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Pseudogap and Anderson localization of light in correlated disordered media
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Among the remarkable scattering properties of correlated disordered materials, the origin of pseudogaps and
the formation of localized states are some of the most puzzling features. Fundamental differences between scalar
and vector waves in both these aspects make their comprehension even more problematic. Here we present an
in-depth and comprehensive analysis of the order-to-disorder transition in 2D resonant systems. We show with
exact ab initio numerical simulations in finite-size hyperuniform media that localization of 2D vector waves can
occur in the presence of correlated disorder, in a regime of moderate density of scatterers. On the contrary, no
signature of localization is found for white noise disorder. This is in striking contrast with scalar waves, which
localize at high density whatever the amount of correlation. For correlated materials, localization is associated
with the formation of pseudogap in the density of states. We develop two complementary models to explain
these observations. The first one uses an effective photonic crystal-type framework and the second relies on a
diagrammatic treatment of the multiple scattering sequences. We provide explicit theoretical evaluations of the
density of states and localization length in good agreement with numerical simulations. In this way, we identify
the microscopic processes at the origin of pseudogap formation and clarify the role of the density of states for
wave localization in resonant correlated media. The generality of our framework makes possible to apply our
predictions for a large variety of scattering systems including dielectric structures with high quality factor, cold
atoms, artificial atoms, as well as microwave resonators.
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I. INTRODUCTION

Light scattering in heterogeneous media is deeply affected
by the existence of spatial correlations in the material structure
[1,2]. Transparency of the cornea [3], structural blue color
of bird feathers [4], or strong anisotropic scattering in dense
colloidal liquids [5] are representative examples of the impact
of correlated disorder (CD) on optical properties. Remark-
ably, these effects can be understood in a simple manner
from the dependence of the transport mean free path of light
�t on the pair correlation function h2 of the medium. For
monochromatic light of wavenumber k = 2π/λ propagating
in a disordered medium with number density ρ, the inverse
transport mean free path is �−1

t ∼ ρ
∫ 2k

0 dqF (q)S(q), where
S(q) = 1 + ρh2(q) is the structure factor and F (q) a func-
tion proportional to the form factor of individual scatterers
[2,6]. The interplay between local Mie resonance and nonlo-
cal spatial correlations fully determines the transmission and
reflection spectra of the material: T (λ) ∼ �t/L and R(λ) =
1 − T (λ) for a nonabsorbing medium of thickness L > �t .
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On the other hand, other fundamental properties of CD
materials still withstand simple explanation. This is the case
of bandgaps or pseudogaps found in the photonic density of
states (DOS). Although pseudogaps are naturally expected
in photonic crystals with imperfections (as a result of par-
tial gap filling by defect states) [7,8], their presence in 2D
and 3D materials without any periodicity remains puzzling
[9–11]. Contrary to the mean free path, there is no available
theory predicting photonic bandgaps (PBGs) in these systems
[1,2,12]. There is also no clear consensus on the physical
mechanisms at their origin. The role of stealth hyperunifor-
mity was put forward in Ref. [13], but a recent numerical
study showed that short-range order was actually sufficient to
observe similar PBG [14]. The absence of a periodic lattice
or long-range order makes the Bragg interference scenario
unreliable. It is thus tempting to describe PBG in CD ma-
terials as the result of coupling between local resonances
(such as Mie resonances). The key role of local resonances
in PBG formation has already been emphasized for photonic
crystals and photonic networks [15–18], as well as for dense
media made of subwavelength resonators where propagation
is essentially ballistic and exhibits a polaritonic dispersion
relation [19]. In this context, a description based on nearest-
neighbor tight-binding coupling between resonances—similar
to the one used for the computation of the electronic DOS of
amorphous semiconductors [20,21]—is appealing. However,
as we will demonstrate, this approach fails to capture polari-
tonic gaps. One objective of the present paper is to provide a
theoretical and comprehensive analysis for disordered media
where multiple scattering plays a prominent role.
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A second remarkable feature of CD materials is their abil-
ity to induce Anderson localization of light. In recent years,
localized states have been found numerically and experi-
mentally in various amorphous correlated structures without
remanent periodicity [22–25]. In addition, both pseudogap
and localization of scalar waves have been observed in 2D
hyperuniform materials, although no explanation has been
provided for their concomitance [12,26]. In a first approach,
localization can be thought to be related to the strong modula-
tion of �t mentioned above. Indeed, for scalar waves, reducing
�t by a proper choice of the form and structure factors is
expected to favor wave localization both in 3D and 2D. A
genuine localization transition is thought to occur in 3D for
k�t ∼ 1, whereas in 2D, the commonly used expression of the
localization length, ξ ∼ �t eπk�t /2, quickly becomes larger than
the system size and physically irrelevant in realistic samples
for k�t � 1; only infinite 2D systems exhibit localization for
arbitrary k�t [27]. Such control of the localization length has
been investigated numerically in Ref. [24]. However, the use
of previous 2D formula in CD materials presenting potentially
strong local resonances is questionable for two reasons. First,
it ignores the strong modification of the energy velocity and
diffusion coefficient of light in resonant materials [19]. Sec-
ond, it fails to reveal the role of the DOS for localization,
whereas localized states have been observed in the bands near
the gap edge [12,23,26,28]. John was the first to highlight in a
seminal work the crucial role of the DOS depletion for photon
localization and the necessity to modify the standard Ioffe-
Regel criterion established initially for unperturbed DOS of
free waves [7,29,30]. His initial rigorous treatment considered
slightly disordered photonic crystals [7], where localization
occurs in the vicinity of the original Bragg gap, and is, as
such, inapplicable for CD materials where local resonances
are prominent and periodicity absent. As we will demonstrate,
both the origin of the gap and the shape of the DOS in its vicin-
ity differ from those considered in John’s model. However,
the general frameworks of the scaling theory [30,31] and self-
consistent theory of localization [32], which explicitly involve
the DOS, still apply, allowing to make an explicit connection
between localization and DOS depletion. This connection has
been somewhat not sufficiently appreciated in the study of
disordered photonic structures and it is another objective of
this paper to highlight it.

In this study, we propose a thorough analysis of the pho-
tonic DOS and localization signatures in 2D CD materials
made of resonant dipole scatterers. These materials allow an
accurate representation of light scattering by atoms or local in-
homogeneities supporting well-defined Mie-type resonances.
They have been used in recent studies of DOS and localiza-
tion for both photonic crystals [33–35] and fully disordered
materials [36–40]. Here we probe the continuous transition
from full disorder to complete order by tuning the degree
of stealth hyperunifomity of the dipole pattern. Importantly,
our analysis emphasizes the differences between out-of plane
and in-plane dipole excitations, respectively due to transverse
magnetic (TM) and transverse electric (TE) field propagation.
In the first case, the field exciting the dipoles is perpendicular
to the 2D plane, so that the scatterers behave as effective
in-plane monopoles and wave propagation reduces to a reg-
ular scalar problem. In the second case, the exciting field

lies in the 2D plane, where the dipoles can have different
orientations: We refer to this situation as a vectorial light
scattering problem. Recently, it has been demonstrated that
the longitudinal coupling in 3D between fully disordered point
scatterers indirectly opens a new propagation channel at high
density that prevents Anderson localization to occur [37,41–
43]. For in plane propagation in 2D disordered point dipole
systems, this longitudinal coupling is also present and as a
result, no evidence of localized states has been reported so
far [39]. These recent observations have boosted the search
for vector wave localization in amorphous photonic materials
with spatial correlations [2,25].

In Sec. II, we report the observation of localized states
for TE (vector) waves in CD dipole point patterns of finite
size, that are clearly absent without spatial correlations. To
our knowledge, such observation has not been reported be-
fore. Remarkably, TE localization occurs at moderate density
and disappears at high density, whereas TM (scalar) waves
are localized at high density only. In addition, we show that
localization is concomitant to the formation of pseudogaps
in the DOS. To elucidate these observations, we develop two
complementary approaches, presented in Sec. III and Sec. IV,
respectively. The first one uses an effective photonic crystal-
type framework that expounds gap formation as the result of
the superposition of different polaritonic dispersion relations
inside the effective Brillouin zone. This approach applies both
for TE and TM waves and predicts accurately the critical den-
sities for which pseudogap appear and disappear. In Sec. IV,
we establish a general expression of the DOS for an assembly
of high-Q resonators, that turns out to be different from the
commonly accepted expression of the DOS. We then com-
pute it theoretically for TE waves at moderate density using
a diagrammatic expansion including both spatial correlation
and recurrent scattering. Good agreement is found with direct
numerical simulation of the DOS. This approach allows us to
identify microscopic scattering processes at the origin of the
DOS depletion. Finally, in Sec. V, we express the equations of
the self-consistent theory of localization in 2D in terms of the
DOS to reveal how the localization length ξ explicitly depends
on it. This prediction turns out to be in good agreement with
direct evaluation of ξ from simulation. Hence, this paper clar-
ifies both the origin of pseudogap and localization of vector
waves in 2D correlated and locally resonant materials.

II. DENSITY OF STATES AND LOCALIZATION OF 2D
VECTOR WAVES

A. Resonances in finite-size hyperuniform materials

In this study, we consider light propagation at frequency
ω = ck in an ensemble of N identical resonant scatterers char-
acterized by their polarizability α(ω). The field Ei exciting a
scatterer i is the sum of the input external field E0(ri ) and the
fields radiated by scatterers j �= i,

Ei = E0(ri ) − k2α(ω)
∑
j �=i

G0(ri, r j, ω)E j . (1)

Here, G0 is the free space Green’s function of the wave equa-
tion, propagating the field between different scatterers. In 2D
systems (invariant along direction z), G0 is a scalar for TM
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polarization and a 2 × 2 matrix for TE polarization. Explicit
expressions of G0 are given in Appendix A. The derivation
of coupled equations (1), in a semiclassical [44,45] or full
quantum framework [46,47], shows that α(ω) also depends
on the field polarization. Once the self-consistent system
(1) is solved, the field at any position r is E(r) = E0(r) −
k2α(ω)

∑
i G0(r, ri, ω)Ei. As a prototype system represented

by such equations, we can think of subwavelength resonant
and long cylinders aligned along the z direction. These equa-
tions can represent more elaborate structures as well, such
as thin metallic waveguides filled with small high dielectric
cylinders [26]. In the latter case, the “TM/TE polarization”
terminology should be replaced by the more general “out-of-
plane/in-plane dipole resonance” terminology, as the dipolar
excitations can be either electric or magnetic for a given
polarization.

By definition, resonances of this scattering problem are
solutions ω in the absence of external excitation (E0 = 0).
According to Eq. (1) they satisfy the equation

det[1 + k2α(ω)G0(ω)] = 0, (2)

where G0(ω) is a βN × βN matrix (β = 1 for scalar waves
and β = 2 for vector waves) with i j element (i �= j) equal to
G0(ri, r j, ω) and ii element equal to 0. Equation (2) rigor-
ously captures all the poles of the scattering operator, except
those associated to peculiar field solutions that are zero on
each scatterer (Ei = 0 for all i). The latter, which behave as
free field without matter, may exist in crystals because of the
periodicity [48,49] but are unlikely for disordered materials.
In the following, the polarizability of each scatterer is assumed
to have a single resonance at ω0 and a radiative decay rate

0. For |ω − ω0| � ω0, it takes the form α(ω) = 4βα̃(ω)/k2

0 ,
with k0 = ω0/c and

α̃(ω) = −
0/2

ω − ω0 + i
0/2
. (3)

The resonance condition (2) is then conveniently expressed in
terms of an effective Hamiltonian H(ω) as det[ω1 − H(ω)] =
0, with

H(ω) =
(

ω0 − i

0

2

)
1 − 
0

2
G̃0(ω), (4)

and G̃0(ω) = −4β(ω/ω0)2G0(ω). In this way, light-matter
interaction is entirely characterized by an effective potential
proportional to the Green’s matrix G̃0(ω) [33,47,50]. For
N � 1 scatterers, the frequency dependance of G̃0(ω) makes
the search of resonances a cumbersome nonlinear problem,
which can be treated exactly for periodic point patterns (see
discussion in Sec. III), but not for the broad class of hype-
runiform patterns considered in this paper. In the following,
we will address the case of scattering resonators with large
quality factor (Q = ω0/
0 � 1), for which the coupling term
in Eq. (4) can be treated as a perturbation. This amounts to
freeze the frequency of G̃0(ω) at the resonance frequency
ω0. This is an excellent approximation for light scattering in
atomic systems, which we expect to hold as well for Mie-
type resonators with Q � 10. In this situation, there are βN
complex resonances ωn − i
n/2 given by

⎧⎨
⎩ωn = ω0 − 
0

2
Re�n,


n = 
0(1 + Im�n),
(5)

where �n are the eigenvalues of the Green’s matrix G̃0(ω0).
For finite-size system, �n occupy an extended domain in
the complex plane, with Im�n > −1 [51]. Re�n represent
collective Lamb shifts and Im�n collective decay rates. The
distribution of �n in the complex plane has been characterized
theoretically in details for scalar and vector waves in 3D fully
disordered systems [36,47,51,52]. In particular, finite mode
life-times due to finite system size offer valuable information
about localization properties of the corresponding eigenstates
[36–38,40].

To probe the impact of the disorder-to-order transition on
the resonances of the system, we arranged the 2D scatterers
inside a disk of radius R using stealthy hyperuniform (SHU)
point patterns [53,54]. The latter are configurations {ri}, which
minimize to zero the structure factor S(q) = 1 + ρh2(q) in a
domain |q| < K . In practice, they are found by minimizing
the two-body potential [14,55]

U ({ri}) =
∫

q<K
dq S̃(q) ≡

∑
i, j

u(ri − r j ), (6)

FIG. 1. [(a),(b)] Typical arrangements of scatterers corresponding to different degrees of spatial correlation. The continuous transition from
white noise disorder (a), to strongly correlated material (b), and eventually to crystal, is probed by tuning the degree of stealth hyperuniformity
0 � χ � 0.8. (c) Isotropic structure factor of the correlated pattern shown in (b), which exhibits a dominant peak in q � 2π/a (a = ρ−1/2 is
the mean distance between scatterers). The procedure used to generate the pattern imposes S(q) = 0 for q < K (see text for details).
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FIG. 2. (a) Distribution of resonances ωn − i
n/2 in the complex plane for different densities (columns) and degree of correlation or
polarization (rows). Axes are labeled with normalized units [δ = 2(ω − ω0)/
0 stands for detuning and γ = 
/
0 for decay rate]. The color
refers to the inverse participation ratio of the corresponding eigenvectors in log scale. The system size is k0R = 55 and the number of disorder
realizations adjusted to have a number of eigenvalues of the order of 106. [(b),(c)] Typical spatial profiles in log scale of the intensity generated
by exciting selectively eigenvectors associated to the eigenvalues marked with triangle (b) and diamond (c) in the complex plane.

where S̃(q) = ∑
i, j eiq.(ri−r j )/N , and u(�r) = 2πK

J1(K�r)/�r in the limit R → ∞. We refer to Appendix B for
more details about the pattern generation and the explicit link
between S(q) and S̃(q). The amount of spatial correlation is
controlled by the stealthiness parameter χ defined as the ratio
between the number of constrained degrees of freedom in
reciprocal space (NK2a2/8π ) and the total number of spatial
degrees of freedoms (2N),

χ = (Ka)2

16π
, (7)

where a = ρ−1/2 = √
π/NR is the mean distance between

scatterers. When χ is progressively increased from 0, the
structure factor goes from a flat response S(q) = 1 for white
noise disorder [see Fig. 1(a) for a typical configuration] to
a peaked profile that remains isotropic as long as χ � 0.6.
Crystalline order is achieved for χ � 0.7 − 0.8 when K co-
incides with the first Bragg peak of the crystalline lattice. As
an illustration, we show a typical disorder configuration for
χ = 0.5 in Fig. 1(b) and the corresponding isotropic structure
factor in Fig. 1(c). Such isotropic profile of S(q), with a first
dominant peak at q � 2π/a, is very similar to the profile
obtained with hard disks at sufficiently large packing fraction
[14]. Since all our predictions for pseudogap and localization
established in the following are expressed in terms of h2(r) or
S(q), we expect them not to be specific to SHU patterns, but
rather generic for any type of correlated systems with similar
structure factor.

B. Distribution of resonances in the complex plane and IPR

The effect of correlated disorder on scattering can be ap-
prehended by visualizing the repartition of resonances ωn −
i
n/2 in the complex plane, as shown in Fig. 2(a). For
convenience, frequencies and decay rates are expressed with
normalized units, δn = 2(ωn − ω0)/
0 and γn = 
n/
0. The
degree of localization of the corresponding eigenstates ψn (of
components ψn,i at positions ri) is also shown, using the in-
verse participation ratio IPRn = ∑N

i ‖ψn,i‖4/(
∑N

i ‖ψn,i‖2)2

as color scale. We first analyze the IPR map of scalar waves
without correlation (first line), which will serve as reference
for the understanding of vector waves (second and third lines).
At low density (k0a = 6), resonances spread around the cen-
tral frequency ω0 with decay rates covering the range γ ∈
[10−3, 10], while most states are delocalized (low IPR). The
smallest decay rates stand for proximity resonances formed
at δ > 0. They are due to localized states on pairs of close
scatterers (IPRn ∼ 1/2) and are unrelated to Anderson lo-
calization [36,37,52]. On the other hand, at large density
(k0a = 2), a long tail of resonances with very small decay
rates (γ ∈ [10−15, 10−6]) is clearly visible near δ = 0. It is
associated to states with large IPR localized in the bulk of the
scattering medium. These signatures mark the onset of Ander-
son localization, as already studied for scalar waves both in
3D [37,38,40] and 2D [39]. Here localization is triggered by a
reduction of the transport mean free path �t at large density
and small detuning [19]. Approaches to localization in 3D
and 2D are expected to be different since a genuine transition
occurs in 3D at k0a � 2.3 corresponding to k0�t ∼ 1 [56],
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whereas in 2D, the critical density below which localization
is visible (ξ � R) depends on the system size R. However,
the expected exponential dependence of ξ on k0�t in 2D (see
Sec. V for a more precise statement) makes the condition
ξ ∼ R accessible in realistic conditions for moderate values
of k0�t only.

For 2D vector waves without spatial correlation [second
line of Fig. 2(a)], subradiant proximity resonances are still
visible, covering now both the range of positive and negative
detuning, in a similar fashion to the 3D vector case [37,47].
More importantly, localization signatures previously found at
high density are now absent: decay rates near δ = 0 are orders
of magnitude larger than in the scalar case and IPR remain
low. It has been shown numerically that such breakdown of
localization at high density is due to near-field contributions
of the Green’s tensor G0 [39]. Similar observations have also
been reported previously with 3D vector waves [37,38]. In
3D, near-field contributions present in the longitudinal part of
G0 become dominant precisely in the regime of high density
where the Anderson transition takes place for scalar wave.
The longitudinal coupling between scatterers indirectly opens
a channel for energy propagation that prevents localization to
occur [37,43]. Should the same scenario apply in 2D, it would
indicate the existence of a transition between a delocalized
phase at large density and a localized phase at low density,
albeit with an exponentially large localization length. In any
case, no clear evidence of localization has been reported for
2D vector waves in resonant dipolar systems yet [39].

Finally, for 2D vector waves with substantial amount of
spatial correlation [third line of Fig. 2(a)], proximity reso-
nances have completely disappeared because the short-range
repulsion of the pair potential u(�r) prevents scatterers to be
too close to each other, as shown in Fig. 1(b). Apart from
this difference, the complex spectrum is left unchanged at low
density (compare TE spectra at k0a = 6, for χ = 0 and χ =
0.5). But remarkably, at intermediate density (k0a = 4.5),
localization is established around δ = 0 with states sharing
small decay rates (γ ∈ [10−12, 10−6]) and strong confinement
(IPR � 0.1). In Fig. 2(c), we show a representative example of
the spatial profile of localized states, with exponential shape
bearing no resemblance to the delocalized profile found in
the same frequency range without correlation [see Fig. 2(b)].
A systematic study reveals that all states with γ � 10−6 are
exponentially localized. We will provide a detailed study of
the localization length ξ in Sec. V; typical distribution of ξ

can be found in Appendix F. Increasing further the density
makes the localization signatures disappear again (see panel at
k0a = 2). Hence, in finite-size systems, vector waves exhibit
localization when scalar waves do not, and vice versa.

To further confirm the impact of correlations on 2D vector
wave localization, we studied the scaling of the Thouless
conductance with system size k0R. For a fixed detuning δ, the
conductance of a mode ψn is defined as the ratio between
its linewidth γn and the mean spacing between neighbor-
ing normalized frequencies close to δ, gn = γn/〈δn+1 − δn〉,
where 〈. . . 〉 stands for ensemble average over different con-
figurations. As we are interested in the lower part of the
complex spectrum only, it is relevant to consider the conduc-
tance percentile gq, defined by q = ∫ gq

0 dg p(g), where p(g)
is the probability density of g; in the following, we take

FIG. 3. Impact of spatial correlations on the scaling function
β(lngq ) for TE waves at k0a = 4.5. The values of k0R1 and k0R2 in the
legend correspond to different pairs of system sizes used to estimate
β(lngq ) (see text for details). For each system size, the number of
disorder realizations is adjusted to have a number of eigenvalues of
the order of 4 × 105. To reduce the statistical fluctuations due to the
finite number of eigenvalues and the finite-difference evaluation of
β(lngq ), the distribution of the conductances p(g) for a given value
of δ includes eigenvalues in its direct vicinity [δ − 0.05, δ + 0.05].
The solid line in the bottom figure is a fit to guide the eye.

q = 0.05 (our results are independent of the precise value
of q as long as q � 1). In Ref. [40] it has been shown
that, for 3D uncorrelated systems of resonators coupled by
scalar waves, the behavior of gq is compatible with the single-
parameter scaling hypothesis [31]. To investigate the validity
of this hypothesis in 2D correlated materials, we evaluate the
scaling function β(lngq) = ∂lngq/∂ln(k0R) � [lngq(R2) −
lngq(R1)]/[ln(k0R2) − ln(k0R1)], for different pairs of close
system sizes (R1, R2) and different detuning δ. The values
of β(lngq) as a function of lngq are reported in Fig. 3 for
uncorrelated TE systems (χ = 0) and correlated ones (χ =
0.5), at k0a = 4.5. The percentile conductance gq of correlated
materials presents a strong dependence on the system size (see
Fig. 3, bottom), with large and negatives values of β(lngq) that
unambiguously indicate the existence of a localized phase. In
addition, all points seem to fall on a single curve, in accor-
dance with the single-parameter scaling hypothesis. On the
other hand, for uncorrelated materials, gq remains moderate
with no clear dependence on the system size (see Fig. 3, top),
which corroborates the results obtained in Ref. [39].

C. Localization and density of states

To cover exhaustively the properties of TE modes, we es-
tablished the phase diagram of localization in the phase space
density/frequency. States that are exponentially localized in
the bulk of the medium necessarily have small decay rates.
Hence, a good indicator of localization is the smallest decay
rate γ for fixed density and frequency, averaged over a large
number of SHU configurations. It is more accurate than IPR,
which can be large for states different from those localized in
the bulk (see discussion below). A map of γ min ≡ 〈min(γ )〉
is presented in Fig. 4(a) for χ = 0.5. The localized phase
corresponds to the smallest values of γ min marked with warm
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FIG. 4. (a) Map of the smallest normalized decay rate γ min ≡ 〈min(γ )〉 in the phase space density/detuning. Small values (warm color)
correspond to states localized in the bulk of the medium, associated to long lifetime. (b) Map of the normalized density of states [see Eqs. (8)
and (9) for definition]. A pseudogap is found in the same phase-space domain as localized states in (a). For both maps (a) and (b), the system
size is kept constant (k0R = 55) and the number of disorder realizations adjusted to have a number of eigenvalues of the order of 106 for each
k0a.

colors (γ min � 10−6); it covers an intermediate range of den-
sity corresponding to k0a ∈ [4.2, 5.2]. A systematic analysis
for different degrees of correlation χ reveals that localization
is preserved as long as χ � 0.4 with a localization island that
is progressively submerged as χ is reduced. Furthermore, a
similar study for TM modes (not shown) establishes localiza-
tion for k0a � 3 for any χ , confirming that vector and scalar
waves exhibit localization in nonoverlapping density ranges
[57].

Although IPR maps in Fig. 2(a) give an indication of the
spectral range covered by the resonances of the system, they
do not provide information about the DOS. The latter is de-
fined as

p(ω) = 1

A

〈
βN∑
n=1

δ(ω − ωn)

〉
, (8)

where A is the area occupied by the disordered sample. In
the thermodynamic limit (N → ∞, A → ∞, at fixed density
ρ = N/A), almost all complex eigenvalues ωn − i
n/2 col-
lapse on the real axis and the definition (8) coincides with the
density of modes of the Hamiltonian (4). The definition (8)
is preferred to a sum of Lorentzians of widths 
n, because it
is less sensitive to finite-size effects. The distribution p(ω) is
related to the distribution of detuning δ = 2(ω − ω0)/
0 as

p(ω) = 2βρ


0
p(δ), (9)

where p(δ) is normalized to unity [
∫

dδ p(δ) = 1].
By computing the DOS p(δ) for different values of den-

sity, we generated the map shown in Fig. 4(b). Remarkably,
the DOS exhibits a strong depletion in the domain where
localization is observed in the map of γ min [Fig. 4(a)]. A
close comparison between the two maps shows a correlation
between weaker features as well: When the DOS is reduced or
increased, so does γ min. These observations are corroborated
by similar finding for TM polarization: DOS is depleted for
k0a � 3 and δ � 0 in the presence of spatial correlation, in
the same phase space domain where localization occurs (not
shown). Moreover, the value of the DOS in the depleted area

of Fig. 4(b) is small but finite, marking the existence of a pseu-
dogap. The value of p(δ) inside the pseudogap is independent
of the system size (at fixed density), as can be expected for
states localized in the bulk of the medium. However, we also
found a very thin part of the phase space where p(δ) decreases
as the medium gets larger. It corresponds to the slice of modes
with moderated decay rates (γ � 10−3) breaching the local-
ization island in Fig. 4(a). The repartition of eigenvalues in the
complex plane represented in Fig. 2(b) at k0a = 4.5 makes it
also visible. Resonances inside this slice correspond to states
mostly located at the sample boundary, and thus potentially
associated to relatively large IPR. They are an artefact of the
finite sample size used in simulations. In the thermodynamic
limit, we expect the fraction of states in this domain to vanish,
revealing a real gap. Similar observations have been made for
3D disordered crystals [35,58]. Hence, our analysis indicates
that localization of vector waves occurs inside a broad pseu-
dogap surrounding a thin gap identified in the map of γ min.

In the following sections, we will provide theoretical mod-
els that explain both the appearance of a pseudogap in the
DOS and the formation of localized states in the same phase
space domain. In this regard, we will justify all the differences
discussed so far for TE and TM waves.

III. EFFECTIVE PHOTONIC CRYSTAL MODEL
FOR THE DENSITY OF STATES

A. Density of states of crystals with large packing fraction

In the previous section, we established that a pseudogap
in the DOS of TE modes forms at a relatively large degree
of spatial correlation (χ � 0.4). In this regime, SHU point
patterns exhibit strong local order. In Fig. 5(a), the distribution
H (r) of nearest neighbors at χ = 0.5 appears sharply peaked
near r ∼ a and the pair correlation function g2(r) = 1 + h2(r)
is isotropic, with strong oscillations associated to the dom-
inant peak of S(q) shown in Fig. 1(c). Very similar results
would be obtained with hard disks of large packing fraction
instead of SHU point patterns [2,14]. When the stealth pa-
rameter is increased further and reaches χ � 0.7 − 0.8, the
patterns crystallize in lattices with large packing fraction, such

033246-6



PSEUDOGAP AND ANDERSON LOCALIZATION OF LIGHT … PHYSICAL REVIEW RESEARCH 4, 033246 (2022)

FIG. 5. (a) Nearest neighbor distribution H (r) (left axis) and pair
correlation function g2(r) (right axis) of a SHU configuration at χ =
0.5. The function g2(r) of a triangular lattice is superimposed for
comparison. (b) Connected point patterns of a triangular lattice (left)
and a SHU configuration at χ = 0.5 (right).

as the triangular lattice. To stress the similarities between
SHU configurations at χ = 0.5 and the triangular lattice, we
connected points with lines to form a pattern of oblique unit
cells, that preserve orientation locally. The result is compared
with the tiling of the lattice with primitive cells in Fig. 5(b).
In this way, a disordered pattern can be seen as an assembly

of small crystals, with orientation and lattice parameters that
fluctuate while preserving a large packing fraction. Earlier
papers noted that polycrystalline structures present bandgaps
similar to those found in perfect crystals as long as the crystal
domains are sufficiently large [14,59]. It is thus instructive to
compare the DOS of SHU resonant systems with the DOS of
crystals made of resonators.

Using a method detailed in Sec. III B, we first computed
the map of DOS of TE modes for a triangular lattice. The
result presented in Fig. 6(a) exhibits a full band gap for mostly
positive detuning in a broad range of density (k0a ∈ [3.8, 6]).
The comparison with Fig. 4(b) reveals that this gap covers
a phase space domain that encompasses the domain of the
pseudogap found at χ = 0.5. Performing a similar analysis
for different oblique lattices, we found that the size of the
gap decreases with the packing fraction—the largest packing
fraction and gap corresponding to the triangular lattice. In
particular, a minimal gap exists for all dense lattices, except
for the square one (see Sec. III B for explanation). The DOS
of an effective crystal mimicking the SHU pattern can be ob-
tained by averaging the DOS over the lattice parameter space
restricted to large packing fraction. As the distance between
scatterers is almost constant in SHU patterns, we considered
different lattices with basis vectors of equal length a∗ and dif-
ferent relative angle θ . The range of spanned angles is chosen
to maintain a packing fraction larger than 0.6, as illustrated in
Fig. 7. In these crystalline point patterns, the mean distance
between points is a = a∗√|sin(θ )|. We show in Fig. 6(b) the
average DOS for a broad range of k0a. As expected, the gap of
the triangular lattice is now partially filled, revealing a strong
depletion very similar to the pseudogap discussed in Fig. 4(b).
This analysis corroborates the idea that SHU patterns behave
as effective photonic crystals, at least as far as their DOS is
concerned.

B. Theoretical predictions for Bravais lattices

Previous considerations justify a deeper theoretical treat-
ment of crystals with large packing fraction, such as the
triangular lattice. For infinite Bravais lattice, eigenstates of

FIG. 6. (a) Normalized DOS of TE waves propagating on a triangular lattice in the phase space density/detuning. (b) Normalized DOS of
TE waves, averaged over an ensemble of lattices with packing fraction superior to 0.6 (see text for details). The DOS in (b) reproduces with
a good fidelity the DOS obtained with SHU configurations at χ = 0.5, shown in Fig. 4(b). In particular, a pseudogap is preserved in the same
range of k0a and δ.
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FIG. 7. Packing fraction φ of oblique lattices with respect to the
relative angle θ between the two basis vectors. The fraction φ is
defined as the ratio between the area of packed noninterpenetrating
disks placed on the lattice and the total area. Examples of unit cells
are shown on the right: triangular lattice (a) with φ = 0.90, square
lattice (b) with φ = 0.78, and a less compact oblique lattice (c) with
φ = 0.60. The dashed domain shows the range of angles used to
obtain the average DOS of Fig. 6(b).

the Hamiltonian (4) are Bloch modes that can be labeled by
a vector q in the first Brillouin zone [33]. The corresponding
eigenvalues are noted ωq. Using the periodicity of the lattice,
the eigenvalue problem reduces to det[ωq1 − Hq(ωq)] = 0,
where the β × β matrix Hq(ωq) is

Hq(ωq) =
(

ω0 − i

0

2

)
1 − 
0

2
G̃0(q, ωq), (10)

with G̃0(q, ω) = −4β(ω/ω0)2 ∑
R �=0 G0(R, ω)e−iq.R. Since

the free space Green’s function G0 decays slowly in real
space, it is not possible to perform a nearest-neighbor-type
approximation of the summation involved in G̃0(q, ω). Inci-
dentally, this indicates that the tight-binding model used in
Refs. [20,21] to compute the electronic DOS of amorphous
semiconductors is not relevant for Hamiltonian of the form
(4). In particular, such a model would be unable to predict
the existence of a polaritonic gap. Using Poisson’s formula
instead, we convert the sum over lattice positions R into a
sum over reciprocal lattice vectors Q,

G̃0(q, ω) = −4βω2

ω2
0

[
ρ

∑
Q

G0(q − Q, ω) − G0(R = 0, ω)

]
,

(11)

where the Fourier transform of the Green’s function is
G0(q, ω) = 1/[(k2 − q2)1 + q2�

‖
q δβ,2], with �

‖
q the projec-

tor parallel to q. The formulation (11) is more appropriate
for computation because convergence is much faster in mo-
mentum space. The price to pay is the necessity to regularize
G0 since the two terms in Eq. (11) diverge, whereas their
difference does not [34,49]. This is done by convoluting G0 in
real space with a function of finite but small width that smears
out the divergence of Re[G0(R = 0, ω)]. The regularization
of G0 as well as the numerical procedure used to obtain, from
Eqs. (10) and (11), the DOS shown in Fig. 6 are detailed in
Appendix C.

Dispersion relations, ωq versus q, for the triangular lat-
tice (θ = π/3) are shown in Fig. 8(a), along the irreducible
path 
 → M → K → 
 of the first Brillouin zone. For
consistency with previous treatments of SHU patterns, dis-
persion relations have been obtained, for both TM and TE
polarizations, by solving the eigenvalue equation det[ωq1 −
Hq(ωq)] = 0, with the large quality factor approximation
Hq(ωq) � Hq(ω0). Let us first consider the high density
regime (k0a = 2, top), which is the simplest to analyze. TM
polarization gives a single solution ω0

q, which exhibits a typ-
ical polaritonic dispersion relation (black dots), while TE
polarization gives two solutions, labeled ω⊥

q and ω
‖
q (red

dots). These labels refer to the orientation of the correspond-
ing eigenvectors, that can be either transverse or parallel to
the wave vector q [see Figs. 8(b) and 8(c)]. The band ω⊥

q

presents a polaritonic dispersion while ω
‖
q is mostly flat. These

different behaviors can be understood by considering the long-
wavelength limit of Eq. (11), where the sum is dominated by
the Fourier component Q = 0,

G̃0(q, ω) � 4β

(k0a)2

(
k2

[q2 − k2]1 − q2�
‖
q δβ,2

+ 1

2
δβ,2

)
− i1.

(12)

Inserting this expression into Eq. (10), we find that the
frequencies {ω0

q, ω
⊥
q , ω

‖
q} satisfy the following dispersion re-

lations:

ω0
q = ω0 − 
0

2

4

(k0a)2

(
ω0

q

/
c
)2

q2 − (
ω0

q

/
c
)2 ,

ω⊥
q = ω0 − 
0

2

8

(k0a)2

[
(ω⊥

q /c)2

q2 − (ω⊥
q /c)2

+ 1

2

]
,

ω‖
q = ω0 + 
0

2

4

(k0a)2
,

(13)

which can be interpreted as solutions of an effective medium
wave equation [−∇ × ∇ × +k2ε(ω)]E (r, ω) = 0. TM
plane waves of vector q obey the dispersion relation q2 =
k2ε(ω), where the dielectric function, ε(ω) = 1 + ραe(ω),
is expressed in terms of an effective polarizability αe(ω) =
4βα̃e(ω)/k2

0 , with α̃e(ω) = −
0/2(ω − ω0). In addition,
longitudinal and transverse TE solutions satisfy ε(ω) = 0 and
q2 = k2ε(ω), respectively, with ε(ω) = 1 + ραe(ω)/(1 −
ραe(ω)/2). Hence, in the long-wavelength limit, the crystal
rigorously behaves as an homogeneous medium of effective
polarizability αe(ω).

The large quality-factor approximation of Eqs. (13)
amounts to replace ωq by ω0 in the right-hand sides. These
solutions, independent of the geometry of the Bravais lattice,
are in good agreement with exact results shown in Fig. 8(a)
at k0a = 2. In particular, ω0

q and ω⊥
q diverge when they cross

the light circle at |q| = k0, whereas ω
‖
q does not. As a general

guiding rule, divergence occurs when the polarization of the
eigenstate—shown in Figs. 8(b) and 8(c) for TE waves—
is tangential to light circle in the plane (qx, qy). Because
of the polaritonic dispersion, the TM solution predicts the
existence of a gap at high density, in the frequency range
δ ∈ [0, 4/(k0a)2]. This prediction matches with observations
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FIG. 8. (a) Photonic band structure of the triangular lattice at high density (k0a = 2, top) and moderate density (k0a = 4.5, bottom), for
both TM (black) and TE (red) polarizations. For the TE case, bands are marked as transverse (ω⊥) or longitudinal (ω‖). (b) View of the first
Brillouin zone (shaded blue), together with the light circles |q| = k0 and |q − Q| = k0, at high density (top) and moderate density (bottom).
Arrows represent the orientation ε of the eigenstates corresponding to the transverse band (ω⊥, associated to ε ⊥ q) and longitudinal band (ω‖,
associated to ε ‖ q) shown in (a).

reported in Sec. II for TM waves in SHU materials. On the
other hand, the TE long-wavelength approximation does not
capture the closing of the gap that occurs near the point
K . The approximation (13) for ω

‖
q is flat, whereas the exact

solution shown in Fig. 8(a) bends in the vicinity of K . The
degeneracy between ω⊥

q and ω
‖
q at point K is due to the

equal contributions of the three adjacent Brillouin zones. By
selecting the corresponding components [Q = 0 and Q± =
2π/a∗(1,±1/

√
3) for the triangular lattice] in Eq. (11), we

find that G̃0(q, ω) is proportional to the identity at K , making
the distinction between longitudinal and transverse modes
irrelevant. The predicted absence of gap for TE waves at high
density is consistent with our findings in SHU materials [see
Fig. 4(b)].

By decreasing the density of scatterers, we reduce the size
of the first Brillouin zone, which may become smaller than the
domain encompassed by the light circle centered in 
. This is
typically what is shown in Fig. 8(b) at k0a = 4.5. As a result,
the light circles belonging to adjacent zones now intersect the
first Brillouin zone. The presence or absence of gap in this
regime can be found by applying the general guiding rule
mentioned above. By definition, TM eigenstates are always in
a plane tangential to the light circles, so that the TM band di-
verges when crossing both the first circle along the path 
 →
M and the second one along the path M → K [see Fig. 8(a)].
This precludes the possibility to observe a polaritonic gap for
TM polarization. On the other hand, TE eigenstates cannot be
tangential to both light circles. Eigenstates associated to ω⊥

q
are tangential to the first circle, while those associated to
ω

‖
q are tangential to the second one. Having a single polari-

tonic divergence in each of the two bands ω⊥
q and ω

‖
q allows

the formation of a TE gap, while preserving the degeneracy at
points 
 and K . The validity of this reasoning suggests that the
sum in Eq. (11) is dominated by the component Q = 0 and its
first neighbors on the reciprocal lattice. We checked numeri-

cally that a restriction of the sum to these components indeed
reproduces the band structure shown in Fig. 8(a) qualitatively,
with a gap found at k0a = 4.5 for TE modes only.

According to previous analysis, the TM gap observed
at high density necessarily disappears when the light circle
reaches the inner edge of the first Brillouin zone (point M).
This occurs at k0a∗ = 2π/

√
3, where a∗ = √

2a/31/4. On the
contrary, a TE gap forms when the light circle reaches the
outer edge (point K) and disappears as soon as the circles
associated to two nonadjacent Brillouin zones meet. For the
triangular lattice, a gap is thus found in the density window
k0a∗ ∈ [4π/3, 2π ]. For more general oblique lattices, such as
those considered in Sec. III A, criteria for the gap formation
in TM and TE polarization remain the same—only the critical
values of k0a defining the gap region are modified. We have
calculated analytically and represented in Fig. 9 these criti-
cal values as function of the angle θ between the two basis
vectors of the direct lattice. These predictions are in excellent
agreement with direct evaluation of the band structure from
Eq. (10). In particular, for TE polarization, a minimal gap ex-
ists for all dense lattices because of the hexagonal shape of the
Brillouin zone. The only exception is the square lattice, which
has a square Brillouin zone and for which the conditions for
gap opening and closing are the same.

Our detailed examination of the band structure for arbitrary
oblique lattice reveals that geometrical arguments involving
light circles and the shape of the Brillouin zone accurately
capture the main features of the DOS at high or moderate den-
sity. In particular, these arguments explain the robustness of
the TE gap, even after averaging over an ensemble of lattices
mimicking SHU pattern, as shown in Fig. 6(b). However, they
hold for SHU patterns with large degree of correlation χ only.
In the following section, we aim at characterizing theoretically
the continuous evolution of p(δ) from white-noise disorder
(χ = 0) to strongly correlated SHU patterns (χ ∼ 0.5).
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FIG. 9. Critical values k0a defining the gap regions as func-
tion of the direct lattice angle θ . Lines are theoretical predictions
and filled areas cover the gaps found numerically from the band
structure. The TM gap disappears when the light circle reaches
the closer inner edge of the first Brillouin zone (see inset), either
in M or M ′ depending on θ . It corresponds to the critical value
k0a∗ = min(π/|sinθ |, π√

2 − 2cosθ/|sinθ |), where a∗ = a/
√|sinθ |

is the distance between unit cells of the direct lattice. The TE gap
opens when the light circle reaches the outer edges in K and K ′,
which corresponds to k0a∗ = π/(1 + cosθ )|sin(θ/2)|; it closes for
k0a∗ = min(π/|sin(θ/2)|, π |sinθ |/√5 − 4cosθ ), when the light cir-
cles associated to two nonadjacent Brillouin zones first meet, either
in M or M ′. TM and TE gaps are found in nonoverlapping regimes
of density. The range of density for the existence of the TE gap is
maximal for the triangular lattice (θ = π/3) and minimal for the
square lattice (θ = π/2).

IV. MICROSCOPIC SCATTERING MODEL
FOR THE DENSITY OF STATES

Our objective is to evaluate the DOS of the effective Hamil-
tonian H(ω0) defined in Eq. (4), at finite density ρ = N/A and
arbitrary χ , in the limit of large system size (N → ∞,A →
∞). This DOS is related to the pdf of eigenvalues �n of
the Green’s matrix G̃0(ω0) through a simple rescaling. When
increasing the area A occupied by the scatterers, most of the
eigenvalues �n that lie in the upper part of the complex plane
(Im�n > −1) progressively collapse towards the line Im� =
−1, so that the imaginary part of most of the eigenvalues of
H(ω0) become vanishingly small while remaining negative.
As a result, the distribution of detuning δ = 2(ω − ω0)/
0

defined through Eqs. (8) and (9) can be written in the form

p(δ) = − 1

πβN
Im

〈
Tr

[
1

(δ + i)1 + G̃0(ω0)

]〉
, (14)

where Tr stands for the trace of a matrix. The average
trace involved in Eq. (14) may be evaluated theoretically by
generalizing the Euclidean random matrix theory framework
developed in Refs. [36,51,60] to correlated arrangements of
scatterers. This is not the strategy adopted in the following,
where we wish to establish a clear connection with quantities
commonly manipulated in mesoscopic physics theory, such as
the collective T operator or the self-energy � [27,61].

The collective T operator in an ensemble of N scatterers
is the sum of all possible elastic scattering sequences experi-
enced by waves of frequency ω [27],

T(ω) =
∑

l

tl +
∑

l

∑
m �=l

tlG0(ω)tm

+
∑

l

∑
n �=l

∑
m �=n

tlG0(ω)tnG0(ω)tm + · · · , (15)

where tl is the t operator of the point-like scatterer l located
in rl , of amplitude t (ω) = −k2α(ω) = −4βk2α̃(ω)/k2

0 . In the
momentum representation, the series (15) is recast as

T(q, ω) = 4β

A

N∑
l=1

N∑
m=1

[
1

(δ + i)1 + G̃0(ω0)

]
lm

e−iq.(rl −rm ).

(16)

This expression applies for resonators of large quality factor
described by the polarizability (3). Since only the compo-
nents l = m contribute significantly to Eq. (16) in the limit
q → ∞, we establish the following connection between p(δ)
in Eq. (14) and the average T operator:

p(δ) = − 1

4πβ2ρ
lim

q→∞ ImTr[〈T(q, ω)〉]. (17)

Hence, we are left with the evaluation of 〈T(q, ω)〉. Note
that this expression of p(δ) does not include the DOS of
free-propagating light. The latter is due to the resonances of
the free space Green’s function G0(ω) itself, which are lost as
soon as we replace G0(ω) by G0(ω0). In the case of crystals,
we did not need such assumption, so that the free space disper-
sion relation, as well as the DOS of free-propagating light was
recovered in the limit of vanishing density [see the discussion
below Eq. (13)].

The average collective T operator is conveniently ex-
pressed in terms of the self-energy �(q, ω) as

〈T(q, ω)〉 = �(q, ω)

1 − G0(q, ω0)�(q, ω)
. (18)

By definition, �(q, ω) is the sum of all possible irreducible
scattering sequences contained in the expansion of 〈T(q, ω)〉.
In the following, we restrict our analysis to the regime of
moderate density (k0a � 3), where it is legitimate to perform
an expansion of the self-energy in density ρ. By averaging
Eq. (15) and keeping all irreducible diagrams up to the second
order in ρ, we get [62]

�(q, ω) = ρ t (ω)1 + ρ2t (ω)2
∫

dr h2(r)G0(r, ω0)e−iq·r + ρ2t (ω)3
∫

dr [1 + h2(r)]
G2

0(r, ω0)

1 − t (ω)2G2
0(r, ω0)

+ ρ2t (ω)4
∫

dr [1 + h2(r)]
G3

0(r, ω0)

1 − t (ω)2G2
0(r, ω0)

e−iq·r. (19)
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FIG. 10. Pictorial representation of the scattering sequences included in the self-energy �. Open circles represent scatterers, arrows account
for field propagation through G0, and dashed line connecting scatterers stand for the spatial correlation function h2. Diagrams are classified
into four classes discussed in the text. The pseudogap found in the DOS p(δ) for strongly correlated systems is triggered by the destructive
interference between the independent scattering contribution, �ISA, and the scattering loops involving two spatially correlated scatterers, �L .

The four terms of the expression (19) are represented schemat-
ically in Fig. 10. The first one �ISA is the independent
scattering approximation of the self-energy, which is the only
relevant term in the limit of dilute uncorrelated system. By
keeping this first order in density in Eq. (17), we find that the
DOS p(δ) takes a Lorentzian profile,

p(δ) = 1

π

1

1 + δ2
, (20)

both for TM and TE waves. This result is in excellent agree-
ment with numerical simulations at χ = 0 in the dilute limit
k0a � 1 (results not shown). The second term in Eq. (19),
noted �C in Fig. 10, corresponds to scattering by two cor-
related scatterers, while the two last terms, �L and �B, are
recurrent scattering contributions involving pairs of scatterers;
�L stands for scattering loops, which end where they start,
and �B represents boomerang-like sequences in which the
last scatterer differs from the first one. For TM waves, �C

and �B do not contribute to p(δ) because they vanish in the
limit q → ∞. On the contrary, for TE waves, they contribute
to p(δ) through the singularity δ(r)1/2k2

0 of G0(r, ω0). The
corresponding weight of �C + �B is −ρ2t (ω)21/2k2

0 , irre-
spectively of the amplitude of the correlation h2. This term,
which slightly red-shifts p(δ) by an amount �δ � −4/(k0a)2

in 2D, is the so-called Lorentz-Lorenz correction to the DOS,
discussed in Refs. [63,64] for 3D uncorrelated media. The
only contribution in Eq. (19) that gives a dependence of p(δ)
on the degree of spatial correlation is thus the loop term �L.

We have represented in Fig. 11(a) maps of the DOS p(δ) of
TE waves in the regime of moderate density k0a ∈ [2.5, 7], for
two degrees of spatial correlation, χ = 0 (top) and χ = 0.5
(bottom). Numerical distributions obtained from the diago-
nalization of the Hamiltonian (4) (left panels) are compared
with the theoretical prediction (17), evaluated at the second
order in density with Eqs. (18) and (19) (right panels). Details
regarding the explicit analytical computation of Eq. (17) and
Eq. (19) are given in Appendix D. Good agreement between
numerics and theory is found over a broad range of density
and detuning, all the way from uncorrelated system (χ = 0) to
strongly correlated one (χ = 0.5). This confirms the validity
of the connection established in Eq. (17) between p(δ) and the
average collective T operator.

Figure 11(b) shows cuts of the two maps along the line
k0a = 4.5. In the absence of spatial correlation (top), p(δ)
differs slightly from the Lorentzian profile (20) found in the
dilute limit (dashed line). In particular, the loop correction

�L is responsible for an antisymmetric contribution to p(δ)
through Im[t (ω)3], which blue-shifts the maximum of p(δ)
and creates a depletion at δ < 0. On the contrary, for a large
degree of correlation (bottom), �L is responsible for a dip
in the DOS at δ > 0, which coincides with the pseudogap
found in simulations. To understand the origin of this dip, it
is sufficient to consider the single loop approximation �L �
ρ2t (ω)3

∫
dr g2(r)G2

0(r, ω0). At χ = 0.5, the pair correlation
function g2(r) = 1 + h2(r) is zero for r � a and presents a
dominant peak at r � a. As a result, most of the scatterers
involved in a scattering loop are separated by a distance a. For
δ � 0 and k0a = 4.5, the phase accumulated along a scattering
loop of length a is opposite to the phase of single scatter-
ing, so that �ISA and �L are of opposite sign and interfere
destructively. In other words, our analysis reveals that the
pseudogap is due to a robust interference between two types
of scattered waves, and not to an interference between the
field illuminating each particle and the scattered field, as it
has been proposed in Ref. [17]. It also shows that the absence
of a gap in the regime of high density for TE polarization is
due to the longitudinal part of G0(q, ω), which is in line with
the predictions made in Sec. III B. Contrary to what has been
put forward in Ref. [17], there is no need for extra Mie-type
resonance to fill the gap found for TM waves. The fact that
our theory does not reproduce quantitatively the pseudogap
at moderate density is attributed to the density expansion of
� performed above. We expect the agreement with numerical
DOS to get better when including scattering loops made of
more than two spatially correlated scatterers.

Our theoretical treatment of the DOS not only provides
explicit expressions of p(δ) for any χ , but also indicates which
microscopic scattering mechanisms contribute to the forma-
tion of the pseudogap in correlated materials, and what should
be the profile of the spatial correlation function to make the
pseudogap prominent.

V. LOCALIZATION LENGTH IN CORRELATED
RESONANT SYSTEMS

We found in Sec. II C that the formation of a pseudogap
in the DOS p(δ) of correlated materials is concomitant to
a modification of the eigenstates of H(ω0). States near the
band edges become exponentially localized in the bulk of the
medium, and, as a result, acquire very long life times in finite-
size samples. Here we want to establish, in an explicit manner,
the connection between p(δ) and the localization properties
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FIG. 11. (a) Comparison between the numerical DOS p(δ) of TE waves (left) and the theoretical prediction (17), including recurrent
scattering and spatial correlation at the second order in density (right). Good agreement is found for k0a � 3, without (top) and with (bottom)
spatial correlation. (b) Cuts along the line k0a = 4.5 of the maps shown in (a). The Lorentzian profile (20) for dilute uncorrelated system is
shown with a dashed line for reference. Numerical results shown in (a) and (b) have been obtained with a system size k0R = 55 and a number
of disorder realizations adjusted to have ∼106 eigenvalues for each k0a.

of H(ω0). To characterize the latter, it is custom to consider
the spatial properties of the intensity associated to the field
operator G(ω) = 1/[ω1 − H(ω0)] [27]. The mean intensity
is defined as

Iαγ (R,�) = 〈
Gαγ

i j (ω+)Gαγ
i j (ω−)∗

〉
, (21)

where ω± = ω ± �/2, (i, j) are positions indices with ri =
r j + R, and (α, γ ) refer to output and input polarization chan-
nels. Using Eq. (16), we can also express the intensity in terms
of the collective T operator,

Iαγ (R,�) ∝ 〈
Tαγ

i j (ω+)Tαγ
i j (ω−)∗

〉
, (22)

where Tαγ

i j (ω) = ([(δ + i)1 + G̃0(ω0)]−1)αγ

i j .
One common way to find the expression of the correlator

(22) is to write a Bethe-Salpeter equation for 〈TT†〉 and com-
pute its irreducible vertex at a given order in density using
the expansion (15). In the long time limit (� → 0) and large-
scale limit (R � �t ), Iαγ (R,�) is dominated by the scalar
mode of the Bethe-Salpeter equation, which is independent
of the polarization channels: Iαγ (R,�) ≡ I (R,�) [61]. In
addition, in the regime of weak scattering (k�s � 1, where
�s is the scattering mean free path discussed below), the mean
intensity effectively obeys a diffusion equation. In the Fourier
domain, it reads

(DQ2 − i�)I (Q,�) = 0, (23)

with I (Q,�) the Fourier transform of I (R,�). If localization
corrections are ignored, the diffusion coefficient D for 2D
waves reduces to

D0 = �tvE

2
, (24)

where �t = �s/(1 − g) is the transport mean free path, g the
scattering anisotropy factor, and vE the energy velocity. In
an ensemble of scatterers with large quality factors, vE is
much smaller than c, because of the long time (∼
−1

0 ) spent
for each scattering event: vE � 
0�s [19]. This definition of
�t includes all possible scattering events up to the second
order in density (see Appendix E for a precise definition
and calculation), except those that contribute to long-range
cooperons. The effect of the latter, which are responsible for
localization in infinite system, are incorporated below. We
stress that the result (24) includes the vectorial nature of the
problem at hand, in the sense that the explicit expressions of
�s and g, which involve the self-energy and the irreducible ver-
tex, depend on it [2,64]. But it neglects other genuinely new
vector effects that may show up in the regime of large density,
where near-field radiation carried by the longitudinal part of
the Green’s tensor G0(q, ω) becomes dominant. Specifically,
it was put forward recently that the interference between the
longitudinal and transverse waves contribute to the diffusive
current and thus increase the value of the diffusion coefficient
[43]. In the regime of moderate density we are interested in
(k0a � 4), we checked explicitly that removing the longitudi-
nal part of G0(q, ω) in the definition of the Hamiltonian (4)
does not change our findings for TE waves: both pseudogap
and localization signatures shown in Fig. 4 are preserved
quantitatively.

In infinite 2D systems, localization corrections to the result
(24) cannot be ignored. When a pair of complex conjugated
fields evolves along a diffusive path, there is a high probability
to form a scattering loop in which the two fields propagate
along the same path but in opposite directions. Account-
ing for these loops (cooperons) self-consistently leads to a
profound modification of D, which becomes solution of the
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equation [32]

D = D0 − DP0, (25)

where P0 is the return probability to the origin by diffusion,

P0 = 1

π p(ω)

∫
dQ

(2π )2

1

DQ2 − i�
. (26)

This expression explicitly depends on the DOS p(ω) of the
Hamiltonian (4), defined in Eq. (8). The integral that appears
in the expression of P0 diverges at large Q, because the dif-
fusion process breaks down at distance shorter than ∼�t . By
introducing a cutoff qmax = 1/�t , we get

P0 = 1

(2π )2 p(ω)D
ln

(
1 + iD

��2
t

)
. (27)

In the stationary limit � → 0+, the solution D of Eq. (25) is
thus purely imaginary. It reads

D = −i�ξ 2, (28)

where ξ is a characteristic length defined as

ξ = �t e
2π2 p(ω)D0 . (29)

With the result (28), the stationary solution of Eq. (23) be-
comes I (R) ∼ e−R/ξ , so that ξ can be interpreted as the
localization length. By inserting the expressions of D0 and
p(ω), given by Eqs. (24) and (9), into the formal solution (29),
we finally get

ξ = �t e
2π2βρ�t �s p(δ), (30)

which applies both for TM (β = 1) and TE (β = 2) waves. As
mentioned above, this prediction has been demonstrated in the
regime of moderate density (k0a � 4), where the contribution
of the longitudinal part of the Green’s tensor to the diffusive
current is negligible.

To analyze the main features of the result (30), we need to
specify the expression of �s. In the absence of absorption, �s

characterizes the exponential extinction of the ballistic light
inside the disordered medium. At second order in density, its
inverse takes the form

1

�s
= −Im[�⊥(q = k0, ω)]

ω0/vϕ

, (31)

where vϕ = c[1 + Re�⊥
ISA(ω)] is the phase velocity and

�⊥(q = k0, ω) is the transverse part of �(q, ω) given in
Eq. (19), evaluated on the shell |q| = k0. Its explicit analytical
expression is given in Appendix D. The result (31) is based on
the on-shell approximation that breaks down at large density.
In that case, the dielectric constant of the effective medium is
nonlocal and the extinction of the ballistic component is no
more exponential. We checked numerically that this occurs in
our systems for k0a � 4.6.

The comparison of Eqs. (17) and (31) shows that p(δ)
and �s, whose product appears in the expression (30) of the
localization length, are both expressed in terms of �(q, ω).
The first one however depends on both the transverse and
longitudinal parts of �(q, ω), evaluated at q → ∞ instead of
q = k0. As a consequence, the term �B(q, ω) contributes to �s

but not to p(δ). The only case where the product ρ�s p(δ) is in-
dependent of detuning and density is the one of dilute systems

FIG. 12. Comparison between the localization length ξ obtained
from transport simulation (open circles) and eigenstate profile (filled
diamonds), with the formula (30) (solid and dashed line), in a ensem-
ble of correlated resonant dipoles (χ = 0.5, δ = 0), illuminated with
TE polarization. The localization length is strongly reduced when
the DOS p(δ) is depleted. Equation (30) has been evaluated with
numerical values of p(δ) and �s. For k0a < 4.6, reliable values of �s

cannot be found, which is attributed to nonlocality of the effective
dielectric constant (see text for details); the value of �s obtained at
k0a = 4.6 is thus extrapolated to get ξ at lower k0a (dashed line).
Details about transport simulation and eigenstate analysis are given
in Appendix F.

(k0a � 1), for which �(q, ω) � �ISA(ω)1 is independent of
q. Then, Eq. (30) reduces to

ξ � �t e
πk0�t

2 , (32)

which is the commonly used expression for the localization
length in 2D [24,32]. We stress that the result (32) is not
accurate as soon as spatial correlation and recurrent scattering
become important. In particular, for TE waves at χ = 0.5,
we find that the frequency profile of p(δ) is strongly asym-
metric [see Fig. 11(b)], whereas the theoretical prediction
(31) gives an almost symmetric profile of �s versus δ (result
not shown). Furthermore, the dependence of p(δ) on k0a is
strongly nonmonotonic [see Fig. 11(a)], whereas Eq. (31)
yields to a monotonic increase of �s with k0a. In this situation,
the product ρ�s p(δ) is not constant and the approximation (32)
of Eq. (30) does not hold.

To test the validity on the prediction (30), and in par-
ticular its explicit dependance on p(δ), we first computed
numerically the values of �s and ξ in the TE polarization
at χ = 0.5. For this purpose, we illuminated a disordered
slab of thickness L made of resonant dipoles and studied
the dependence on L of the mean-field intensity measured
in transmission, |〈E(L)〉|2, as well as the mean of the loga-
rithm of the intensity, 〈ln[|E(L)|2]〉. Details of the calculation
are given in Appendix F. We also checked that the values
of ξ found in this way are compatible with a direct fit of
the exponential profile of the localized eigenstates of H(ω0);
typical profile of the eigenstates and distribution of ξ are
shown in Appendix F. Second, we estimated �t by computing
theoretically the irreducible vertex in the presence of spatial
correlation at second order in density. This amounts to gener-
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alize the results of Ref. [64] to 2D correlated systems. After
a lengthy calculation presented in Appendix E, we found that
the scattering anisotropy factor g is of the order of ∼0.1 for
k0a ∈ [4, 5.5], so that �t � 1.1 �s. In Fig. 12, we compare the
numerical values of ξ with the formula (30) evaluated with
the numerical values of �s and p(δ), in the range of k0a where
p(δ) exhibits a pseudogap. We find that ξ is strongly reduced
in this density window, confirming the critical dependence of
ξ on p(δ). Hence, formula (30) justifies quantitatively why
localized states form when the DOS is depleted.

VI. CONCLUSIONS

We have demonstrated in this paper that spatial correla-
tions in disordered systems profoundly modify the properties
of 2D vector waves, by inducing pseudogap in the DOS
as well as spatial localization. To explain these results, we
established a general formula for the DOS, Eq. (17), that
we expressed at the second order in density in terms of the
pair correlation function g2(r) = h2(r) + 1. This expression
captures the impact of the disorder-to-order transition on the
DOS. Strong spatial correlations force the scatterers to be
at a well defined distance from each other, which allows for
efficient destructive interference between elementary scatter-
ing processes involving one and two scatterers, in the density
window k0a ∈ [4.2, 5.2]. Hyperuniformity (limq→0 S(q) = 0)
is not a requisite condition for this process. It can be realized
with hard disk systems as well, since the latter present very
similar pair correlation function for the right choice of packing
fraction [14].

We also developed a complementary model for the DOS
based on an effective-crystal representation. This model cap-
tures the fundamental difference between scalar and vector
waves in the regime of high density. At k0a � 3, longitudinal
and transverse TE modes interact to prevent the formation of
a polaritonic gap similar to the one formed by TM modes.
On the other hand, at k0a � 4, transverse and longitudinal
modes exhibit independent polaritonic dispersions that result
in a TE gap, whereas TM waves support a double polaritonic
dispersion that closes the gap. By analyzing the mechanisms
responsible for these band structures, we were able to predict
accurately the nonoverlapping regimes of density where TE
and TM gaps are observed in strongly correlated materials.
As a byproduct, our analysis also reveals that we cannot
describe correlated resonant media by means of a nearest-
neighbor tight-binding Hamiltonian, as Weaire and Thorpe
did for amorphous semiconductors [20,21].

Finally, we proved that the localization length ξ in 2D
correlated systems takes the general form (30). This result
explicitly shows that spatial correlations can deeply affect
localization, not only by modifying the scattering mean free
path �s and the scattering anisotropy factor g as found numer-
ically in Ref. [24], but also by depleting the DOS p(δ). In this
way, we explained why it is so difficult to observe localization
of TE modes in uncorrelated media of finite size and why
spatial correlations turn out to be a powerful knob to reach
localization. Our predictions for p(δ) and ξ are supported
quantitatively by extensive numerical simulations of wave
propagation in hyperuniform systems.

By providing theoretical grounds as well microscopic
mechanisms for the emergence of photonic gap and localiza-
tion, we clarify recent experimental and numerical findings
that put forward the role of short-range order for these pro-
cesses [10–12,14,26]. We also establish the possibility to
induce localization for 2D TE waves propagating through
in-plane dipole excitations, which has not been explored ex-
perimentally so far. Finally, our theoretical treatments of the
DOS and localization can, in principle, be extended to 3D
systems. Although the possibility to propagate along a third
dimension evidently leads to qualitative different behavior, the
role of spatial correlations and the microscopic mechanisms
responsible for p(δ) and ξ are formally the same as in 2D.
Hence, we think that our paper will help to identify the key
structural ingredients that affect significantly wave propaga-
tion in 2D and 3D strongly correlated materials. Even more
generally, we stress that the theoretical results (17,18, 19) and
(30), for the DOS and the localization length respectively,
hold for arbitrary Hamiltonian of the form (4), where G̃0(ω)
could describe any type of long-range excitation exchange
between different sites. They are therefore potentially relevant
for a broad class of systems in photonics and condensed mat-
ter physics, ranging from connected photonic networks [13]
to those described by effective spin interactions [65].
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APPENDIX A: ELECTROMAGNETIC GREEN’S
FUNCTION AND GREEN’S MATRIX IN 2D

Throughout this article, we have considered a translation-
ally invariant medium along one direction so that the usual
3 × 3 Green’s tensor splits into two independent block ele-
ments, a scalar one in the TM polarization when the excitation
lies along the invariance direction, and a 2 × 2 block for the
TE polarization with a field perpendicular to it. For the sake
of simplicity both operators will be denoted G0. For TM
polarization, G0 is such that

[∇2 + k2]G0(r − r′, ω) = δ(r − r′), (A1)

G0(R, ω) = − i

4
H(1)

0 (kR), (A2)

where H(1)
α is the Hankel function of the first kind and order α.

Similarly in the TE polarization the Green’s tensor G0 reads

[−∇ × ∇ × +k2]G0(r − r′, ω) = 1δ(r − r′), (A3)

G0(R, ω) = − i

4
PV

[(
1 − R ⊗ R

R2

)
H(1)

0 (kR)

−
(
1 − 2

R ⊗ R
R2

)
H(1)

1 (kR)

kR

]
+ δ(R)

2k2
1. (A4)
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FIG. 13. (a) Periodic system considered to generate stealth hype-
runiform point patterns. (b) Ensemble � of points of the reciprocal
space where the structure factor have to be optimized.

APPENDIX B: HYPERUNIFORM PATTERN GENERATION
AND PROPERTIES

In this Appendix, we focus on the process used to generate
stealth hyperuniform point patterns. This process is adapted
from Refs. [14,55,66–68]. SHU patterns are such that the
structure factor S̃(q) vanishes in a domain |q| < K . Numer-
ically, only a finite number of points can be manipulated.
To mimic an infinite medium, we thus divide the space into
identical unitary cells. A square lattice is often too restrictive
since it forces the point pattern to crystallize into a square
lattice at large χ . For that reason, we have chosen a triangular
(or hexagonal) lattice [see Fig. 13(a)].

The induced periodicity implies that the structure factor
vanishes for all q except the ones lying on the reciprocal lat-
tice. The problem of generating a SHU pattern reduces now to
an optimization process to minimize the structure factor for all
q ∈ � where � is the intersection of the reciprocal lattice and
the domain |q| < K [see Fig. 13(b)]. This can be translated
into the determination of point positions that minimizes the
potential

U ({r j}) =
∑
q∈�

∣∣∣∣∣
∑

j

exp(iq · r j )

∣∣∣∣∣
2

. (B1)

In practice, the first guess is a fully random configuration of
points (Poisson point pattern) on which a conjugate gradient
method is applied which leads to a SHU point pattern. De-

pending on the intended use, the unitary cell structure is then
scaled and cropped to obtain a SHU point pattern inside a disk
of radius R and density ρ = a−2.

Finally, we note that the structure factors S̃(q) =∑
i, j eiq.(ri−r j )/N and S(q) = 1 + ρh2(q) are linked through

the relation

S(q) = S̃(q) − 4π2ρδ(q) (B2)

in an infinite medium (we have to remove the forward-
scattering component). In a finite-sized medium, this relation
becomes [55]

S(q) = S̃(q) − N − 1

A2
|�(q)|2, (B3)

where A is the area occupied by the scattering medium and
�(q) is the Fourier transform of the function

�(r) =
{

1 if r ∈ A,
0 otherwise. (B4)

APPENDIX C: REGULARIZATION OF THE
CRYSTALLINE HAMILTONIAN AND LARGE

WAVELENGTH EXPANSION

To construct the dispersion relation in infinite crystals, we
recall the Hamiltonian of Eq. (10) expressed in term of Bloch
waves

Hq(ωq) =
(

ω0 − i

0

2

)
1 − 
0

2
G̃0(q, ωq), (C1)

with G̃0(q, ω) = −4β(ω/ω0)2 ∑
R �=0 G0(R, ω)e−iq·R. Fol-

lowing the procedure of Refs. [34,49], we want to convert the
sum over the lattice into a sum in reciprocal space. Poisson’s
formula requires the evaluation of the Green’s function at
its singularity. This has been circumvented by regularizing
the Green’s function using a Gaussian cut-off in momentum
space, which smoothen the real space divergence at the origin.
Explicitly we used the following relation derived in Ref. [49]∑

R �=0

G0(R, ω)e−iq·R � e
k2b2

2 ρ
∑

Q

G∗
0(Q − q, ω)

− G∗
0(R = 0, ω), (C2)

where the regularized Green’s function in momentum space
takes the form

G∗
0(q, ω) = G0(q, ω)e− q2b2

2 , (C3)

where b is the regularization parameter. Using Eqs. (C2) and
(C3), we can rewrite Eq. (11) as a sum of finite terms

G̃0(q, ω) = −4βω2

ω2
0

e
k2b2

2

[
1

VL

∑
Q

G∗
0(q − Q, ω)

− G∗
0(R = 0, ω)

]
, (C4)
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which becomes independent of b for b � a. For the TM
polarization, the last term of Eq. (C4) reads

G∗
0(R = 0, ω) = − i

4

∫
dr H(1)

0 (kr)
e− r2

2b2

2πb2

�
kb�1

− 1

π

[
γ + ln

(
k2b2

2

)]
− i

4
. (C5)

Here the Hankel function has been approximated at small
values by

H(1)
0 (x) �

x�1
1 + i

π

[
2γ + ln

(
x2

4

)]
, (C6)

where γ is the Euler’s constant. In the TE polarization, us-
ing

∫ 2π

0 dθ (1 − r̂ ⊗ r̂) = π1 and
∫ 2π

0 dθ (1 − 2r̂ ⊗ r̂) = 0
where r̂ = r/r, we get

G∗
0(R=0, ω) = − iπ1

4

∫ ∞

0
dr r H(1)

0 (kr)
e− r2

2b2

2πb2
+ 1

4πk2b2

�
kb�1

− 1

2π

[
γ + ln

(
k2b2

2

)]

−1

(
i

8
− 1

4πk2b2

)
. (C7)

In the long-wavelength limit (qa � 1), Eq. (12) can be
obtained from Eq. (C4), in the same fashion as in Ref. [49]
for 3D crystals. A more direct way is to go back to Eq. (C1)
and to compute

∑
R �=0 G0(R)e−iq·R in the high-density limit,

which gives

∑
R �=0

G0(R, ω)eiq·R �
qa�1

1

a2

∫
dR G0(R, ω)e−iq·R

− i Im[G0(R = 0, ω)]

− 1

a2

∫
δA

dR Re[G0(R, ω)]

� 1

a2
G0(q, ω) + 1

(
i

4
− δβ,2

2k2a2

)

+ 1
δA
a2

(2−δβ,2)

[
2γ−1+ ln(k2δA/4π )

8π

]
,

(C8)

where δA is a small surface enclosing the origin. Taking the
limit δA → 0, we obtain Eq. (12).

For small enough b/a, the Hamiltonian computed with
Eq. (C4) is independent of the regularization parameter b. In
practice, we set b/a = 0.01, and truncate the sum over the
reciprocal lattice by keeping Q, which satisfy |q − Q| � 7/b.
In order to generate dispersion relations such as shown in
Fig. 9, the Hamiltonian is then diagonalized for q belonging to
an irreducible path of the first Brillouin zone. Moreover, the
numerical density of states p(δ) shown in Fig. 6 is obtained
by sampling an irreducible area of the first Brillouin zone and
counting the number of resonances per unit frequency.

APPENDIX D: COMPUTATION OF THE
SELF-ENERGY AND p(δ)

In order to evaluate Eq. (17), it is convenient to use the
decomposition �(q, ω) = �⊥(q, ω)�⊥

q + �‖(q, ω)�‖
q and

G0(q, ω) = G⊥
0 (q, ω)�⊥

q + G‖
0(q, ω)�‖

q, where �⊥
q and �

‖
q

are the projectors perpendicular and parallel to q. We get

p(δ) = − 1

4πβρ
lim

q→∞ Im

[
�⊥(q, ω)

1 − G⊥
0 (q, ω)�⊥(q, ω)

+ �‖(q, ω)

1 − G‖
0(q, ω)�‖(q, ω)

]
. (D1)

A first simplification comes from the fact that G⊥
0 (q, ω) → 0

when q → ∞, reducing the first term to the numerator �⊥.
Then, we take into account all scattering processes involving
two different scatterers in the computation of the transverse
[�⊥(q, ω)] and longitudinal [�‖(q, ω)] self-energies. This
corresponds to a second-order expansion in density and gives
the following diagrams:

(D2)

This diagrammatic representation is similar to the one shown
in Fig. 10. Circles represent scattering events and horizontal-
solid lines are for the free space Green’s functions connecting
these scattering events. Also, disorder correlations are denoted
by dashed-curved lines and identical scatterers (recurrent scat-
tering) are linked by solid upper and lower lines. Eq. (D2)

takes the compact form

�(q, ω) = �ISA(q, ω) + �C (q, ω)

+ �L(q, ω) + �B(q, ω), (D3)
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where

�ISA(q, ω) = ρ t (ω)1, (D4)

�C (q, ω) = ρ2t (ω)2
∫

dr h2(r)G0(r, ω0)e−iq·r, (D5)

�L(q, ω) = ρ2t (ω)3
∫

dr [1 + h2(r)]
G2

0(r, ω0)

1 − t (ω)2G2
0(r, ω0)

,

(D6)

�B(q, ω) = ρ2t (ω)4
∫

dr [1 + h2(r)]
G3

0(r, ω0)e−iq·r

1 − t (ω)2G2
0(r, ω0)

.

(D7)

Let us first consider �C . To compute this term, we expand
the Green’s function given by Eq. (A4) into its transverse and
longitudinal projections in real space and its singular part as

G0(r, ω) = Gt
0(r, ω)�⊥

r + Gl
0(r, ω)�‖

r + δ(R)

2k2
1 (D8)

where �⊥
r (�‖

r ) is the transverse (longitudinal) projector with
respect to r. Using the relations∫ 2π

0
dθ �⊥

r e−iq·r = 2π

[
J0(qr) − J1(qr)

qr

]
�⊥

q

+ 2π
J1(qr)

qr
�‖

q, (D9)

∫ 2π

0
dθ �‖

r e−iq·r = 2π
J1(qr)

qr
�⊥

q

+ 2π

[
J0(qr) − J1(qr)

qr

]
�‖

q, (D10)

where J0(x) and J1(x) are Bessel functions of the first kind,
we find that �C takes the form

�C (q, ω) = �⊥
C (q, ω)�⊥

q + �
‖
C (q, ω)�‖

q + �LL
C (q, ω)1,

(D11)
with

�⊥
C (q, ω) = 2πρ2t (ω)2

∫ ∞

0
dr r h2(r)

{
Gt

0(r, ω0)

[
J0(qr) − J1(qr)

qr

]
+ Gl

0(r, ω0)
J1(qr)

qr

}
, (D12)

�
‖
C (q, ω) = 2πρ2t (ω)2

∫ ∞

0
dr r h2(r)

{
Gt

0(r, ω0)
J1(qu)

qr
+ Gl

0(r, ω0)

[
J0(qr) − J1(qu)

qr

]}
, (D13)

�LL
C (q, ω) = ρ2t (ω)2h2(0)

2k2
0

. (D14)

Here the last term �LL
C (q, ω) is due to the singular part of the Green’s function.

In the same way we can write the loop term �L in the form

�L(q, ω) = �⊥
L (q, ω)�⊥

q + �
‖
L(q, ω)�‖

q + �LL
L (q, ω)1. (D15)

The first two terms follow from the decomposition

1

1 − t (ω)2G2
0(r, ω0)

=
∞∑
j=0

[t (ω)2G0(r, ω0)2] j =
∞∑
j=0

[t (ω)2Gt (r, ω0)2] j�⊥
r + [t (ω)2Gl (r, ω0)2] j�‖

r

= 1

1 − t (ω)2Gt
0(r, ω0)2

�⊥
r + 1

1 − t (ω)2Gl
0(r, ω0)2

�‖
r . (D16)

Taking the limit q → 0 in Eqs. (D9) and (D10), we get
∫ 2π

0 dθ �⊥
r = ∫ 2π

0 dθ �‖
r = π1 , which leads to

�⊥
L (q, ω) = �

‖
L(q, ω) = πρ2t (ω)3

∫ ∞

0
dr r[1 + h2(r)]

[
Gt

0(r, ω0)2

1 − t (ω)2Gt
0(r, ω0)2

+ Gl
0(r, ω0)2

1 − t (ω)2Gl
0(r, ω0)2

]
. (D17)

In addition, the contribution of the singular part of G0(r, ω) to �L(q, ω) vanishes thanks to a simplification of the δ terms
appearing in Eq. (D6), �LL

L (q, ω) = 0.
Finally, we consider the boomerang term �B that we write in the form

�B(q, ω) = �⊥
B (q, ω)�⊥

q + �
‖
B(q, ω)�‖

q + �LL
B (q, ω)1. (D18)

Using Eqs. (D16) and (D9), we obtain

�⊥
B (q, ω) = 2πρ2

∫ ∞

0
dr r[1 + h2(r)]

{
t (ω)4Gt3

0 (r, ω0)

1 − t (ω)2Gt2
0 (r, ω0)

[
J0(qr) − J1(qr)

qr

]
+ t (ω)4Gl3

0 (r, ω0)

1 − t (ω)2Gl2
0 (r, ω0)

J1(qr)

qr

}
, (D19)

�
‖
B(q, ω) = 2πρ2

∫ ∞

0
dr r[1 + h2(r)]

{
t (ω)4Gt3

0 (r, ω0)

1 − t (ω)2Gt2
0 (r, ω0)

J1(qr)

qr
+ t (ω)4Gl3

0 (r, ω0)

1 − t (ω)2Gl2
0 (r, ω0)

[
J0(qr) − J1(qr)

qr

]}
, (D20)

�LL
B (q, ω) = −ρ2t (ω)2(1 + h2(0))

2k2
0

. (D21)
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FIG. 14. Anisotropy factor g for TE waves propagating in a
highly correlated ensemble of resonators (χ = 0.5), with detuning
δ = 0 (solid-red line), δ = 0.5 (dashed-black line), and δ = −0.5
(dotted-grey line). The anisotropy factor fluctuates between 0.05
and 0.2 in the density window where localization is prominent (see
Fig. 12).

It is interesting to note that the two terms coming from the
singular part of the Green’s function simplify, which gives

�LL(q, ω) = �LL
C (q, ω) + �LL

B (q, ω) = −ρ2t (ω)2

2k2
0

. (D22)

At first order, this contribution is identical to the one we would
obtain considering point-like repulsion between scatterers and
known as Lorentz-Lorenz correction.

In the evaluation of the density of states, only the large
wave-vector limit participates hence removing the contribu-
tion of �B and the wave-vector-dependent part of �C . The
only term, which needs to be computed numerically is �L.
The first integrand involving Gt

0 is regular at the origin,
but not absolutely convergent for large arguments. Indeed,
k0rGt2

0 (r, ω0) is equivalent to i exp[2ik0r]/8π . The integral
can be computed nonetheless by setting a cut-off rc in the
following way [69]:∫ ∞

0
dr r[1 + h2(r)]

Gt
0(r, ω0)2

1 − t (ω)2Gt
0(r, ω0)2

=
∫ rc

0
dr r[1 + h2(r)]

Gt
0(r, ω0)2

1 − t (ω)2Gt
0(r, ω0)2

+
∫ ∞

rc

dr r[1 + h2(r)]
Gt

0(r, ω0)2

1 − t (ω)2Gt
0(r, ω0)2

. (D23)

FIG. 15. Numerical setup used to estimate �s and ξ . Red: Gaus-
sian beam illuminating the medium. Blue: Screen on which the
transmitted field is computed.

For a large enough value of rc, the first integral is computed
numerically and the second one is approximated by∫ ∞

rc

dr rGt
0(r, ω0)2 � i

8πk0

∫ ∞

rc

exp[2ik0r]dr = exp[2ik0rc]

16πk2
0

.

(D24)

The final result (D23) is independent of rc.

APPENDIX E: COMPUTATION OF THE ANISOTROPY
FACTOR g FOR TE WAVES

The transport mean free path �t can be linked to the scatter-
ing mean free path �s through the anisotropy factor g. In 2D,
it is given by

1

�t
= 1 − g

�s
= 〈(1 − q̂ · q̂′)U ⊥(k0q̂, k0q̂′, ω)〉q̂′

4k0
, (E1)

where q̂ = q/q with q = k0, 〈· · · 〉q̂′ denotes an av-
erage over the direction of q̂′, and U ⊥(q, q′, ω) =∑

i, j,k,l �⊥
q,i jUi j,kl (q, q′, ω)�⊥

q′,kl is the transverse part of
the irreducible vertex U(q, q′, ω) of the Bethe-Salpeter
equation [27]. Here, we are specifically interested in the
anisotropy factor, which reads

g = �s
〈q̂ · q̂′ U ⊥(k0q̂, k0q̂′, ω)〉q̂′

4k0
, (E2)

where �s is given by Eq. (31). At the second order in density,
the angular average in the numerator of Eq. (E2) has nonzero
contributions from the following diagrams [62,64]:

(E3)

033246-18



PSEUDOGAP AND ANDERSON LOCALIZATION OF LIGHT … PHYSICAL REVIEW RESEARCH 4, 033246 (2022)

(E4)

(E5)

where the notations are identical to those used in Eq. (D2), with the upper and lower lines accounting for the propagating field
and its conjugate, respectively. Explicitly, the first term reads

UC (q, q′, ω) = ρ2|t (ω)|2h2(q − q′)1, (E6)

so that the angular average of its transverse part can be written in the form

〈q̂ · q̂′U ⊥
C (q, q′, ω)〉q̂′ = ρ|t (ω)|2

∫ 2π

0

dθ

2π
h2(2q|sin(θ/2)|) cos3 θ. (E7)

The loop and boomerang contributions, UL and UB, are

UL(q, q′, ω) = ρ2|t (ω)|2
∫

dr[1 + h2(r)]ei(q−q′ )·r
{

1

[1 − t (ω)2G0(r, ω0)2] ⊗ [1 − t (ω)2G0(r, ω0)2]∗
− 1

}
, (E8)

UB(q, q′, ω) = ρ2|t (ω)|4
∫

dr[1 + h2(r)]ei(q+q′ )·r G0(r, ω0) ⊗ G0
∗(r, ω0)

[1 − t (ω)2G0(r, ω0)2] ⊗ [1 − t (ω)2G0(r, ω0)2]∗
. (E9)

The angular integrations over the directions of r and q̂ that appear in 〈q̂ · q̂′ U ⊥
L (q, q′, ω)〉q̂′ and 〈q̂ · q̂′ U ⊥

B (q, q′, ω)〉q̂′ can
be performed using the decomposition (D8) and the relation (D16). After a lengthy calculation, we find

〈q̂ · q̂′U ⊥
L (q, q′, ω)〉q̂′ = −ρ2|t (ω)|2

∫ ∞

0
dr r[1 + h2(r)]

{
A(qr)

∣∣∣∣ 1

1 − t (ω)2Gt
0(r, ω0)2

∣∣∣∣
2

+ B(qr)

∣∣∣∣ 1

1 − t (ω)2Gl
0(r, ω0)2

∣∣∣∣
2

+ 2C(qr) Re

[(
1

1 − t (ω)2Gt
0(r, ω0)2

)(
1

1 − t (ω)2Gl
0(r, ω0)2

)∗]
− D(qr)

}
, (E10)

〈q̂ · q̂′U ⊥
B (q, q′, ω)〉q̂′ = ρ2|t (ω)|4

∫ ∞

0
dr r[1 + h2(r)]

{
A(qr)

∣∣∣∣ Gt
0(r, ω0)

1 − t (ω)2Gt
0(r, ω0)2

∣∣∣∣
2

+ B(qr)

∣∣∣∣ Gl
0(r, ω0)

1 − t (ω)2Gl
0(r, ω0)2

∣∣∣∣
2

+ 2C(qr) Re

[(
Gt

0(r, ω0)

1 − t (ω)2Gt
0(r, ω0)2

)(
Gl

0(r, ω0)

1 − t (ω)2Gl
0(r, ω0)2

)∗]}
, (E11)

where A(x) = −2π [J2(x) − xJ1(x)]2/x2, B(x) = C(x) =
−2πJ2(x)2/x2, D(x) = A(x) + 3B(x), and J1(x) and J2(x) are
Bessel functions of the first kind. We note that the remaining

integration over r is not convergent for r → ∞ because of
the term rA(qr)|Gt

0(r, ω0)|2 ∼ cos(kr)2/r. We regularize this
logarithmic divergence by replacing the free space Green’s

FIG. 16. Intensity of the average field (a) and average of the intensity logarithm (b) as function of the sample thickness L, evaluated for the
geometry shown in Fig. 15 at δ = 0. Dashed lines show the best linear fits.
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function Gt
0(r, ω0) with the far-field expansion of the average

Green’s function, 〈Gt (r, ω0)〉 � Gt
0(r, ω0)e−r/2�s .

We show in Fig. 14 the anisotropy factor g evaluated from
Eq. (31) and Eq. (E2) with U ⊥ = U ⊥

C + U ⊥
B + U ⊥

L , for the
range of density probed in Fig. (12) and different values of
detuning δ. In particular, at resonance (δ = 0), we find g ∼
0.07 − 0.13, which gives �t ∼ 1.07 − 1.15 �s.

APPENDIX F: NUMERICAL EVALUATION OF �s AND ξ

The numerical estimate of the scattering mean free path
�s and of the localization length ξ is performed through
ab initio computations using the coupled dipoles method. We
place a SHU pattern into a rectangle of length L (typically
kL ∈ [10, 60]) and transverse size D. In order to mimic a
slab geometry, which is the most convenient geometry to have
access to estimates of �s and ξ , we choose D � L (typically
D = 20L, see Fig. 15). This system is shined using a gaussian
beam of waist w � λ (typically kw = 200) given by

E(r, ω) = E0√
1 + iα

exp

[
ikx − y2

w2(1 + iα)

]
(F1)

for TE waves. E0 is the amplitude and α = 2x/(kw2). This
specific illumination is chosen such that it smoothes the
transverse finite-size effects. The transmitted electric field is
computed for each disordered configuration on a screen of size
d lying at a distance X from the output interface of the slab.
We take X > λ (typically kX = 10) in order to avoid potential
near-field effects close to the interface.

In order to estimate �s, we average the transmitted field
over many SHU configurations. To accelerate the numerical
convergence, we also perform a spatial average over the obser-
vation screen assuming ergodicity and a size d > λ (typically
kd = 10). Then we compute the intensity of this average field
and perform a fit with the formula

|〈E〉|2 = A exp
[
− L

�s

]
(F2)

as a function of the thickness of the slab L. A and �s are the
fitted parameters. Results are presented in Fig. 16(a).

The estimate of the localization length ξ is performed from
the fit of the average of the intensity logarithm as a function

FIG. 17. Histogram of the localization length ξ obtained from
a fit of the eigenstates of H(ω0) in the TE polarization, at k0a =
4.5 and χ = 0.5. Here the eigenstates are associated to detuning δ ∈
[−0.05, 0.05]. The inset shows an example of the intensity profile
of an eigenstate with the best fitting estimate. A weighted fit with a
(1 + r)−1 penalty has been used to account for the variable number
of data points with the distance r.

of L. The fitting formula is given by

〈ln |E|2〉 = B − L/ξ (F3)

where B and ξ are the fitted parameters. Results are presented
in Fig. 16(b). We also compared the value of ξ found from
Eq. (F3) with the length characterizing the exponential profile
of the eigenstates of H(ω0) (see inset of Fig. 17). The un-
certainty on the fitting parameter for this length (also noted ξ

in Fig. 17) is of the order of the percent, ensuring that the
eigenstates are indeed exponentially localized. For a given
value of k0a, eigenstates corresponding to a certain detun-
ing δ do not necessarily have the same localization length
ξ . However, in the regime of density and detuning where
we expect strong localization, the distribution p(ξ ) becomes
noticeably narrow. An example of p(ξ ) obtained in this way
is shown in Fig. 17. The values of ξ represented in Fig. 12
correspond to the mean value of p(ξ ) and the error-bar to the
standard deviation, computed for different k0a at δ = 0, using
32 SHU configurations of N = 2000 resonators distributed in
a disk. For all k0a, the disk radius is significantly larger than
ξ (k0R ∈ [100 − 150]).

[1] S. Yu, C.-W. Qiu, Y. Chong, S. Torquato, and N. Park, Engi-
neered disorder in photonics, Nat. Rev. Mater. 6, 226 (2021).

[2] K. Vynck, R. Pierrat, R. Carminati, L. S. Froufe Pérez, F.
Scheffold, R. Sapienza, S. Vignolini, and J. J. Sáenz, Light in
correlated disordered media, arXiv:2106.13892.

[3] G. B. Benedek, Theory of transparency of the eye, Appl. Opt.
10, 459 (1971).

[4] G. Jacucci, S. Vignolini, and L. Schertel, The limitations of ex-
tending nature’s color palette in correlated, disordered systems,
Proc. Natl. Acad. Sci. USA 117, 23345 (2020).

[5] L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz,
P. Schurtenberger, and F. Scheffold, Photonic Properties of
Strongly Correlated Colloidal Liquids, Phys. Rev. Lett. 93,
073903 (2004).

[6] S. Fraden and G. Maret, Multiple Light Scattering from Con-
centrated, Interacting Suspensions, Phys. Rev. Lett. 65, 512
(1990).

[7] S. John, Strong Localization of Photons in Certain Disordered
Dielectric Superlattices, Phys. Rev. Lett. 58, 2486 (1987).

[8] P. D. García, R. Sapienza, C. Toninelli, C. López, and D. S.
Wiersma, Photonic crystals with controlled disorder, Phys. Rev.
A 84, 023813 (2011).

[9] C. Jin, X. Meng, B. Cheng, Z. Li, and D. Zhang, Photonic
gap in amorphous photonic materials, Phys. Rev. B 63, 195107
(2001).

[10] K. Edagawa, S. Kanoko, and M. Notomi, Photonic Amorphous
Diamond Structure with a 3D Photonic Band Gap, Phys. Rev.
Lett. 100, 013901 (2008).

033246-20

https://doi.org/10.1038/s41578-020-00263-y
http://arxiv.org/abs/arXiv:2106.13892
https://doi.org/10.1364/AO.10.000459
https://doi.org/10.1073/pnas.2010486117
https://doi.org/10.1103/PhysRevLett.93.073903
https://doi.org/10.1103/PhysRevLett.65.512
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevA.84.023813
https://doi.org/10.1103/PhysRevB.63.195107
https://doi.org/10.1103/PhysRevLett.100.013901


PSEUDOGAP AND ANDERSON LOCALIZATION OF LIGHT … PHYSICAL REVIEW RESEARCH 4, 033246 (2022)

[11] S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R.
Dufresne, C. S. O’Hern, and H. Cao, Photonic band gaps in
three-dimensional network structures with short-range order,
Phys. Rev. A 84, 063818 (2011).

[12] L. S. Froufe-Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, Band
gap formation and anderson localization in disordered photonic
materials with structural correlations, Proc. Natl. Acad. Sci.
USA 114, 9570 (2017).

[13] M. Florescu, S. Torquato, and P. J. Steinhardt, Designer disor-
dered materials with large, complete photonic band gaps, Proc.
Natl. Acad. Sci. USA 106, 20658 (2009).

[14] L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J.
Haberko, S. C. Glotzer, and F. Scheffold, Role of Short-Range
Order and Hyperuniformity in the Formation of Band Gaps in
Disordered Photonic Materials, Phys. Rev. Lett. 117, 053902
(2016).

[15] E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M.
Soukoulis, Tight-Binding Parametrization for Photonic Band
Gap Materials, Phys. Rev. Lett. 81, 1405 (1998).

[16] K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne,
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