on the system variables, and the rest two terms are
the change of stochastic entropy of the system. For a genetic
dynamic protocol, the system is off equilibrium at tF , and
pF (xF , tF ) is not Gibbs-Boltzmann. Hence Eq. (4.34) is not
the same as βW [γ , λ] − β�F . Nonetheless, if the protocol is
such that at tF the system already equilibrates, then Eq. (4.34)
equals to βW [γ , λ] − β�F , and can be understood as the
total entropy change of the universe as the system evolves
along the trajectory γ .

Note that the initial conditions of the forward and back-
ward processes, Eqs. (4.32), are chosen such that they are
symmetric with respect to reversal. In another word, the back-
ward of the backward process is the forward process. Defining
two pdfs as follows:

pF (σ ) ≡
∫

Dγ pF (γ ) δ

(
σ − log

pF [γ ]

pB[γ̃ ]

)
, (4.35a)

pB(σ ) ≡
∫

Dγ̃ pB(γ̃ ) δ

(
σ − log

pB[γ̃ ]

pF [γ ]

)
. (4.35b)

If the protocols are such that, both in the forward process
and in the backward process, the system already equilibrates
in the final state, then pF (σ ), pB(σ ) can be understood as
the pdf of entropy production in the forward and backward
processes, respectively.

Using a theorem proved by van der Broeck and Cleuven
[29], one can prove

pF (σ )

pB(−σ )
= e−σ . (4.36)

But according to Eq. (4.33), logpF [γ ]/pB[γ̃ ] is linearly re-
lated to the work W [γ , λ] along γ , hence we see that the
probability distribution of work W [γ ] obeys the Crooks fluc-
tuation theorem,

pF (w)

pB(−w)
= e−β�F+βw. (4.37)

Multiplying both sides by pB(−w)e−βw and integrating over
w, we obtain Jarzynski work relation,

〈e−βw〉F =
∫

dw e−βw pF (w) = e−β�F . (4.38)

V. CONNECTIONS WITH SOME PREVIOUS THEORIES

In this section, we show that both classical irreversible ther-
modynamics and Hamiltonian dynamics can be understood as
special limits of our covariant theory. We also show that for
weakly damped classical mechanical systems, our theory is
consistent with the common theories of stochastic energetics
and stochastic thermodynamics.

A. Deterministic limit and classical irreversible
thermodynamics

As discussed in Ref. [23], there are two possible scenarios
where a deterministic limit of our covariant Langevin dy-
namics can be obtained: (i) the thermodynamic limit, where
U becomes extensive, whereas both the spurious drift and
the noise terms are subextensive; (ii) the low-temperature
limit, where U = βHX − βF becomes large comparing with
the spurious drift and noises. In either case, the spurious
drift and noises can be dropped and the covariant Langevin
equation (2.16) reduces to a deterministic equation

ẋi = −Li j∂ jβHX(x, λ), (5.1)

where HX is the Hamiltonian of mean force as defined in
Eq. (3.4). Up to an additive constant, −βHX(x, λ) can be
understood as the entropy of the universe, including the sys-
tem and all its environment. Hence −β∂ jHX = ∂Stot/∂x j is
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the affinity corresponding to the thermodynamic variable xi,
whereas ẋi is the associated flux. Equation (5.1) then be-
comes the basic equation of irreversible thermodynamics [30],
which linearly relates affinities to fluxes, and dictates how
thermodynamic variables x relax towards equilibrium. Cor-
respondingly, Li j are precisely the kinetic coefficients in the
classical irreversible thermodynamics, which are usually as-
sumed to be constants. The detailed balance conditions (2.31)
on the kinetic coefficients then become the famous Onsager-
Casimir reciprocal relations.

Note however, in classical irreversible thermodynamics,
ẋi transforms as usual contravariant vectors, whereas in the
covariant Langevin theory, dxi transforms according to Ito
formula, Eq. (2.21). The difference between these two trans-
formations is due to the last term in the RHS of Eq. (2.21),
which is proportional to Bi j . It becomes negligible in the
deterministic limit, for the same reason that the spurious drift
becomes negligible.

For the particular case of a Hamiltonian system
weakly damped by the environment, we have x = (q, p) =
(q1, . . . , qn, p1, . . . , pn), and

HX(q, p) = K (p) + V (q) − F, (5.2)

Q =
(

0 −In

In 0

)
, B =

(
0 0
0 γ

)
, (5.3)

where K (p),V (q) are respectively the kinetic and potential
energies, whilst γ is a n × n symmetric positive constant ma-
trix. Equation (5.1) then reduces to

q̇i = ∂K

∂ pi
, (5.4)

ṗi = − ∂V

∂qi
− γ i j ∂K

∂ pi
. (5.5)

These equations are identical to Eqs. (121.2) and (121.5) of
Landau and Lifshitz [31].

B. Unitary dynamics and Hamiltonian dynamics

As shown in Ref. [23], the unitary limit of our covariant
Langevin dynamics is reached by the limit Bi j = 0, where
Eq. (2.16) becomes

dxi +
(

Qi j∂ jU − 1√
g
∂ j

√
gQi j

)
dt = 0. (5.6)

In this limit, there is no energy dissipation, and the dynamics
becomes deterministic and unitary. The precise meaning of
unitarity is discussed in detail in Ref. [23].

Recall in Riemann manifold covariant derivatives of tensor
fields are defined as

∇kAi j = ∂kAi j + 
i
mkAm j + 


j
mkAim, (5.7)

where 
i
mk are the Christoffel symbols


i
kl = 1

2 gim(∂l gmk + ∂kgml − ∂mgkl ), (5.8)

which have the following properties:



j
k j = ∂k log

√
g. (5.9)

Using these results we can easily show that

∇ jQ
i j = ∂ jQ

i j + 1√
g

Qi j∂ j
√

g

= 1√
g
∂ j

√
gQi j . (5.10)

Hence Eq. (5.6) can be written as

ẋi = vi(x) = −Qi j∇ jU + ∇ jQ
i j . (5.11)

For reason, which will become clear below, we assume

(∇iQ
i j )(∇ jU ) = 0. (5.12)

As a special example, we consider Hamiltonian dynamics
with canonical variables. Qi j is just the constant symplectic
matrix, and the Christoffel symbols are zero, hence ∇iQi j = 0,
and Eq. (5.12) is trivially satisfied.

Recall that ∇ jQi j is a contravariant vector field, and for any
contra-variant vector field we have

∇iv
i = 1√

g
∂i

√
gvi. (5.13)

Combining this with Eq. (5.10), we find

∇i∇ jQ
i j = 0. (5.14)

Now take the covariant divergence of Eq. (5.11) and use the
Leibnitz rule of covariant derivatives as well as ∇i∇ jϕ =
∇ j∇iϕ, we find

∇iẋ
i = ∇iv

i(x) = −(∇iQ
i j )(∇ jU ) = 0, (5.15)

where the last step follows from our assumption Eq. (5.12).
Hence the flow defined by Eq. (5.11) is incompressible, i.e.,
the space volume of slow variable is conserved by the unitary
dynamics. The conservation of phase space volume in Hamil-
tonian dynamics is known as the Liouville theorem.

We can also show that the generalized potential U is con-
served by the dynamics,

dU

dt
= (∂iU )ẋi

= −(∇iU )Qi j (∇ jU ) + (∇iU )(∇ jQ
i j ) = 0. (5.16)

Similarly we can prove that the Gibbs-Shannon entropy S[p]
is also conserved. Taking time derivative of the entropy, we
find

dS[p]

dt
= −

∫
x

(logpLFPp). (5.17)

Using Eq. (2.19), together with the antisymmetry of Qi j , as
well as a few integrations by parts, we can show that

dS[p]

dt
= −

∫
x
p (∇iQ

i j )(∇ jU ) = 0. (5.18)

Hence we find that all following properties hold about the
unitary dynamics Eq. (5.6), if (∇iU )(∇ jQi j ) = 0:

(1) The flow defined by the unitary dynamics Eq. (5.11) is
incompressible.

(2) The generalized potential U is conserved by the uni-
tary dynamics Eq. (5.11).

(3) The Gibbs-Shannon entropy is conserved by the uni-
tary dynamics Eq. (5.11).
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Of course, all these properties are destroyed once the noises
and dissipations are turned on.

C. Stochastic energetics and stochastic thermodynamics

The common theories of stochastic energetics and stochas-
tic thermodynamics have two cornerstones. Firstly, Langevin
equations are formulated using the “conventional Langevin
approach” [32], where one adds frictions and noises (random
forces) to the otherwise unitary dynamic equations. The re-
sulting equations are understood as balance of forces, or, more
generally, balance of thermodynamic forces, and the vari-
ances of random forces are chosen such that the steady states
correspond to thermal equilibrium states in the absence of
time-dependence driving forces. Secondly, heat is defined, à
la Sekimoto [4], as the work done to the system by the friction
and random forces, and other thermodynamic variables are
defined such that the first and second laws of thermodynamics
are valid for arbitrary nonequilibrium processes.

When dealing with systems whose dynamics are described
by Eq. (2.16), however, both these cornerstones are problem-
atic. Firstly, the Langevin equation (2.16) cannot be naively
understood as condition of force balance. In fact, if one writes
down force balance equation in the presence of multiplicative
noises, one would obtain an equation similar to Eq. (2.16)
but with the spurious drift missing, and with detailed balance
unintentionally broken. This is in fact a well-known pathology
of the “conventional Langevin approach” [32–36]. Secondly,
whenever spurious drift shows up, Sekimoto’s definition of
heat differs from ours, and leads to violation of the second
law of thermodynamics. Hence whenever the metric tensor or
kinetic coefficients depend on system variables, the common
theories need to be replaced by the theory developed in this
paper. In Sec. VI we supply three concrete examples to illus-
trate these points.

It is important to emphasize that the conceptually all
Langevin equations are effective dynamic equations of slow
variables obtained via coarse-graining of fast variables. This
applies both to our covariant theory and to the “conventional
Langevin approach”. The difference is how the Langevin
equations are formulated. In contrast with the ad hoc way of
the “conventional Langevin approach”, in our covariant the-
ory, Langevin equations are constructed using tensor objects,
which automatically guarantees detailed balance.

For classical point particles coupled to additive noises, our
theory is in fact fully consistent with the common theories. We
first use one-dimensional system to illustrate the main point.
Following the conventional Langevin approach, we add noise
and friction to the Hamiltonian equations, and obtain

dq

dt
= p

m
, (5.19a)

d p

dt
= −∂qV (q, λ) − γ p

m
+ η(t ), (5.19b)

where λ is the control parameter, and the noise correlation
function is

〈η(t )η(t ′)〉 = 2γ T δ(t − t ′), (5.20)

such that the system converges to an equilibrium Gibbs-
Boltzmann distribution with energy E = p2/2m + V (q) and

with temperature T . As shown in Sec. 4 B of Ref. [23], these
Langevin equations can also be written in the form of covari-
ant Langevin equations.

In the common theories, heat is defined as the work done
by the friction and random force, which can be written as the
following Stratonovich product:

d̄QSE ≡
(

−γ
dq

dt
+ ξ (t )

)
◦ dq(t ), (5.21)

where the subscript SE denotes Sekimoto. The Stratonovich
product ◦ has the special property that for any function
f (q, p), the usual calculus rule holds

df (q, p) = ∂q f ◦ dq + ∂p f ◦ d p. (5.22)

For a detailed discussion on Stratonovich product of stochastic
variables, see chapter 4 of Gardiner’s book [26]. Using the
Langevin equation (5.19b), Sekimoto (see Ch. 4 of Ref. [4])
further showed

d̄QSE = ( ṗ + ∂qV ) ◦ dq

= d

(
p2

2m
+ V (q, λ)

)
− ∂H

∂λ
dλ. (5.23)

But this is precisely the heat defined in Eq. (4.1b), with H =
p2/2m + V playing the role of HX,

d̄Q = dHX − dλHX = dxHX, (5.24)

where x = (q, p) is the shorthand for the canonical variables.
The work according to Sekimoto is then given by

d̄WSE = dHX − d̄QSE = dλHX, (5.25)

which is also identical to our definitions of work, Eqs. (4.1a).
We now consider a collection of point particles moving in

a fluid and interacting with each other via certain potential
u(ri − r j ). The slow variables consist of the Cartesian co-
ordinates ri and canonical momenta pi of all particles., i.e.,
x = (r1, p1, . . . , rn, pn). There is also an external potential
field ψi(r, λ) acting on each particle, with λ the external
control parameter. The total Hamiltonian is then given by

H =
∑

i

(
p2

i

2mi
+ ψi(ri, λ)

)
+

∑
i< j

u(ri − r j ). (5.26)

The system is weakly coupled to a heat bath T , so that the
equilibrium state is

pEQ(r, p) = eβF−βH . (5.27)

Hence the generalized potential is

U = β(H − F ). (5.28)

The nonlinear Langevin equations are given by

dri = pi

mi
dt, (5.29a)

d pi = −
[∑

j

∇iu(ri − r j ) + ∇iψi(ri )

]
dt

− γiṙidt +
√

2γiT dWi, (5.29b)

where γi is the friction coefficient of ith particle, and dWi

are vector-valued Wiener noises. Note that ∇i = ∂/∂xi is the
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gradient operator in Cartesian coordinates. Equations (5.29)
can be written in the covariant form Eq. (2.16), with g = 1,
and the following nonvanishing kinetic coefficients:

−Qri,pi = Qpi,ri = T, (5.30a)

Bpi,pi = γiT, (5.30b)

which satisfy condition (2.31b). There is no spurious drift
since all kinetic coefficients are constants. The remaining
conditions of detailed balance are

ψi(ri, λ) = ψi(r∗
i , λ

∗), (5.31a)

u(r) = u(r∗). (5.31b)

In the limit γi → 0, Eqs. (5.29) reduce to the well-known
Hamiltonian equations.

Thermodynamic quantities at ensemble level, such as
system entropy, free energy etc, can be straightforwardly ob-
tained using the results in Sec. III. Here we focus on the work
and heat at trajectory level, which can be written down using
Eqs. (4.2) and (4.5),

d̄W = dλH =
∑

i

(∂λψi )dλ, (5.32)

d̄Q = dxH

=
∑

i

[
− γi

mi

(
p2

i

mi
− T

)
dt +

√
2γiT ṙi · dWi

]
, (5.33)

where we have used Ito’s formula Eq. (2.8) in the calculation
of heat, and the product ṙi · dWi is understood in Ito’s sense.
The average heat is obtained by averaging dQ both over
noises and over p. The average of product ṙi · dWi vanishes
because ṙi is independent of dWi in Ito calculus. Hence we
find

d̄Q = 〈d̄Q〉 = −
∑

i

2γi dt

mi

∫
r,p

p

(
p2

i

2mi
− 3T

2

)
. (5.34)

Equations (5.32) and (5.34) agree with those of Sec. 4.1 of
Ref. [4]. Note, however, Stratonovich’s calculus instead of Ito
calculus is used in Ref. [4].

If the process is quasistatic, which means that the system
remains in equilibrium all the time, then the average of kinetic
p2

i /2mi equals to 3T/2 (the equipartition theorem), and the
heat vanishes identically, and there is no dissipation of energy.
On the other hand, Eq. (5.34) also means that as long as there
is energy dissipation due to friction, the average kinetic energy
cannot satisfy the equipartition theorem. This implies that the
overdamped limit of a Hamiltonian cannot be obtained by
simply assuming that the momentum remains in equilibrium,
for that would imply no friction.

Using the covariant properties established in this paper, we
are able to carry out arbitrary nonlinear transformation of vari-
ables, which can be either canonical or noncanonical. This can
be very useful when dealing with multidimensional Hamilto-
nian systems with various kind of nonlinear constraints. More
examples will be explored in future papers.

VI. THREE EXAMPLES

In this section, we discuss three examples where the
common theories fail due to the presence of spurious drift,
whereas our theory yields correct results. In the first example,
Langevin equations are formulated in curvilinear coordinates,
whereas in the second example, the slow manifold is curved.
In the third example, the kinetic coefficient is state dependent.
More results will be supplied in the future.

A. Diffusion in polar coordinates

We consider the overdamped limit of two dimensional
Brownian motion, subjected to a potential V (r; λ) with rota-
tional symmetry and/or with radial boundary condition r < r0.
It is then more convenient to use polar coordinates. We first
start from the overdamped Langevin equations in Cartesian
coordinates,

γ dx + ∂xV (r; λ) dt =
√

2T γ dWx, (6.1a)

γ dy + ∂yV (r; λ) dt =
√

2T γ dWy, (6.1b)

which can be readily understood as conditions of force bal-
ance. The noise amplitude

√
2T γ is such that the steady-state

distribution is the thermal equilibrium state e−βV (r)dxdy.
Equations (6.1) can be written into the matrix form(

dx
dy

)
+

(
T/γ 0

0 T/γ

)(
∂xβV
∂yβV

)
=

(√
2T/γ dWx√
2T/γ dWy

)
, (6.2)

which is our standard form, Eq. (2.16), with U = βHX = βV,

g = 1, and

L = T

γ

(
1 0
0 1

)
, b =

√
2T

γ

(
1 0
0 1

)
. (6.3)

Note that L is a constant matrix, hence there is no spurious
drift.

There are two possible ways to obtain Langevin equa-
tions in polar coordinates: (i) We may use the transformation
rules Eqs. (2.22) to obtain various tensors in polar coordinates
and then assemble the Langevin equation in polar coordinates
using Eq. (2.16). (ii) Alternatively we may also apply NTV
and Ito’s formula (2.8) directly to Eqs. (6.1), and obtain the
new equations. The results are of course the same. Here we
take the first route.

The transformation matrix from Cartesian coordinates to
polar coordinates is

∂ (r, φ)

∂ (x, y)
=

(
cos φ sin φ

− sin φ/r cos φ/r

)
. (6.4)

Using Eqs. (2.22), we obtain the transformed kinetic matrix
and noise amplitude

L′ = T

γ

(
1 0
0 1/r2

)
, b′ =

√
2T

γ

(
cos φ sin φ

− sin φ/r cos φ/r

)
.

(6.5)
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The determinant of the new metric tensor is g′ = r2. The
generalized potential U remains the same since it is a scalar.
Using these results and further defining new Wiener noises

dWr = cos φ dWx + sin φ dWy, (6.6a)

dWr = − sin φ dWx + cos φ dWy, (6.6b)

we obtain the transformed Langevin equations

dr + 1

γ

(
∂rV − T

r

)
dt =

√
2T

γ
dWr, (6.7a)

dφ =
√

2T

γ

1

r
dWφ. (6.7b)

Note that the term −T dt/γ r in Eq. (6.7a) is the spurious
drift, resulting from the r dependence of the metric. The
associated Fokker-Planck equation is

∂tp= T

γ r
∂rr(∂rp+ (∂rβV )p) + T

γ r2
∂2
φp. (6.8)

The heat and work at trajectory level are

dQ = T drU = drV = (∂rV )dr + T (∂2
r V )

γ
dt, (6.9a)

dW = T dλU = dλV = (∂λV )dλ. (6.9b)

The total entropy production rate is given by Eq. (3.11).
Using the above results, we obtain

dStot

dt
=

∫
r,φ

T

γ p

[
(∂rp+ (∂rβV )p)2 + (∂φp)2

r2

]
, (6.10)

which is non-negative, and vanishes identically at equilibrium
where p∼ e−βV .

If one try to write down Langevin equations in polar coor-
dinates using the idea of force balance, one would obtain

−V ′ − γ ṙ +
√

2T γ
dWr

dt
= 0, (6.11a)

−γ r φ̇ +
√

2T γ
dWφ

dt
= 0. (6.11b)

which, comparing with the correct equations (6.7), misses the
spurious drift. It is important to note that noises are additive
in this problem, hence there is no issue of stochastic calculus
here.

Additionally, if we adopt Sekimoto’s definition of heat as
the work done by friction and random force, and use the
correct Langevin equations (6.7), we would have

dQSE =
(

−γ ṙ +
√

2T γ
dWr

dt

)
◦ dr

+
(

−γ r φ̇ +
√

2T γ
dWφ

dt

)
◦ rdφ

= (V ′(r) − T/r) ◦ dr

= dQ − T d log r, (6.12)

which differs from Eq. (6.9a) by −T d log r. Using this to
calculate the total entropy production, we would obtain

dStot
SE

dt
= dS

dt
− β

〈
dQSE

dt

〉

= dStot

dt
+ 〈dr log r〉

= dStot

dt
− 1

γ

∫
r,φ

∂rV

r
p, (6.13)

where 〈 · 〉 means average over both probability distribution
and noises, which we have calculated using Eqs. (6.11a) and
Ito formula drdr = 2T dt/γ [obtained from Eq. (2.8)]. At
thermal equilibrium, pEQ(r) ∝ e−βV (r), and the extra term in
Eq. (6.13) can be calculated,

− 1

γ

∫
r,φ

∂rV

r
p= 2πT

γ
(pEQ(r0) − pEQ(0)), (6.14)

which is nonvanishing as long as V (r0) �= V (0). Since
dStot/dt = 0 at equilibrium, Eq. (6.13) predicts a nonvanish-
ing entropy production rate at equilibrium for V (r0) �= V (0),
which violates the second law of thermodynamics.

It is important to note that for this particular simple
problem, it is possible to interpret the spurious drift as an
additional friction force due to geometry of curvilinear co-
ordinates, such that Sekimoto’s definition of heat becomes
correct. Such a procedure however does not work for gen-
eral multidimensional problems, because the spurious drift
(1/

√
g∂ j (

√
gLi j ) involves both reactive and dissipative parts

of Li j and cannot not be interpreted as friction force.

B. Diffusion on a sphere

As a similar problem, we consider diffusion of a molecule
on a unit sphere, or the rotational diffusion of an uniaxial
particle, subjected to an external potential V (θ ; λ) that is in-
variant under rotation around z axis. We shall again consider
the overdamped limit, hence the slow variables are the polar
and azimuthal angles θ, φ. Unlike the preceding example,
however, we have no Cartesian coordinates to start with, but
have to construct the equations in polar coordinates directly.
The metric has the following form:

ds2 = gθθ dθ2 + gφφdφ2 = dθ2 + sin2 θdφ2. (6.15)

The covariant and contravariant metric tensors g then have the
following components:

gθθ = 1, gφφ = sin2 θ, gθφ = gφθ = 0, (6.16)

gθθ = 1, gφφ = sin−2 θ, gθφ = gφθ = 0. (6.17)

The corresponding matrix forms are g and g−1, given by

g =
(

1 0
0 sin2 θ

)
, g−1 =

(
1 0
0 sin−2 θ

)
. (6.18)

The invariant volume measure is then

dv = √
gdθdφ = sin θdθdφ. (6.19)

We shall assume that there is an external potential, which
only depends on the polar angle θ , so that the equilib-
rium pdf is e−βV (θ,λ) sin θdθdφ. Since we are studying the
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overdamped theory, detailed balance demands that the anti-
symmetric matrix Qi j vanishes identically. We shall assume
that the symmetric matrix Bi j has rotational symmetry. It is
known that gi j and gi j are the only covariant and contravariant
tensors on the sphere with rotational symmetry. Hence we see
that B must be proportional to g−1,

B =
(

D 0
0 D sin−2 θ

)
, (6.20)

where D is the diffusion constant.
The Langevin equations can be obtained from Eq. (2.16)

via proper choices of the matrix biα ,

dθ + D(β∂θV − cot θ )dt =
√

2D dWθ , (6.21a)

dφ =
√

2D

sin θ
dWφ, (6.21b)

where the term −D cot θ in Eq. (6.21a) is spurious drift.
The associated Fokker-Planck equation is

∂tp= D

sin θ
∂θ sin θ (∂θp+ β(∂θV )p) + D

sin2 θ
∂2
φp. (6.22)

Equations (6.21) and (6.22) agree with the results obtained by
Raible and Engel [37]. They also reduce to Eqs. (6.7) and (6.8)
as sin θ ∼ r → 0 with D = T/γ . Using Eqs. (4.2), (4.5), and
(3.4), the differential heat and work at trajectory level are

d̄Q = (∂θV )dθ + D
(
∂2
θ V

)
dt, (6.23)

d̄W = (∂λV )dλ. (6.24)

The total entropy production rate can again be calculated
using Eq. (3.11),

dStot

dt
=

∫
θ,φ

D

p

[
(∂θp+ (∂θβV )p)2 + (∂φp)2

sin2 θ

]
, (6.25)

which is non-negative, and vanishes identically at equilibrium
where p∼ e−βV (θ ;λ).

Similar to the first example, if one follow the conventional
Langevin approach, incorrect Langevin equations is obtained.
If one use Sekimoto’s definition of heat, incorrect result for
total entropy production is obtained, and the second law is
violated. The derivations are very similar, so we skip them
here.

C. Diffusion with position-dependent friction

Consider diffusion of a particle in heterogeneous environ-
ment with position-dependent friction coefficient γ (x) and in
an external potential V (x). (Note this is not the same problem
as studied in Refs. [17–19], where temperature varies over
space.) The underdamped Langevin equations are

dx = p

m
dt, (6.26a)

d p = −γ (x)p

m
dt − V ′(x)dt +

√
2T γ (x)dW, (6.26b)

where dW is the Wiener noise and V ′(x) is spatial derivative of
the potential. These equations can be rewritten as the covariant
form Eq. (2.16) with

U (x, p) = β(H − F ) = β

(
p2

2m
+ V (x) − F

)
, (6.27)

Q =
(

0 −T
T 0

)
, B =

(
0 0
0 γ (x)T

)
, (6.28)

where the first columns (rows) of the matrices refer to x and
the second columns (rows) refer to p. There is no spurious
drift because γ (x) depends only on x but not on p. Detailed
balance is clearly satisfied.

We are interested in the over-damped limit of this prob-
lem, where γ (x) is very large (or equivalently, the mass is
very small), so that only the dynamics of position becomes
relevant. In Ref. [38], it was shown through a very long calcu-
lation that the overdamped equation is

dx + V ′(x)

γ (x)
dt −

(
T

γ (x)

)′
dt =

√
2T

γ (x)
dW, (6.29)

where the third term in LHS is the spurious drift. The
over-damped equation can also be obtained using multiscale
perturbation method. The calculation is however still rather
complicated. We note that if the friction is independent of
position, Eq. (6.29) reduces to the well-known result

dx + V ′(x)

γ
dt =

√
2T

γ
dW. (6.30)

Using our covariant formalism of Langevin dynamics,
however, the overdamped equation (6.29) can be obtained
almost instantaneously. The covariant Langevin equation,
Eq. (2.16), tells us that the overdamped equation must have
the following form:

dx + B(x)U ′
od (x)dt − B′(x)dt =

√
2B(x)dW. (6.31)

Recall that the equilibrium pdf of the overdamped theory is
e−Uod (x), and obtained form that of the underdamped theory
by integrating out p,

e−Uod (x) =
∫

e−U (x,p)d p, (6.32)

where U (x, p) is given in Eq. (6.27). Hence we find

Uod (x) = βV (x) + C. (6.33)

Now Eq. (6.31) must reduce to Eq. (6.30) if the friction is
independent of x. Hence B(x) = T/γ (x), and Eq. (6.31) is
indeed identical to Eq. (6.29). This example illustrates the
power of our covariant Langevin dynamics.

Using Eq. (4.5) the heat at trajectory level is

d̄Q = dxV (x) = V ′ ◦ dx = V ′dx + T

2γ
V ′′dt, (6.34)
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where ◦ means product in Stratonovich’s sense. The total
entropy production rate is calculated using Eq. (3.11),

dStot

dt
= dS − βd̄Q

=
∫

x

T

γp
(∂xp+ (∂xβV )p)2, (6.35)

which is non-negative and vanishes at the equilibrium where
p∼ e−βV .

If we follow the conventional Langevin approach to write
down an overdamped equation based on force balance, we
would obtain

γ (x)dx + V ′(x)dt =
√

2T γ (x) dW, (6.36)

which misses the spurious drift completely. The heat defined
by Sekimoto is

d̄QSE = (−γ dx/dt +
√

2T γ (x)dW/dt
) ◦ dx

= (V ′ + T γ ′/γ ) ◦ dx

= dxV (x) + T dx log γ (x)

= d̄Q + T dx log γ (x), (6.37)

where in the second equality we have used the correct
Langevin equation (6.29). This definition of heat differs from
the correct definition (6.34) by a term

T dx log γ (x) = T
γ ′

γ
dx + T 2

2γ

(
γ ′

γ

)′
dt, (6.38)

where we have used Ito’s formula (2.8) to expand dx log γ (x)
to the second order in dx.

For simplicity, let us assume that there is no the external
potential, i.e., V = 0, and the system is confined in an interval
with length L. The equilibrium state then corresponds to a flat
distribution pEQ(x) = 1/L. To calculate the ensemble average
of Eq. (6.38), we use Eq. (6.29) to replace dx, average over
noise, and multiply by pEQ(x), and finally integrate over x,
and obtain

〈T dx log γ (x)〉EQ = dt T 2

L

(
γ ′

γ 2

)∣∣∣∣
L

0

, (6.39)

which is generically nonvanishing. Hence, using of Eq. (6.37)
as definition of heat leads to a nonvanishing total entropy
production rate in the equilibrium state,

dStot
SE

dt
= − dt T

L

(
γ ′

γ 2

)∣∣∣∣
L

0

, (6.40)

which violates the second law of thermodynamics.

VII. CONCLUSIONS

In this paper, we have developed a covariant theory of
thermodynamics and stochastic thermodynamics for nonequi-
librium small systems. As we have demonstrated using
concrete examples, this theory should be used in replacement
of the common theories of stochastic energetics and stochas-
tic thermodynamics if the noises are multiplicative, the slow
variable space is curved, or curvilinear coordinates are used.
In future, we will use the theory to study more sophisticated
models of Langevin dynamics with spurious drift. One inter-
esting possibility is Brownian motion of rigid body and the
associated theory of stochastic thermodynamics. We will also
study small systems that are driven by nonconservative forces,
or with temperature gradients. We will also study how the
theory transform under coarse-graining, thereby establish the
connections between different levels of stochastic thermody-
namics, and understand how entropy productions at different
levels of theory are related to each other. Finally we shall also
try to generalize the theory to quantum systems.
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APPENDIX: ALTERNATIVE PROOF OF EQ. (4.28)

In this Appendix, we explicitly calculate the short time
transition probability dv(x1)pF (x1, t + dt |x; t ) using the
Langevin equation (2.16), and prove the formula Eq. (4.28).

1. Short-time transition probability

Let us for now consider the following general form of Ito-
Langevin equation:

dxi − F i(x, λ)dt = biα (x, λ)dWα, (A1)

where F i(x, λ) is usually called the systematic force. Note
that both F i(x, λ) and biα (x, λ) may depend on the control
parameter λ, which may vary with time. Consider a transition
from x at time t to x1 at time t + dt , and let α ∈ (0, 1), so
that xα = x + α(x1 − x) = x + αdx is an intermediate point
between x and x1. In Ref. [39] [Eq. (68), with ᾱ = 0, or equiv-
alently, Eqs. (37)], we proved that the differential transition
probability can be written as

dv(x1)pF x1, t + dt |x; t ) = dμ(x1) e−Aα (x1,x;dt,λ)√
(4πdt )n det Bi j (xα, λ)

, (A2a)

Aα (x1, x; dt, λ) = [dxi − dt (F i − 2α∂kBik )α]
B−1

i j (xα, λ)

4dt
[dx j − dt (F j − 2α∂lB

jl )α]

+α (∂iF
i )αdt − α2(∂i∂ jB

i j )αdt, (A2b)

where dμ(x1) = dnx1 is an infinitesimal volume element around x1, and dv(x1) = √
g(x1)dnx1 is the invariant volume measure,

B−1
i j is the inverse matrix of Bi j = biαbjα , see Eq. (2.3d), and (· · · )α means that all functions inside the bracket are evaluated at

the intermediate point xα . The matrix Bi j is assumed to satisfy the detailed balance condition Eq. (2.31d).
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In particular, the α = 0 version of short-time transition probability is

dv(x1)pF x1, t + dt |x; t ) = dμ(x1) e−A0(x1,x;dt,λ)√
(4πdt )n det Bi j (x, λ)

, (A3)

A0(x1, x; dt, λ) = (dxi − F i(x, λ)dt )
B−1

i j (x, λ)

4dt
(dx j − F j (x, λ)dt ). (A4)

Note that the linear combination dxi − dtF i(x, t ) in the action
Eq. (A4) is precisely the deterministic part of the Langevin
equation (A1). In our covariant formulation of Langevin the-
ory, this linear combination transforms as a contravariant
vector under under nonlinear transformation of variables, even
though neither dxi or F i does so.

The defining features of Eq. (A3 are that dx is Gaussian
random variable, and has the following moments (here κm

denotes cumulant of order m):

〈dxi〉 = F i(x, λ)dt, (A5a)

〈dxidxi〉 − 〈dxi〉〈dx j〉 = 2Bi j (x, λ)dt, (A5b)

κm(dx) = 0, ∀ m � 3. (A5c)

For α �= 0, the action Eq. (A2b) is not quadratic in dx.
Hence the transition probability Eq. (A2a) is not Gaussian in
dx. However, in Ref. [39], we proved that all moments of dx
obtained from Eq. (A2a) are independent of α up to order dt .
This means that in the short-time limit, dt → 0, Eq. (A2a)
with different α are equivalent to each other, in the sense that
they all generate the same continuous-time Markov process,
with the same statistical properties of physical observables.
In other words, the non-Gaussian nature of Eq. (A2a) for
α �= 0 makes no contribution to the statistical properties of
the Markov process in the continuous time limit.

2. Reversible and irreversible forces

The systematic force F i(x, λ) in Eq. (A1) can be decom-
posed into a reversible part F i

(R)(x, λ) and an irreversible part
F i

(IR)(x, λ), which are respectively defined as

F i
(R)(x, λ) ≡ 1

2 (F i(x, λ) − εiF
i(x∗, λ∗)), (A6)

F i
(IR)(x, λ) ≡ 1

2 (F i(x, λ) + εiF
i(x∗, λ∗)), (A7)

F i(x, λ) = F i
(IR)(x, λ) + F i

(R)(x, λ). (A8)

Here and below, we shall hide the time dependence of F i

and Bi j , to simplify the notations. It then follows from these
definitions that (no summation over repeated indices below)

εiF
i

(R)(x
∗, λ∗) = −F i

(R)(x, λ), (A9a)

εiF
i

(IR)(x
∗, λ∗) = F i

(IR)(x, λ), (A9b)

εiF
i(x∗, λ∗) = F i

(IR)(x, λ) − F i
(R)(x, λ). (A9c)

For the covariant Langevin equation (2.16), we have

F i(x, λ) = ∂ jL
i j (x, λ) − Li j (x, λ) ∂ j[U (x, λ) − log

√
g(x)].

(A10a)
Using the conditions of detailed balance, Eqs. (2.31), we can
show that the reversible and irreversible parts of the system-
atic force are

F i
(R)(x, λ) = ∂ jQ

i j (x, λ)−Qi j (x, λ) ∂ j[U (x, λ) − log
√

g(x)],

(A10b)

F i
(IR)(x, λ) = ∂ jB

i j (x, λ) − Bi j (x, λ) ∂ j[U (x, λ) − log
√

g(x)],

(A10c)

F i(x, λ) = F i
(IR)(x, λ) + F i

(R)(x, λ). (A10d)

Hence the reversible force only involves Qi j whereas the
irreversible force only involves Bi j . This is, of course, consis-
tent with our understanding that Qi j are the reactive couplings
whereas Bi j are the dissipative couplings.

3. Proof of Eq. (4.28)

To calculate the ratio (4.28), it is most convenient to use α = 1/2 version of the transition probability (A2a),

dv(x1)pF x1, t + dt |x; t ) = dμ(x1) e−A1/2(x1,x;dt,λ)√
(4πdt )n det Bi j (x1/2)

, (A11)

A1/2(x1, x; dt, λ) = [dxi − dt (F i − ∂kBik )1/2]
B−1

i j (x1/2)

4dt
[dx j − dt (F j − ∂lB

jl )1/2]

+ 1

2
(∂iF

i )1/2dt − 1

4
(∂i∂ jB

i j )1/2dt, (A12)

where F i, Bi j depend both on x1/2 and on λ. Using Eq. (A8) and introduce a shorthand y = x1/2 = (x1 + x)/2, we can rewrite
Eq. (A12) as

A1/2(x1, x, dt, λ) = {
dxi − dt

[
F i

(IR)(y, λ) + F i
(R)(y, λ) − ∂kBik (y, λ)

]}
× B−1

i j (y, λ)

4 dt
× {

dx j − dt
[
F j

(IR)(y, λ) + F j
(R)(y, λ) − ∂lB

jl (y, λ)
]}

+ 1

2
dt ∂i

(
F i

(IR)(y, λ) + F i
(R)(y, λ)

) − 1

4
dt ∂i∂ jB

i j (y, λ). (A13)
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Now consider the backward process where the system goes from x∗
1 to x∗, and the parameter is fixed at λ∗. Note that the

mid-point of the backward process is y∗ = x∗ + dx∗/2. Let us write down the α = 1/2 version of the transition probability for
the backward process, which is the counterpart of Eq. (A11):

dv(x∗)pB(x∗,−t |x∗
1,−t − dt ) = e−A1/2(x∗,x∗

1,dt,λ∗ )dμ(x∗)√
(4πdt )n det Bi j (y∗, λ∗)

, (A14)

A1/2(x∗, x∗
1, dt, λ∗) = (−(dxi )∗ − dt (F i(y∗, λ∗) − ∂∗

k Bik (y∗, λ∗)))

×B−1
i j (y∗, λ∗)

4 dt
× (−(dx j )∗ − dt (F j (y∗, λ∗) − ∂∗

l B jl (y∗, λ∗)))

+ 1

2
dt ∂∗

i F i(y∗, λ∗) − 1

4
dt ∂∗

i ∂∗
j Bi j (y∗, λ∗). (A15)

Using (xi )∗ = εixi, we can rewrite the action Eq. (A15) into

A1/2(x∗, x∗
1, dt, λ∗) = (−dxi − dt (εiF

i(y∗, λ∗) − ∂kεiB
ik (y∗, λ∗)εk ))

× εiB
−1
i j (y∗, λ∗)ε j

4 dt
× (−dx j − dt (ε jF

j (y∗, λ∗) − ∂lε jB
jl (y∗, λ∗)εl ))

+ 1

2
dt ∂iεiF

i(y∗, λ∗) − 1

4
dt ∂i∂ jεiB

i j (y∗, λ∗)ε j . (A16)

Using Eq. (A8) to decompose F i into F i
(IR) + F i

(R), and further using the symmetry properties, Eqs. (A9), as well as the conditions
of detailed balance (2.31d), we can rewrite Eq. (A16) into

A1/2(x∗, x∗
1, dt, λ∗) = { − dxi − dt

[
F i

(IR)(y, λ) − F i
(R)(y, λ) − ∂kBik (y, λ)

]}
× B−1

i j (y, λ)

4 dt
× { − dx j − dt

[
F j

(IR)(y, λ) − F j
(R)(y, λ) − ∂lB

jl (y, λ)
]}

+ 1

2
dt ∂i

(
F i

(IR)(y, λ) − F i
(R)(y, λ)

) − 1

4
dt ∂i∂ jB

i j (y, λ). (A17)

Now dividing Eq. (A11) by Eq. (A14), taking the logarithm, and using the following symmetry properties, which follow
immediately from Eqs. (2.25b) and (2.31d):

dv(x1) =
√

g(x1)dμ(x1), (A18)

dv(x∗) =
√

g(x∗)dnx∗ =
√

g(x)dnx, (A19)

dμ(x) = dμ(x∗), (A20)

det Bi j (y∗, λ∗) = det Bi j (y, λ), (A21)

we obtain

log
pF (x1, t + dt |x, t )

pB(x∗,−t |x∗
1,−t − dt )

·
√

g(x1)√
g(x)

= A1/2(x∗, x∗
1, dt, λ∗) − A1/2(x1, x, dt, λ). (A22)

The RHS can be calculated readily using Eqs. (A13) and (A17):

RHS of Eq. (A.22) = (
dxi − dt F i

(R)(y, λ)
)
B−1

i j (y, λ)
(
F j

(IR)(y, λ) − ∂lB
jl (y, λ)

) − dt ∂iF
i

(R)(y, λ). (A23)

Further using Eqs. (A10b) and (A22), we obtain

A1/2(x∗, x∗
1, dt, λ∗) − A1/2(x1, x, dt, λ) = −dxi ∂i[U (y, λ) − log

√
g(y)]. (A24)

Note that y = x1/2 = x + dx/2. For any smooth function �(x), we have

dxi ∂i�(x1/2) = �(x + dx) − �(x) + O(dx3). (A25)

We do not need to worry about O(dx3) terms, since they scale as dt3/2 and do not contribute to the dynamics in the continuum
limit. Hence the RHS of Eq. (A24) can be written as

−U (x + dx, λ) + U (x, λ) + log
√

g(x + dx) − log
√

g(x) = −dxU (x, λ) + dx log
√

g(x), (A26)
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where dx is defined in Eqs. (A22). Substituting these results back into Eq. (A22) we finally obtain

log
pF (x1, t + dt |x, t )

pB(x∗,−t |x∗
1,−t − dt )

= −dxU (x, λ) = −βd̄Q, (A27)

which is precisely Eq. (4.28). As explained in Sec. IV D, the time dependence of λ needs not to be worried, since it only
contributes only to the order dt3/2.
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